首页

> 学术发表知识库

首页 学术发表知识库 问题

锌空电池研究进展论文

发布时间:

锌空电池研究进展论文

化学电池化学电池将化学能直接转变为电能的装置。主要部分是电解质溶液、浸在溶液中的正、负电极和连接电极的导线。依据能否充 电复原,分为原电池和蓄电池两种 化学电池的种类 化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池);铅酸蓄电池。其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、锌空气电池、一次锂锰电池等。二次电池可分为:镉镍电池、氢镍电池、锂离子电池、二次碱性锌锰电池等。铅酸蓄电池可分为:开口式铅酸蓄电池、全密闭铅酸蓄电池。 1.锌锰电池 锌二氧化锰电池(简称锌锰电池) 又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche,1839-1882)于1868年发明的由锌(Zn)作负极,二氧化锰(MnO2)为正极,电解质溶液采用中性氯化铵(NH4Cl)、氧化锌(ZnCl2)的水溶液,面淀粉或浆层纸作隔离层制成的电池称锌锰电池,由于其电解质溶液通常制成凝胶状或被吸附在其它载体上而呈现不流动状态,故又称锌锰干电池。按使用隔离层区分为糊式和板式电池两种,板式又按电解质液不同分铵型和锌型电池纸板电池两种。 干电池用锌制筒形外壳作负极,位于中央的顶盖上有铜帽的石墨棒作正极,在石墨棒的周围由内向外依次是A:二氧化锰粉末(黑色)------用于吸收在正极上生成的氢气(以防止产生极化现象);B:用饱和了氯化铵和氯化锌的淀粉糊作为电解质溶液。 电极反应式为:负极(锌筒):Zn +– 2e === Zn(NH3)2Cl2↙+2H+ 正极(石墨):2NH4+ === 2NH3 ↑+ H2↑ H2O + 2MnO2 + 2e === 2MnOOH+ 2OH- 总反应:Zn + 2NH4Cl + 2MnO2 === Zn(NH3)2Cl2↙+2MnOOH 干电池的电压大约为1.5V,不能充电再生。 2.碱性锌锰电池 20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。电池使用氢氧化钾(KOH)或氢氧化钠(NaOH)的水溶液做电解质液,采用了与锌锰电池相反的负极结构,负极在内为膏状胶体,用铜钉做集流体,正极在外,活性物质和导电材料压成环状与电池外壳连接,正、负极用专用隔膜隔开制成的电池。 3.铅酸蓄电池 1859年法国普兰特(Plante)发现,由正极板、负极板、电解液、隔板、容器(电池槽)等5个基本部分组成。用二氧化铅作正极活性物质,铅作负极活性物质,硫酸作电解液,微孔橡胶、烧结式聚氯乙烯、玻璃纤维、聚丙烯等作隔板制成的电池。 铅蓄电池可放电也可以充电,一般用硬橡胶或透明塑料制成长方形外壳(防止酸液的泄漏);设有多层电极板,其中正极板上有一层棕褐色的二氧化铅,负极是海绵状的金属铅,正负电极之间用微孔橡胶或微孔塑料板隔开(以防止电极之间发生短路);两极均浸入到硫酸溶液中。放电时为原电池,其电极反应为: 负极:Pb + SO42-- 2e === PbSO4 正极:PbO2 + 4H+ + SO42- + 2e === PbSO4 + 2H2O 总反应式为:Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 当放电进行时,硫酸溶液的的浓度将不断降低,当溶液的密度降到1.18g/ml 时应停止使用进行充电,充电时为电解池,其电极反应如下: 阳极:PbSO4 + 2H2O- 2e === PbO2 + 4H+ + SO42- 阴极:PbSO4 + 2e === Pb + SO42- 总反应式为:2PbSO4 + 2H2O ====== Pb + PbO2 + 2H2SO4 当溶液的密度升到1.28g/ml时,应停止充电。 上述过程的总反应式为: 放电 Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 充电 4.锌银电池 一般用不锈钢制成小圆盒形,圆盒由正极壳和负极壳组成,形似纽扣(俗称纽扣电池)。盒内正极壳一端填充由氧化银和石墨组成的正极活性材料,负极盖一端填充锌汞合金组成的负极活性材料,电解质溶液为KOH浓溶液。