首页

> 学术发表知识库

首页 学术发表知识库 问题

关于拓扑材料搜索研究的论文

发布时间:

关于拓扑材料搜索研究的论文

基于单片机AVR与FPGA的正弦信号发生器设计摘要:在电子和通信产品中往往需要高精度的正弦信号,而传统的正弦信号发生器往往在低频输出时的频率的稳定度和精度等指标都不高。文中介绍了Micro Linear公司的一款单片正弦信号发生芯片ML2035,它可以在几乎不需要其它外围器件的条件下,产生从直流到25kHz的正弦信号,并利用此芯片完成了简易正弦信号发生器电路的设计。 关键词:信号发生器,信号源,正弦信号,ML2035, DDS 目录1. 绪论2. 技术概述3. 需求分析阶段3.1 功能模块图3.2 数据流图3.3 E-R图3.4 业务流程图4. 设计阶段(程序流程图)5. 详细设计阶段(运行的截图)6. 安装调试阶段7. 设计体会1.绪论1.1信号发生器的概念信号发生器(signal generator)产生所需参数的电测试信号仪器。按其信号波形分为四大 类:①正弦信号发生器。主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。按其不同性能和用途还可细分为低频(20赫至10兆赫)信号发生器、高频(100千赫至300兆赫)信号发生器、微波信号发生器、扫频和程控信号发生器、频率合成式信号发生器等。②函数(波形)信号发生器。能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。③脉冲信号发生器。能产生宽度、幅度和重复频率可调的矩形脉冲的发生器,可用以测试线性系统的瞬态响应,或用作模拟信号来测试雷达、多路通信和其他脉冲数字系统的性能。④随机信号发生器。通常又分为噪声信号发生器和伪随机信号发生器两类。噪声信号发生器主要用途为:在待测系统中引入一个随机信号,以模拟实际工作条件中的噪声而测定系统性能;外加一个已知噪声信号与系统内部噪声比较以测定噪声系数;用随机信号代替正弦或脉冲信号,以测定系统动态特性等。当用噪声信号进行相关函数测量时,若平均测量时间不够长,会出现统计性误差,可用伪随机信号来解决。正弦信号发生器作为电子技术领域中最基本的电子仪器,广泛应用于航空航天测控、通信系统、电子对抗、电子测量、科研等各个领域中[1~2]。随着电子信息技术的发展,对其性能的要求也越来越高,如要求频率稳定性高、转换速度快,具有调幅、调频、调相等功能,另外还经常需要两路正弦信号不仅具有相同的频率,同时要有确定的相位差。要实现两路信号具有确定的相位差,通常有两种实现方法:—‘种是采用移相器实现,如阻容移相网络、电感移相器、感应分压器移相器等。这种方法有许多不足之处,如移相精度受元件特性的影响大、移相精度差、移相操作不方便、移相角受负载和时间等因素的影响而漂移等;另一种是采用数字移相技术,这是目前移相技术的潮流[3]。数字移相技术的核心是先将模拟信号或移相角数字化,移相后再还原成模拟信号。本文采用直接数字频率合成技术设计了双通道正弦信号发生器,可以输出两路频率相同、相位差可调的正弦信号。两通道还可以独立使用,分别进行调频、调幅及调相。该信号发生器具有频率稳定度高及调频、调相迅速的优点。 正弦信号源是一种广泛应用的信号源,对它的要求也随着技术的发展越来越高。传统的正弦信号发生器往往在低频输出时的频率的稳定度和精度等指标都不高 。我们知道为了获得高频率稳定度的信号源,往往采用锁相环实现,但这种方法电路复杂、体积庞大。近年来,DDS技术由于具有容易产生频率快速转换、分辨率高、相位可控的信号,这在电子测量、雷达系统、调频通信、电子对抗等领域得到了十分广泛的应用 。然而,如果选用通常的Analog公司的系列DDS芯片研制低频正弦信号发生器,往往需要外部微处理器,因此电路较复杂,并且频率稳定度不佳。为此,本文将讨论基于ML2035设计简易的正弦信号发生器,它具有外围元器件少,电路实现简单,可以不需要外部微处理器的特点。2.技术概述1 直接数字频率合成器的基本原理频率合成是指对一个标准信号频率经过一系列算术运算,产生具有相同精度和稳定度的大量离散频率的技术。频率合成有多种实现方法,其中直接数字频率合成技术与传统频率合成技术相比具有难以比拟的优点,如频率切换速度快、分辨率高、频率和相位易于控制等[4~5]因此得到越来越广泛的应用,成为当今现代电子系统及设备中频率源设计的首选。直接数字频率合成器由参考时钟、相位累加器、正弦查询表和D/A转换器组成,如图1所示。 直接数字频率合成技术是根据相位间隔对正弦信号进行取样、量化、编码,然后储存在EPROM中构成一个正弦查询表。频率合成时,相位累加器在参考时钟的作用下对时钟脉冲进行计数,同时将累加器输出的累加相位与频率控制字K预置的相位增量相加,以相加后的吉果形成正弦查询表的地址;取出表中与该相位对应的单元中的幅度量化正弦函数值,经D/A转换器输出模拟信号,再经低通滤波器平滑得到符合要求的模拟信号。相位累加器的最大计数长度与正弦查询表中所存储的相位分隔点数相同,由于相位累加器的相位增量不同,将导致一周期内的取样点数不同,在取样频率(由参考时钟频率决定)不变的情况下,输出信号的频率也相应变化。如果设定累加器的初始相位,则可以对输出信号进行相位控制。 由采样原理可知,如果使用两个相同的频率合成器,并使其参考时钟相同,同时设定相同的频率控制字、不同的初始相位,那么在原理上就具备了实现输出两路具有一定相位差的同频信号的可能性。AD9852是ADI公司生产的高集成度的频率、相位、幅度可调的直接数字频率合成器,内部集成了高性能D/A转换器、高速比较器、程序寄存器、参考时钟倍频器及可实现各种运算的高性能的数字控制单元,并且可以实现全数字编程控制。AD9852的输出信号频率控制字为48位,使输出频率调节分辨率达到1μHz,输出信号的频率范围可从直流到150MHz,相位调节控制字为14位,相调节分辨率为0.022°,幅值调节控制字为12位。ML2035是Micro Linear公司的一款单片正弦信号发生芯片,它可以在几乎不需要其它外围器件的条件下,产生直流到25kHz的正弦信号,并且它的输出正弦信号频率可以由16比特的串行比特字控制 。因此,ML2035可以广泛地应用于需要价格低、精度高的正弦信号发生器的无线通信或调制解调等领域。ML2035的主要特点如下: 输出正弦信号频率为直流到25kHz; 具有低增益误差和低谐波畸变性能; 具有3线SPI兼容性串行微处理器接口,并具有数据锁存功能; 具有不需要外围器件的全集成解决方案功能;频率分辨率可达1.5Hz (当输入时钟频率为 时); 自带 的内部晶振; 具有同步和异步的数据加载功能。 正弦信号的产生 ML2035的基本原理和DDS一样,它内部主要由正弦信号产生、晶振和串行数字接口等部分组成。但是,ML2035的外围电路及其简单,它仅有8个引脚。ML2035的可编程频率发生器的基本原理和直接频率合成器(DDS)的基本原理完全一样。我们知道,DDS芯片一般由频率控制字、相位累加器、正弦查询表、D/ A 转换器和低通滤波器组成。DDS芯片的核心部件是相位累加器,它由N 位加法器与N 位相位寄存器构成,它类似一个简单的计数器。每来一个时钟脉冲,相位寄存器的输出就增加一个步 的相位增量值,加法器将频率控制数据与累加寄存器输出的累加相位数据相加,把相加结果送至累加寄存器的数据输入端。相位累加器进入线性相位累加,累加至满量程时产生一次计数溢出,这个溢出频率即为DDS的输出频率。正弦查询表是一个可编程只读存储器(PROM),存储的是以相位为地址的一个周期正弦信号的采样编码值,包 含一个周期正弦波的数字幅度信息,每个地址对应于正弦波中 : 范围的一个相位点。将相位寄存器的输出与相位控制字相加得到的数据作为一个地址对正弦查询表进行寻址,查询表把输入的地址相位信息映射成正弦波幅度信号,驱动DAC,输出模拟信号;低通滤波器平滑并滤除不需要的取样分量,以便输出频谱纯净的正弦波信号。 由于ML2035的控制字长为16比特,因此据DDS的原理我们不难得出ML2035的输出频率关系式为 (1) 相应地,ML2035的频率分辨率(亦最小频率)为 (2) 3.需求分析阶段一、 设计任务 设计制作一个波形发生器,该波形发生器能产生正弦波、方波、三角波和由用户编辑的 特定形状波形。 二、 设计要求 1. 基本要求 具有产生正弦波、方波、三角波三种周期性的波形。 用键盘输入编辑生成上述三种波形(同周期)的线性组合波形,以及由基波及其谐波( 5次以下)线性组合的波形。 具有波形存储功能。 输出波形的频率为100Hz~20KHz(非正弦波频率按10次谐波计算):重复频率可调,频 率步进间隔≤100Hz。 输出波形幅度范围0~5V(峰-峰值),可按步进0.1V(峰-峰值)调整。 具有显示输出波形的类型、重复频率(周期)和幅度的功能。 2.发挥部分 输出波形频率范围扩展至100Hz~200KHz。 用键盘或其他输入装置产生任意波形。 增加稳幅输出功能,当负载变化时,输出电压幅度变化不大于±3%(负载电压变化范围 :100Ω~∞)。 具有掉电存储功能,可存储掉电前用户编辑的波形和设置。 可产生单次或多次(1000次以下)特定波形(如产生一个半周期三角波输出)。 其它(如增加频谱分析、失真度分析、频率扩展>200KHz、扫频输出等功能)。 三、方案设计和论证: 根据题目的要求,我们一共提出了三种设计方案,分别介绍如下: 1、 方案一 采用低温漂、低失真、高线性单片压控函数发生器ICL8038,产生频率受控可变的正弦波 ,可实现数控频率调整。通过D/A和5G353进行输出信号幅度的控制。输出信号的频率、 幅度参数由4x4位键盘输入,结果输出采用6位LED显示,用户设置信息的存储由24C01完 成。系统结构框图如图1所示。 2、 方案二 由2M晶振产生的信号,经8253分频后,产生100Hz的方波信号。由锁相环CD4046和8253进 行N分频,输出信号送入正弦波产生电路和三角波产生电路,其中正弦波采用查表方式产 生。计数器的输出作为地址信号,并将存储器2817的波形数据读出,送DAC0832进行D/A 转换,输出各种电压波形,并经过组合,可以得到各种波形。输出信号的幅度由0852进 行调节。系统显示界面采用16字x1行液晶,信号参数由4x4位键盘输入,用户设置信息的 存储由24C01完成。 