首页

> 学术发表知识库

首页 学术发表知识库 问题

液压油的选用毕业论文

发布时间:

液压油的选用毕业论文

正确合理地选用液压油对提高液压设备运行的可靠性,延长系统和元件的使用寿命,有助于设备安全运行,可参照以下3点建议选用合适的液压油。工作环境系统的工况条件液压油的选用要考虑到液压系统的工作环境和系统的工况条件,工况条件主要是指温度和压力。系统的工作环境可分为以下四种:室内、固定液压设备,环境温度变化小;露天、寒区或严寒区、行走液压设备,环境温度变化大;地下、水上的液压设备,环境潮湿;在高温热源和明火附近的液压设备。(使用环境)2.合适的粘度在液压油品种选择确定后,还必须确定其使用的粘度。液压油的粘度选择主要取决起动、系统的工作温度和所用泵的类型。(合适的粘度)3.性价比在液压油选用中经济性是不可缺少的一个重要部分。不同生产厂生产的同类产品的价格是不相等的,这里有一个性能、价格比的问题。不一定是价格越贵质量越好、越适用。在考虑经济效益的基础上选用质量较好的产品应当是首选。目前市场上也有许多假冒伪劣的产品,虽然价格较便宜,但由于质量达不到使用要求,造成机械设备损伤事故,结果会带来更大的经济损失。液压油品种一、石油型(1)通用液压油(2)抗磨液压油(3)低温液压油二、合成型(1)磷酸酯液(2)水-乙二醇液三、乳化型(1)油包水液(2)水包油液以上资料整理来自中山中阳润滑油,如有疑问,欢迎咨询~