电极反应式如下: 负极:Zn + 2OH- -2e=== ZnO + H2O 正极:Ag2O + H2O + 2e === 2Ag + 2OH- 电池的总反应式为:Ag2O + Zn ====== 2Ag + ZnO 电池的电压一般为1.59V,使用寿命较长。 5.镉镍电池和氢镍以及金属氢化物镍电池 二者均采用氧化镍或氢氧化镍作正极,以氢氧化钾或氢氧化钠的水溶液作电解质溶液,金属镉或金属氢化物作负极。金属氢化物电池为20世纪80年代末,利用吸氢合金和释放氢反应的电化学可逆性发明制成,是小型二次电池主导产品。 6.锂电池 锂电池是一类以金属锂或含锂物质作为负极材料的化学电源的总称通称锂电池,分为一次锂电池和二次锂电池。 7.锂离子电池 指能使锂离子嵌入和脱嵌的碳材料代替纯锂作负极,锂的化合物作正极,混合电解液作电解质液制成的电池。锂离子电池是1990年有日本索尼公司研制出并首先实现产品化。国内外已商品化的锂离子电池正极是LiCoO2,负极是层状石墨,电池的电化学表达式为(—) C6▏1mol/L LiPF6-EC+DEC▏LiCoO2(+) 8.氢氧燃料电池 这是一种高效、低污染的新型电池,主要用于航天领域。其电极材料一般为活化电极,具有很强的催化活性,如铂电极、活性碳电极等。电解质溶液一般为40%的KOH溶液。电极反应式如下: 负极:2H2 + 4OH- -4e=== 4H2O 正极:O2 + 2H2O + 4e=== 4OH- 总反应式:2H2 + O2 === 2H2O 9.熔融盐燃料电池 这是一种具有极高发电效率的大功率化学电池,在加拿大等少数发达国家己接近民用工业化水平。按其所用燃料或熔融盐的不同,有多个不同的品种,如天然气、CO、---熔融碳酸盐型、熔融磷酸盐型等等,一般要在一定的高温下(确保盐处于熔化状态)才能工作。 下面以CO---Li2CO3 + Na2CO3---空气与CO2型电池为例加以说明: 负极反应式:2CO + 2CO32--4e === 4CO2 正极反应式:O2 + 2CO2 + 4e=== 2CO32- 总反应式为:2CO + O2 === 2CO2 该电池的工作温度一般为6500C 10.海水电池 1991年,我国科学家首创以铝---空气---海水为材料组成的新型电池,用作航海标志灯。该电池以取之不尽的海水为电解质,靠空气中的氧气使铝不断氧化而产生电流。其电极反应式如下: 负极:4Al – 12e === 4Al3+ 正极:3O2 + 6H2O + 12e === 12OH- 总反应式为:4Al + 3O2 + 6H2O === 4Al(OH)3 这种电池的能量比普通干电池高20---50倍! 新型化学电池 (1碱性氢氧燃料电池 这种电池用30%-50%KOH为电解液,在100°C以下工作。燃料是氢气,氧化剂是氧气。其电池图示为 (―)C|H2|KOH|O2|C(+) 电池反应为 负极 2H2 + 4OH―4e=4H2O 正极 O2 + 2H2O + 4e=4OH 总反应 2H2 + O2=2H2O 碱性氢氧燃料电池早已于本世纪60年代就应用于美国载人宇宙飞船上,也曾用于叉车、牵引车等,但其作为民用产品的前景还评价不一。否定者认为电池所用的电解质KOH很容易与来自燃料气或空气中的CO2反应,生成导电性能较差的碳酸盐。另外,虽然燃料电池所需的贵金属催化剂载量较低,但实际寿命有限。肯定者则认为该燃料电池的材料较便宜,若使用天然气作燃料时,它比唯一已经商业化的磷酸型燃料电池的成本还要低。 (2) 磷酸型燃料电池 它采用磷酸为电解质,利用廉价的炭材料为骨架。它除以氢气为燃料外,现在还有可能直接利用甲醇、天然气、城市煤气等低廉燃料,与碱性氢氧燃料电池相比,最大的优点是它不需要CO2处理设备。磷酸型燃料电池已成为发展最快的,也是目前最成熟的燃料电池,它代表了燃料电池的主要发展方向。目前世界上最大容量的燃料电池发电厂是东京电能公司经营的11MW美日合作磷酸型燃料电池发电厂,该发电厂自1991年建成以来运行良好。近年来投入运行的100多个燃料电池发电系统中,90%是磷酸型的。市场上供应的磷酸型发电系统类型主要有日本富士电机公司的50KW或100KW和美国国际燃料电池公司提供的200KW。 富士电机已提供了70多座电站,现场寿命超过10万小时。 磷酸型燃料电池目前有待解决的问题是:如何防止催化剂结块而导致表面积收缩和催化剂活性的降低,以及如何进一步降低设备费用。 化学电源的重大意义: 化学能转换为电能的原理的发现和各式各样电池装置的发明,是贮能和供能技术的巨大进步,是化学对人类的一项重大贡献,极大地推进了现代化的进程,改变了人们的生活方式,提高了人们的生活质量。