3、 方案三 以4M石英晶振作为参考源,通过F374,F283以及LS164组成的精密相位累加器,通过高速 D/A变换器和ROM产生正弦波形,这个数字正弦波经过一个模拟滤波器后,得到最终的模 拟信号波形。通过高速D/A产生数字正弦数字波形和三角数字波形,数字正弦波通过带通 滤波器后得到一个对应的模拟正弦波信号,最后该模拟正弦波与一门限进行比较得到方 波时钟信号。通过相位累加器来实现多种波形的同相位输出,并可以连续地改变频率。 输出信号幅度由TLC7524进行数字控制。用户设置信息的存储由24C01完成。 以下为三种基本方案的具体电路实现: 方案一 单片压控函数发生器ICL8038产生频率为100Hz~20KHz的正弦波,其频率由DAC0832和5G 353进行控制。由于ICL8038自身的限制,输出频率稳定度只有10-3(RC振荡器)。而且 由于压控的非线性,频率步进的步长控制比较困难。输出信号的幅度数控由DAC0832和5 G353完成。幅度数码由单片机通过P0口输入。要求幅度数据为8位/ 100mV。用户设置信 息的存储由24C01完成。 微控制器由8051最小系统,键盘/显示接口芯片8279,16位键盘,6位LED数码显示器以及 相应译码、驱动电路及“自动扫描/手动设置”选择开关等组成。 方案二 基本信号产生:晶振频率为2M,经8253进行分频后,产生100HZ的方波信号,则分频比为 : M=fALE/100=2X104 其中FALE=2M 一般石英晶体振荡器的频率稳定性优于10-5,故输出信号的频率稳定性指标得以保证。 频率合成:CD4046和8253组成的锁相环中,fo=100N 其中8253的定时器做4046的N分频, 则占空比电路的输入脉冲信号频率也是N。 利用可编程定时器/计数器8253的三个定时器,正好可以承担上述2x104分频和锁相环中 而个分频器的任务。其中定时器0分频比设为2x104,定时器2做锁相环N分频。利用8253 做分频器,应使其工作于方式3。 波形变换采用查表方式,把正弦波一个周期的波形按时间平均划分为100个点,各点的电 压数据放在存储器2817中,通过DA0832实时查询输出。 输出信号的幅度数控由DAC0832完成,幅度数码由单片机通过P1口输入,要求幅度数据为 8位/ 100mV。当输出幅度为3V时,DAC输入数值应为240。 微控制器系统由89C51最小系统,4x4位键盘输入,字符型液晶显示器以及相应的译码、 驱动电路构成。液晶显示采用菜单显示方式,显示直观,操作方便,人机界面非常友好 . 用户设置信息的存储由24C01完成 方案三 以4M石英晶振作为参考源,通过F273,F283以及LS164组成的精密相位累加器和数字信号 处理,通过高速D/A变换器DAC0800和2817 E2ROM产生正弦波形,三角波形和任意波形。 正弦信号频率计算:在相位累加器中,每来一个时钟脉冲,它的内容就更新一次。在每 次更新时,相位增量寄存器的相位增量M就加到相位累加器中的相位累加值上。假设相位 增量寄存器的M为00...01,相位累加器的初值为00...00。这时在每个时钟周期,相位累 加器都要加上00...01。本设计累加器位宽n是24位,相位累加器就需要224个时钟周期才 能恢复初值。 相位累加器的输出作为正弦查找表、三角波查找表和用户自定义波形查找表(均为 E2PROM2817)的查找地址。查找表中的每个地址代表一个周期的波形的一个相位点,每 个相位点对应一个量化振幅值。因此,这个查找表相当于一个相位/振幅变换器,它将 相位累加器的相位信息映射成数字振幅信息,这个数字振幅值就作为D/A变换器的输入。 设计n=24, M=1, 这个相应的输出信号频率等于时钟频率除以224。如果M=2,输出 频率就增加1倍。对于一个n-bit的相位累加器来说,就有2n个可能的相位点,相位增量 寄存器中控制字M就是在每个时钟周期被加到相位累加器上的值。假设时钟频率为fc,那 么输出信号的频率就为: f0 = M*fc / 224 数字正弦波经过一个模拟滤波器后,得到最终的模拟信号波形。通过高速DAC产生数字正 弦数字波形和三角数字波形,数字正弦波通过带通滤波器后得到一个对应的模拟正弦波 信号,最后该模拟正弦波与一门限进行比较得到方波时钟信号。 输出信号的幅度数控由TLC7524数控衰减器完成,幅度数码由单片机通过总线寻址方式输 入,幅度为8位/100mV。当输出幅度为5V时,DAC输入值为400。 微控制器系统由89C52最小系统,4x4位键盘输入,字符型液晶显示器以及相应的译码、 驱动电路构成。液晶显示采用菜单显示方式,显示直观,操作方便,人机界面非常友好 。用户设置信息的存储由24C01完成 4、 方案比较 下面对三种方案的性能特点和实现的难易等作一些具体分析与比较。 1)方案一结构比较简单,但由于ICL8038自身的限制,采用了RC振荡器,故输出频率稳 定度只能达到10-3数量级。方案二采用石英晶体振荡器和数字锁相环技术,而一般石英 晶体振荡器的频率稳定性优于10-5,故输出信号的频率稳定性指标得以保证。方案三同 样采用石英晶体振荡器、精密的相位累加器,频率稳定性指标同样优于10-5。达到题目 的要求。 2)方案一由于压控振荡器F/V的线性范围有限,频率步进的步长控制比较困难,难以保 证1000倍的频率覆盖系数。方案二采用集成锁相环4046,配合8253很容易做到1000倍的 线性频率覆盖系数。方案三使用精密相位累加器和高速DAC,同样可以实现1000倍的线性 频率覆盖。 3)方案一的控制显示系统比较简单,六位LED的显示系统制作比较简单,但难以显示系 统输出信号的详细信息,使用时操作难度比较大,人机界面比较难懂。方案二和方案三 采用16字符x1行的液晶,菜单式操作方法,要求有比较高的硬件制作水平和软件编程技 术,但可以详细的显示波形,占空比,信号幅度等信息。人机界面友好,操作方便。而 且通过软件编程控制使系统输出信号的频率、波形预置变的非常简单。 4)方案一中,为获得1Hz的分辨率,必须采用高精度的DAC,不容易达到比较高的精度。 方案二中用单片机对8253可编程定时器进行控制,配合集成锁相环频率合成器4046可以 比较容易的提供1Hz分辨率。方案三采用精密相位累加器,具有相当好的频率分辨率,频 率的可控范围达0.25Hz fc/2n=222/224=0.25Hz 5)方案一的ICL8038可以产生比较准确的波形。方案二通过实时查询输出正弦波,虽然 我们对每一个波形只采用了100个点,但在要求较高的场合,可以通过对每个波形取更多 个点的方法来提高波形精度。具有很好的升级扩展性能。方案三中E2PROM中存储了1024 个波形点,可以提供非常精确的波形。在200KHz的时候,仍然能够对每个波形提供8个点 ,通过滤波器后,同样会具有良好的波形。 6)方案一和方案二的频率变换时间主要是它的反馈环处理时间和压控振荡器的响应时间 ,通常大于1ms。而方案三的频率变换时间主要是数字处理延迟,通常为几十个ns。 7)方案一由于采用RC振荡器,不可避免具有比较大的相位噪声。方案二的相位噪声是它 的参考时钟—石英晶体振荡器—的噪声的两倍。而方案三由于数字正弦信号的相位与时 间成线形关系,整片电路输出的相位噪声比它的参考时钟源的相位噪声小。 从以上的方案比较可以看出,方案三结构比较复杂,但具有输出频率稳定性高、频率输 出线性度好、频率分辨率高、波形准确、频率变换时间小、相位噪声小、人机界面友好 ,易于控制等优点,性能优良。是本次设计的理想设计方案。而相对来说,方案一结构 很简单,制作容易,但是输出信号有频率线性度差、频率稳定度低、频率分辨率低、频 率变换时间比较长,相位噪声大以及人机界面不友好等缺点。方案二电路也比较简单, 但在频率分辨率、频率变换时间、相位噪声等方面都比第三种方案差。总之,方案一和 方案二都具有各自的比较大的弱点,难以达到理想的设计要求。故不宜采用。 经过比较,我们决定采用方案三的电路设计进行制作。 串行数字接口 ML2035的控制可以通过芯片的串行数字接口实现,数字接口部分主要由移位寄存器和数据锁存器组成。SID引脚上的16 bits 数据字在时钟SCK的上升沿时被送入16 bits的移位寄存器。需要注意的是,应该先送最低位,最后送最高位。然后在LAI的下降沿触发下,送入移位寄存器的数据被锁存进数据锁存器。为了确保数据的有效锁存,LAI的下降沿应该发生在SCI为“低”电平期间。同理,在SID数据移入移位寄存器期间,LAI应该保持“低”电平。 电源方式 ML2035具有电源“休眠”功能,这样可以有效提高电源的使用效率,这对于便携式产品是极其有利的。当希望ML2035保持“休眠”时,可以向移位寄存器输入全“0”,并向LATI加载“1”使其保持高电平。在这种情况下,ML2035的功耗可以降到11.5 mW以下,而输出正弦信号的幅度降到0 V。需要提及的是,在电路设计中应该对ML2035的电源输入端进行电源去耦处理,在电路设计中可以采用如图1所示的电源去耦处理方案。 图1 ML2035的电源去耦处理方法简易正弦信号发生器设计 由DDS的基本原理可以知道,由于ML2035频率分辨能力有限,输出的正弦信号将有可能出现误差。对于不同的 考时钟,将产生不同程度的频率误差,表1例举了ML2035在常见的晶振下的频率控制字和频率误差情况。 表1 使用常见标准晶振时ML2035所需频率控制字和频率误差情况 本文拟采用ML2035设计一简易的频率为1000Hz的高精度无频率误差的正弦信号发生器,由于低于3.5MHz的晶振通常价格较高且体积较大,故这里选用6.5536的晶振。由式(1)可以得知需要的频率控制字为1280,因此需要的16 bits控制位为1111 D,这样输出正弦信号的频率误差将在理论上达到0.00%。图2便是实现该简易正弦信号发生器的电路原理图,这里74HC4060计数器的功能是振荡器和计时器,而74HC4002是高速CMOS 四与非门器件。为了实现ML2035的输出正弦信号频率为1000Hz,必须使在前8个脉冲移入8比特0,然后在接下来的后8个脉冲移入1111 1010。 图2 基于ML2035的1000Hz正弦信号发生器电路原理图三,软件篇AVR要完成的功能:1,处理通信2,计算要产生的信号所需的参数3,SPI通信,输出数据到FPGA,从FPGA取数据4,根据所取的数据计算出所测的信号的参数对于通信与算法,在这里也没什么好讲的,讲一下SPI通信吧,我没有使用AVR的SPI外设,我用普通I/O ,,,,,,,,,,,,,,,,