一 绪论1.1 液压传动与控制概述液压传动与控制是以液体(油、高水基液压油、合成液体)作为介质来实现各种机械量的输出(力、位移或速度等)的。它与单纯的机械传动、电气传动和气压传动相比,具有传递功率大,结构小、响应快等特点,因而被广泛的应用于各种机械设备及精密的自动控制系统。液压传动技术是一门新的学科技术,它的发展历史虽然较短,但是发展的速度却非常之快。自从1795年制成了第一台压力机起,液压技术进入了工程领域;1906年开始应用于国防战备武器。第二次世界大战期间,由于军事工业迫切需要反应快、精度高的自动控制系统,因而出现了液压伺服控制系统。从60年代起,由于原子能、空间技术、大型船舰及电子技术的发展,不断地对液压技术提出新的要求,从民用到国防,由一般的传动到精确度很高的控制系统,这种技术得到更加广泛的发展和应用。在国防工业中:海、陆、空各种战备武器均采用液压传动与控制。如飞机、坦克、舰艇、雷达、火炮、导弹及火箭等。在民用工业中:有机床工业、冶金工业、工程机械、农业方面,汽车工业、轻纺工业、船舶工业。另外,近几年又出现了太阳跟踪系统、海浪模拟装置、飞机驾驶模拟、船舶驾驶模拟器、地震再现、火箭助飞发射装置、宇航环境模拟、高层建筑防震系统及紧急刹车装置等,均采用了液压技术。总之,一切工程领域,凡是有机械设备的场合,均可采用液压技术。它的发展如此之快,应用如此之广,其原因就是液压技术有着优异的特点,归纳起来液压动力传动方式具有显著的优点:其单位重量的输出功率和单位尺寸输出功率大;液压传动装置体积小、结构紧凑、布局灵活,易实现无级调速,调速范围宽,便于与电气控制相配合实现自动化;易实现过载保护与保压,安全可靠;元件易于实现系列化、标准化、通用化;液压易与微机控制等新技术相结合,构成“机-电-液-光”一体化便于实现数字化。1.2 液压机的发展及工艺特点液压机是制品成型生产中应用最广的设备之一,自19世纪问世以来发展很快,液压机在工作中的广泛适应性,使其在国民经济各部门获得了广泛的应用。由于液压机的液压系统和整机结构方面,已经比较成熟,目前国内外液压机的发展不仅体现在控制系统方面,也主要表现在高速化、高效化、低能耗;机电液一体化,以充分合理利用机械和电子的先进技术促进整个液压系统的完善;自动化、智能化,实现对系统的自动诊断和调整,具有故障预处理功能;液压元件集成化、标准化,以有效防止泄露和污染等四个方面。作为液压机两大组成部分的主机和液压系统,由于技术发展趋于成熟,国内外机型无较大差距,主要差别在于加工工艺和安装方面。良好的工艺使机器在过滤、冷却及防止冲击和振动方面,有较明显改善。在油路结构设计方面,国内外液压机都趋向于集成化、封闭式设计,插装阀、叠加阀和复合化元件及系统在液压系统中得到较广泛的应用。特别是集成块可以进行专业化的生产,其质量好、性能可靠而且设计的周期也比较短。近年来在集成块基础上发展起来的新型液压元件组成的回路也有其独特的优点,它不需要另外的连接件其结构更为紧凑,体积也相对更小,重量也更轻无需管件连接,从而消除了因油管、接头引起的泄漏、振动和噪声。逻辑插装阀具有体积小、重量轻、密封性能好、功率损失小、动作速度快、易于集成的特点,从70年代初期开始出现,至今已得到了很快的发展。我国从1970年开始对这种阀进行研究和生产,并已将其广泛的应用于冶金、锻压等设备上,显示了很大的优越性。液压机工艺用途广泛,适用于弯曲、翻边、拉伸、成型和冷挤压等冲压工艺,压力机是一种用静压来加工产品。适用于金属粉末制品的压制成型工艺和非金属材料,如塑料、玻璃钢、绝缘材料和磨料制品的压制成型工艺,也可适用于校正和压装等工艺。由于需要进行多种工艺,液压机具有如下的特点:(1) 工作台较大,滑块行程较长,以满足多种工艺的要求;(2) 有顶出装置,以便于顶出工件;(3) 液压机具有点动、手动和半自动等工作方式,操作方便;(4) 液压机具有保压、延时和自动回程的功能,并能进行定压成型和定程成型的操作,特别适合于金属粉末和非金属粉末的压制;(5) 液压机的工作压力、压制速度和行程范围可随意调节,灵活性大。二 150t液压机液压系统工况分析本机器(见图1.1)适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本机器具有独立的动力机构和电气系统。采用按钮集中控制,可实现调整、手动及半自动三种操作方式。本机器的工作压力、压制速度、空载快速下行和减速的行程范围均可根据工艺需要进行调整,并能完成一般压制工艺。此工艺又分定压、定程两种工艺动作供选择。定压成型之工艺动作在压制后具有保压、延时、自动回程、延时自动退回等动作。 本机器主机呈长方形,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。2.2 工况分析本次设计在毕业实习调查的基础上,用类比的方法初步确定了立式安装的主液压缸活塞杆带动滑块及动横梁在立柱上滑动下行时,运动部件的质量为500Kg。1.工作负载 工件的压制抗力即为工作负载:2. 摩擦负载 静摩擦阻力:动摩擦阻力:3. 惯性负载自重:4. 液压缸在各工作阶段的负载值:其中: ——液压缸的机械效率,一般取 =0.9-0.97。工况 负载组成 推力 F/2.3负载图和速度图的绘制:负载图按上面的数值绘制,速度图按给定条件绘制,如图:三 液压机液压系统原理图设计3.1 自动补油的保压回路设计考虑到设计要求,保压时间要达到5s,压力稳定性好。若采用液压单向阀回路保压时间长,压力稳定性高,设计中利用换向阀中位机能保压,设计了自动补油回路,且保压时间由电气元件时间继电器控制,在0-20min内可调整。此回路完全适合于保压性能较高的高压系统,如液压机等。自动补油的保压回路系统图的工作原理:按下起动按纽,电磁铁1YA通电,换向阀6接入回路时,液压缸上腔成为压力腔,在压力到达预定上限值时压力继电器11发出信号,使换向阀切换成中位;这时液压泵卸荷,液压缸由换向阀M型中位机能保压。当液压缸上腔压力下降到预定下限值时,压力继电器又发出信号,使换向阀右位接人回路,这时液压泵给液压缸上腔补油,使其压力回升。回程时电磁阀2YA通电,换向阀左位接人回路,活塞快速向上退回。3.2 释压回路设计:释压回路的功用在于使高压大容量液压缸中储存的能量缓缓的释放,以免她突然释放时产生很大的液压冲击。一般液压缸直径大于25mm、压力高于7Mpa时,其油腔在排油前就先须释压。根据设计很实际的生产需要,选择用节流阀的释压回路。其工作原理:按下起动按钮,换向阀6的右位接通,液压泵输出的油经过换向阀6的右位流到液压缸的上腔。同时液压油的压力影响压力继电器。当压力达到一定压力时,压力继电器发出信号,使换向阀5回到中位,电磁换向阀10接通。液压缸上腔的高压油在换向阀5处于中位(液压泵卸荷)时通过节流阀9、换向阀10回到油箱,释压快慢由节流阀调节。当此腔压力降至压力继电器的调定压力时,换向阀6切换至左位,液控单向阀7打开,使液压缸上腔的油通过该阀排到液压缸顶部的副油箱13中去。使用这种释压回路无法在释压前保压,释压前有保压要求时的换向阀也可用M型,并且配有其它的元件。机器在工作的时候,如果出现机器被以外的杂物或工件卡死,这是泵工作的时候,输出的压力油随着工作的时间而增大,而无法使液压油到达液压缸中,为了保护液压泵及液压元件的安全,在泵出油处加一个直动式溢流阀1,起安全阀的作用,当泵的压力达到溢流阀的导通压力时,溢流阀打开,液压油流回油箱。起到保护作用。在液压系统中,一般都用溢流阀接在液压泵附近,同时也可以增加液压系统的稳定性。使零件的加工精度增高。3.3液压机液压系统原理图拟定上液压缸工作循环(1) 快速下行。按下起动按钮,电磁铁1YA通电,这时的油路为:液压缸上腔的供油的油路变量泵1—换向阀6右位—节流阀8—压力继电器11—液压缸15液压缸下腔的回油路液压缸下腔15—液控单向阀7—换向阀6右位—电磁阀5—背压阀4—油箱油路分析:变量泵1的液压油经过换向阀6的右位,液压油分两条油路:一条油路通过节流阀7流经继电器11,另一条路直接流向液压缸的上腔和压力表。使液压缸的上腔加压。液压缸15下腔通过液控单向阀7经过换向阀6的右位流经背压阀,再流到油箱。因为这是背压阀产生的背压使接副油箱旁边的液控单向阀7打开,使副油箱13的液压油经过副油箱旁边的液控单向阀14给液压缸15上腔补油。使液压缸快速下行,另外背压阀接在系统回油路上,造成一定的回油阻力,以改善执行元件的运动平稳性。(2) 保压时的油路情况:油路分析:当上腔快速下降到一定的时候,压力继电器11发出信号,使换向阀6的电磁铁1YA断电,换向阀回到中位,利用变量泵的柱塞孔从吸油状态过渡到排油状态,其容积的变化是由大变小,而在由增大到缩小的变化过程中,必有容积变化率为零的一瞬间,这就是柱塞孔运动到自身的中心线与死点所在的面重合的这一瞬间,这时柱塞孔的进出油口在配油盘上所在的位置,称为死点位置。柱塞在这个位置时,既不吸油,也不排油,而是由吸转为排的过渡状态。液压系统保压。而液压泵1在中位时,直接通过背压阀直接回到油箱。(3) 回程时的油路情况:液压缸下腔的供油的油路:变量泵1——换向阀6左位——液控单向阀7——液压油箱15的下腔液压缸上腔的回油油路:液压腔的上腔——液控单向阀14——副油箱13液压腔的上腔—节流阀8——换向阀6左位——电磁阀5——背压阀4——油箱油路分析: 当保压到一定时候,时间继电器发出信号,使换向阀6的电磁铁2YA通电,换向阀接到左位,变量泵1的液压油通过换向阀旁边的液控单向阀流到液压缸的下腔,而同时液压缸上腔的液压油通过节流阀9(电磁铁6YA接通),上腔油通过换向阀10接到油箱,实现释压,另外一部分油通过主油路的节流阀流到换向阀6,再通过电磁阀19,背压阀11流回油箱。实现释压。下液压缸的工作循环:向上顶出时,电磁铁4YA通电,5YA失电。进油路:液压泵——换向阀19左位——单向节流阀18——下液压缸下腔回油路:下液压缸上腔——换向阀19左位——油箱当活塞碰到上缸盖时,便停留在这个位置上。向下退回是在4YA失电,3YA通电时产生的,进油路:液压泵——换向阀19右位——单向节流阀17——下液压缸上腔回油路:下液压缸下腔——换向阀19右位——油箱原位停止是在电磁铁3YA,4YA都断电,换向阀19处于中位时得到的。四 液压系统的计算和元件选型4.1 确定液压缸主要参数:按液压机床类型初选液压缸的工作压力为25Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。快进时采用差动连接,并通过充液补油法来实现,这种情况下液压缸无杆腔工作面积 应为有杆腔工作面积 的6倍,即活塞杆直径 与缸筒直径 满足 的关系。快进时,液压缸回油路上必须具有背压 ,防止上压板由于自重而自动下滑,根据《液压系统设计简明手册》表2-2中,可取 =1Mpa,快进时,液压缸是做差动连接,但由于油管中有压降 存在,有杆腔的压力必须大于无杆腔,估计时可取 ,快退时,回油腔是有背压的,这时 亦按2Mpa来估算。1) 计算液压缸的面积可根据下列图形来计算—— 液压缸工作腔的压力 Pa—— 液压缸回油腔的压力 Pa故:当按GB2348-80将这些直径圆整成进标准值时得: ,由此求得液压缸面积的实际有效面积为:2) 液压缸实际所需流量计算① 工作快速空程时所需流量液压缸的容积效率,取② 工作缸压制时所需流量③ 工作缸回程时所需流量4.2液压元件的选择4.2.1确定液压泵规格和驱动电机功率由前面工况分析,由最大压制力和液压主机类型,初定上液压泵的工作压力取为 ,考虑到进出油路上阀和管道的压力损失为 (含回油路上的压力损失折算到进油腔),则液压泵的最高工作压力为上述计算所得的 是系统的静态压力,考虑到系统在各种工况的过渡阶段出现的动态压力往往超过静态压力,另外考虑到一定压力贮备量,并确保泵的寿命,其正常工作压力为泵的额定压力的80%左右因此选泵的额定压力 应满足:液压泵的最大流量应为:式中 液压泵的最大流量同时动作的各执行所需流量之和的最大值,如果这时的溢流阀正进行工作,尚须加溢流阀的最小溢流量 。系统泄漏系数,一般取 ,现取 。1.选择液压泵的规格由于液压系统的工作压力高,负载压力大,功率大。大流量。所以选轴向柱塞变量泵。柱塞变量泵适用于负载大、功率大的机械设备(如龙门刨床、拉床、液压机),柱塞式变量泵有以下的特点:1) 工作压力高。因为柱塞与缸孔加工容易,尺寸精度及表面质量可以达到很高的要求,油液泄漏小,容积效率高,能达到的工作压力,一般是( ) ,最高可以达到 。2) 流量范围较大。因为只要适当加大柱塞直径或增加柱塞数目,流量变增大。3) 改变柱塞的行程就能改变流量,容易制成各种变量型。4) 柱塞油泵主要零件均受压,使材料强度得到充分利用,寿命长,单位功率重量小。但柱塞式变量泵的结构复杂。材料及加工精度要求高,加工量大,价格昂贵。根据以上算得的 和 在查阅相关手册《机械设计手册》成大先P20-195得:现选用 ,排量63ml/r,额定压力32Mpa,额定转速1500r/min,驱动功率59.2KN,容积效率 ,重量71kg,容积效率达92%。2.与液压泵匹配的电动机的选定由前面得知,本液压系统最大功率出现在工作缸压制阶段,这时液压泵的供油压力值为26Mpa,流量为已选定泵的流量值。 液压泵的总效率。柱塞泵为 ,取 0.82。选用1000r/min的电动机,则驱动电机功率为选择电动机 ,其额定功率为18.5KW。4.2.2阀类元件及辅助元件的选择1. 对液压阀的基本要求:(1). 动作灵敏,使用可靠,工作时冲击和振动小。油液流过时压力损失小。(2). 密封性能好。结构紧凑,安装、调整、使用、维护方便,通用性大2. 根据液压系统的工作压力和通过各个阀类元件及辅助元件型号和规格主要依据是根据该阀在系统工作的最大工作压力和通过该阀的实际流量,其他还需考虑阀的动作方式,安装固定方式,压力损失数值,工作性能参数和工作寿命等条件来选择标准阀类的规格:序号 元件名称 估计通过流量型号 规格1 斜盘式柱塞泵156.8 63SCY14-1B 32Mpa,驱动功率59.2KN2 WU网式滤油器 160 WU-160*180 40通径,压力损失 0.01MPa3 直动式溢流阀 120 DBT1/315G24 10通径,32Mpa,板式联接4 背压阀 80 YF3-10B 10通径,21Mpa,板式联接5 二位二通手动电磁阀 80 22EF3-E10B6 三位四通电磁阀 100 34DO-B10H-T 10通径,压力31.5MPa7 液控单向阀80 YAF3-E610B 32通径,32MPa8 节流阀80 QFF3-E10B 10通径,16MPa9 节流阀80 QFF3-E10B 10通径,16MPa10 二位二通电磁阀30 22EF3B-E10B 6通径,压力20 MPa11 压力继电器- DP1-63B 8通径,10.5-35 MPa12 压力表开关- KFL8-30E 32Mpa,6测点13 油箱14 液控单向阀 YAF3-E610B 32通径,32MPa15 上液压缸16 下液压缸17 单向节流阀48 ALF3-E10B 10通径,16MPa18 单向单向阀48 ALF3-E10B 10通径,16MPa19 三位四通电磁换向阀 25 34DO-B10H-T20 减压阀 40 JF3-10B4.2.3 管道尺寸的确定油管系统中使用的油管种类很多,有钢管、铜管、尼龙管、塑料管、橡胶管等,必须按照安装位置、工作环境和工作压力来正确选用。本设计中油管采用钢管,因为本设计中所须的压力是高压,P=31.25MPa , 钢管能承受高压,价格低廉,耐油,抗腐蚀,刚性好,但装配是不能任意弯曲,常在装拆方便处用作压力管道一中、高压用无缝管,低压用焊接管。本设计在弯曲的地方可以用管接头来实现弯曲。尼龙管用在低压系统;塑料管一般用在回油管用。胶管用做联接两个相对运动部件之间的管道。胶管分高、低压两种。高压胶管是钢丝编织体为骨架或钢丝缠绕体为骨架的胶管,可用于压力较高的油路中。低压胶管是麻丝或棉丝编织体为骨架的胶管,多用于压力较低的油路中。由于胶管制造比较困难,成本很高,因此非必要时一般不用。1. 管接头的选用:管接头是油管与油管、油管与液压件之间的可拆式联接件,它必须具有装拆方便、连接牢固、密封可靠、外形尺寸小、通流能力大、压降小、工艺性好等各种条件。管接头的种类很多,液压系统中油管与管接头的常见联接方式有:焊接式管接头、卡套式管接头、扩口式管接头、扣压式管接头、固定铰接管接头。管路旋入端用的连接螺纹采用国际标准米制锥螺纹(ZM)和普通细牙螺纹(M)。锥螺纹依靠自身的锥体旋紧和采用聚四氟乙烯等进行密封,广泛用于中、低压液压系统;细牙螺纹密封性好,常用于高压系统,但要求采用组合垫圈或O形圈进行端面密封,有时也采用紫铜垫圈。液压系统中的泄漏问题大部分都出现在它管系中的接头上,为此对管材的选用,接头形式的确定(包括接头设计、垫圈、密封、箍套、防漏涂料的选用等),管系的设计(包括弯管设计、管道支承点和支承形式的选取等)以及管道的安装(包括正确的运输、储存、清洗、组装等)都要考虑清楚,以免影响整个液压系统的使用质量。国外对管子的材质、接头形式和连接方法上的研究工作从不间断,最近出现一种用特殊的镍钛合金制造的管接头,它能使低温下受力后发生的变形在升温时消除——即把管接头放入液氮中用芯棒扩大其内径,然后取出来迅速套装在管端上,便可使它在常温下得到牢固、紧密的结合。这种“热缩”式的连接已经在航空和其它一些加工行业中得到了应用,它能保证在40~55Mpa的工作压力下不出现泄漏。本设计根据需要,选择卡套式管接头。要求采用冷拔无缝钢管。2. 管道内径计算:(1)式中 Q——通过管道内的流量v——管内允许流速 ,见表:允许流速推荐值油液流经的管道 推荐流速 m/s液压泵吸油管液压系统压油管道 3~6,压力高,管道短粘度小取大值液压系统回油管道 1.5~2.6(1). 液压泵压油管道的内径:取v=4m/s根据《机械设计手册》成大先P20-641查得:取d=20mm,钢管的外径 D=28mm;管接头联接螺纹M27×2。(2). 液压泵回油管道的内径:取v=2.4m/s根据《机械设计手册》成大先P20-641查得:取d=25mm,钢管的外径 D=34mm;管接头联接螺纹M33×2。3. 管道壁厚 的计算式中: p——管道内最高工作压力 Pad——管道内径 m——管道材料的许用应力 Pa,——管道材料的抗拉强度 Pan——安全系数,对钢管来说, 时,取n=8; 时,取n=6; 时,取n=4。根据上述的参数可以得到:我们选钢管的材料为45#钢,由此可得材料的抗拉强度 =600MPa;(1). 液压泵压油管道的壁厚(2). 液压泵回油管道的壁厚所以所选管道适用。4. 液压系统的验算上面已经计算出该液压系统中进,回油管的内径分别为32mm,42mm。但是由于系统的具体管路布置和长度尚未确定,所以压力损失无法验算。4.2.4系统温升的验算在整个工作循环中,工进阶段所占的时间最长,且发热量最大。为了简化计算,主要考虑工进时的发热量。一般情况下,工进时做功的功率损失大引起发热量较大,所以只考虑工进时的发热量,然后取其值进行分析。当V=10mm/s时,即v=600mm/min即此时泵的效率为0.9,泵的出口压力为26MP,则有即此时的功率损失为:假定系统的散热状况一般,取 ,油箱的散热面积A为系统的温升为根据《机械设计手册》成大先P20-767:油箱中温度一般推荐30-50所以验算表明系统的温升在许可范围内。五 液压缸的结构设计5.1 液压缸主要尺寸的确定1) 液压缸壁厚和外经的计算液压缸的壁厚由液压缸的强度条件来计算。液压缸的壁厚一般指缸筒结构中最薄处的厚度。从材料力学可知,承受内压力的圆筒,其内应力分布规律应壁厚的不同而各异。一般计算时可分为薄壁圆筒和厚壁圆筒。液压缸的内径D与其壁厚 的比值 的圆筒称为薄壁圆筒。工程机械的液压缸,一般用无缝钢管材料,大多属于薄壁圆筒结构,其壁厚按薄壁圆筒公式计算设 计 计 算 过 程式中 ——液压缸壁厚(m);D——液压缸内径(m);——试验压力,一般取最大工作压力的(1.25~1.5)倍 ;——缸筒材料的许用应力。无缝钢管: 。= =22.9则 在中低压液压系统中,按上式计算所得液压缸的壁厚往往很小,使缸体的刚度往往很不够,如在切削过程中的变形、安装变形等引起液压缸工作过程卡死或漏油。因此一般不作计算,按经验选取,必要时按上式进行校核。液压缸壁厚算出后,即可求出缸体的外经 为2) 液压缸工作行程的确定液压缸工作行程长度,可根据执行机构实际工作的最大行程来确定,并参阅<<液压系统设计简明手册>>P12表2-6中的系列尺寸来选取标准值。液压缸工作行程选缸盖厚度的确定一般液压缸多为平底缸盖,其有效厚度t按强度要求可用下面两式进行近似计算。无孔时有孔时式中 t——缸盖有效厚度(m);——缸盖止口内径(m);——缸盖孔的直径(m)。液压缸:无孔时取 t=65mm有孔时取 t’=50mm3)最小导向长度的确定当活塞杆全部外伸时,从活塞支承面中点到缸盖滑动支承面中点的距离H称为最小导向长度(如下图2所示)。如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一定的最小导向长度。对一般的液压缸,最小导向长度H应满足以下要求:设 计 计 算 过 程式中 L——液压缸的最大行程;D——液压缸的内径。活塞的宽度B一般取B=(0.6~10)D;缸盖滑动支承面的长度 ,根据液压缸内径D而定;当D<80mm时,取 ;当D>80mm时,取 。为保证最小导向长度H,若过分增大 和B都是不适宜的,必要时可在缸盖与活塞之间增加一隔套K来增加H的值。隔套的长度C由需要的最小导向长度H决定,即滑台液压缸:最小导向长度:取 H=200mm活塞宽度:B=0.6D=192mm缸盖滑动支承面长度:隔套长度: 所以无隔套。液压缸缸体内部长度应等于活塞的行程与活塞的宽度之和。缸体外形长度还要考虑到两端端盖的厚度。一般液压缸缸体长度不应大于内径的20~30倍。液压缸:缸体内部长度当液压缸支承长度LB (10-15)d时,需考虑活塞杆弯度稳定性并进行计算。本设计不需进行稳定性验算。5.2 液压缸的结构设计液压缸主要尺寸确定以后,就进行各部分的结构设计。主要包括:缸体与缸盖的连接结构、活塞与活塞杆的连接结构、活塞杆导向部分结构、密封装置、排气装置及液压缸的安装连接结构等。由于工作条件不同,结构形式也各不相同。设计时根据具体情况进行选择。设 计 计 算 过 程1) 缸体与缸盖的连接形式缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。本次设计中采用外半环连接,如下图1所示:图1 缸体与缸盖外半环连接方式优点:(1) 结构较简单(2) 加工装配方便缺点:(1) 外型尺寸大(2) 缸筒开槽,削弱了强度,需增加缸筒壁厚2)活塞杆与活塞的连接结构参阅<<液压系统设计简明手册>>P15表2-8,采用组合式结构中的螺纹连接。如下图2所示:图2 活塞杆与活塞螺纹连接方式特点:结构简单,在振动的工作条件下容易松动,必须用锁紧装置。应用较多,如组合机床与工程机械上的液压缸。