结论:锌空气电池作为电动车电池目前还处于研究阶段。原因:虽然锌空气电池作为电动车电池有很大的优势但是还有一些技术问题没有突破,目前为止,已经商业化的锌空气电池重要有方型和纽扣型两种,而具有巨大市场需求量的圆柱型特别是小圆柱型的锌空气电池则由于其结构复杂,在国内外一直没有突破性发展,尚未得到大量生产化。所以电池的供应就存在问题。一直以来圆柱型锌空气电池没有得到广泛发展的重要原因之一是电池密封难的问题。锌空气电池放电时要源源不断的来自空气中的氧气进入电池,所以电池不是完全密封的,电池外壳留有一个或多个空气孔,因此电池内部与外部是相通的。假如空气电极,特别是防水透气膜做的不好的话,电池就很容易发生爬碱漏液、电解液蒸发而干涸、或者由于吸潮而使电解液变稀,外界的CO2也会进入电池内部而使电解液碳酸盐化。这都会严重影响到锌空气电池的性能和质量。延伸:锌空气电池的性能,成本和经营方式是它进入市场的3个关键问题,值得研发人员进一步解决。

锂空气电池论文的研究进展如何

量子对于很多人来说,可能是个高深的概念,类似于玄学一样的存在。但是最近连续不断的技术进展证明量子并不是一个没有实际应用的遥远概念,选择了正确的问题,就可以完成有非凡影响力的工作。 目前商用的电动 汽车 锂电池有磷酸铁锂电池和三元锂电池,这两种电池市场已经非常成熟,但能量密度和循环寿命也几乎达到了上限。 未来的电动 汽车 需要更高的续航里程、更快的充电速度及寿命更长的电池,如锂空气电池,其理论能量密度高达11.14kWh/kg;锂硫电池,其理论能量密度为2.6 kWh/kg。 如此高的理论能量密度极具吸引力,但是研发的难度也无比艰巨。只有清楚地了解电池内部化学反应的行为才能知道困难在什么地方,也才有可能找到解决困难的途径。 比如越来越多的研究正在使用高分辨率X射线成像技术来拍摄电池内部的结构来观察电池是如何工作的,旨在找到影响电池寿命的因素从而极大地减缓电池的衰减。 但是X射线成像技术无论分辨率多高,也无法观察到更深层次的微观结构,因此,不论是学术界还是工业界,都逐渐地将目光转向了量子技术。 早在2012年,量子电池技术的概念第一次被提出后,在这十年时间里,陆陆续续的研究证明,这不仅仅只是一个概念,而是正在逐渐变成现实。 最近,工业界有越来越多的 汽车 制造商都投入到研究量子计算中以制造更好、更便宜的电池,量子技术正在逐渐地应用于一个新的变革性行业——电动 汽车 。 如IBM 和梅赛德斯-奔驰的母公司戴姆勒公司的研究人员使用量子计算机对三个含锂分子的偶极矩进行建模,模拟了锂硫电池在运行过程中可能形成的分子的基态能量和偶极矩,以 帮助他们设计下一代锂硫电池 。 进行分子模拟的主要目的是找到化合物的基态——它最稳定的构型。这不是一项简单的任务,因为它需要模拟分子中所有粒子(例如电子)之间的相互作用。只有量子计算机可以做到这一点,它可以帮助研究人员了解电池内部复杂的分子之间的相互作用, 从而找到可以使锂硫电池稳定运行的电池化学材料。 锂空气电池比锂硫电池具有更高的能量密度,因此具有更大的潜在功率和能力。最近,现代车企正与初创公司IonQ合作,研究量子计算机如何为电动 汽车 设计先进的锂空气电池,目的是创造迄今为止在量子计算机上运行的最大的最先进的电池化学模型。 他们利用量子计算来分析和模拟超高能量密度锂空气电池的锂化合物的结构和能量,开发了新的变分量子特征求解器算法,优化用于研究锂化学。 这类算法通常用于量子化学中,例如,模拟分子的基态,即分子能量最少的基态。变分量子特征求解器实际上是混合算法,其中经典计算机完成大部分工作,而量子处理器解决传统机器难以处理的部分问题。 这种模拟分子的目的也是为了找到哪些分子可能对于电池来说是有用的,即通过对电池材料的化学分析,旨在降低锂电池的成本、提高电池的耐用性、容量、安全性和充电行为。 另外,梅赛德斯-奔驰还与另一个量子计算机研发公司Psiquantum合作,使用量子计算机来加速新型高能量密度电池的研发。 目前,新型锂离子电池的开发涉及大量的试验和错误,造成高昂的研发成本。他们使用容错量子计算来模拟当添加不同的电解质时,电解质的分子行为是怎么样的,他们证明了量子计算机可以进行高效的化学反应模拟。 使用容错量子计算,可以在数小时内模拟不可能的电解质相互作用,可以对各种候选分子执行该算法所需的资源和成本进行全面分析,以节省研发投入的资金并加速新型电池的研发。 量子技术正在被越来越多地应用到电动 汽车 电池的研发中,有望加速新型高能量密度电池的开发。