与传统的红外探测器(比如HgCdTe探测器)相比,基于体光伏效应的探测器不需要偏压,困扰许多传统光电探测器的暗电流问题也因此可以得到缓解。为了实现这些应用,必须提高材料的非线性光学响应,使其在低输入下达到人们预期的服役效果。虽然人们已经寻找到了很多新的潜在材料,但一个常见的问题是,能否在理论上给出相对比较通用的方案,并且依照这一方案完成材料设计。

来自麻省理工学院的李巨(Ju Li)教授组在前期论文中就指出,拓扑绝缘材料有着优越的线性光学响应[J. Phys. Chem. Lett., 11, 6119–6126 (2020)]。值得说明的是,在拓扑绝缘材料中,电子态会出现一种不太常见的杂化,它使得这些半导体(或绝缘体)材料的电子结构和普通的硅或者金刚石材料看起来很类似,但实质上具有不同的电子拓扑数。这有一点像普通的纸环和墨比乌斯环一样,粗看起来都是三维空间中的物体,但实际上完全不同。

物理学家已经指出,这种拓扑绝缘材料中的电子能带结构和普通绝缘体(硅或金刚石)相比多了一次能带反转(就像墨比乌斯环一样)。李巨教授课题组指出,这一反转会让价带和导带的电子波函数有更强的杂化,从而使得电子在价带和导带间的跃迁变得更容易,材料也能因此获得优越的光学响应。

近期,李巨教授课题组联合MIT孔敬(Jing Kong)教授课题组,将这一思想进一步拓展至非线性光学材料中[npj Computational Materials 7, 31 (2021)],提出同时拥有:

除了拓扑能带杂化之外,强烈的空间不对称性会使得空间中的两个相反的方向(比如向左和向右)变得非常不同,这样电子朝着某一个特定的方向移动的意愿强,而向着反方向移动的意愿弱。这样的话,就能够产生更大的净电流。而能隙小的时候,电子在价带和导带之间的跃迁也会变快。这有点儿像上台阶时,如果台阶比较矮,那么上起来就会比较容易。

基于上述原理和孔敬教授课题组前期在二维非对称材料(Janus transitionmetal dichalcogenides, JTMDs)中的实验成果,他们通过量子力学第一性原理的方法,预测了一类新型的拓扑1T’相的Janus过渡金属硫化物,发现它们具有巨大的非线性光电导性。

通过第一性原理计算,他们发现1T’ JTMDs的位移电流电导率可以达到2300 nm·μA·V 2(相当于2800 mA/W),而circular current电导率则能达到104 nm·μA·V 2量级。这比过去常用的非线性材料的光学响应增强了1至2个数量级。也就是说,与之前常见的材料相比,人们可以用更低强度的光照射JTMD材料,在材料中获得更大的光电流。

由于1T’ JTMDs的能隙很小(10 meV量级,相当于2.5 THz),THz波段的光就可以将电子从价带激发到导带上形成光电流。因此1T’ JTMDs可以用来探测THz波段的光。值得指出的是,通常半导体材料的能隙都在1 eV量级,因此它们只能用到探测可见到紫外波段的光,对远红外到THz波段的光则没有响应。

该团队进一步发现,利用弹性形变和外加电场这样的外部刺激可以让1T’JTMDs中电子的波函数发生进一步的扭转,从而导致电子态的拓扑相变。在相变前后位移电流的方向会发生反转。这样一个光电流方向的骤变可以用来表征拓扑相变,在光力学、光电子学中也有潜在应用。该研究有助于加深对拓扑材料光电性质的理解,并且为未来寻找更多具有优秀光电性质的材料提供了理论参考。

该文近期发表于 npj Computational Materials 7: 31 (2021),英文标题与摘要如下,点击 可以自由获取论文PDF。

与拓扑学相关的论文题目

让我们从简单的开始。我们知道地球的形状,它近似一个球形;银河系是棒螺旋形的,也就是带旋臂的圆盘形状;那可观测宇宙呢?是球形吗?看起来确实如此,因为它正在向外扩张。那么在我们可以观测到的范围之外的整个宇宙呢? 答案是,我们不知道,但我们可以猜想。它可能是有限的或无限的,有边界或没有边界,有曲率或没有曲率。我们所知道的是,它似乎在扩张。但扩张到哪里?我们不知道。但是我们可以推测一下。 宇宙过去的形状,现在的形状,以及将来可能的形状,我们很难凭经验来辨别。爱因斯坦在某种程度上帮助了我们,他向我们展示了物质和能量实际上可能与四维——时间——相互作用。在这种相互作用中,时空可能因质量(能量)的存在而发生扭曲。就我们所知,我们生活在一个四维宇宙中,这个宇宙易受变形的影响,比如拉伸、扭曲和弯曲。这就是拓扑学发明的由来。 让我们来看看最基本的。我们都知道,平面上的圆是二维圆盘的一维周长(嵌在二维空间中的一维等价物是一条直线)。增加一个维度,我们也能直观地知道,一个三维球的二维表面叫做球面(嵌在三维空间中的二维等价物是一个面)。然而,再增加一个维度,我们的直觉已经完全失效了。嵌在四维空间中的物体的三维等价物是什么?在四维欧几里得空间中,四维球的三维边界在数学上被称为三维球面( glome)。我们无法在大脑中形成三维球面的直观印象。 在数学中,这三个物体(圆、球、三维球面)是密切相关的,被称为一维球、二维球和三维球。n维球是一维球在任意维空间中的推广。在拓扑学中,n维球被视为n维流形,这些流形是在每个点附近局部类似欧几里德(平坦)空间的拓扑空间。更准确地说应该是: 关于流形的概念,作家西尔维亚·纳萨尔在她的《美丽心灵》一书中提供了一个很好的描述: 约翰·斯蒂威尔在他的著作《论拓扑》中声称,在亨利庞加莱之前,只有一个拓扑概念被定义。这一概念是由欧拉多面体公式V - E + F = χ给出的著名欧拉数(χ),其中V代表顶点,E代表边,F代表面。球面和凸多面体的欧拉数都是2,如柏拉图固体。1863年,在对这种表面的拓扑分类的研究中,莫比乌斯指出,R³中的所有闭合曲面,即可定向曲面,都是根据其欧拉数进行分类的。 高斯以及黎曼等人也对拓补学的发展做出了一定的贡献,但直到贝蒂在研究任意维度的概念方面取得了实质性进展,拓补学 才逐渐发展成一门独立的、系统的学科。 贝蒂定义了后来被称为贝蒂数的数字P₀,P₁,P₂…。在代数拓扑中,第k个贝蒂数是指拓补表面上k维孔的数量,或者用另一种说法,“在不把一个表面分成两部分的情况下所能切割的最大次数”。对于0维,1维和2维的单纯复形(指由点、线段、三角形等单纯形“粘合”而得的拓扑对象),贝蒂数的定义如下: 例如,一个环面有一个相连的表面分量,所以 P₀ = 1;两个“圆”孔(一个赤道孔和一个子午孔),所以P₁ = 2;还有一个封闭在表面内的空腔,所以 P₂ = 1。 米尔诺用亏格0、1和2的三个图形的简单草图来介绍流形和拓扑结构。 在庞加莱之前,正如米尔诺和斯蒂威尔所争论的那样,唯一定义得很好的拓扑概念确实是闭合曲面的理论,也就是所谓的维2流形。它们的性质是紧密的,没有边界。闭曲面的分类定理表明,任何连通的闭曲面与这三个族中的某个成员是同胚的: 亨利庞加莱是第一个试图进行类似研究的人,就像对1维流形和2维流形所做的那样,他研究三维流行是否可以被证明是同胚的。 亨利庞加莱于1854年4月29日出生在法国。他的父亲是医学教授,他的母亲是一位家庭主妇。他的天赋最早被一位数学老师所发现,这位老师称他为“数学怪兽”。除了数学之外,他还擅长写作文。1871年,他从大学毕业,获得文学和科学学士学位,并加入父亲的前线,参加普法战争,在救护队服役。 战争结束后,1873年庞加莱进入巴黎综合理工学院,他在查尔斯·埃尔米特手下学习数学,在22岁时发表了他的第一篇论文,题为“表面指标性质的新证明”。1875年,除了学习数学之外,他还进入了矿业学院,并于1879年毕业,获得了工程师学位。他立即利用了他的新学位,加入了美国陆军地雷部队。与此同时,他正在索邦大学攻读数学博士学位,研究微分方程。 博士毕业后,庞加莱继续从事采矿工程师的工作,从1881年到1885年,负责北方铁路的发展。同时,他也开始在他的母校索邦大学教授数学,并继续进行研究,发展了一个新的数学分支,名为“微分方程的定性理论”。除此之外,还有他后来在拓扑学上的研究,在其职业生涯中庞加莱还从事过复变解析函数、阿贝尔函数、代数几何、双曲几何、数论、三体问题、丢番图方程、电磁学、相对论、哲学和群论的理论研究。 庞加莱在19世纪90年代开始从事现在被认为是拓扑学和代数拓扑学基础的工作。“拓扑”一词的灵感来自于戈特弗里德·莱布尼茨在其1672-76年的著作中提到的这个词。 拓扑学是研究几何物体在连续变形下的特性,如拉伸、扭曲、弯曲,但不撕裂。 在他关于拓扑学的第一篇论文中,庞加莱开始着手于拓扑学的第一本真正的入门书《拓补分析》。他引用了贝蒂数。他提出,贝蒂数是否足以确定流形的拓扑分类?为此,他引入了基本群π₁的概念。一个基本群体可以用以下方式来理解: 接下来,他描述了一组三维流形,并说明其中某些流形具有相同的贝蒂数,但属于不同的基本群。由此,他提出,如果基本群是拓扑不变的,仅凭贝蒂数无法区分三维流形。 后来的庞加莱猜想(1904)实际上在1895年并不存在。根据斯蒂威尔的说法,庞加莱认为这是显而易见的,即所有单连通的n维闭流形都是同胚的n维球。也就是说,所有这样的流形如果在n维中变形为一个球体的形状,将保持它们的拓扑性质。毕竟,自黎曼时代以来,对于一维和二维流形,同样的结果是已知的。 拓扑分析,相反地,是对贝蒂数进行修正和补充,以寻找一个更坚实的基础,基于他自己三年前的论证。本文通过几种途径来实现这一目标。正如研究中经常出现的情况一样,他首先介绍了为什么这项工作是有价值的,他说:“n维几何是一个真实的对象,现在没有人怀疑这一点。”超维空间中的图形和普通空间中的图形一样,都容易被精确的定义,即使我们无法想象它们,但我们可以研究它们。 在拓扑分析的众多重大发现中,庞加莱为后来被称为同调论的理论奠定了基础,这是一种将一系列代数结构(如交换群或模块)与其他数学对象(如拓扑空间)联系起来的方法。他建立了一个计算贝蒂数的系统,假设每个流形都可以分解成与单形同胚的“包”,写出他称为同胚的线性方程,并通过线性代数计算相应的贝蒂数,从而达到这个目的。 利用他的新同调理论,庞加莱下一步通过考虑“包”分解的对偶,提供了n维流形的贝蒂数的庞加莱对偶性定理。对偶定理指出,从“两端”距离相同的贝蒂数,即上维和下维,是相等的。特别是,对于一个3维流形,二维的贝蒂数等于一维的贝蒂数。 在同一篇论文的后面,庞加莱还将欧拉多面体公式推广到任意维数,并将其与他的同调理论联系起来。他还给出了新的基本群的例子,证明了π₁是比贝蒂数更强的不变式,因为它识别的八面体的相对面与3维球具有相同的贝蒂数,但又是不同的基本群。从他的发现中可以看出,对于0维、1维和2维流形,贝蒂数足以区分它们,但对于三维流形,基本群就变得很重要了。 回顾过去,由于庞加莱对同调理论和基础群的建立,《拓扑分析》被视为代数拓扑的起源。对于同调理论,其建立的重要性在于它揭示了产生贝蒂数的代数结构。基本群的发现突出了用贝蒂数来指示流形性质的能力的不足。 这是由庞加莱在他1904年的《拓扑分析》补编的末尾所作的猜想,他认为三维流形的表征是同胚于3维球面的。准确地说,庞加莱猜想表明: 这个猜想认为,如果流形内的每一条简单的闭合曲线,如环路,都可以变形(收紧)为一个点,那么它一定是一个三维球体。不幸的是,我们不能有效地可视化三维流形,下面的图中显示了类似的2形流形,其中有蓝色和绿色的环。正如我们所看到的,在球体上的任何环都可以被收缩,并通过滑动它们而离开表面。然而,在环面上,虽然蓝色环可以被收紧和滑脱,但绿色环不能,除非切割环面。因此,环面与球面不是同胚的。 正如你现在可能已经发现的,庞加莱的猜想和宇宙形状之间的联系是非常明显的。简单地说,如果宇宙是一个单连通、封闭的3维流形,它与球体是同胚的。这意味着,尽管宇宙可能确实是一个3维环面的形状,如果是这样,我们知道它永远不可能扩展成3维球的形状,反之亦然。