我有几篇。。。。可以给你参考

液压油的选用毕业论文设计

一 绪论1.1 液压传动与控制概述液压传动与控制是以液体(油、高水基液压油、合成液体)作为介质来实现各种机械量的输出(力、位移或速度等)的。它与单纯的机械传动、电气传动和气压传动相比,具有传递功率大,结构小、响应快等特点,因而被广泛的应用于各种机械设备及精密的自动控制系统。液压传动技术是一门新的学科技术,它的发展历史虽然较短,但是发展的速度却非常之快。自从1795年制成了第一台压力机起,液压技术进入了工程领域;1906年开始应用于国防战备武器。第二次世界大战期间,由于军事工业迫切需要反应快、精度高的自动控制系统,因而出现了液压伺服控制系统。从60年代起,由于原子能、空间技术、大型船舰及电子技术的发展,不断地对液压技术提出新的要求,从民用到国防,由一般的传动到精确度很高的控制系统,这种技术得到更加广泛的发展和应用。在国防工业中:海、陆、空各种战备武器均采用液压传动与控制。如飞机、坦克、舰艇、雷达、火炮、导弹及火箭等。在民用工业中:有机床工业、冶金工业、工程机械、农业方面,汽车工业、轻纺工业、船舶工业。另外,近几年又出现了太阳跟踪系统、海浪模拟装置、飞机驾驶模拟、船舶驾驶模拟器、地震再现、火箭助飞发射装置、宇航环境模拟、高层建筑防震系统及紧急刹车装置等,均采用了液压技术。总之,一切工程领域,凡是有机械设备的场合,均可采用液压技术。它的发展如此之快,应用如此之广,其原因就是液压技术有着优异的特点,归纳起来液压动力传动方式具有显著的优点:其单位重量的输出功率和单位尺寸输出功率大;液压传动装置体积小、结构紧凑、布局灵活,易实现无级调速,调速范围宽,便于与电气控制相配合实现自动化;易实现过载保护与保压,安全可靠;元件易于实现系列化、标准化、通用化;液压易与微机控制等新技术相结合,构成“机-电-液-光”一体化便于实现数字化。1.2 液压机的发展及工艺特点液压机是制品成型生产中应用最广的设备之一,自19世纪问世以来发展很快,液压机在工作中的广泛适应性,使其在国民经济各部门获得了广泛的应用。由于液压机的液压系统和整机结构方面,已经比较成熟,目前国内外液压机的发展不仅体现在控制系统方面,也主要表现在高速化、高效化、低能耗;机电液一体化,以充分合理利用机械和电子的先进技术促进整个液压系统的完善;自动化、智能化,实现对系统的自动诊断和调整,具有故障预处理功能;液压元件集成化、标准化,以有效防止泄露和污染等四个方面。作为液压机两大组成部分的主机和液压系统,由于技术发展趋于成熟,国内外机型无较大差距,主要差别在于加工工艺和安装方面。良好的工艺使机器在过滤、冷却及防止冲击和振动方面,有较明显改善。在油路结构设计方面,国内外液压机都趋向于集成化、封闭式设计,插装阀、叠加阀和复合化元件及系统在液压系统中得到较广泛的应用。特别是集成块可以进行专业化的生产,其质量好、性能可靠而且设计的周期也比较短。近年来在集成块基础上发展起来的新型液压元件组成的回路也有其独特的优点,它不需要另外的连接件其结构更为紧凑,体积也相对更小,重量也更轻无需管件连接,从而消除了因油管、接头引起的泄漏、振动和噪声。逻辑插装阀具有体积小、重量轻、密封性能好、功率损失小、动作速度快、易于集成的特点,从70年代初期开始出现,至今已得到了很快的发展。我国从1970年开始对这种阀进行研究和生产,并已将其广泛的应用于冶金、锻压等设备上,显示了很大的优越性。液压机工艺用途广泛,适用于弯曲、翻边、拉伸、成型和冷挤压等冲压工艺,压力机是一种用静压来加工产品。适用于金属粉末制品的压制成型工艺和非金属材料,如塑料、玻璃钢、绝缘材料和磨料制品的压制成型工艺,也可适用于校正和压装等工艺。由于需要进行多种工艺,液压机具有如下的特点:(1) 工作台较大,滑块行程较长,以满足多种工艺的要求;(2) 有顶出装置,以便于顶出工件;(3) 液压机具有点动、手动和半自动等工作方式,操作方便;(4) 液压机具有保压、延时和自动回程的功能,并能进行定压成型和定程成型的操作,特别适合于金属粉末和非金属粉末的压制;(5) 液压机的工作压力、压制速度和行程范围可随意调节,灵活性大。二 150t液压机液压系统工况分析本机器(见图1.1)适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本机器具有独立的动力机构和电气系统。采用按钮集中控制,可实现调整、手动及半自动三种操作方式。本机器的工作压力、压制速度、空载快速下行和减速的行程范围均可根据工艺需要进行调整,并能完成一般压制工艺。此工艺又分定压、定程两种工艺动作供选择。定压成型之工艺动作在压制后具有保压、延时、自动回程、延时自动退回等动作。 本机器主机呈长方形,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。2.2 工况分析本次设计在毕业实习调查的基础上,用类比的方法初步确定了立式安装的主液压缸活塞杆带动滑块及动横梁在立柱上滑动下行时,运动部件的质量为500Kg。1.工作负载 工件的压制抗力即为工作负载:2. 摩擦负载 静摩擦阻力:动摩擦阻力:3. 惯性负载自重:4. 液压缸在各工作阶段的负载值:其中: ——液压缸的机械效率,一般取 =0.9-0.97。工况 负载组成 推力 F/2.3负载图和速度图的绘制:负载图按上面的数值绘制,速度图按给定条件绘制,如图:三 液压机液压系统原理图设计3.1 自动补油的保压回路设计考虑到设计要求,保压时间要达到5s,压力稳定性好。若采用液压单向阀回路保压时间长,压力稳定性高,设计中利用换向阀中位机能保压,设计了自动补油回路,且保压时间由电气元件时间继电器控制,在0-20min内可调整。此回路完全适合于保压性能较高的高压系统,如液压机等。自动补油的保压回路系统图的工作原理:按下起动按纽,电磁铁1YA通电,换向阀6接入回路时,液压缸上腔成为压力腔,在压力到达预定上限值时压力继电器11发出信号,使换向阀切换成中位;这时液压泵卸荷,液压缸由换向阀M型中位机能保压。当液压缸上腔压力下降到预定下限值时,压力继电器又发出信号,使换向阀右位接人回路,这时液压泵给液压缸上腔补油,使其压力回升。回程时电磁阀2YA通电,换向阀左位接人回路,活塞快速向上退回。3.2 释压回路设计:释压回路的功用在于使高压大容量液压缸中储存的能量缓缓的释放,以免她突然释放时产生很大的液压冲击。一般液压缸直径大于25mm、压力高于7Mpa时,其油腔在排油前就先须释压。根据设计很实际的生产需要,选择用节流阀的释压回路。其工作原理:按下起动按钮,换向阀6的右位接通,液压泵输出的油经过换向阀6的右位流到液压缸的上腔。同时液压油的压力影响压力继电器。当压力达到一定压力时,压力继电器发出信号,使换向阀5回到中位,电磁换向阀10接通。液压缸上腔的高压油在换向阀5处于中位(液压泵卸荷)时通过节流阀9、换向阀10回到油箱,释压快慢由节流阀调节。当此腔压力降至压力继电器的调定压力时,换向阀6切换至左位,液控单向阀7打开,使液压缸上腔的油通过该阀排到液压缸顶部的副油箱13中去。使用这种释压回路无法在释压前保压,释压前有保压要求时的换向阀也可用M型,并且配有其它的元件。机器在工作的时候,如果出现机器被以外的杂物或工件卡死,这是泵工作的时候,输出的压力油随着工作的时间而增大,而无法使液压油到达液压缸中,为了保护液压泵及液压元件的安全,在泵出油处加一个直动式溢流阀1,起安全阀的作用,当泵的压力达到溢流阀的导通压力时,溢流阀打开,液压油流回油箱。起到保护作用。在液压系统中,一般都用溢流阀接在液压泵附近,同时也可以增加液压系统的稳定性。使零件的加工精度增高。3.3液压机液压系统原理图拟定上液压缸工作循环(1) 快速下行。按下起动按钮,电磁铁1YA通电,这时的油路为:液压缸上腔的供油的油路变量泵1—换向阀6右位—节流阀8—压力继电器11—液压缸15液压缸下腔的回油路液压缸下腔15—液控单向阀7—换向阀6右位—电磁阀5—背压阀4—油箱油路分析:变量泵1的液压油经过换向阀6的右位,液压油分两条油路:一条油路通过节流阀7流经继电器11,另一条路直接流向液压缸的上腔和压力表。使液压缸的上腔加压。液压缸15下腔通过液控单向阀7经过换向阀6的右位流经背压阀,再流到油箱。因为这是背压阀产生的背压使接副油箱旁边的液控单向阀7打开,使副油箱13的液压油经过副油箱旁边的液控单向阀14给液压缸15上腔补油。使液压缸快速下行,另外背压阀接在系统回油路上,造成一定的回油阻力,以改善执行元件的运动平稳性。(2) 保压时的油路情况:油路分析:当上腔快速下降到一定的时候,压力继电器11发出信号,使换向阀6的电磁铁1YA断电,换向阀回到中位,利用变量泵的柱塞孔从吸油状态过渡到排油状态,其容积的变化是由大变小,而在由增大到缩小的变化过程中,必有容积变化率为零的一瞬间,这就是柱塞孔运动到自身的中心线与死点所在的面重合的这一瞬间,这时柱塞孔的进出油口在配油盘上所在的位置,称为死点位置。柱塞在这个位置时,既不吸油,也不排油,而是由吸转为排的过渡状态。液压系统保压。而液压泵1在中位时,直接通过背压阀直接回到油箱。(3) 回程时的油路情况:液压缸下腔的供油的油路:变量泵1——换向阀6左位——液控单向阀7——液压油箱15的下腔液压缸上腔的回油油路:液压腔的上腔——液控单向阀14——副油箱13液压腔的上腔—节流阀8——换向阀6左位——电磁阀5——背压阀4——油箱油路分析: 当保压到一定时候,时间继电器发出信号,使换向阀6的电磁铁2YA通电,换向阀接到左位,变量泵1的液压油通过换向阀旁边的液控单向阀流到液压缸的下腔,而同时液压缸上腔的液压油通过节流阀9(电磁铁6YA接通),上腔油通过换向阀10接到油箱,实现释压,另外一部分油通过主油路的节流阀流到换向阀6,再通过电磁阀19,背压阀11流回油箱。实现释压。下液压缸的工作循环:向上顶出时,电磁铁4YA通电,5YA失电。进油路:液压泵——换向阀19左位——单向节流阀18——下液压缸下腔回油路:下液压缸上腔——换向阀19左位——油箱当活塞碰到上缸盖时,便停留在这个位置上。向下退回是在4YA失电,3YA通电时产生的,进油路:液压泵——换向阀19右位——单向节流阀17——下液压缸上腔回油路:下液压缸下腔——换向阀19右位——油箱原位停止是在电磁铁3YA,4YA都断电,换向阀19处于中位时得到的。四 液压系统的计算和元件选型4.1 确定液压缸主要参数:按液压机床类型初选液压缸的工作压力为25Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。快进时采用差动连接,并通过充液补油法来实现,这种情况下液压缸无杆腔工作面积 应为有杆腔工作面积 的6倍,即活塞杆直径 与缸筒直径 满足 的关系。快进时,液压缸回油路上必须具有背压 ,防止上压板由于自重而自动下滑,根据《液压系统设计简明手册》表2-2中,可取 =1Mpa,快进时,液压缸是做差动连接,但由于油管中有压降 存在,有杆腔的压力必须大于无杆腔,估计时可取 ,快退时,回油腔是有背压的,这时 亦按2Mpa来估算。1) 计算液压缸的面积可根据下列图形来计算—— 液压缸工作腔的压力 Pa—— 液压缸回油腔的压力 Pa故:当按GB2348-80将这些直径圆整成进标准值时得: ,由此求得液压缸面积的实际有效面积为:2) 液压缸实际所需流量计算① 工作快速空程时所需流量液压缸的容积效率,取② 工作缸压制时所需流量③ 工作缸回程时所需流量4.2液压元件的选择4.2.1确定液压泵规格和驱动电机功率由前面工况分析,由最大压制力和液压主机类型,初定上液压泵的工作压力取为 ,考虑到进出油路上阀和管道的压力损失为 (含回油路上的压力损失折算到进油腔),则液压泵的最高工作压力为上述计算所得的 是系统的静态压力,考虑到系统在各种工况的过渡阶段出现的动态压力往往超过静态压力,另外考虑到一定压力贮备量,并确保泵的寿命,其正常工作压力为泵的额定压力的80%左右因此选泵的额定压力 应满足:液压泵的最大流量应为:式中 液压泵的最大流量同时动作的各执行所需流量之和的最大值,如果这时的溢流阀正进行工作,尚须加溢流阀的最小溢流量 。系统泄漏系数,一般取 ,现取 。1.选择液压泵的规格由于液压系统的工作压力高,负载压力大,功率大。大流量。所以选轴向柱塞变量泵。柱塞变量泵适用于负载大、功率大的机械设备(如龙门刨床、拉床、液压机),柱塞式变量泵有以下的特点:1) 工作压力高。因为柱塞与缸孔加工容易,尺寸精度及表面质量可以达到很高的要求,油液泄漏小,容积效率高,能达到的工作压力,一般是( ) ,最高可以达到 。2) 流量范围较大。因为只要适当加大柱塞直径或增加柱塞数目,流量变增大。3) 改变柱塞的行程就能改变流量,容易制成各种变量型。4) 柱塞油泵主要零件均受压,使材料强度得到充分利用,寿命长,单位功率重量小。但柱塞式变量泵的结构复杂。材料及加工精度要求高,加工量大,价格昂贵。根据以上算得的 和 在查阅相关手册《机械设计手册》成大先P20-195得:现选用 ,排量63ml/r,额定压力32Mpa,额定转速1500r/min,驱动功率59.2KN,容积效率 ,重量71kg,容积效率达92%。2.与液压泵匹配的电动机的选定由前面得知,本液压系统最大功率出现在工作缸压制阶段,这时液压泵的供油压力值为26Mpa,流量为已选定泵的流量值。 液压泵的总效率。柱塞泵为 ,取 0.82。选用1000r/min的电动机,则驱动电机功率为选择电动机 ,其额定功率为18.5KW。4.2.2阀类元件及辅助元件的选择1. 对液压阀的基本要求:(1). 动作灵敏,使用可靠,工作时冲击和振动小。油液流过时压力损失小。(2). 密封性能好。结构紧凑,安装、调整、使用、维护方便,通用性大2. 根据液压系统的工作压力和通过各个阀类元件及辅助元件型号和规格主要依据是根据该阀在系统工作的最大工作压力和通过该阀的实际流量,其他还需考虑阀的动作方式,安装固定方式,压力损失数值,工作性能参数和工作寿命等条件来选择标准阀类的规格:序号 元件名称 估计通过流量型号 规格1 斜盘式柱塞泵156.8 63SCY14-1B 32Mpa,驱动功率59.2KN2 WU网式滤油器 160 WU-160*180 40通径,压力损失 0.01MPa3 直动式溢流阀 120 DBT1/315G24 10通径,32Mpa,板式联接4 背压阀 80 YF3-10B 10通径,21Mpa,板式联接5 二位二通手动电磁阀 80 22EF3-E10B6 三位四通电磁阀 100 34DO-B10H-T 10通径,压力31.5MPa7 液控单向阀80 YAF3-E610B 32通径,32MPa8 节流阀80 QFF3-E10B 10通径,16MPa9 节流阀80 QFF3-E10B 10通径,16MPa10 二位二通电磁阀30 22EF3B-E10B 6通径,压力20 MPa11 压力继电器- DP1-63B 8通径,10.5-35 MPa12 压力表开关- KFL8-30E 32Mpa,6测点13 油箱14 液控单向阀 YAF3-E610B 32通径,32MPa15 上液压缸16 下液压缸17 单向节流阀48 ALF3-E10B 10通径,16MPa18 单向单向阀48 ALF3-E10B 10通径,16MPa19 三位四通电磁换向阀 25 34DO-B10H-T20 减压阀 40 JF3-10B4.2.3 管道尺寸的确定油管系统中使用的油管种类很多,有钢管、铜管、尼龙管、塑料管、橡胶管等,必须按照安装位置、工作环境和工作压力来正确选用。本设计中油管采用钢管,因为本设计中所须的压力是高压,P=31.25MPa , 钢管能承受高压,价格低廉,耐油,抗腐蚀,刚性好,但装配是不能任意弯曲,常在装拆方便处用作压力管道一中、高压用无缝管,低压用焊接管。本设计在弯曲的地方可以用管接头来实现弯曲。尼龙管用在低压系统;塑料管一般用在回油管用。胶管用做联接两个相对运动部件之间的管道。胶管分高、低压两种。高压胶管是钢丝编织体为骨架或钢丝缠绕体为骨架的胶管,可用于压力较高的油路中。低压胶管是麻丝或棉丝编织体为骨架的胶管,多用于压力较低的油路中。由于胶管制造比较困难,成本很高,因此非必要时一般不用。1. 管接头的选用:管接头是油管与油管、油管与液压件之间的可拆式联接件,它必须具有装拆方便、连接牢固、密封可靠、外形尺寸小、通流能力大、压降小、工艺性好等各种条件。管接头的种类很多,液压系统中油管与管接头的常见联接方式有:焊接式管接头、卡套式管接头、扩口式管接头、扣压式管接头、固定铰接管接头。管路旋入端用的连接螺纹采用国际标准米制锥螺纹(ZM)和普通细牙螺纹(M)。锥螺纹依靠自身的锥体旋紧和采用聚四氟乙烯等进行密封,广泛用于中、低压液压系统;细牙螺纹密封性好,常用于高压系统,但要求采用组合垫圈或O形圈进行端面密封,有时也采用紫铜垫圈。液压系统中的泄漏问题大部分都出现在它管系中的接头上,为此对管材的选用,接头形式的确定(包括接头设计、垫圈、密封、箍套、防漏涂料的选用等),管系的设计(包括弯管设计、管道支承点和支承形式的选取等)以及管道的安装(包括正确的运输、储存、清洗、组装等)都要考虑清楚,以免影响整个液压系统的使用质量。国外对管子的材质、接头形式和连接方法上的研究工作从不间断,最近出现一种用特殊的镍钛合金制造的管接头,它能使低温下受力后发生的变形在升温时消除——即把管接头放入液氮中用芯棒扩大其内径,然后取出来迅速套装在管端上,便可使它在常温下得到牢固、紧密的结合。这种“热缩”式的连接已经在航空和其它一些加工行业中得到了应用,它能保证在40~55Mpa的工作压力下不出现泄漏。本设计根据需要,选择卡套式管接头。要求采用冷拔无缝钢管。2. 管道内径计算:(1)式中 Q——通过管道内的流量v——管内允许流速 ,见表:允许流速推荐值油液流经的管道 推荐流速 m/s液压泵吸油管液压系统压油管道 3~6,压力高,管道短粘度小取大值液压系统回油管道 1.5~2.6(1). 液压泵压油管道的内径:取v=4m/s根据《机械设计手册》成大先P20-641查得:取d=20mm,钢管的外径 D=28mm;管接头联接螺纹M27×2。(2). 液压泵回油管道的内径:取v=2.4m/s根据《机械设计手册》成大先P20-641查得:取d=25mm,钢管的外径 D=34mm;管接头联接螺纹M33×2。3. 管道壁厚 的计算式中: p——管道内最高工作压力 Pad——管道内径 m——管道材料的许用应力 Pa,——管道材料的抗拉强度 Pan——安全系数,对钢管来说, 时,取n=8; 时,取n=6; 时,取n=4。根据上述的参数可以得到:我们选钢管的材料为45#钢,由此可得材料的抗拉强度 =600MPa;(1). 液压泵压油管道的壁厚(2). 液压泵回油管道的壁厚所以所选管道适用。4. 液压系统的验算上面已经计算出该液压系统中进,回油管的内径分别为32mm,42mm。但是由于系统的具体管路布置和长度尚未确定,所以压力损失无法验算。4.2.4系统温升的验算在整个工作循环中,工进阶段所占的时间最长,且发热量最大。为了简化计算,主要考虑工进时的发热量。一般情况下,工进时做功的功率损失大引起发热量较大,所以只考虑工进时的发热量,然后取其值进行分析。当V=10mm/s时,即v=600mm/min即此时泵的效率为0.9,泵的出口压力为26MP,则有即此时的功率损失为:假定系统的散热状况一般,取 ,油箱的散热面积A为系统的温升为根据《机械设计手册》成大先P20-767:油箱中温度一般推荐30-50所以验算表明系统的温升在许可范围内。五 液压缸的结构设计5.1 液压缸主要尺寸的确定1) 液压缸壁厚和外经的计算液压缸的壁厚由液压缸的强度条件来计算。液压缸的壁厚一般指缸筒结构中最薄处的厚度。从材料力学可知,承受内压力的圆筒,其内应力分布规律应壁厚的不同而各异。一般计算时可分为薄壁圆筒和厚壁圆筒。液压缸的内径D与其壁厚 的比值 的圆筒称为薄壁圆筒。工程机械的液压缸,一般用无缝钢管材料,大多属于薄壁圆筒结构,其壁厚按薄壁圆筒公式计算设 计 计 算 过 程式中 ——液压缸壁厚(m);D——液压缸内径(m);——试验压力,一般取最大工作压力的(1.25~1.5)倍 ;——缸筒材料的许用应力。无缝钢管: 。= =22.9则 在中低压液压系统中,按上式计算所得液压缸的壁厚往往很小,使缸体的刚度往往很不够,如在切削过程中的变形、安装变形等引起液压缸工作过程卡死或漏油。因此一般不作计算,按经验选取,必要时按上式进行校核。液压缸壁厚算出后,即可求出缸体的外经 为2) 液压缸工作行程的确定液压缸工作行程长度,可根据执行机构实际工作的最大行程来确定,并参阅<<液压系统设计简明手册>>P12表2-6中的系列尺寸来选取标准值。液压缸工作行程选缸盖厚度的确定一般液压缸多为平底缸盖,其有效厚度t按强度要求可用下面两式进行近似计算。无孔时有孔时式中 t——缸盖有效厚度(m);——缸盖止口内径(m);——缸盖孔的直径(m)。液压缸:无孔时取 t=65mm有孔时取 t’=50mm3)最小导向长度的确定当活塞杆全部外伸时,从活塞支承面中点到缸盖滑动支承面中点的距离H称为最小导向长度(如下图2所示)。如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一定的最小导向长度。对一般的液压缸,最小导向长度H应满足以下要求:设 计 计 算 过 程式中 L——液压缸的最大行程;D——液压缸的内径。活塞的宽度B一般取B=(0.6~10)D;缸盖滑动支承面的长度 ,根据液压缸内径D而定;当D<80mm时,取 ;当D>80mm时,取 。为保证最小导向长度H,若过分增大 和B都是不适宜的,必要时可在缸盖与活塞之间增加一隔套K来增加H的值。隔套的长度C由需要的最小导向长度H决定,即滑台液压缸:最小导向长度:取 H=200mm活塞宽度:B=0.6D=192mm缸盖滑动支承面长度:隔套长度: 所以无隔套。液压缸缸体内部长度应等于活塞的行程与活塞的宽度之和。缸体外形长度还要考虑到两端端盖的厚度。一般液压缸缸体长度不应大于内径的20~30倍。液压缸:缸体内部长度当液压缸支承长度LB (10-15)d时,需考虑活塞杆弯度稳定性并进行计算。本设计不需进行稳定性验算。5.2 液压缸的结构设计液压缸主要尺寸确定以后,就进行各部分的结构设计。主要包括:缸体与缸盖的连接结构、活塞与活塞杆的连接结构、活塞杆导向部分结构、密封装置、排气装置及液压缸的安装连接结构等。由于工作条件不同,结构形式也各不相同。设计时根据具体情况进行选择。设 计 计 算 过 程1) 缸体与缸盖的连接形式缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。本次设计中采用外半环连接,如下图1所示:图1 缸体与缸盖外半环连接方式优点:(1) 结构较简单(2) 加工装配方便缺点:(1) 外型尺寸大(2) 缸筒开槽,削弱了强度,需增加缸筒壁厚2)活塞杆与活塞的连接结构参阅<<液压系统设计简明手册>>P15表2-8,采用组合式结构中的螺纹连接。如下图2所示:图2 活塞杆与活塞螺纹连接方式特点:结构简单,在振动的工作条件下容易松动,必须用锁紧装置。应用较多,如组合机床与工程机械上的液压缸。