使能量密度达到现有任何电池的三倍,研究显示金属催化物在提高电池效率上起到重要作用。该校机械工程和材料科学与工程副教授YangShao-Horn表示,许多研究团队如今正致力于锂-空气电池的研究,但目前还缺乏对何种电极材料能够促进电池内部电化学反应发生的理解。Shao-Horn和其团队成员在4月1日出版的《电化学与固态快报》上报道了其研究成果,在锂-空气电池中使用金或铂金电极作为催化剂具有比单一碳电极高得多的反应活性和效率。此外,这项研究也为进一步研究寻找更佳的电极材料,如金和铂金或其他金属的合金材料或金属氧化物材料以及减少使用昂贵材料奠定基础。论文的第一作者、博士生Yi-ChunLu指出,研究团队开发了一种分析电池中不同催化剂活性的方法,现在可以基于这项研究来试验多种可能的材料,以确定控制催化剂活性的物理特性,最终能够预测催化剂的反应活动。锂-空气电池原理与锂离子电池类似,而后者目前是便携式电子产品使用的主要电源,而且在电动汽车电源的竞争中也占据了领先地位。但由于锂-空气电池使用了碳基空气电极和空气流替代锂离子电池较重的传统部件,因此电池质量更轻,这也使得包括IBM和通用汽车等大企业纷纷投身于锂-空气电池技术的开发当中。但锂-空气电池在成为可商用化产品之前还有一系列的问题需要解决,其中最大的问题是如何确保在经过了许多次的充放电过程后仍能保持其电力水平,可用在电动汽车或电子产品中。研究人员还需要详细研究充放电过程的化学问题,如产生了那些化合物,在哪里产生,以及它们之间如何相互反应等。Shao-Horn坦承,目前这方面的研究还处于初级阶段,部分企业将锂-空气电池研究视之为10年期的研发项目,但这是一个非常有前景的领域,如果能够克服许多科学和工程挑战,真正实现能量密度达到目前锂离子电池的两到三倍,将能够首先应用在便携式电子产品如笔记本电脑和手机上,降低成本后更可作为电动汽车电源。该项研究受到美国能源部的资助,MartinFamilySocietyofFellowsforSustainability和美国国家科学基金会也给予了支持。根据《日刊工业新闻》报道,日本旭化成株式会社和Central硝子株式会社两家企业正式参加美国IBMAlmaden Reseach Center正在进行的锂空气电池研究项目。按照该项目研究分工,旭化成将利用其掌握的先进膜技术,负责开发重要的有关膜部件;Central硝子负责开发新型电解液和高性能添加剂。研究小组计划到2020年实现锂空气电池的大量生产和推广应用。

电池片研究进展论文