打击你一下,我觉得拓扑学对于初一的孩子来说太难了……不过要是真想写,还是可以写一些东西的。以初一的知识很难接触到拓扑学的核心内容,所以你可以写的就只有比较直观的那些东西了最开始可以写写拓扑学的历史:七桥问题等等的……接下来介绍拓扑学中认为两个物体等价的条件:可以通过拉伸互相转变。重点在于不能粘接,不能打洞。在这种意义下,拓扑学认为圆柱面和环带是一样的,球体和正方体是一样的,烟斗和茶杯是一样的囧。。。还有拓扑学中必不可少的东西:墨笔乌斯带……如果你知识比较丰富的话还可能知道克莱因瓶。还可以讲讲拓扑学的分类:点集拓扑,代数拓扑,微分拓扑,几何拓扑……论文的最后可以写写拓扑学和你们所学的东西的关系啥的。也可以写写拓扑学里现在还未解决的问题,展望一下拓扑学的发展……这就比较困难了单独和我谈谈吧,我可以帮你构思一下比较具体的提纲以上内容均由本人亲自输入,未经本人允许不得拷贝byFizban_Yang

搜集论文材料的研究方法

有关于论文的研究方法有哪些

有关于论文的研究方法有哪些,论文是一种常见的写作方式。而论文的研究方法则是为了论文的写作去进行调查、实验等的一种研究方式,下面分享有关于论文的研究方法有哪些相关内容,一起来看看吧。

(1)调查法

调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的'方法。一般是通过书面或口头回答问题的方式获得大量数据,进而对调查中收集的大量数据进行分析、比较、总结归纳,为人们提供规律性的知识。

典型例子

调查法中最典型的例子是问卷调查法。它是通过书面提问收集信息的一种方法,即调查人员编制调查项目表,分发或邮寄给相关人员,询问答案,然后收集、整理、统计和研究。

(2)观察法

观察法是指人们有目的、有计划地通过感官和辅助仪器,对处于自然状态下的客观事物进行系统考察,从而获取经验事实的一种科学研究方法。

典型例子

皮亚杰的儿童认知发展理论就是通过观察法提炼总结出来的;儿童心理学创始人——普莱尔,也是在一次次地使用观察法后,提出了儿童心理学领域中的诸多理论。

(3)实验法

实验法是指经过精心设计,在高度控制的条件下,通过操纵某些因素,从而发现变量间因果关系以验证预定假设的研究方法。核心在于对所要研究的对象在条件方面加以适当的控制,排除自然状态下无关因素的干扰。

典型例子

采取实验法的一个典例是罗森塔尔效应的提出,美国心理学家罗森塔尔和L.雅各布森通过对小学生进行“未来发展趋势测验”,发现人们对他人行为的期望通常可以导致他人向期望方向改变。

1、定量分析法

定量分析是对事物或事物的各个组成部分进行数量分析的一种研究方法。依据统计数据,建立数学模型,并用数学模型计算出研究对象的各项指标及其数值。常见的定量分析法包括比率分析法、趋势分析法、数学模型法等等。

典型例子

企业管理中时常采用定量分析法,比如企业信用结果的得出,就是采用定量分析法,以企业财务报表为主要数据来源,按照某种数理方式进行加工整理的结果。

2、定性分析法

定性分析法是对研究对象进行“质”的方面的分析。运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,揭示事物运行的内在规律,包括因果分析法、比较分析法、矛盾分析法等。

典型例子

德尔菲法是最典型的定性分析法,该方法按照规定的程序,背靠背地征询专家小组成员的预测意见,经过几轮征询,使专家小组的预测意见趋于集中,最后做出符合市场未来发展趋势的预测结论,是一种主观预测方法。

毕业论文所用的研究方法

毕业论文所用的研究方法,毕业论文对于每个学生来说都有重要意义,毕业论文中所常用的研究方法有很多种,那么下面大家就跟随我一起来看看毕业论文所用的研究方法的相关知识吧,希望对大家能有所帮助。

1、调查法

调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解,并对调查搜集到的大量资料进行分析、综合、比较、归纳,从而为人们提供规律性的知识。调查法中最常用的是问卷调查法,它是以书面提出问题的方式搜集资料的一种研究方法,即调查者就调查项目编制成表式,分发或邮寄给有关人员,请示填写答案,然后回收整理、统计和研究。

2、观察法

观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法

3、实验法

实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:

第一、主动变革性。

观察与调查都是在不干预研究对象的前提下去认识研究对象,发现其中的问题。而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。

第二、控制性。

科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的'状态下认识研究对象。

第三,因果性。

实验以发现、确认事物之间的因果联系的有效工具和必要途径。

4、文献研究法

文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被子广泛用于各种学科研究中。其作用有:

①能了解有关问题的历史和现状,帮助确定研究课题。

②能形成关于研究对象的一般印象,有助于观察和访问。

③能得到现实资料的比较资料。

④有助于了解事物的全貌。

5、实证研究法

实证研究法是科学实践研究的一种特殊形式。其依据现有的科学理论和实践的需要,提出设计,利用科学仪器和设备,在自然条件下,通过有目的有步骤地操纵,根据观察、记录、测定与此相伴随的现象的变化来确定条件与现象之间的因果关系的活动。主要目的在于说明各种自变量与某一个因变量的关系。

6、定量分析法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。

7、定性分析法

定性分析法就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。

8、跨学科研究法

运用多学科的理论、方法和成果从整体上对某一课题进行综合研究的方法,也称“交叉研究法”。

9、个案研究法

个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其形成过程的一种研究方法。个案研究有三种基本类型:

(1)个人调查,即对组织中的某一个人进行调查研究;

(2)团体调查,即对某个组织或团体进行调查研究;

(3)问题调查,即对某个现象或问题进行调查研究。

10、功能分析法

功能分析法是社会科学用来分析社会现象的一种方法,是社会调查常用的分析方法之一。它通过说明社会现象怎样满足一个社会系统的需要(即具有怎样的功能)来解释社会现象。

毕业论文写作步骤

在写作过程中,论文写作基本步骤一般分为"前奏——提纲——写作——收尾——校对"。

1、前奏

就是对资料的收集和遴选,并对文章需要的内容进行消化处理。

2、提纲

就是对文章的整体思路进行总体掌握,这样才能对论文写作质量有充分的保障。

提纲是由序码和文字组成的一种逻辑图表,是帮助作者考虑文章全篇逻辑构成的写作设计图, 是作者构思谋篇的具体体现。

图表在手,作者可以初观论文结构的全貌,层次清楚,重点明确,简明扼要,一目了然。

提纲是论述框架,是构思的外化。思如流水,稍纵即逝,要尽快捕捉记录并固化。

3、写作

这个过程是比较重要的,也是核心,在论文的正是写作过程中需要整合各种资源以及各种优势资料,这样才能写出好文章。

4、收尾

开头和收尾都是文章不可缺少的组成部分,这样保持文章的高质量具有保障意义。

5、校对

校对工作是对文章的最终处理,这种校对包括文章写完后的校对以及对作者不满意地方的修改,这个很关键,也很重要,是对作者负责任的集中体现。

毕业论文写作方法

(一)选题方法

选题是毕业论文写作的开端。能否选择恰当的题目,对于整篇毕业论文写作是否顺利,关系极大。好比走路,这开始的第十步是具有决定意义的,第一步迈向何方,需要慎重考虑。否则,就可能走许多弯路,费许多周折,甚至南辕北辙,难以到达目的地。选题,要遵循这样两条基本原则:第一条是价值原则,即论文的选题要有价值。论文价值有理论价值和应用价值之分,选题时,要把应用价值摆在首位。写的毕业论文不是毫无实际意义的“空对空”的文字游戏,而是来源于现实,并为现实服务的。衡量一篇论文是否有价值以及价值之大小,应当首先看它能满足社会需要的程度如何。我们要从现实生活中选取有意义的题目,写出文章来最好能指导现实,为当前的现实服务。第二条是可行原则。选题时要充分考虑主客观条件。客观条件主要是写作的时间、地点、环境;主观条件包括作者的才能、学识和所掌握的材料等。在选择毕业论文题目时,必须考虑自己的主、客观条件,量力而行。即要选择那些客观上需要,主观上又有能力完成的题目。

(二)搜集材料方法

材料是文章的血肉,写文章不能没有材料。毕业论文如果缺少翔实的材料,就会像毛泽东同志曾经批评过的党八股那样,“空话连篇,言之无物”,“像个瘪三,瘦得难看”。

写作的材料从哪里来?第一来自生活。人民群众丰富多采的生活实践是文章写作取之不尽、用之不竭的源泉。鲁迅曾对青年作家说过,“此后如要创作,第一须观察”,要去“读‘世间’这一部活书”。党校学员来自党政机关、企事业单位,大都具有较丰富的实践经验,指引导他们从自己的工作实践中,从自己的“生活仓库”中摄取写作材料。第二来自书本,包括各种文献资料、报刊杂志等。宋朝朱熹诗曰:“半亩方塘一鉴开,天光云影共徘徊。问渠哪得清如许,为有源头活水来。”讲的是读书的好处。书籍是人生最好的老师,写作者如能经常向书本请教,文章的材料就像“源头活水”那样源源不断。指时博览群书,浏览各种报刊,发现有用的材料,就可以向学员推荐。材料靠自己去搜集。指导教师可以指导学员先制定一个搜集材料的目录,如是调查材料,可按时、地、对象拟定目录;如是文献资料,可按书刊名称和发行年月安排目录。要着重搜集第一手材料,对第二手材料要查明出处、核对原著。

(三)立意方法

立意就是确立文章主题。主题在文章中处于核心地位,是文章的“灵魂”和“统帅”。一篇文章质量高低、价值大小,主题是其衡量的主要尺度。

指导学员立意,要遵循以下原则:

第一,符合现实需要,体现时代精神。文章是时代的产物、现实的反映,它的主题应体现出那个时代的特征及发展方向。因此,毕业论文应牢牢把握时代脉膊,回答时代提出的最尖锐、最迫切、最现实的问题,以推动社会向前发展。

第二,反映客观事物本质。文章是对客观事物的认识和反映,但并不是像镜子那样机械地反照现实,而应当反映客观事物的某种本质,揭示其内部的规律性。

第三,要有独到的见解。只有独到的见解,才能使人受到启发,令人感奋,于人有益。什么是“独到的见解”?就是古人所说的“见人所未见,发人所未发”,“人人心中皆有,人人笔下俱无”的思想、认识、意见、主张。要获得独到的见解,关键在于多思。其次,要有胆识,敢于标新立异。站在时代的高度,深入事物的本质,多思深思,确立有现实意义;有独到见解、有理论深度的主题。

(四)谋篇布局方法

所谓谋篇布局,就是考虑和安排文章的整体结构。结构是文章的骨架。确定了主题,选定了材料,接着就要把文章的框架搭起来。安排结构的基本要求是:(一)要围绕主题安排结构;(二)要有明确、清楚的层次;(三)要完整、自然、严密。指导教师应根据文章所要表现的内容,合理安排结构,做到有中心,有层次,首尾圆合,重点突出,严谨自然,富于变化

有九大研究方法,分别是:调查法、实验法、文献研究法、个案研究法、数量研究法、话题发散法、跨学科研究法、观察法。

4、个案研究法。这种研究方法在MBA专业被广泛应用。个案研究法具有基本3个基本的类型:个人调查、团体调查和问题调查。研究人员可以根据自己的需求来选择合适的研究类型。根据自己认定的研究对象中的一个特红豆博客定对象来进行调查和分析,弄清楚其 特点和主要的形成过程。是很实用的一种研究方法。5、数量研究法。数量研究法又分为 “统计分析法”和“定量分析法”。是通过对研究对象的规模、程度、规模等数量关系进行分析,揭示事物之间的关系,并分析发展趋势,以此来达到对事物的正确认识和预测的一种研究方法。6、定性分析法。定性分析法其实就是运用归纳、演绎、分析及抽象等的方法来自己收集的材料进行加工,选择适合自己的材料,选择对于文章论点有用的材料,去伪存真、由表及里的进行分析,从而使研究对象可以有“质”的提升。7、话题发散法。话题发散法就是采用话题扩散的方法就是在观点的基础上,从社会、环境、文化、家庭关系、经济等角度来切入,扩展适合自己观点的话题。8、跨学科研究法。跨科学研究法是从整体上对于某一课题进行综合研究的一种方法。任何事物都是不可能单独存在的,学科的研究看似是单独的一门学科,其实学科之间都是有统一的一个整体。学科之间的联系也越来越密切,在语言、方法和某些概念方面,有日益统一化的趋势。9、观察法。观察法就是研究人员通过自己的感官和一些辅助功能根据直接对被研究对象进行分析和观察,获得资料的一种研究方法。这种方法具有一定的目的性、计划性、系统性和可重复性。在一定程度上扩大了人们的感性认识,对于启发人们的思维、发现新的事物有一定的帮助。

4、个案研究法。这种研究方法在MBA专业被广泛应用。个案研究法具有基本3个基本的类型:个人调查、团体调查和问题调查。研究人员可以根据自己的需求来选择合适的研究类型。根据自己认定的研究对象中的一个特红豆博客定对象来进行调查和分析,弄清楚其 特点和主要的形成过程。是很实用的一种研究方法。5、数量研究法。数量研究法又分为 “统计分析法”和“定量分析法”。是通过对研究对象的规模、程度、规模等数量关系进行分析,揭示事物之间的关系,并分析发展趋势,以此来达到对事物的正确认识和预测的一种研究方法。6、定性分析法。定性分析法其实就是运用归纳、演绎、分析及抽象等的方法来自己收集的材料进行加工,选择适合自己的材料,选择对于文章论点有用的材料,去伪存真、由表及里的进行分析,从而使研究对象可以有“质”的提升。7、话题发散法。话题发散法就是采用话题扩散的方法就是在观点的基础上,从社会、环境、文化、家庭关系、经济等角度来切入,扩展适合自己观点的话题。8、跨学科研究法。跨科学研究法是从整体上对于某一课题进行综合研究的一种方法。任何事物都是不可能单独存在的,学科的研究看似是单独的一门学科,其实学科之间都是有统一的一个整体。学科之间的联系也越来越密切,在语言、方法和某些概念方面,有日益统一化的趋势。9、观察法。观察法就是研究人员通过自己的感官和一些辅助功能根据直接对被研究对象进行分析和观察,获得资料的一种研究方法。这种方法具有一定的目的性、计划性、系统性和可重复性。在一定程度上扩大了人们的感性认识,对于启发人们的思维、发现新的事物有一定的帮助。

关于飞蛾扑火论文范文资料

飞蛾扑火的故事述说就是飞蛾为了某些事,以身相许甚至殉情,他都义无反顾不后悔。

浅谈当代大学生应该怎样追求有价值的人生 --国际软件学院 陈磊 200532580219论文摘要:为了追求有价值的人生,我们需要树立科学的人生价值观,确定崇高的理想,全面提高自身的素质;用知识武装自己的大脑,用美德充实自己的心灵;珍惜时间,勇于接受挑战,善于把握机遇;与人和谐相处,增强合作和共赢意识;热爱祖国,奋发图强,做一个对社会、对人民有用的人。关键词:价值 理想 追求 合作 爱国1.何为人生价值? 鱼翔浅底,驼走大漠,雁排长空,虎啸深山。万事万物都在发挥着自己的极致,用各自不同的能力,实现着自身的价值。对于我们当代大学生来说,我们应该清楚认识到人生价值的含义:人生价值是人的价值中的一个组成部分,仅仅指人类个体的人生实践活动的价值,也就是特定个体的人生实践活动在满足社会、他人和自我需要时所发挥的作用。总的来说,人生价值就是一个人在一生中对人类社会的延续和发展所做出的贡献和所起的作用。一个人的一生是否有价值,就是看他的知识、能力、思想品德等及其生命过程中的一系列实践活动,对社会发展和人类进步起着什么样的作用。如果个体的属性满足了社会发展、人类进步和自身完善的需要,他的人生就是有价值的,如果个体的属性不能够满足社会发展和人类进步的需要,或者破坏了这种需要,他的人生就是无价值的。2.树立科学的人生价值观和高尚的人生目的 美国总统林肯曾经说过:“喷泉的高度不会高过它的源头,一个人的事业也是这样,她的成就绝不会超过自己的理想。”所以,树立科学的人生价值观和崇高的理想对我们每个人都是非常必要的。个人的人生价值取向体现了个人自身对人生价值的追求。人生价值观蕴含着个人对人生的自我设计、自我塑造、自我期待,决定着个人以怎样的心态和意志去看待世界,对待人生。个人人生价值取向的正确与否直接关系到个体是社会发展的推动力还是障碍力,也决定着个体的人生价值能否实现。更重要的是,每个人的意志,每个人的价值取向,每个人的社会行为,都不等于零,他们都对社会历史有所影响,每个人都参与了历史的创造。 崇高的理想,可以点燃人们的生命之火,激发人们的聪明才智,唤起人们奋发向上的精神。理想不同于空想、幻想,它是建立在客观现实可能性基础上的,反映了人们对自己及社会发展前景的一种构想。理想是人生的奋斗目标和精神支柱,一个人一旦确立了崇高的理想并坚定不移地付诸实践,它就会产生一种不达目的誓不罢休的意志。这种意志的力量,就是一往无前、百折不挠的精神,就是一种视死如归、勇往直前的大无畏气概。人有了崇高的理想,就有了人生的精神支柱,就会在平凡的工作岗位上创造出不平凡的业绩,就会在艰苦的事业中保持高昂的热情和不懈的勇气,就会在祖国和任命需要的生死关头毫不犹豫地做出勇敢的牺牲。苏格拉底曾经说过“世界上最快乐的事,莫过于为理想而奋斗。”理想是青春的光和热,是人生航行的指南针。正因为有了理想,生活才变得这样甜蜜;正因为有了理想,生活才显得如此宝贵!3.修养与成才 健康心理 完善人格 一个人要健康成长、顺利成才,离不开科学文化素质、思想道德修养和身体心理素质的有机结合。培养自身的高尚情操,提高自生修养是实现人生价值的前提。 心理健康是人才成长的基石。大学生的心理正处于迅速走向承受有没有完全定型的时期。大学新生从高考的喜悦中走进大学,面对的是从生活环境、生活条件、人际关系到学习方式的一系列急剧转折。并且,大学生正处在第二次心理断乳期,由于远离了父母亲人,没有了教育者的全面指导和督促,自己的生活尚未能完全自理,因此各种问题纷至沓来,交织在一起。面对这一切变化,大学生需要努力学习知识与经验,积极适应新的环境,建立新的心理结构,重树对生活的信心,重建心理的平衡。美国著名心理学家威廉•詹姆士曾言:“播下一种心态,收获一种思想;播下一种思想,收获一种习惯,播下一种习惯,收获一种性格,播下一种性格,收获一种命运。”思想道德修养在很大程度上决定了我们待人处事的态度和人生的境界。古人在这方面已经做了很多探讨:“止谤莫如修身。”(《中论•虚通》)止谤是针对别人,修身是针对自己。评定一个人,最能说明问题的还是自己的内在修养展现给别人的印象。“海纳百川,有容乃大。”(《书经》)宽容和大度难为,确实大德,自古皆以为然。“饵之下,必有死鱼。”(《经略》)贪欲乃修身大敌,拒绝香饵的诱惑比自身的苦修更为艰难。“富贵不淫,贫贱不移,威武不屈”才是做人应有的风骨。“毋以恶小而为之,毋以善小而不为。惟贤惟德,能服于人。”修身养性,提高自身境界,让自己如水般淡雅。4.行动 主动追求 惜时 有这样一句经典的话:“现实是此岸,理想事彼岸,中间隔着一条湍急的河流,行动则是架在河上的桥梁。”(俄国寓言作家克雷洛夫)口头的推测只不过是一些悬空的希望,实际的行动才能够产生解决确定的结果。“纸上得来终觉浅,绝知此事要躬行。”“行是知之始,知是行之成。”你看地平线上的月亮,跟着头顶的月亮会觉得不一样大。你躺着想一件事,也会不同。生活在现代,就得照着现在的步调。时代变,就得变。我们大学生要把满足的准点设在比眼前能力更高的位置。飞蛾扑火,是用生命的代价去追求光明;昙花一现,却是倾情的开,无悔的谢;流星转瞬即逝,却曾划亮整个天空;凤凰涅磐,却于万道霞光中获得新生。……生命只要存在,便在不断追求;灵魂因此不断升华,生命也因此充满色彩。选择追求,不仅要明白追求什么,更要懂得怎样追求……鲁迅说,追求是“寄意寒星荃不察,我以我血荐轩辕”的悲壮;周恩来说,追求便是“面壁十年图破壁,难酬蹈海亦英雄”的激昂。选择追求,才能让我们获得无悔人生。5.竞争与合作,个人和社会 在一个人口急剧膨胀,知识经济大爆炸的时代。竞争与合作成可一个不可逃避的话题:人是一种具有社会性的动物。所以不可避免,在学习上生活上充满了竞争。在能力培养和就业的选择上,也存在着激烈的竞争。竞争能激发人的奋斗力量和创新进取精神。很多时候,对抗外界压力的最好办法便是自身从内部产生相同的压力去平衡。正是由于有了竞争对手的存在,才能激发潜力、触发灵感,发现自己的不足,找到改进的方法,进而有助于个人内在价值的实现。立志成材的大学生,应该正视竞争、参与竞争,在激烈的竞争中去施展自己的才能。合作能增强人的社会责任感和归属感,随着社会的发展,合作范围不断扩大,合作形式不断增多,任何个人想实现自身价值都离不开与他人的合作交往。同时,合作能强化人的协调意识,增强人与人的亲和力。大学校园中,一项集体活动从发起到结束的过程往往是亲密人际关系的形成过程。大学生的合作精神应从日常生活中作起,同学之间应经常交换思想、交流情感,相互关心在交往中共同体验合作的快乐。竞争与合作,恰恰是能形成真挚的友谊、寻觅到知心的朋友的。一滴水怎样才能不干涸?把它放到大海去。在与别人的相处向融中,才能实现自身的价值。肖伯纳曾说:“你我是朋友,各拿一个苹果彼此交换,交换后仍然是各有一个苹果。倘若你有一种思想,我也有一种思想,而朋友间相互交流思想。那么我们每个人就有两种思想了。”朋友,永远是个人发展中必不可少的一部分。6.总结部分 爱国 每个人的生命历程只有一次。如果大学生能后在充满“诱惑”的现实中,自觉的选择和追求应有的人生价值,这对于大学生实现自己的人生价值具有重要的意义。中国是一个有着悠久的爱国主义优良传统的国家。以争取和维护全民族的统一为主要内容的古代爱国主义和以反帝反封建为主要内容的近代爱国主义启示着我们,仁人志士的爱国事迹感染着我们,我们应该牢记:“热爱祖国”。弘扬民族精神维护祖国统一,做新世纪坚定的爱国者。我们大学生都想实现自身的价值,所以我们需要刻苦学习。提高自己的理论素养;与时俱进,保持蓬勃的朝气;正确对待生活境遇,丰富自己的人生;奋力拼搏,全面提高能力;一个道德高尚、人格健全、素质全面的大学生才是社会的期盼、人民的期盼。为了人生的未来和未来的人生,为了社会的未来和未来的社会,让我们不断丰富自我,去追求一个有价值的人生吧!