一个液压泵站包括:液压泵、油箱、过滤器、压力表、蓄能器。相对于液压系统,液压泵站的设计要简单的多得多。液压泵----提供液压系统的动力。油箱---液压油的存储,要注意回油口与出油口要隔开,以免互相干扰。过滤器---随时对液压油进行过滤。压力表---应单独设置出油压力和回油压力。蓄能器---可吸收油压脉动和减小液压冲击,同时对于间歇动作的液压系统,可以储存能量。

齿轮泵是液压系统中应用十分广泛的动力元件,具有结构简单、价格便宜、自吸能力强,抗油液污染能力强等优点,但是其最大的缺陷是寿命过短,达不到设计要求的一半。外啮合齿轮泵的设计寿命为5000h。但目前一般均达不到此要求。本文就其中几个主要影响因素加以阐述,并提出相应的改进措施。1、轴承的设计与选用 像其他机械产品一样,齿轮泵设计也要考虑其寿命原则。为了经济合理地使用原材料和零配件,提高产品的技术经济指标,在设计产品时应力求做到大部分零部件和原材料寿命相等,不应造成产品的大部分零件还远没有达到使用寿命,而少数零件已报废。齿轮泵恰好存在这样的问题,报废的大多数情况是因为轴承损坏所至。目前不少齿轮泵不再使用滚针轴承,而改用带保持架的滚针轴承,这样虽可使寿命有所提高,但实践证明,在额定工况下运行不到2000h就因轴承损坏而报废。为此也有采用滑动轴承的,材料多为锡青铜、粉末冶金、增强尼龙6等,但效果仍不理想,且成本高............没什么好处,技术性的东西不愿告诉你们