晶体硅太阳能电池应用中,发射极的特性可以极大地影响电池性能,通过提高发射极的掺杂浓度可以降低电池的接触电阻,但是过高的掺杂浓度又将增加发射极中光生载流子的复合速率。选择性发射极电池结构有效地解决了这一矛盾,在这种电池结构中,金属栅线下方采用较高浓度的掺杂,与此同时,栅线间的发射极保持较低的掺杂浓度,从而在保证较好的蓝光响应的条件下,实现电池串联电阻的减小。然而,该电池结构需要严格的对准工艺实现金属栅线与选择性发射极的电接触。中科院宁波材料技术与工程研究所万青研究组提出了一种交叉自对准工艺,采用普通丝网印刷设备研制了高效率的晶体硅太阳能电池。常规晶硅电池工艺在经过高温磷扩散后,在电池表面存在一层高浓度磷元素的磷硅玻璃层,通过波长为532nm的激光图形化退火处理,将磷硅玻璃中的磷元素进一步扩散进入硅,从而在电池片表面形成选择性重掺杂区域。丝网印刷银浆时,使得细栅线90度交叉激光重掺杂线条,巧妙地实现自对准制备工艺。电池性能测试表明,发射极方块电阻为75欧姆/方块的标准单晶硅电池(125mm×125mm),最佳填充因子由激光掺杂前的~65%提高到激光掺杂后的~79%;最佳电池光电转化效率由激光掺杂前的~14.4%提高到激光掺杂后的~17.7%。电池性能的提高主要由于电池接触性能的改善引起。

太阳能电池是实现光能到电能转换的光伏器件。在光电转换过程中,光伏器件内部 经历了光生电荷的产生、分离、转移、输运、复合、抽取等多个体相和界面动力学过程。这些电荷动力学过程本质上主导着器件本身的性能。 如何精确测量些微观动力学参数?如何准确理解这些动力学过程的物理机制? 是光电、电光领域的重要研究课题。也是评价材料性能和指导器件结构优化进而提高器件性能的必由之路。

中国科学院物理研究所/北京凝聚态物理国家研究中心孟庆波团队在 探索 高性能薄膜新型太阳能电池的同时一直致力于开发用于太阳能电池的电荷动力学和缺陷态等物理性质的量化测量和分析方法,已经取得了一系列研究成果。比如成功研制了可调控的太阳能电池瞬态光电测量系统, 实现了太阳能电池在实际工作状态下电荷动力学的测量 (Rev. Sci. Instrum. 2016, 87, 123107), 成功应用于钙钛矿太阳能电池离子动力学的测量 (Appl. Phys. Lett. 2015, 107, 163901); 量化分析了太阳能电池的界面和体相缺陷分布,并用于阐明了钙钛矿太阳能电池的电学稳定性问题的界面起源 (Adv. Energy Mater. 2019, 9, 1901352)。