为了光明,牺牲自已!

一、树立远大的人生观、价值观和世界观。人生观,简单地说,就是对人生的根本观点、根本看法。人生,是一个漫长的奋斗过程,是大学生施展才华,展现自我的大平台,树立正确而远大的人生观,不仅能不断端正大学生的人生态度,更能始终引领大学生以积极的姿态和面貌去迎接每一个挑战,去挫败每一个困难。价值观是人们关于基本价值的信念、信仰、理想系统,它包含善恶、美丑、利弊、得失、祸福、荣辱、优劣、贵贱、有用无用、可爱可恨、妥不妥当、值不值得、应该不应该、重要不重要、轻重缓急等,统统在内,如何在不同的条件下正确地做出选择,积极地调整自己的人生态度,都会对大学生的未来产生重大影响。作为新时代的大学生,要坚持正确向上的价值取向,不断完善自我。而世界观是左右一个人行事为人的思想架构或思想体系,它是决定一个人之所以有某些言行和决定的前提假设。大学生正值风华正茂,要把自己的命运同中华民族的兴衰荣辱紧紧相连,拓展视野,才能在人生上有所作为。 二、学好专业技能,以适应社会主义建设的需要。二十一世纪是一个人才、知识大竞争的世纪,知识水平的高低将直接决定着你的工作定位,只有扎实掌握社会发展所需的专业技能,以丰富的专业知识去适应新时代的新要求,迎接新时代的新挑战,才能真正意义上的去参加社会主义建设。在校园里,学习仍是大学生的首要任务,校园是大学生垮出校园,走向社会的大平台。这里的学习是为了增加知识的容量,是为了更好地应用于未来的实践。总之,不管是正常的学习活动,还是丰富的校园业余生活,每一个活动的认真付出,都将影响着大学生的未来。虽然当今社会要求全才,但大学生必须首先扎实掌握本身的专业技能,再去逐渐完善自己,开拓自己的知识面,造就新时代的专才和全才大学生。 三、培养高尚的道德情操,学会做人。大学之道,在明德,在亲民,在止于至善。(《大学》)这句话是说,大学教人的道理,在于使人们净化个人的心灵,陶冶个人的情操,培养个人的善良美德,在于团结群众,教育群众,弃旧扬新,从而使人达到真善美的最高境界。大学的教育,归根到底是要教会做人,引导大学生去发展和培养自己的道德情操,使教育与社会的发展趋势融为一体。大学生要树大德,立大志,与社会同步,与时代同行。具体要做到:一者是物我为一。天地与我并生,而万物与我为一。(《庄子·齐物论》)自己的成长是与大自然,与天地万物紧紧合为一体的,要始终怀着与天地同呼吸同命运的心态,学会保护学会相处;再者是尊重他人。人人都需要自由,自由是生命的最大目的,社会同样也离不开她。然而每个人都是一个自由的个体,自由社会必须由自由的人组成,惟有尊重这个事实,人们才能获得自由。所以要把个人的自由建立在全社会自由的基础上,多一分尊重,多一分信任,多一分了解;三者是自我负责。自我负责就是讲责任,负责任。大学生要敢于挑起责任,敢于负起责任。 象牙塔是个美丽的家园,也将是美好的回忆。大学生只有好好把握,不断改进和完善自我,才能真正地胜任新时代的新要求,成为新时代的主人。愿所有的新时代大学生肩负起新时代赋予的使命,用知识铸就一个新世界! 1、进入大学,就是一个新的环境,接触新的人,你的所有过去对于他们来说是一张白纸,这是你最好的重新塑造自己形象的时候,改掉以前的缺点,每进入一个新的环境,都应该以全新的形象出现。 2、“我是谁?”这是一个角色定位和角色认同问题。对“大学生”这一角色,如果模糊不清,就会出现角色错乱,大一、大二就会变成高四、高五;而如果认同不自信,“University”则成为“由你玩四年”,大学人生有可能成为“大混人生”。 3、“我来做什么”、“该怎么做”,这是个主题定位和态度问题。大学的主题是什么?是单纯求学,两耳不闻窗外事,还是修身求学,一心追求真善美?是做单一型人才还是当复合型人才?是被动求学还是主动奋斗?选择不同,最后文凭的含金量决然不同。 4、“我到哪里去”?这是个定向问题。进入大学,前途选择并没有结束。将来是赶快毕业直接工作,还是考研究生继续深造?将来是进入蓝领、白领还是金领职业层次?不管怎样选择,改变命运的钥匙掌握在自己手里,成功的机遇总是偏爱有准备头脑的人。 5、经常给家里打个电话,始终记住:儿行千里母担忧。 6、很多事情别人通知你了,要说谢谢,没有通知你,不要责怪,因为那些事你其实应该自己弄清楚。 7、不论男人还是女人,如果在大学里还把容貌当作重要的东西而过分重视的话,可能不会吃亏,但是早晚会吃亏。可能,很可能,也可以说是一定有可能。 8、千万别迷恋网络游戏。千万!记住我这里用的是千万!! 9、每个星期一定要抽时间出来锻炼身体。根据自己的特长进行有效地选择吧!就像我一样,从大学开始踢足球,现在30多了依然坚持。(本人准备50挂靴嘿嘿!作者:三峡在线 注)好处多多。 10、你可以有喝醉的时候,我们可以接受,但是你要明白和真正的朋友一醉才能让伤心事方休,否则,你只会是别人的谈资和笑柄。 11、面对不公平的东西,不要抱怨,你的不公平可能恰恰是别人的公平。所以,你不如去努力的奋斗,争取你自己最合适的公平。 12、如果你四年内很少去图书馆的话,你就等于自己浪费了一大笔一大笔财富。所以,经常去那里,随意翻翻,都有收获。 13、男人,你长的可以不帅,但你这个人可以帅,而且,那才是真正得帅。(当然,女人也是同样得道理)所以,不必在穿着打扮上花太多心思。 14、大学可能有真实的爱情,但是记住只是可能。很多时候他们是因为别人都谈恋爱而羡慕或者别的原因而在一起。所以,不必为任何分手而受太大的伤,记住,这里我所说的是太大的伤,真爱,还是值得追求的。 15、很多事情当你再回忆时会发现其实没什么。所以,不管你当时多么生气愤怒或者别的,都告诉自己不必这样,你会发现其实真的不必。 16、尊严是最重要的,但是在大学里,要懂得利用这个空间锻炼自己,要让自己的尊严有足够大的承受力,要知道,社会是一个最喜欢打碎人的尊严的地方,除了你自己,没人会为你保留它。 17、如果你的个性让很多人对你敬而远之,那么你的个性是失败的,个性的成功在于能吸引,而不是能排斥。 18、新学期如果你接新生的话,当被问到学校怎么样之类的问题时,你要记住你不但是这个学校的一分子,你更要给你学弟学妹带来信心,你走过大一,你应该知道那时对学长的信任多深。 19、你的确要学的有心计,但是记住,永远记住,在社会上要胜利的唯一的方法永远只是一个,那就是实力,永远不用怀疑。 20、人生百态,不要对新的看不惯的东西生气,无所谓的,比如说恋人同居问题,和我们很多人无关的。 21、学生会的主席之类的干部,如果你尊重他们,告诉你自己那是因为他们是你的学长而不是因为他们是你的上级,事实上,大家都只是学生而已,只是学生。 22、在大学里就开始训练自己的冷静力,这是一种能力的,有大事时,能安静并能快速想出办法的人,很厉害。 23、成功的方法多种多样,别不接受你看不惯的方法。 24、如果把上课不睡觉当做一种锻炼并且你做到了,那么,你很强,而且记住,其实你应该是这样的,老师再差,也比学生强,因为他们是老师。 25、永远不要嘲笑你的教师无知或者单调,因为有一天当你发现你用瞌睡来嘲弄教师实际上很愚蠢时,你在社会上已经碰了很多钉子了 26、如果周围有人嫉妒你,那么你可以把他从你的竞争者之列排除了,嫉妒人之人,难以成大事。 27、应该相信一句话:没有不可能的事情!!真的没有,只要去做,现在我们是学生,十年后呢??二十年后呢??想想。 28、“我爱你“。别对很多人说这句话,在大学里,我的意思是,希望你只对一个人说,这是尊重你爱的人,更是尊重你自己的感情。 29、爱你的人,不管你接不接受,你都应该感谢对方,这是对你们的尊重。 30、在晚上,听听收音机也是种快乐和幸福。 31、别抱怨四级六级之类的东西,那是证明你能力的很好的东西。 32、QQ与MSN是联系朋友的工具,可以是交朋友的工具,但是别轻易相信QQ上的友谊,更别轻易幻想QQ上朋友得样子。更重要的是不要去见你的这样的朋友。 33、每个人都有潜在的能量,只是很容易:被习惯所掩盖,被时间所迷离,被惰性所消磨。 34、你可以看不惯一些东西,但是你应该学会接受——如果你没法改变那一切的话。