液压油毕业论文下载

一 绪论1.1 液压传动与控制概述液压传动与控制是以液体(油、高水基液压油、合成液体)作为介质来实现各种机械量的输出(力、位移或速度等)的。它与单纯的机械传动、电气传动和气压传动相比,具有传递功率大,结构小、响应快等特点,因而被广泛的应用于各种机械设备及精密的自动控制系统。液压传动技术是一门新的学科技术,它的发展历史虽然较短,但是发展的速度却非常之快。自从1795年制成了第一台压力机起,液压技术进入了工程领域;1906年开始应用于国防战备武器。第二次世界大战期间,由于军事工业迫切需要反应快、精度高的自动控制系统,因而出现了液压伺服控制系统。从60年代起,由于原子能、空间技术、大型船舰及电子技术的发展,不断地对液压技术提出新的要求,从民用到国防,由一般的传动到精确度很高的控制系统,这种技术得到更加广泛的发展和应用。在国防工业中:海、陆、空各种战备武器均采用液压传动与控制。如飞机、坦克、舰艇、雷达、火炮、导弹及火箭等。在民用工业中:有机床工业、冶金工业、工程机械、农业方面,汽车工业、轻纺工业、船舶工业。另外,近几年又出现了太阳跟踪系统、海浪模拟装置、飞机驾驶模拟、船舶驾驶模拟器、地震再现、火箭助飞发射装置、宇航环境模拟、高层建筑防震系统及紧急刹车装置等,均采用了液压技术。总之,一切工程领域,凡是有机械设备的场合,均可采用液压技术。它的发展如此之快,应用如此之广,其原因就是液压技术有着优异的特点,归纳起来液压动力传动方式具有显著的优点:其单位重量的输出功率和单位尺寸输出功率大;液压传动装置体积小、结构紧凑、布局灵活,易实现无级调速,调速范围宽,便于与电气控制相配合实现自动化;易实现过载保护与保压,安全可靠;元件易于实现系列化、标准化、通用化;液压易与微机控制等新技术相结合,构成“机-电-液-光”一体化便于实现数字化。1.2 液压机的发展及工艺特点液压机是制品成型生产中应用最广的设备之一,自19世纪问世以来发展很快,液压机在工作中的广泛适应性,使其在国民经济各部门获得了广泛的应用。由于液压机的液压系统和整机结构方面,已经比较成熟,目前国内外液压机的发展不仅体现在控制系统方面,也主要表现在高速化、高效化、低能耗;机电液一体化,以充分合理利用机械和电子的先进技术促进整个液压系统的完善;自动化、智能化,实现对系统的自动诊断和调整,具有故障预处理功能;液压元件集成化、标准化,以有效防止泄露和污染等四个方面。作为液压机两大组成部分的主机和液压系统,由于技术发展趋于成熟,国内外机型无较大差距,主要差别在于加工工艺和安装方面。良好的工艺使机器在过滤、冷却及防止冲击和振动方面,有较明显改善。在油路结构设计方面,国内外液压机都趋向于集成化、封闭式设计,插装阀、叠加阀和复合化元件及系统在液压系统中得到较广泛的应用。特别是集成块可以进行专业化的生产,其质量好、性能可靠而且设计的周期也比较短。近年来在集成块基础上发展起来的新型液压元件组成的回路也有其独特的优点,它不需要另外的连接件其结构更为紧凑,体积也相对更小,重量也更轻无需管件连接,从而消除了因油管、接头引起的泄漏、振动和噪声。逻辑插装阀具有体积小、重量轻、密封性能好、功率损失小、动作速度快、易于集成的特点,从70年代初期开始出现,至今已得到了很快的发展。我国从1970年开始对这种阀进行研究和生产,并已将其广泛的应用于冶金、锻压等设备上,显示了很大的优越性。液压机工艺用途广泛,适用于弯曲、翻边、拉伸、成型和冷挤压等冲压工艺,压力机是一种用静压来加工产品。适用于金属粉末制品的压制成型工艺和非金属材料,如塑料、玻璃钢、绝缘材料和磨料制品的压制成型工艺,也可适用于校正和压装等工艺。由于需要进行多种工艺,液压机具有如下的特点:(1) 工作台较大,滑块行程较长,以满足多种工艺的要求;(2) 有顶出装置,以便于顶出工件;(3) 液压机具有点动、手动和半自动等工作方式,操作方便;(4) 液压机具有保压、延时和自动回程的功能,并能进行定压成型和定程成型的操作,特别适合于金属粉末和非金属粉末的压制;(5) 液压机的工作压力、压制速度和行程范围可随意调节,灵活性大。二 150t液压机液压系统工况分析本机器(见图1.1)适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本机器具有独立的动力机构和电气系统。采用按钮集中控制,可实现调整、手动及半自动三种操作方式。本机器的工作压力、压制速度、空载快速下行和减速的行程范围均可根据工艺需要进行调整,并能完成一般压制工艺。此工艺又分定压、定程两种工艺动作供选择。定压成型之工艺动作在压制后具有保压、延时、自动回程、延时自动退回等动作。 本机器主机呈长方形,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。2.2 工况分析本次设计在毕业实习调查的基础上,用类比的方法初步确定了立式安装的主液压缸活塞杆带动滑块及动横梁在立柱上滑动下行时,运动部件的质量为500Kg。1.工作负载 工件的压制抗力即为工作负载:2. 摩擦负载 静摩擦阻力:动摩擦阻力:3. 惯性负载自重:4. 液压缸在各工作阶段的负载值:其中: ——液压缸的机械效率,一般取 =0.9-0.97。工况 负载组成 推力 F/2.3负载图和速度图的绘制:负载图按上面的数值绘制,速度图按给定条件绘制,如图:三 液压机液压系统原理图设计3.1 自动补油的保压回路设计考虑到设计要求,保压时间要达到5s,压力稳定性好。若采用液压单向阀回路保压时间长,压力稳定性高,设计中利用换向阀中位机能保压,设计了自动补油回路,且保压时间由电气元件时间继电器控制,在0-20min内可调整。此回路完全适合于保压性能较高的高压系统,如液压机等。自动补油的保压回路系统图的工作原理:按下起动按纽,电磁铁1YA通电,换向阀6接入回路时,液压缸上腔成为压力腔,在压力到达预定上限值时压力继电器11发出信号,使换向阀切换成中位;这时液压泵卸荷,液压缸由换向阀M型中位机能保压。当液压缸上腔压力下降到预定下限值时,压力继电器又发出信号,使换向阀右位接人回路,这时液压泵给液压缸上腔补油,使其压力回升。回程时电磁阀2YA通电,换向阀左位接人回路,活塞快速向上退回。3.2 释压回路设计:释压回路的功用在于使高压大容量液压缸中储存的能量缓缓的释放,以免她突然释放时产生很大的液压冲击。一般液压缸直径大于25mm、压力高于7Mpa时,其油腔在排油前就先须释压。根据设计很实际的生产需要,选择用节流阀的释压回路。其工作原理:按下起动按钮,换向阀6的右位接通,液压泵输出的油经过换向阀6的右位流到液压缸的上腔。同时液压油的压力影响压力继电器。当压力达到一定压力时,压力继电器发出信号,使换向阀5回到中位,电磁换向阀10接通。液压缸上腔的高压油在换向阀5处于中位(液压泵卸荷)时通过节流阀9、换向阀10回到油箱,释压快慢由节流阀调节。当此腔压力降至压力继电器的调定压力时,换向阀6切换至左位,液控单向阀7打开,使液压缸上腔的油通过该阀排到液压缸顶部的副油箱13中去。使用这种释压回路无法在释压前保压,释压前有保压要求时的换向阀也可用M型,并且配有其它的元件。机器在工作的时候,如果出现机器被以外的杂物或工件卡死,这是泵工作的时候,输出的压力油随着工作的时间而增大,而无法使液压油到达液压缸中,为了保护液压泵及液压元件的安全,在泵出油处加一个直动式溢流阀1,起安全阀的作用,当泵的压力达到溢流阀的导通压力时,溢流阀打开,液压油流回油箱。起到保护作用。在液压系统中,一般都用溢流阀接在液压泵附近,同时也可以增加液压系统的稳定性。使零件的加工精度增高。3.3液压机液压系统原理图拟定上液压缸工作循环(1) 快速下行。按下起动按钮,电磁铁1YA通电,这时的油路为:液压缸上腔的供油的油路变量泵1—换向阀6右位—节流阀8—压力继电器11—液压缸15液压缸下腔的回油路液压缸下腔15—液控单向阀7—换向阀6右位—电磁阀5—背压阀4—油箱油路分析:变量泵1的液压油经过换向阀6的右位,液压油分两条油路:一条油路通过节流阀7流经继电器11,另一条路直接流向液压缸的上腔和压力表。使液压缸的上腔加压。液压缸15下腔通过液控单向阀7经过换向阀6的右位流经背压阀,再流到油箱。因为这是背压阀产生的背压使接副油箱旁边的液控单向阀7打开,使副油箱13的液压油经过副油箱旁边的液控单向阀14给液压缸15上腔补油。使液压缸快速下行,另外背压阀接在系统回油路上,造成一定的回油阻力,以改善执行元件的运动平稳性。(2) 保压时的油路情况:油路分析:当上腔快速下降到一定的时候,压力继电器11发出信号,使换向阀6的电磁铁1YA断电,换向阀回到中位,利用变量泵的柱塞孔从吸油状态过渡到排油状态,其容积的变化是由大变小,而在由增大到缩小的变化过程中,必有容积变化率为零的一瞬间,这就是柱塞孔运动到自身的中心线与死点所在的面重合的这一瞬间,这时柱塞孔的进出油口在配油盘上所在的位置,称为死点位置。柱塞在这个位置时,既不吸油,也不排油,而是由吸转为排的过渡状态。液压系统保压。而液压泵1在中位时,直接通过背压阀直接回到油箱。(3) 回程时的油路情况:液压缸下腔的供油的油路:变量泵1——换向阀6左位——液控单向阀7——液压油箱15的下腔液压缸上腔的回油油路:液压腔的上腔——液控单向阀14——副油箱13液压腔的上腔—节流阀8——换向阀6左位——电磁阀5——背压阀4——油箱油路分析: 当保压到一定时候,时间继电器发出信号,使换向阀6的电磁铁2YA通电,换向阀接到左位,变量泵1的液压油通过换向阀旁边的液控单向阀流到液压缸的下腔,而同时液压缸上腔的液压油通过节流阀9(电磁铁6YA接通),上腔油通过换向阀10接到油箱,实现释压,另外一部分油通过主油路的节流阀流到换向阀6,再通过电磁阀19,背压阀11流回油箱。实现释压。下液压缸的工作循环:向上顶出时,电磁铁4YA通电,5YA失电。进油路:液压泵——换向阀19左位——单向节流阀18——下液压缸下腔回油路:下液压缸上腔——换向阀19左位——油箱当活塞碰到上缸盖时,便停留在这个位置上。向下退回是在4YA失电,3YA通电时产生的,进油路:液压泵——换向阀19右位——单向节流阀17——下液压缸上腔回油路:下液压缸下腔——换向阀19右位——油箱原位停止是在电磁铁3YA,4YA都断电,换向阀19处于中位时得到的。四 液压系统的计算和元件选型4.1 确定液压缸主要参数:按液压机床类型初选液压缸的工作压力为25Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。快进时采用差动连接,并通过充液补油法来实现,这种情况下液压缸无杆腔工作面积 应为有杆腔工作面积 的6倍,即活塞杆直径 与缸筒直径 满足 的关系。快进时,液压缸回油路上必须具有背压 ,防止上压板由于自重而自动下滑,根据《液压系统设计简明手册》表2-2中,可取 =1Mpa,快进时,液压缸是做差动连接,但由于油管中有压降 存在,有杆腔的压力必须大于无杆腔,估计时可取 ,快退时,回油腔是有背压的,这时 亦按2Mpa来估算。1) 计算液压缸的面积可根据下列图形来计算—— 液压缸工作腔的压力 Pa—— 液压缸回油腔的压力 Pa故:当按GB2348-80将这些直径圆整成进标准值时得: ,由此求得液压缸面积的实际有效面积为:2) 液压缸实际所需流量计算① 工作快速空程时所需流量液压缸的容积效率,取② 工作缸压制时所需流量③ 工作缸回程时所需流量4.2液压元件的选择4.2.1确定液压泵规格和驱动电机功率由前面工况分析,由最大压制力和液压主机类型,初定上液压泵的工作压力取为 ,考虑到进出油路上阀和管道的压力损失为 (含回油路上的压力损失折算到进油腔),则液压泵的最高工作压力为上述计算所得的 是系统的静态压力,考虑到系统在各种工况的过渡阶段出现的动态压力往往超过静态压力,另外考虑到一定压力贮备量,并确保泵的寿命,其正常工作压力为泵的额定压力的80%左右因此选泵的额定压力 应满足:液压泵的最大流量应为:式中 液压泵的最大流量同时动作的各执行所需流量之和的最大值,如果这时的溢流阀正进行工作,尚须加溢流阀的最小溢流量 。系统泄漏系数,一般取 ,现取 。1.选择液压泵的规格由于液压系统的工作压力高,负载压力大,功率大。大流量。所以选轴向柱塞变量泵。柱塞变量泵适用于负载大、功率大的机械设备(如龙门刨床、拉床、液压机),柱塞式变量泵有以下的特点:1) 工作压力高。因为柱塞与缸孔加工容易,尺寸精度及表面质量可以达到很高的要求,油液泄漏小,容积效率高,能达到的工作压力,一般是( ) ,最高可以达到 。2) 流量范围较大。因为只要适当加大柱塞直径或增加柱塞数目,流量变增大。3) 改变柱塞的行程就能改变流量,容易制成各种变量型。4) 柱塞油泵主要零件均受压,使材料强度得到充分利用,寿命长,单位功率重量小。但柱塞式变量泵的结构复杂。材料及加工精度要求高,加工量大,价格昂贵。根据以上算得的 和 在查阅相关手册《机械设计手册》成大先P20-195得:现选用 ,排量63ml/r,额定压力32Mpa,额定转速1500r/min,驱动功率59.2KN,容积效率 ,重量71kg,容积效率达92%。2.与液压泵匹配的电动机的选定由前面得知,本液压系统最大功率出现在工作缸压制阶段,这时液压泵的供油压力值为26Mpa,流量为已选定泵的流量值。 液压泵的总效率。柱塞泵为 ,取 0.82。选用1000r/min的电动机,则驱动电机功率为选择电动机 ,其额定功率为18.5KW。4.2.2阀类元件及辅助元件的选择1. 对液压阀的基本要求:(1). 动作灵敏,使用可靠,工作时冲击和振动小。油液流过时压力损失小。(2). 密封性能好。结构紧凑,安装、调整、使用、维护方便,通用性大2. 根据液压系统的工作压力和通过各个阀类元件及辅助元件型号和规格主要依据是根据该阀在系统工作的最大工作压力和通过该阀的实际流量,其他还需考虑阀的动作方式,安装固定方式,压力损失数值,工作性能参数和工作寿命等条件来选择标准阀类的规格:序号 元件名称 估计通过流量型号 规格1 斜盘式柱塞泵156.8 63SCY14-1B 32Mpa,驱动功率59.2KN2 WU网式滤油器 160 WU-160*180 40通径,压力损失 0.01MPa3 直动式溢流阀 120 DBT1/315G24 10通径,32Mpa,板式联接4 背压阀 80 YF3-10B 10通径,21Mpa,板式联接5 二位二通手动电磁阀 80 22EF3-E10B6 三位四通电磁阀 100 34DO-B10H-T 10通径,压力31.5MPa7 液控单向阀80 YAF3-E610B 32通径,32MPa8 节流阀80 QFF3-E10B 10通径,16MPa9 节流阀80 QFF3-E10B 10通径,16MPa10 二位二通电磁阀30 22EF3B-E10B 6通径,压力20 MPa11 压力继电器- DP1-63B 8通径,10.5-35 MPa12 压力表开关- KFL8-30E 32Mpa,6测点13 油箱14 液控单向阀 YAF3-E610B 32通径,32MPa15 上液压缸16 下液压缸17 单向节流阀48 ALF3-E10B 10通径,16MPa18 单向单向阀48 ALF3-E10B 10通径,16MPa19 三位四通电磁换向阀 25 34DO-B10H-T20 减压阀 40 JF3-10B4.2.3 管道尺寸的确定油管系统中使用的油管种类很多,有钢管、铜管、尼龙管、塑料管、橡胶管等,必须按照安装位置、工作环境和工作压力来正确选用。本设计中油管采用钢管,因为本设计中所须的压力是高压,P=31.25MPa , 钢管能承受高压,价格低廉,耐油,抗腐蚀,刚性好,但装配是不能任意弯曲,常在装拆方便处用作压力管道一中、高压用无缝管,低压用焊接管。本设计在弯曲的地方可以用管接头来实现弯曲。尼龙管用在低压系统;塑料管一般用在回油管用。胶管用做联接两个相对运动部件之间的管道。胶管分高、低压两种。高压胶管是钢丝编织体为骨架或钢丝缠绕体为骨架的胶管,可用于压力较高的油路中。低压胶管是麻丝或棉丝编织体为骨架的胶管,多用于压力较低的油路中。由于胶管制造比较困难,成本很高,因此非必要时一般不用。1. 管接头的选用:管接头是油管与油管、油管与液压件之间的可拆式联接件,它必须具有装拆方便、连接牢固、密封可靠、外形尺寸小、通流能力大、压降小、工艺性好等各种条件。管接头的种类很多,液压系统中油管与管接头的常见联接方式有:焊接式管接头、卡套式管接头、扩口式管接头、扣压式管接头、固定铰接管接头。管路旋入端用的连接螺纹采用国际标准米制锥螺纹(ZM)和普通细牙螺纹(M)。锥螺纹依靠自身的锥体旋紧和采用聚四氟乙烯等进行密封,广泛用于中、低压液压系统;细牙螺纹密封性好,常用于高压系统,但要求采用组合垫圈或O形圈进行端面密封,有时也采用紫铜垫圈。液压系统中的泄漏问题大部分都出现在它管系中的接头上,为此对管材的选用,接头形式的确定(包括接头设计、垫圈、密封、箍套、防漏涂料的选用等),管系的设计(包括弯管设计、管道支承点和支承形式的选取等)以及管道的安装(包括正确的运输、储存、清洗、组装等)都要考虑清楚,以免影响整个液压系统的使用质量。国外对管子的材质、接头形式和连接方法上的研究工作从不间断,最近出现一种用特殊的镍钛合金制造的管接头,它能使低温下受力后发生的变形在升温时消除——即把管接头放入液氮中用芯棒扩大其内径,然后取出来迅速套装在管端上,便可使它在常温下得到牢固、紧密的结合。这种“热缩”式的连接已经在航空和其它一些加工行业中得到了应用,它能保证在40~55Mpa的工作压力下不出现泄漏。本设计根据需要,选择卡套式管接头。要求采用冷拔无缝钢管。2. 管道内径计算:(1)式中 Q——通过管道内的流量v——管内允许流速 ,见表:允许流速推荐值油液流经的管道 推荐流速 m/s液压泵吸油管液压系统压油管道 3~6,压力高,管道短粘度小取大值液压系统回油管道 1.5~2.6(1). 液压泵压油管道的内径:取v=4m/s根据《机械设计手册》成大先P20-641查得:取d=20mm,钢管的外径 D=28mm;管接头联接螺纹M27×2。(2). 液压泵回油管道的内径:取v=2.4m/s根据《机械设计手册》成大先P20-641查得:取d=25mm,钢管的外径 D=34mm;管接头联接螺纹M33×2。3. 管道壁厚 的计算式中: p——管道内最高工作压力 Pad——管道内径 m——管道材料的许用应力 Pa,——管道材料的抗拉强度 Pan——安全系数,对钢管来说, 时,取n=8; 时,取n=6; 时,取n=4。根据上述的参数可以得到:我们选钢管的材料为45#钢,由此可得材料的抗拉强度 =600MPa;(1). 液压泵压油管道的壁厚(2). 液压泵回油管道的壁厚所以所选管道适用。4. 液压系统的验算上面已经计算出该液压系统中进,回油管的内径分别为32mm,42mm。但是由于系统的具体管路布置和长度尚未确定,所以压力损失无法验算。4.2.4系统温升的验算在整个工作循环中,工进阶段所占的时间最长,且发热量最大。为了简化计算,主要考虑工进时的发热量。一般情况下,工进时做功的功率损失大引起发热量较大,所以只考虑工进时的发热量,然后取其值进行分析。当V=10mm/s时,即v=600mm/min即此时泵的效率为0.9,泵的出口压力为26MP,则有即此时的功率损失为:假定系统的散热状况一般,取 ,油箱的散热面积A为系统的温升为根据《机械设计手册》成大先P20-767:油箱中温度一般推荐30-50所以验算表明系统的温升在许可范围内。五 液压缸的结构设计5.1 液压缸主要尺寸的确定1) 液压缸壁厚和外经的计算液压缸的壁厚由液压缸的强度条件来计算。液压缸的壁厚一般指缸筒结构中最薄处的厚度。从材料力学可知,承受内压力的圆筒,其内应力分布规律应壁厚的不同而各异。一般计算时可分为薄壁圆筒和厚壁圆筒。液压缸的内径D与其壁厚 的比值 的圆筒称为薄壁圆筒。工程机械的液压缸,一般用无缝钢管材料,大多属于薄壁圆筒结构,其壁厚按薄壁圆筒公式计算设 计 计 算 过 程式中 ——液压缸壁厚(m);D——液压缸内径(m);——试验压力,一般取最大工作压力的(1.25~1.5)倍 ;——缸筒材料的许用应力。无缝钢管: 。= =22.9则 在中低压液压系统中,按上式计算所得液压缸的壁厚往往很小,使缸体的刚度往往很不够,如在切削过程中的变形、安装变形等引起液压缸工作过程卡死或漏油。因此一般不作计算,按经验选取,必要时按上式进行校核。液压缸壁厚算出后,即可求出缸体的外经 为2) 液压缸工作行程的确定液压缸工作行程长度,可根据执行机构实际工作的最大行程来确定,并参阅<<液压系统设计简明手册>>P12表2-6中的系列尺寸来选取标准值。液压缸工作行程选缸盖厚度的确定一般液压缸多为平底缸盖,其有效厚度t按强度要求可用下面两式进行近似计算。无孔时有孔时式中 t——缸盖有效厚度(m);——缸盖止口内径(m);——缸盖孔的直径(m)。液压缸:无孔时取 t=65mm有孔时取 t’=50mm3)最小导向长度的确定当活塞杆全部外伸时,从活塞支承面中点到缸盖滑动支承面中点的距离H称为最小导向长度(如下图2所示)。如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一定的最小导向长度。对一般的液压缸,最小导向长度H应满足以下要求:设 计 计 算 过 程式中 L——液压缸的最大行程;D——液压缸的内径。活塞的宽度B一般取B=(0.6~10)D;缸盖滑动支承面的长度 ,根据液压缸内径D而定;当D<80mm时,取 ;当D>80mm时,取 。为保证最小导向长度H,若过分增大 和B都是不适宜的,必要时可在缸盖与活塞之间增加一隔套K来增加H的值。隔套的长度C由需要的最小导向长度H决定,即滑台液压缸:最小导向长度:取 H=200mm活塞宽度:B=0.6D=192mm缸盖滑动支承面长度:隔套长度: 所以无隔套。液压缸缸体内部长度应等于活塞的行程与活塞的宽度之和。缸体外形长度还要考虑到两端端盖的厚度。一般液压缸缸体长度不应大于内径的20~30倍。液压缸:缸体内部长度当液压缸支承长度LB (10-15)d时,需考虑活塞杆弯度稳定性并进行计算。本设计不需进行稳定性验算。5.2 液压缸的结构设计液压缸主要尺寸确定以后,就进行各部分的结构设计。主要包括:缸体与缸盖的连接结构、活塞与活塞杆的连接结构、活塞杆导向部分结构、密封装置、排气装置及液压缸的安装连接结构等。由于工作条件不同,结构形式也各不相同。设计时根据具体情况进行选择。设 计 计 算 过 程1) 缸体与缸盖的连接形式缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。本次设计中采用外半环连接,如下图1所示:图1 缸体与缸盖外半环连接方式优点:(1) 结构较简单(2) 加工装配方便缺点:(1) 外型尺寸大(2) 缸筒开槽,削弱了强度,需增加缸筒壁厚2)活塞杆与活塞的连接结构参阅<<液压系统设计简明手册>>P15表2-8,采用组合式结构中的螺纹连接。如下图2所示:图2 活塞杆与活塞螺纹连接方式特点:结构简单,在振动的工作条件下容易松动,必须用锁紧装置。应用较多,如组合机床与工程机械上的液压缸。