从光伏器件的 差分电容 入手研究了基于电瞬态表征技术的常规带尾态模型理论框架的有效性问题,指出该模型在电池测量状态的一致性和对太阳能电池光电压产生的物理过程等方面存在不合理假设,证明带尾态模型理论分析方法在太阳能电池测量和研究不具备的普适性。

通过 理论计算 模拟电瞬态表征技术背后器件的载流子动力学和电荷损失机制,他们提出了一种新的量化太阳能电池电荷损失的理论分析方法,可以从电瞬态表征技术中定量提取光伏器件的电荷动力学量子效率和相关缺陷态信息(例如:定量化器件中电荷抽取和收集量子效率以及吸收层中的缺陷态密度)。该方法对于常规硅太阳能电池、新兴的铜锌锡硫太阳能电池和钙钛矿太阳能电池具有很好的普适性,并且能够扩展到其他类似结构的光伏器件。 这项工作为全面研究太阳能电池中载流子动力学过程和电荷损失机制提供了有效的途径,并在其他光电器件中具有潜在的应用价值。

该工作以“Exploiting Electrical Transients to Quantify Charge Loss in Solar Cells”为题,发表在Joule杂志上 (Joule 4, 472–489)。物理所博士研究生李一明和物理所石将建副研究员为该论文的共同第一作者,物理所孟庆波研究员为该论文的通讯作者。这项研究得到了国家自然科学基金委、中国科学院和 科技 部的支持。

图1. 对于器件差分电容的精确测量

图2. 钙钛矿吸收层中电荷传输的模拟和光电压的建立过程

图3. 钙钛矿太阳能电池中的电瞬态研究:Device A and B光电转换效率 (A)量化电荷抽取和收集量子效率(B)以及钙钛矿吸收层中的缺陷态密度(C)。

↓ 点击标题即可查看 ↓

1. 物理定律告诉你:表白可能巨亏,分手一定血赚

2. 震惊!昨天你们立起来的扫把,甚至真的惊动了 NASA

3. 酒精和 84 消毒液到底能不能一块用?

4. 一次性医用口罩是怎么做出来的?如何消毒?

5. 数学好玩个球啊,这支豪门球队用一群数理博士横扫球场

6. 「测温枪」到底是怎样测出你的温度的?

7. 等量 0 度水和 100 度水混合能得到 50 度水吗?

8. 人类为什么喜欢亲吻?

9. 病毒从哪里来?

10. 一见钟情,到底靠不靠谱?

看一下光生伏打效应是指物体由于吸收光子而产生电动势的现象,是当物体受光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。严格来讲,包括两种类型:一类是发生在均匀半导体材料内部;一类是发生在半导体的界面。虽然它们之间有一定相似的地方,但产生这两个效应的具体机制是不相同的。通常称前一类为丹倍效应[1],而把光生伏打效应的涵义只局限于后一类情形。 当两种不同材料所形成的结受到光辐照时,结上产生电动势。它的过程先是材料吸收光子的能量,产生数量相等的正、负电荷,随后这些电荷分别迁移到结的两侧,形成偶电层。光生伏打效应虽然不是瞬时产生的,但其响应时间是相当短的。[编辑本段]发现者 1839年,法国物理学家a.e.贝克勒尔意外地发现,用两片金属浸入溶液构成的伏打电池,受到阳光照射时会产生额外的伏打电势,他把这种现象称为光生伏打效应。1883年,有人在半导体硒和金属接触处发现了固体光伏效应。后来就把能够产生光生伏打效应的器件称为光伏器件。 当太阳光或其他光照射半导体的pn结时,就会产生光生伏打效应。光生伏打效应使得pn结两边出现电压,叫做光生电压。使pn结短路,就会产生电流。[编辑本段]光生伏打效应应用 当前,光生伏打效应主要是应用在半导体的pn结上,把辐射能转换成电能。大量研究集中在太阳能的转换效率上。理论预期的效率为24%。 由于半导体pn结器件在阳光下的光电转换效率最高,所以通常把这类光伏器件称为太阳能电池,也称光电池或太阳电池。