点集拓扑本科论文题目

内容如下:

1、大数据对商业模式影响

2、大数据下地质项目资金内部控制风险

3、医院统计工作模式在大数据时代背景下改进

4、大数据时代下线上餐饮变革

5、基于大数据小微金融

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。

大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

基于单片机AVR与FPGA的正弦信号发生器设计摘要:在电子和通信产品中往往需要高精度的正弦信号,而传统的正弦信号发生器往往在低频输出时的频率的稳定度和精度等指标都不高。文中介绍了Micro Linear公司的一款单片正弦信号发生芯片ML2035,它可以在几乎不需要其它外围器件的条件下,产生从直流到25kHz的正弦信号,并利用此芯片完成了简易正弦信号发生器电路的设计。 关键词:信号发生器,信号源,正弦信号,ML2035, DDS 目录1. 绪论2. 技术概述3. 需求分析阶段3.1 功能模块图3.2 数据流图3.3 E-R图3.4 业务流程图4. 设计阶段(程序流程图)5. 详细设计阶段(运行的截图)6. 安装调试阶段7. 设计体会1.绪论1.1信号发生器的概念信号发生器(signal generator)产生所需参数的电测试信号仪器。按其信号波形分为四大 类:①正弦信号发生器。主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。按其不同性能和用途还可细分为低频(20赫至10兆赫)信号发生器、高频(100千赫至300兆赫)信号发生器、微波信号发生器、扫频和程控信号发生器、频率合成式信号发生器等。②函数(波形)信号发生器。能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。③脉冲信号发生器。能产生宽度、幅度和重复频率可调的矩形脉冲的发生器,可用以测试线性系统的瞬态响应,或用作模拟信号来测试雷达、多路通信和其他脉冲数字系统的性能。④随机信号发生器。通常又分为噪声信号发生器和伪随机信号发生器两类。噪声信号发生器主要用途为:在待测系统中引入一个随机信号,以模拟实际工作条件中的噪声而测定系统性能;外加一个已知噪声信号与系统内部噪声比较以测定噪声系数;用随机信号代替正弦或脉冲信号,以测定系统动态特性等。当用噪声信号进行相关函数测量时,若平均测量时间不够长,会出现统计性误差,可用伪随机信号来解决。正弦信号发生器作为电子技术领域中最基本的电子仪器,广泛应用于航空航天测控、通信系统、电子对抗、电子测量、科研等各个领域中[1~2]。随着电子信息技术的发展,对其性能的要求也越来越高,如要求频率稳定性高、转换速度快,具有调幅、调频、调相等功能,另外还经常需要两路正弦信号不仅具有相同的频率,同时要有确定的相位差。要实现两路信号具有确定的相位差,通常有两种实现方法:—‘种是采用移相器实现,如阻容移相网络、电感移相器、感应分压器移相器等。这种方法有许多不足之处,如移相精度受元件特性的影响大、移相精度差、移相操作不方便、移相角受负载和时间等因素的影响而漂移等;另一种是采用数字移相技术,这是目前移相技术的潮流[3]。数字移相技术的核心是先将模拟信号或移相角数字化,移相后再还原成模拟信号。本文采用直接数字频率合成技术设计了双通道正弦信号发生器,可以输出两路频率相同、相位差可调的正弦信号。两通道还可以独立使用,分别进行调频、调幅及调相。该信号发生器具有频率稳定度高及调频、调相迅速的优点。 正弦信号源是一种广泛应用的信号源,对它的要求也随着技术的发展越来越高。传统的正弦信号发生器往往在低频输出时的频率的稳定度和精度等指标都不高 。我们知道为了获得高频率稳定度的信号源,往往采用锁相环实现,但这种方法电路复杂、体积庞大。近年来,DDS技术由于具有容易产生频率快速转换、分辨率高、相位可控的信号,这在电子测量、雷达系统、调频通信、电子对抗等领域得到了十分广泛的应用 。然而,如果选用通常的Analog公司的系列DDS芯片研制低频正弦信号发生器,往往需要外部微处理器,因此电路较复杂,并且频率稳定度不佳。为此,本文将讨论基于ML2035设计简易的正弦信号发生器,它具有外围元器件少,电路实现简单,可以不需要外部微处理器的特点。2.技术概述1 直接数字频率合成器的基本原理频率合成是指对一个标准信号频率经过一系列算术运算,产生具有相同精度和稳定度的大量离散频率的技术。频率合成有多种实现方法,其中直接数字频率合成技术与传统频率合成技术相比具有难以比拟的优点,如频率切换速度快、分辨率高、频率和相位易于控制等[4~5]因此得到越来越广泛的应用,成为当今现代电子系统及设备中频率源设计的首选。直接数字频率合成器由参考时钟、相位累加器、正弦查询表和D/A转换器组成,如图1所示。 直接数字频率合成技术是根据相位间隔对正弦信号进行取样、量化、编码,然后储存在EPROM中构成一个正弦查询表。频率合成时,相位累加器在参考时钟的作用下对时钟脉冲进行计数,同时将累加器输出的累加相位与频率控制字K预置的相位增量相加,以相加后的吉果形成正弦查询表的地址;取出表中与该相位对应的单元中的幅度量化正弦函数值,经D/A转换器输出模拟信号,再经低通滤波器平滑得到符合要求的模拟信号。相位累加器的最大计数长度与正弦查询表中所存储的相位分隔点数相同,由于相位累加器的相位增量不同,将导致一周期内的取样点数不同,在取样频率(由参考时钟频率决定)不变的情况下,输出信号的频率也相应变化。如果设定累加器的初始相位,则可以对输出信号进行相位控制。 由采样原理可知,如果使用两个相同的频率合成器,并使其参考时钟相同,同时设定相同的频率控制字、不同的初始相位,那么在原理上就具备了实现输出两路具有一定相位差的同频信号的可能性。AD9852是ADI公司生产的高集成度的频率、相位、幅度可调的直接数字频率合成器,内部集成了高性能D/A转换器、高速比较器、程序寄存器、参考时钟倍频器及可实现各种运算的高性能的数字控制单元,并且可以实现全数字编程控制。AD9852的输出信号频率控制字为48位,使输出频率调节分辨率达到1μHz,输出信号的频率范围可从直流到150MHz,相位调节控制字为14位,相调节分辨率为0.022°,幅值调节控制字为12位。ML2035是Micro Linear公司的一款单片正弦信号发生芯片,它可以在几乎不需要其它外围器件的条件下,产生直流到25kHz的正弦信号,并且它的输出正弦信号频率可以由16比特的串行比特字控制 。因此,ML2035可以广泛地应用于需要价格低、精度高的正弦信号发生器的无线通信或调制解调等领域。ML2035的主要特点如下: 输出正弦信号频率为直流到25kHz; 具有低增益误差和低谐波畸变性能; 具有3线SPI兼容性串行微处理器接口,并具有数据锁存功能; 具有不需要外围器件的全集成解决方案功能;频率分辨率可达1.5Hz (当输入时钟频率为 时); 自带 的内部晶振; 具有同步和异步的数据加载功能。 正弦信号的产生 ML2035的基本原理和DDS一样,它内部主要由正弦信号产生、晶振和串行数字接口等部分组成。但是,ML2035的外围电路及其简单,它仅有8个引脚。ML2035的可编程频率发生器的基本原理和直接频率合成器(DDS)的基本原理完全一样。我们知道,DDS芯片一般由频率控制字、相位累加器、正弦查询表、D/ A 转换器和低通滤波器组成。DDS芯片的核心部件是相位累加器,它由N 位加法器与N 位相位寄存器构成,它类似一个简单的计数器。每来一个时钟脉冲,相位寄存器的输出就增加一个步 的相位增量值,加法器将频率控制数据与累加寄存器输出的累加相位数据相加,把相加结果送至累加寄存器的数据输入端。相位累加器进入线性相位累加,累加至满量程时产生一次计数溢出,这个溢出频率即为DDS的输出频率。正弦查询表是一个可编程只读存储器(PROM),存储的是以相位为地址的一个周期正弦信号的采样编码值,包 含一个周期正弦波的数字幅度信息,每个地址对应于正弦波中 : 范围的一个相位点。将相位寄存器的输出与相位控制字相加得到的数据作为一个地址对正弦查询表进行寻址,查询表把输入的地址相位信息映射成正弦波幅度信号,驱动DAC,输出模拟信号;低通滤波器平滑并滤除不需要的取样分量,以便输出频谱纯净的正弦波信号。 由于ML2035的控制字长为16比特,因此据DDS的原理我们不难得出ML2035的输出频率关系式为 (1) 相应地,ML2035的频率分辨率(亦最小频率)为 (2) 3.需求分析阶段一、 设计任务 设计制作一个波形发生器,该波形发生器能产生正弦波、方波、三角波和由用户编辑的 特定形状波形。 二、 设计要求 1. 基本要求 具有产生正弦波、方波、三角波三种周期性的波形。 用键盘输入编辑生成上述三种波形(同周期)的线性组合波形,以及由基波及其谐波( 5次以下)线性组合的波形。 具有波形存储功能。 输出波形的频率为100Hz~20KHz(非正弦波频率按10次谐波计算):重复频率可调,频 率步进间隔≤100Hz。 输出波形幅度范围0~5V(峰-峰值),可按步进0.1V(峰-峰值)调整。 具有显示输出波形的类型、重复频率(周期)和幅度的功能。 2.发挥部分 输出波形频率范围扩展至100Hz~200KHz。 用键盘或其他输入装置产生任意波形。 增加稳幅输出功能,当负载变化时,输出电压幅度变化不大于±3%(负载电压变化范围 :100Ω~∞)。 具有掉电存储功能,可存储掉电前用户编辑的波形和设置。 可产生单次或多次(1000次以下)特定波形(如产生一个半周期三角波输出)。 其它(如增加频谱分析、失真度分析、频率扩展>200KHz、扫频输出等功能)。 三、方案设计和论证: 根据题目的要求,我们一共提出了三种设计方案,分别介绍如下: 1、 方案一 采用低温漂、低失真、高线性单片压控函数发生器ICL8038,产生频率受控可变的正弦波 ,可实现数控频率调整。通过D/A和5G353进行输出信号幅度的控制。输出信号的频率、 幅度参数由4x4位键盘输入,结果输出采用6位LED显示,用户设置信息的存储由24C01完 成。系统结构框图如图1所示。 2、 方案二 由2M晶振产生的信号,经8253分频后,产生100Hz的方波信号。由锁相环CD4046和8253进 行N分频,输出信号送入正弦波产生电路和三角波产生电路,其中正弦波采用查表方式产 生。计数器的输出作为地址信号,并将存储器2817的波形数据读出,送DAC0832进行D/A 转换,输出各种电压波形,并经过组合,可以得到各种波形。输出信号的幅度由0852进 行调节。