液压传动系统的故障分析与排故液压传动是以液压油为工作介质进行能量转换和动力传递的,它具有传送能量大、布局容易、结构紧凑、换向方便、转动平稳均匀、容易完成复杂动作等优点,因而广泛应用于工程机械领域。但是,液压传动的故障往往不容易从外部表面现象和声响特征中准确地判断出故障发生的部位和原因,而准确迅速地查出故障发生的部位和原因,并及时排除。在工程机械的使用、管理和维修中是十分重要的。��1 液压系统的主要故障��在相对运动的液压元件表面、液压油密封件、管路接头处以及控制元件部分,往往容易出现泄漏、油温过高、出现噪音以及电液结合部分执行动作失灵等现象。具体表现:一是管子、管接头处及密封面处的泄漏,它不仅增加了液压油的耗油量,脏污机器的表面,而且影响执行元件的正常工作。二是执行动作迟缓和无力,表现为推土机铲刀提升缓慢、切土困难,挖掘机挖掘无力、油马达转不起来或转速过低等。三是液压系统产生振动和噪音。四是其他元件出现异常。��2 故障的检查��2.1 直接检查法 �凭借维修人员的感觉、经验和简单工具,定性分析判断故障产生的原因,并提出解决的办法。 �2.2 仪器仪表检测法 �在直接观察的基础上,根据发生故障的特征和经验,采取各种检查仪器仪表,对液压系统的流量、压力、油温及液压元件转速直通式检测,对振动噪音和磨损微粒进行量的分析。 �2.3 元件置换法 �以备用元件逐一换下可能发生故障的元件,观察液压系统的故障是否消除,继而找出发生故障的部位和原因,予以排除。在施工现场,体积较大、不易拆装且储备件较少的元件,不宜采用这种方法。但对于如平衡阀、溢流阀及单向阀之类的体积小,易拆装的元件,采用置换法是比较方便的。 �2.4 定期按时监控和诊断�根据各种机械型号、检查内容和时间的规定,按出厂要求的时间和部位,通过专业检测、监控和诊断来检测元器件技术状况,及时发现可能出现的异常隐患,这是使液压系统的故障消灭在发生之前的一种科学技术手段。当然,执行定期检测法,首先要培养一些专业技术检测人员,使他们既精通工程机械液压元件的构造和原理,又掌握和钻研检测液压传动系统的各种诊断技术,在不断积累靠人的直感判断故障经验的同时,逐步发展不解体诊断技术,来完成技术数据采集,辅以电脑来分析判断故障的原因及排除方法。��3 液压系统的故障预防��3.1 保证液压油的清洁度 �正确使用标定的和要求使用的液压油及其相应的替代品(详参《工程机械油料手册》),防止液压油中侵入污物和杂质。因为在液压传动系统中,液压油既是工作介质,又是润滑剂,所以油液的清洁度对系统的性能,对元件的可靠性、安全性、效率和使用寿命等影响极大。液压元件的配合精度极高,对油液中的污物杂质所造成的淤积、阻塞、擦伤和腐蚀等情况反应更为敏感。 �造成污物杂质侵入液压油的主要原因,一是执行元件外部不清洁;二是检查油量状况时不注意;三是加油时未用120目的滤网过滤;四是使用的容器和用具不洁净; 五是磨损严重和损坏的密封件不能及时更换;六是检查修理时,热弯管路和接头焊修产生的锈皮杂质清理不净;七是油液贮存不当等等。�在使用检查修理过程中,应注意解决这些问题,以减少和防止液压系统故障的发生。 �3.2 防止液压油中混入空气 �液压系统中液压油是不可压缩的,但空气可压缩性很大,即使系统中含有少量空气,它的影响也是非常大的。溶解在油液中的空气,在压力较低时,就会从油中逸出产生气泡,形成空穴现象;到了高压区,在压力的冲击下,这些气泡又很快被击碎,急剧受到压缩,使系统产生噪音。同时,气体突然受到压缩时,就会放出大量的热能,因而引起局部受热,使液压元件和液压油受到损坏,工作不稳定,有时会引起冲击性振动。 �故必须防止空气进入液压系统。具体做法:一是避免油管破裂、接头松动、密封件损坏;二是加油时,避免不适当地向下倾倒;三是回油管插入油面以下;四是避免液压泵入口滤油器阻塞使吸油阻力增大,不能把溶解在油中的空气分离出来。 �3.3 防止液压油温度过度�液压系统中的油液的工作温度一般在30℃~80℃范围内比较好,在使用时必须注意防止油温过高。如油箱中的油面不够,液压油冷却器散热性能不良,系统效率太低,元件容量小,流速过高,选用油液粘度不正确,它们都会使油温升高过快。粘度高增加油液流动时的能量损耗,粘度低会使泄漏增多,因此在使用中能注意并检查这些问题,就可以预防油温过高。此外对液压油定期过滤,定期进行物理性能检验,既能保证液压系统的工作性能,又能减少液压元件的磨损和腐蚀,延长油液和液压元件的使用寿命。��4 液压系统的故障分析��4.1 传动系统分析法 �工程机械的液压传动系统如果维护得好,一般说来故障是比较少的。由于密封件老化、变质和磨损而产生外泄是很容易观察到的,根据具体情况可设法排除。但是如果液压元件的内部发生了故障是观察不到的,往往不容易一下子就找出原因,有时虽然是同样的故障现象,但产生的原因却不一定相同,要想准确而迅速地找出液压元件的故障的部位和原因,首先要根据发生故障元件的构造图、系统图,分析了解和研究元件的工作原理和特性,再使了解的构造原理与实物对号,具体情况具体分析,检查寻找故障发生的部位和产生的原因,以便采取相应的技术措施来排除故障。 �4.2 逻辑流程分析法 �此方法是根据液压传动系统的基本原理进行逻辑分析,减少怀疑对象,逐步逼近找出故障发生的部位和原因。��5 液压系统故障的排除��(1) 液压系统中管子、管子接头和焊接处,由于振动频率较高,常常发生破坏。在换用时要根据压力和使用场合,选用强度足够,内壁光滑清洁,无砂、无伤、无锈蚀、无氧化皮的管子。当管子需要焊接时,最好采用加套管的办法,因为对接可能使管的内径局部缩小;截段时,油管的截面与管子轴线的不垂直度不得大于0.5°,并清除铁屑和锐边倒钝。当管子支承距离过大或支承松动时要设卡固定拧紧,当弯曲半径过小时,易形成弯曲应力,弯曲半径一般应大于管外径的3倍。 �在密封表面处,密封元件的老化变质会使泄漏量增大。密封件的有效寿命通常是:固定元件之间的密封寿命时间为10000h,运动元件之间密封寿命时间为1500h~2000h。到了规定的使用寿命时间后,即使还可用的元件也应该更换。密封面的泄漏还与预压面的压力不够或不均匀有关。预压量增大时,其封油量压力增大,密封效果好,反之则差。再者摩擦表面光洁度与硬度不足也会缩短密封件的寿命。 �密封件设计不合理以及安装时扭曲刮伤也是导致密封圈早期磨损而引起泄漏的原因。 �油液中杂质过多,易加速密封件与摩擦表面的磨损,形成密封件的早期失效,油封工作温度过高或过低也会影响其寿命和工作性能。� (2) 执行元件运动的速度降低,主要是由于输入执行元件的液压油流量不足;执行元件无力的原因主要是输入液压油压力不足,以及回油管路背压过高等因素所造成的。 �工程机械液压系统所用的油泵多为齿轮泵,其工作压力为210×102kPa,柱塞泵的工作压力可达320×102kPa。泵的输出压力是由荷载决定的,并随着荷载的变化而变化。荷载无限增加,泵的压力也无限升高,直到系统某一部分被破坏。对于齿轮泵:主要是轴承、齿轮啮合面、齿顶与壳体、齿轮端面与泵盖间的磨损和密封件的磨损、老化、损坏使齿轮泵的内漏表现更为突出。在一定转速与一定压力下,对无端面间隙补偿的齿轮泵,其轴线磨损引起的泄漏约占全部内漏量的75%~85%,齿顶间隙内漏量约占15%~20%,其他内漏约占4%~5%,因此我们要抓住主要问题,采取有效的技术措施予以解决,就能使泵恢复其原有性能。 �在维修工作中,我们发现使用了一定时间的齿轮泵,由于啮合挤压,在齿顶和端面会产生毛刺,使泵体和端盖的磨损加剧,尤其是铝合金泵盖更为严重。如能定期修理检查,用油石磨掉所产生的毛刺,则可以延长油泵的寿命。叶片泵的主要故障是定子、叶片、转子、轴承和两侧配流盘的磨损,定子的内表面是由圆弧和过渡曲线组成的,过渡曲线如果采用“阿基米德”螺旋线,则叶片径向等速运动。实践证明,当我们将叶片泵解体修理时,定子内表面就在曲线与圆弧连接部分磨损最严重,换掉磨损严重的定子,可以使叶片泵恢复原有的性能,采用这种修理方法是比较经济的。叶片泵转子、叶片的使用寿命约相当于定子使用寿命的两倍,这在备料时应予以考虑。 �(3) 液压系统的蓄能器是用来调节能量、贮存能量、减少设备容积、降低功率消耗、减少系统发热、缓冲吸收冲击和脉动压力的辅助元件。常见的蓄能器有胶囊式的,它具有漏气损失小、反应灵敏、可以吸收急速的压力冲击和脉动、重量轻、体积小等特点。蓄能器发生故障会影响液压系统的正常工作,因此在检查气压量不足时,应按时充入惰性气体。 �(4) 液压系统中,要求装备精度高的还有液压马达。如果注意日常维护和保养,防止油液污染,一般不会发生故障,进入液压马达的油液须仔细过滤,以减少杂质,防止过快磨损。修理后的马达,应注满干净的液压油,排尽系统中的空气。确定不了马达是否有故障,最好不要拆卸,这样可减少污染的机会和保持配合的精度。液压缸是液压系统中的执行元件,常见的故障有漏油和运动不正常。缸头因密封件损坏而外泄,应立即更换密封件;油缸运动不正常有油缸内漏、油路中有空气、活塞密封件老化和损坏、油液有杂质、平衡阀发生故障等。 �(5) 控制元件是用来实现系统和执行元件对压力、流量方向的要求的。控制阀及时控制系统中最重要的元件,由于阀的配合一般都比较精密,所以在修理时应特别注意,不需拆阀芯的尽量不要抽出阀芯;配合副方位不要错乱,偶件不要互换;螺丝的拧紧力矩要均匀一致,锥形阀芯的接触线磨损可采用研磨修正接触线的办法解决;回位弹簧疲劳时,可予更换。

液压原理定义:在一定的机械、电子系统内,依靠液体介质的静压力,完成能量的积压、传递、放大,实现机械功能的轻巧化、科学化、最大化。一、分类:液压元件从机能上可以大致分为:1、 把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵;2 、调节、控制压力能的液压控制阀;3、 把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达);4 、传递压力能和液体本身调整所必需的液压辅件。二、液压技术的特点:液压回路的基本机能在于以液体压力能的形式进行容易控制的能量传递。a.从能量传递方面看,液压技术大致处于机械式能量传递和电气式能量传递之中间位置。b.另一方面,就传动特性而言,机械传动和液力传动装置可以说有固定的特性,与此相反,液压传动装置和电气传动装置相同,具有无级变速装置的特性,除了恒功率外,还容易实现恒速和恒转矩等特性。液压技术的这种特点,一般可以归纳如下:(1)容易进行无级变速,变速范围广,即能在很宽的范围内很容易地调节力与转矩;(2)控制性能好,即力、速度、位置等能以很高的响应速度正确地进行控制。另外,对于电气,机械等其它的控制方式具有很好地适应性,特别是和电气信号处理相结合,可得到优良的响应特性;(3)动作可靠,操作性能好;(4)结构和特性上具有适度的柔性;(5)可以用标准元件构成实现任意复杂机能的回路。形成这些特点的原因:在于用容积式元件作能力转换器即液压泵和液压执行器,用富有润滑性的油(液压油)作为工作介质。但是液压技术的一般缺点也与液压油有关。这些缺点归纳如下:(1)漏油;(2)要求特别精密控制的场合,液压油的污染对元件、装置的特性有不良影响。即是说,液压油的管理对可靠性和元件的寿命有很大的影响。三、用途:液压技术的特性适合各种机械和设备的自动化、高性能、大容量、体积小、重量轻等方面的要求。所以虽然它是一门比较新的技术分支,但是在主动 力的传递机构、辅机的操作机构或作业自动化控制机构等方面广泛应用。液压的优缺点 优点与机械传动、电气传动相比,液压传动具有以下优点:1、液压传动的各种元件,可以根据需要方便、灵活地来布置。2、重量轻、体积小、运动惯性小、反应速度快。3、操纵控制方便,可实现大范围的无级调速(调速范围达2000:1)。4、可自动实现过载保护。5、一般采用矿物油作为工作介质,相对运动面可自行润滑,使用寿命长。6、很容易实现直线运动。7、很容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程度的自动控制过程,而且可以实现遥控。缺点当然,液压传动也存在着一些缺点:1、由于流体流动的阻力和泄露较大,所以效率较低。如果处理不当,泄露不仅污染场地,而且还可能引起火灾和爆炸事故。2、由于工作性能易受到温度变化的影响,因此不宜在很高或很低的温度条件下工作。3、液压元件的制造精度要求较高,因而价格较贵。4、由于液体介质的泄露及可压缩性影响,不能得到严格的传动比。5、液压传动出故障时不易找出原因;使用和维修要求有较高的技术水平。

毕业论文液压传动的应用

液压技术在工业中的应用液压技术一般应用于重型,大型,特大型设备,如冶金行业轧机压下系统,连铸机压下系统等;军工中高速响应场合,如飞机尾舵控制,轮船舵机控制,高速响应随动系统等工程机械,抗冲击,要求功重比较高系统一般都采用液压系统以上三个领域是应用液压技术的最大领域液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。液压传动基本原理液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。液压传动是流体传动的一种,其基本原理是在密闭的容器内,利用有压力的油液作为工作介质来实现能量转换和传递动力的。其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。液压传动的优缺点1、液压传动的优点(1)体积小、重量轻,因此惯性力较小,当突然过载或停车时,不会发生大的冲击;(2)能在给定范围内平稳的自动调节牵引速度,并可实现无极调速;(3)换向容易,在不改变电机旋转方向的情况下,可以较方便地实现工作机构旋转和直线往复运动的转换;(4)液压泵和液压马达之间用油管连接,在空间布置上彼此不受严格限制;(5)由于采用油液为工作介质,元件相对运动表面间能自行润滑,磨损小,使用寿命长;(6)操纵控制简便,自动化程度高;(7)容易实现过载保护。2、液压传动的缺点(1)使用液压传动对维护的要求高,工作油要始终保持清洁;(2)对液压元件制造精度要求高,工艺复杂,成本较高;(3)液压元件维修较复杂,且需有较高的技术水平;(4)用油做工作介质,在工作面存在火灾隐患;(5)传动效率低。

液压原理定义:在一定的机械、电子系统内,依靠液体介质的静压力,完成能量的积压、传递、放大,实现机械功能的轻巧化、科学化、最大化。一、分类:液压元件从机能上可以大致分为:1、 把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵;2 、调节、控制压力能的液压控制阀;3、 把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达);4 、传递压力能和液体本身调整所必需的液压辅件。二、液压技术的特点:液压回路的基本机能在于以液体压力能的形式进行容易控制的能量传递。a.从能量传递方面看,液压技术大致处于机械式能量传递和电气式能量传递之中间位置。b.另一方面,就传动特性而言,机械传动和液力传动装置可以说有固定的特性,与此相反,液压传动装置和电气传动装置相同,具有无级变速装置的特性,除了恒功率外,还容易实现恒速和恒转矩等特性。液压技术的这种特点,一般可以归纳如下:(1)容易进行无级变速,变速范围广,即能在很宽的范围内很容易地调节力与转矩;(2)控制性能好,即力、速度、位置等能以很高的响应速度正确地进行控制。另外,对于电气,机械等其它的控制方式具有很好地适应性,特别是和电气信号处理相结合,可得到优良的响应特性;(3)动作可靠,操作性能好;(4)结构和特性上具有适度的柔性;(5)可以用标准元件构成实现任意复杂机能的回路。形成这些特点的原因:在于用容积式元件作能力转换器即液压泵和液压执行器,用富有润滑性的油(液压油)作为工作介质。但是液压技术的一般缺点也与液压油有关。这些缺点归纳如下:(1)漏油;(2)要求特别精密控制的场合,液压油的污染对元件、装置的特性有不良影响。即是说,液压油的管理对可靠性和元件的寿命有很大的影响。三、用途:液压技术的特性适合各种机械和设备的自动化、高性能、大容量、体积小、重量轻等方面的要求。所以虽然它是一门比较新的技术分支,但是在主动 力的传递机构、辅机的操作机构或作业自动化控制机构等方面广泛应用。液压的优缺点 优点与机械传动、电气传动相比,液压传动具有以下优点:1、液压传动的各种元件,可以根据需要方便、灵活地来布置。2、重量轻、体积小、运动惯性小、反应速度快。3、操纵控制方便,可实现大范围的无级调速(调速范围达2000:1)。4、可自动实现过载保护。5、一般采用矿物油作为工作介质,相对运动面可自行润滑,使用寿命长。6、很容易实现直线运动。7、很容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程度的自动控制过程,而且可以实现遥控。缺点当然,液压传动也存在着一些缺点:1、由于流体流动的阻力和泄露较大,所以效率较低。如果处理不当,泄露不仅污染场地,而且还可能引起火灾和爆炸事故。2、由于工作性能易受到温度变化的影响,因此不宜在很高或很低的温度条件下工作。3、液压元件的制造精度要求较高,因而价格较贵。4、由于液体介质的泄露及可压缩性影响,不能得到严格的传动比。5、液压传动出故障时不易找出原因;使用和维修要求有较高的技术水平。