系统显示界面采用16字x1行液晶,信号参数由4x4位键盘输入,用户设置信息的 存储由24C01完成。 3、 方案三 以4M石英晶振作为参考源,通过F374,F283以及LS164组成的精密相位累加器,通过高速 D/A变换器和ROM产生正弦波形,这个数字正弦波经过一个模拟滤波器后,得到最终的模 拟信号波形。通过高速D/A产生数字正弦数字波形和三角数字波形,数字正弦波通过带通 滤波器后得到一个对应的模拟正弦波信号,最后该模拟正弦波与一门限进行比较得到方 波时钟信号。通过相位累加器来实现多种波形的同相位输出,并可以连续地改变频率。 输出信号幅度由TLC7524进行数字控制。用户设置信息的存储由24C01完成。 以下为三种基本方案的具体电路实现: 方案一 单片压控函数发生器ICL8038产生频率为100Hz~20KHz的正弦波,其频率由DAC0832和5G 353进行控制。由于ICL8038自身的限制,输出频率稳定度只有10-3(RC振荡器)。而且 由于压控的非线性,频率步进的步长控制比较困难。输出信号的幅度数控由DAC0832和5 G353完成。幅度数码由单片机通过P0口输入。要求幅度数据为8位/ 100mV。用户设置信 息的存储由24C01完成。 微控制器由8051最小系统,键盘/显示接口芯片8279,16位键盘,6位LED数码显示器以及 相应译码、驱动电路及“自动扫描/手动设置”选择开关等组成。 方案二 基本信号产生:晶振频率为2M,经8253进行分频后,产生100HZ的方波信号,则分频比为 : M=fALE/100=2X104 其中FALE=2M 一般石英晶体振荡器的频率稳定性优于10-5,故输出信号的频率稳定性指标得以保证。 频率合成:CD4046和8253组成的锁相环中,fo=100N 其中8253的定时器做4046的N分频, 则占空比电路的输入脉冲信号频率也是N。 利用可编程定时器/计数器8253的三个定时器,正好可以承担上述2x104分频和锁相环中 而个分频器的任务。其中定时器0分频比设为2x104,定时器2做锁相环N分频。利用8253 做分频器,应使其工作于方式3。 波形变换采用查表方式,把正弦波一个周期的波形按时间平均划分为100个点,各点的电 压数据放在存储器2817中,通过DA0832实时查询输出。 输出信号的幅度数控由DAC0832完成,幅度数码由单片机通过P1口输入,要求幅度数据为 8位/ 100mV。当输出幅度为3V时,DAC输入数值应为240。 微控制器系统由89C51最小系统,4x4位键盘输入,字符型液晶显示器以及相应的译码、 驱动电路构成。液晶显示采用菜单显示方式,显示直观,操作方便,人机界面非常友好 . 用户设置信息的存储由24C01完成 方案三 以4M石英晶振作为参考源,通过F273,F283以及LS164组成的精密相位累加器和数字信号 处理,通过高速D/A变换器DAC0800和2817 E2ROM产生正弦波形,三角波形和任意波形。 正弦信号频率计算:在相位累加器中,每来一个时钟脉冲,它的内容就更新一次。在每 次更新时,相位增量寄存器的相位增量M就加到相位累加器中的相位累加值上。假设相位 增量寄存器的M为00...01,相位累加器的初值为00...00。这时在每个时钟周期,相位累 加器都要加上00...01。本设计累加器位宽n是24位,相位累加器就需要224个时钟周期才 能恢复初值。 相位累加器的输出作为正弦查找表、三角波查找表和用户自定义波形查找表(均为 E2PROM2817)的查找地址。查找表中的每个地址代表一个周期的波形的一个相位点,每 个相位点对应一个量化振幅值。因此,这个查找表相当于一个相位/振幅变换器,它将 相位累加器的相位信息映射成数字振幅信息,这个数字振幅值就作为D/A变换器的输入。 设计n=24, M=1, 这个相应的输出信号频率等于时钟频率除以224。如果M=2,输出 频率就增加1倍。对于一个n-bit的相位累加器来说,就有2n个可能的相位点,相位增量 寄存器中控制字M就是在每个时钟周期被加到相位累加器上的值。假设时钟频率为fc,那 么输出信号的频率就为: f0 = M*fc / 224 数字正弦波经过一个模拟滤波器后,得到最终的模拟信号波形。通过高速DAC产生数字正 弦数字波形和三角数字波形,数字正弦波通过带通滤波器后得到一个对应的模拟正弦波 信号,最后该模拟正弦波与一门限进行比较得到方波时钟信号。 输出信号的幅度数控由TLC7524数控衰减器完成,幅度数码由单片机通过总线寻址方式输 入,幅度为8位/100mV。当输出幅度为5V时,DAC输入值为400。 微控制器系统由89C52最小系统,4x4位键盘输入,字符型液晶显示器以及相应的译码、 驱动电路构成。液晶显示采用菜单显示方式,显示直观,操作方便,人机界面非常友好 。用户设置信息的存储由24C01完成 4、 方案比较 下面对三种方案的性能特点和实现的难易等作一些具体分析与比较。 1)方案一结构比较简单,但由于ICL8038自身的限制,采用了RC振荡器,故输出频率稳 定度只能达到10-3数量级。方案二采用石英晶体振荡器和数字锁相环技术,而一般石英 晶体振荡器的频率稳定性优于10-5,故输出信号的频率稳定性指标得以保证。方案三同 样采用石英晶体振荡器、精密的相位累加器,频率稳定性指标同样优于10-5。达到题目 的要求。 2)方案一由于压控振荡器F/V的线性范围有限,频率步进的步长控制比较困难,难以保 证1000倍的频率覆盖系数。方案二采用集成锁相环4046,配合8253很容易做到1000倍的 线性频率覆盖系数。方案三使用精密相位累加器和高速DAC,同样可以实现1000倍的线性 频率覆盖。 3)方案一的控制显示系统比较简单,六位LED的显示系统制作比较简单,但难以显示系 统输出信号的详细信息,使用时操作难度比较大,人机界面比较难懂。方案二和方案三 采用16字符x1行的液晶,菜单式操作方法,要求有比较高的硬件制作水平和软件编程技 术,但可以详细的显示波形,占空比,信号幅度等信息。人机界面友好,操作方便。而 且通过软件编程控制使系统输出信号的频率、波形预置变的非常简单。 4)方案一中,为获得1Hz的分辨率,必须采用高精度的DAC,不容易达到比较高的精度。 方案二中用单片机对8253可编程定时器进行控制,配合集成锁相环频率合成器4046可以 比较容易的提供1Hz分辨率。方案三采用精密相位累加器,具有相当好的频率分辨率,频 率的可控范围达0.25Hz fc/2n=222/224=0.25Hz 5)方案一的ICL8038可以产生比较准确的波形。方案二通过实时查询输出正弦波,虽然 我们对每一个波形只采用了100个点,但在要求较高的场合,可以通过对每个波形取更多 个点的方法来提高波形精度。具有很好的升级扩展性能。方案三中E2PROM中存储了1024 个波形点,可以提供非常精确的波形。在200KHz的时候,仍然能够对每个波形提供8个点 ,通过滤波器后,同样会具有良好的波形。 6)方案一和方案二的频率变换时间主要是它的反馈环处理时间和压控振荡器的响应时间 ,通常大于1ms。而方案三的频率变换时间主要是数字处理延迟,通常为几十个ns。 7)方案一由于采用RC振荡器,不可避免具有比较大的相位噪声。方案二的相位噪声是它 的参考时钟—石英晶体振荡器—的噪声的两倍。而方案三由于数字正弦信号的相位与时 间成线形关系,整片电路输出的相位噪声比它的参考时钟源的相位噪声小。 从以上的方案比较可以看出,方案三结构比较复杂,但具有输出频率稳定性高、频率输 出线性度好、频率分辨率高、波形准确、频率变换时间小、相位噪声小、人机界面友好 ,易于控制等优点,性能优良。是本次设计的理想设计方案。而相对来说,方案一结构 很简单,制作容易,但是输出信号有频率线性度差、频率稳定度低、频率分辨率低、频 率变换时间比较长,相位噪声大以及人机界面不友好等缺点。方案二电路也比较简单, 但在频率分辨率、频率变换时间、相位噪声等方面都比第三种方案差。总之,方案一和 方案二都具有各自的比较大的弱点,难以达到理想的设计要求。故不宜采用。 经过比较,我们决定采用方案三的电路设计进行制作。 串行数字接口 ML2035的控制可以通过芯片的串行数字接口实现,数字接口部分主要由移位寄存器和数据锁存器组成。SID引脚上的16 bits 数据字在时钟SCK的上升沿时被送入16 bits的移位寄存器。需要注意的是,应该先送最低位,最后送最高位。然后在LAI的下降沿触发下,送入移位寄存器的数据被锁存进数据锁存器。为了确保数据的有效锁存,LAI的下降沿应该发生在SCI为“低”电平期间。同理,在SID数据移入移位寄存器期间,LAI应该保持“低”电平。 电源方式 ML2035具有电源“休眠”功能,这样可以有效提高电源的使用效率,这对于便携式产品是极其有利的。当希望ML2035保持“休眠”时,可以向移位寄存器输入全“0”,并向LATI加载“1”使其保持高电平。在这种情况下,ML2035的功耗可以降到11.5 mW以下,而输出正弦信号的幅度降到0 V。需要提及的是,在电路设计中应该对ML2035的电源输入端进行电源去耦处理,在电路设计中可以采用如图1所示的电源去耦处理方案。 图1 ML2035的电源去耦处理方法简易正弦信号发生器设计 由DDS的基本原理可以知道,由于ML2035频率分辨能力有限,输出的正弦信号将有可能出现误差。对于不同的 考时钟,将产生不同程度的频率误差,表1例举了ML2035在常见的晶振下的频率控制字和频率误差情况。 表1 使用常见标准晶振时ML2035所需频率控制字和频率误差情况 本文拟采用ML2035设计一简易的频率为1000Hz的高精度无频率误差的正弦信号发生器,由于低于3.5MHz的晶振通常价格较高且体积较大,故这里选用6.5536的晶振。由式(1)可以得知需要的频率控制字为1280,因此需要的16 bits控制位为1111 D,这样输出正弦信号的频率误差将在理论上达到0.00%。图2便是实现该简易正弦信号发生器的电路原理图,这里74HC4060计数器的功能是振荡器和计时器,而74HC4002是高速CMOS 四与非门器件。为了实现ML2035的输出正弦信号频率为1000Hz,必须使在前8个脉冲移入8比特0,然后在接下来的后8个脉冲移入1111 1010。 图2 基于ML2035的1000Hz正弦信号发生器电路原理图三,软件篇AVR要完成的功能:1,处理通信2,计算要产生的信号所需的参数3,SPI通信,输出数据到FPGA,从FPGA取数据4,根据所取的数据计算出所测的信号的参数对于通信与算法,在这里也没什么好讲的,讲一下SPI通信吧,我没有使用AVR的SPI外设,我用普通I/O ,,,,,,,,,,,,,,,,

相关百科

热门百科

首页
发表服务