液压抽油杆动力钳的设计毕业论文

基于纳米TiO<,2>碳热还原氮化制备Ti(C,N)的相关应用基础研究客观性问题——量子力学对机械物质观的挑战传动机械仓库管理系统设计及开发机械搅拌UASB反应器的研究高性能丁苯胶乳的研究与开发面向CAD设计模型的计算多体动力学虚拟原型基于XML的机械图形标记语言的研究与开发集装箱码头机械状态无线监控系统的研究重型商用车机械自动变速器控制软件开发及试验研究A港务公司机械操作部培训系统研究特种橡胶/有机蒙脱土纳米复合材料的结构与性能研究激光陀螺捷联惯组减振系统设计及其动力学特性研究机械精度对中心偏测量精度的影响农业拖拉机液压机械无级变速传动变速规律研究林分密度对华北落叶松人工林林木生长及林下植物多样性影响的研究——以塞罕坝机械林场为例并联机器人及其协调操作的运动学和动力学研究质子交换膜退化机理研究机动喷射式地下施药机的研制生物可降解气管内支架的基础研究领域汉语理解知识库的研究与实现及在机械产品设计中的应用机械制造过程非核心业务外包战略决策与管理研究SWFP66X60A型锤式粉碎机锤片尺寸及排列方式优化研究振荡轮与热沥青混合料相互作用动力学过程的研究印刷机滚筒疲劳强度分析和寿命估算研究博山区机械电子工业园区发展战略研究油田关键往复机械智能诊断方法和技术研究硅片软磨料砂轮的磨削性能研究预制桩打桩过程的非线性有限元分析低振动的滚筒洗衣机驱动系统控制研究平面柔性机械设计方法堆垛机位置控制若干问题研究基于旋量和李群李代数的SCARA工业机器人研究机械制造企业信息化中订单变更及生产计划技术研究云杉CTMP纤维漆酶介体体系改性工艺及其机理研究阻燃镁合金的制备及半固态研究机械构件动态参数电磁检测技术与系统研究基于自然进风机械排风的住宅通风换气技术的研究运煤车防冻液喷洒装置液流及机械系统设计机械自动化控制系统中RS485-光-CAN通信模块设计与开发华泰重工基于供应链的项目成本控制研究机械成孔混凝土灌注桩竖向承载力研究基于虚拟仪器的机械量测试系统模拟毫针机械刺激诱导成纤维细胞压力信号生物转化作用与针刺效应的研究熊猫型保偏光纤机械强度分析的理论和方法研究轿车车身冲压线机器人物流机械系统及关键设备的研制市场经济下烟草机械企业技术标准体系研究环模制粒机高效制粒机理与性能分析用于大型旋转机械转子故障监测的电感测量仪的研制成年大鼠心房肌细胞牵张激活钾通道的门控机制基于流形学习的机械故障诊断理论与方法研究基于长周期光纤光栅的理论及应用研究人工机械心脏瓣膜置换术后华法林抗凝治疗的监测中低端产品用全棉秆化机浆生产工艺及机理研究基于通用化思想的透平机械热力性能在线评估系统研究Al-Zn-Mg合金的表面纳米晶化及其性能研究

毕业设计 可伸缩带式输送机结构设计毕业设计 AWC机架现场扩孔机设计 毕业设计 ZQ-100型钻杆动力钳背钳设计 毕业设计 带式输送机摩擦轮调偏装置设计毕业设计 封闭母线自然冷却的温度场分析 毕业论文 轿车变速器设计 毕业论文 复合化肥混合比例装置及PLC控制系统设计毕业论文 起重机总体设计及金属结构设计毕业论文 四杆中频数控淬火机床的设计制造 毕业论文 撑掩护式液压支架总体方案及底座设计 毕业论文 支撑掩护式液压支架总体方案及立柱设计 毕业论文 膜片弹簧的冲压工艺及模具设计 机械设计课程设计 带式输送机说明书和总装图 课程设计 X-Y数控工作台 毕业设计 ZFS1600/12/26型液压支架掩护梁设计 毕业设计 运送铝活塞铸造毛坯机械手设计 毕业设计 上料机液压系统设计 毕业设计 冲压废料自动输送装置 课程设计 设计一卧式单面多轴钻孔组合机床液压系统 毕业论文 WY型滚动轴承压装机设计 毕业设计论文 经济型数控车床纵向进给运动设计及润滑机构设计 毕业设计论文 J45-6.3型双动拉伸压力机的设计气动通用上下料机械手的设计——机械结构设计毕业设计 水电站水轮机进水阀门液压系统的设计毕业设计 63CY14-1B轴向柱塞泵改进设计 课程设计 设计低速级斜齿轮零件的机械加工工艺规程毕业设计 组合机床改造 毕业设计 普通车床经济型数控改造钩尾框夹具设计(镗φ92孔的两道工序的专用夹具)设计“拨叉”零件的机械加工工艺规程及工艺装备)课程设计 带式输送机传动装置 毕业论文 桥式起重机副起升机构设计毕业论文 桥式起重机小车运行机构设计 课程设计 四工位专用机床传动机构设计 毕业论文 无模压力成形机设计 设计说明书 普通车床主传动系统毕业设计 XK100立式数控铣床主轴部件设计 毕业设计 罩壳设计说明书 设计带式传输机传动装置中的双级斜齿圆柱齿轮减速器 毕业论文 两齿辊破碎机设计 设计“推动架”零件的机械加工工艺及工艺设备 普通式双柱汽车举升机设计63CY14-1B轴向柱塞泵改进设计(共32页,19000字)机电一体化课程设计 线切割机床走丝机构及控制系统设计 基于逆向工程的过程控制系统机电一体化设计 毕业设计 带式输送机的传动装置毕业设计 手柄冲孔、落料级进模设计与制造毕业设计 CA6140车床后托架设计EQY-112-90 汽车变速箱后面孔系钻削组合机床设计 毕业设计 液压拉力器毕业设计 全路面起重机毕业论文 二级圆柱直齿齿轮减速器 玉米脱粒机的设计 毕业设计 连杆孔研磨装置设计注射器盖毕业课程设计说明书旁承上平面与下心盘上平面垂直距离检测装置的设计毕业设计 YZY400全液压压桩机设计(共含论文9篇) 毕业设计 花生去壳机毕业设计 青饲料切割机的设计 毕业设计 颗粒状糖果包装机设计机械设计课程设计 带式运输机传动装置设计机电一体化课程设计 印制板翻板机课程设计 制定CA6140车床法兰盘的加工工艺,设计钻4×φ9mm孔的钻床夹具设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备制定电机壳的加工工艺,设计钻Φ8.5mm孔的钻床夹具壳体零件机械加工工艺规程制订及第工序工艺装备设计 毕业设计 CG2-150型仿型切割机毕业设计 D180柴油机12孔攻丝机床及夹具设计 V带—单级圆柱减速器毕业设计 单拐曲轴零件机械加工规程设计说明书 液压传动课程设计 全自动方便面压制机液压系统设计 机械制造课程设计 机床传动齿轮的工艺规程设计(大批量) 课程设计 解放汽车第四速及第五速变速叉加工工艺设计课程设计 轴零件的机械加工工艺规程制定 毕业设计 中直缝焊接机 粉末压力成型机传动系统的设计 毕业设计 C616型普通车床改造为经济型数控车床毕业设计 普通钻床改造为多轴钻床 毕业设计 液压控制阀的理论研究与设计 课程设计 用于带式运输机的一级齿轮减速器 课程设计 带式运输机的传动装置 毕业设计 保持架 毕业设计 钟形壳 机械制造技术基础课程设计说明书 C6410车床拨叉、卡具设计CA6140C车床拨叉工艺,设计铣18mm槽的铣床夹具CA6140C车床杠杆工艺,设计钻直径12.7的孔的钻床夹具 CA6140C车床杠杆的加工工艺,设计钻φ25的钻床夹具CA6140车床拨叉的加工工艺,设计钻φ25孔的钻床夹具 CA6140车床拨叉的加工工艺,设计车圆弧车床夹具 设计“拨叉”零件的机械加工工艺及工艺装备制定后钢板弹簧吊耳的加工工艺,设计铣4mm工艺槽的铣床夹具 制定后钢板弹簧吊耳零件的加工工艺,设计钻?37孔的钻床夹具 制定拨叉零件的加工工艺,设计铣30×80面的铣床夹具 制定CA6140C车床拨叉的加工工艺,铣8mm槽的铣床夹具毕业设计 采煤机的截割部设计 毕业设计 大功率减速器液压加载试验台机械系统设计毕业设计 大流量安全阀课程设计 设计皮带式输送机传动装置的一级圆柱齿轮减速器 毕业设计 刨煤机传动系统及缓冲装置的设计毕业设计 刨煤机的截割部设计及滑靴设计数据库实验指导课件毕业设计 马达盖设计CA6140车床后托架的加工工艺,设计钻孔的钻床夹具 制定机械密封装备传动套加工工艺,铣8mm凸台的铣床夹具 CA6140法兰盘的加工工艺,设计钻φ6mm孔的钻床夹具毕业设计 单拐曲轴工艺流程毕业设计 壳体机械加工工艺规程 毕业设计 连杆机械加工工艺规程 课程设计 二级圆柱齿轮减速器 毕业设计(论文) 座板的机械加工制造 机械设计课程设计 卷筒输送机减速器机械设计课程设计说明书 减速机设计子程序在冲孔模生产中的运用编制数控加工(1#-6#)标模点孔程序 毕业设计 XKA5032A/C数控立式升降台铣床自动换刀装置的设计 “减速器传动轴”零件的机械加工工艺规程(年产量为5000件)机械制造工艺与机床夹具课程设计 推动架的工装设计 五吨电弧炉下部外壳机械加工制造——编制机械加工工艺圆锥-圆柱齿轮减速器装配图及其零件图 二级直齿圆柱齿轮减速器装配图及其零件图 蜗轮蜗杆减速器装配图及其零件图斜齿圆柱齿轮减速器装配图及其零件图 毕业设计 粗镗活塞销孔专用机床及夹具设计课程设计 带式输送机传动装置设计 毕业论文 塑料箱体锁扣的设计 毕业论文 材料成型综合实验报告书 毕业设计(论文)说明书 中单链型刮板输送机设计 课程设计 杠杆的加工 毕业设计 HFJ6351D型汽车工具箱盖单型腔注塑模设计 数控专业毕业论文 数控铣削编程与操作设计 课程设计 填料箱盖夹具设计毕业设计(论文) 立轴式破碎机设计 毕业设计 GKZ高空作业车液压和电气控制系统设计毕业设计 高空作业车液压系统设计 毕业设计 高空作业车工作臂结构设计及有限元分析毕业设计 工程网架结构参数化建模和动力特性分析 毕业设计 高空作业车的转台结构设计及有限元分析 毕业设计论文(说明书) 无轴承电机的结构设计 机械设计基础课程设计 一级蜗轮蜗杆减速器 钢板弹簧吊耳的加工工艺,设计钻?30工艺槽的铣床夹具设计“CA6140车床”拨叉零件的机械工艺规程及工艺装备机电一体化课程设计 CA6140车床开环纵向系统设计 江阴职业技术学院毕业设计说明书 带传动减速器设计机械设计课程设计 热处理车间零件清洗用传送设备的传动装置课程设计 拨叉零件的工艺规程及夹具设计 机械制造工艺学课程设计 法兰盘机加规程设计(附零件图) 课程设计说明书 车床手柄座加工夹具设计 《机械设计》课程设计设计说明书 单级蜗杆减速器机械设计课程设计计算说明书 圆锥—圆柱齿轮减速器毕业论文 数控铣高级工零件工艺设计及程序编制 毕业论文 数控铣高级工心型零件工艺设计及程序编制 2007届毕业生毕业设计 机用虎钳设计 毕业设计 电织机导板零件数控加工工艺与工装设计毕业设计 连杆的加工工艺及其断面铣夹具设计毕业设计 茶树重修剪机械设备 一级直齿圆柱齿轮减速器的设计课程设计报告毕业论文 QY40型液压起重机液压系统设计计算 毕业设计(论文) C6136型经济型数控改造(横向) Z3050摇臂钻床预选阀体机械加工工艺规程及镗孔工装夹具设计毕业设计 WY型滚动轴承压装机设计毕业设计 普通机床的数控改造 数控专业课课程设计 X-Y数控工作台设计毕业设计 液压台虎钳设计荆门职业技术学院课程设计 设计星轮零件的机械加工工艺规程机械设计基础课程设计 设计带式输送机的传动装置毕业设计说明书 新型手电筒设计ML280螺旋钻采煤机推进机构的设计毕业设计 二级直齿轮减速器设计毕业设计论文 电动车产品造型设计活动钳口零件的机械加工工艺规程及专用夹具设计 毕业设计 心型台灯塑料注塑模具设计 毕业设计 平面关节型机械手设计 毕业设计 三自由度圆柱坐标型工业机器人毕业设计 XKA5032A/C数控立式升降台铣床自动换刀设计 本科生毕业论文(设计)书 经济型数控系统研究与设计机械制造工艺学课程设计说明书 设计“轴”零件的机械加工工艺规程(年产量为4000件设计一用于带式运输机上的传动及减速装置XX轻工职业技术学院毕业设计 管座及其加工模具的设计毕业设计 四通管接头的设计XK 5040数控立式铣床及控制系统设计毕业设计(论文) 行星减速器设计三维造型虚拟设计分析T108吨自卸车拐轴的断裂原因分析及优化设计毕业设计(论文) 柴油机曲轴断裂分析毕业设计(论文) 柴油机曲轴失效分析毕业设计(论文) 超声波发生器与换能器的匹配设计 毕业设计(论文) 齿轮油泵轴的失效分析及优化设计毕业设计(论文) 电机轴的失效分析和优化设计 毕业设计(论文) T68镗床的控制系统的改造 设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 毕业设计论文 双活塞液压浆体泵液力缸设计标准减速器总图 毕业设计论文 关节型机器人腕部结构设计 陕西科技大学课程设计说明书:数控车床纵向进给系统设计AutoCAD 2002 三维绘图教程 水泵的各种样式详图齿轮减速器CAD图库标准减速器总图 制定小轴的机械加工工艺规程 q 348414338

一个液压泵站包括:液压泵、油箱、过滤器、压力表、蓄能器。相对于液压系统,液压泵站的设计要简单的多得多。液压泵----提供液压系统的动力。油箱---液压油的存储,要注意回油口与出油口要隔开,以免互相干扰。过滤器---随时对液压油进行过滤。压力表---应单独设置出油压力和回油压力。蓄能器---可吸收油压脉动和减小液压冲击,同时对于间歇动作的液压系统,可以储存能量。

相关百科

热门百科

首页
发表服务