电池产品对环境的危害主要是酸、碱等电解质溶液和重金属的污染。不同类型的电池污染物也不同。 一般来说,电池中的有害物质主要有Zn、Hg、CNi、Pb等重金属;铅蓄电池中的H2S04;各种碱性电池中的KOH和锂电池中的IiPP6电解液等。Hg及其化合物,特别是有机汞化物,具有极强的生物毒性、较快的生物富集速率和较长的脑器官生物半衰期。Cd易在动植物体内富集,影响动植物的生长,具有很强的毒性。Pb对人的胸、肾脏、生殖、心血管等器官和系统产生不良影响,表现为智力下降、肾损伤、不育及高血压等。Zn,Ni的毒性相对较小,但超过一定浓度范围时,会对人体产生不良影响和危害。废旧电池中的酸、碱解质溶液会影响土壤利水系的pH值,使土壤和水系酸性化或碱性化。电池电解质构成污染的主要组份是其中的可溶重金属,特别是铅蓄电池电解液中大量的硫酸铅和镍镉电池中的氢氧化镉。电池中的重金属离子在土壤或水体中溶解并被植物的根系吸收,当牲畜以植物为食料时,体内就积累了重金属。人类食人含重金属的粮食、蔬菜和肉类、水,顺着这条食物链,重金属就会在人体里富集。由于重金属离子在人体里难以排泄,最终会损害人的神经系统及肝脏功能。 废电池的回收利用研究 1 废电池再生利用现状 国内使用最多的工业电池为铅蓄电池,铅占蓄电池总成本50%以上,主要采用火法、湿法冶金工艺以及固相电解还原技术。外壳为塑料,可以再生,基本实现无二次污染。 小型二次电池目前使用较多的有镍镉、镍氢和锂离子电池,镍镉电池中的镉是环保严格控制的重金属元素之一,锂离子电池中的有机电解质,镍镉、镍氢电池中的碱和制造电池的辅助材料铜等重金属,都构成对环境的污染。小型二次电池目前国内的使用总量只有几亿只,且大多数体积较小,废电池利用价值较低,加上使用分散,绝大部分作生活垃圾处理,其回收存在着成本和管理方面的问题,再生利用也存在一定的技术问题。 民用干电池是目前使用量最大、也是最分散的电池产品,国内年消费80亿只。主要有锌锰和碱性锌锰两大系列,还有少量的锌银、锂电池等品种。锌锰电池、碱性锌锰电池、锌银电池一般都使用汞或汞的化合物作缓蚀剂,汞和汞的化合物是剧毒物质。废电池作为生活垃圾进行焚烧处理时,废电池中的Hg、Cd、Pb、Zn等重金属一部分在高温下排人大气,一部分成为灰渣,产生二次污染。 2 废旧干电池再生利用技术 a.人工分选回收利用技术 一般是将干电池分类后,进行简单的机械剖开,人工分离出锌皮、塑料盖、炭棒等,残存的Mn02、水锰石等混合物送人回砖窑煅烧,制成脱水的Mn02,此法简单易行,但占用劳动力较多,经济效益不大。 b. 火法回收利用技术 一般是将干电池分类、破碎后,送入回转窑,在1100~1300摄氏度的的高温下,锌及氯化锌被氧化为氧化锌随烟气排出,用旋风除尘器回收氧化锌,残存的二氧化锰及水锰石进入残渣,再进一步回收锰等物质,此法简便易行,一般的冶炼厂勿需增加设备即可回收锌。 c. 湿法回收利用技术 根据锌、二氧化锰可溶于酸的原理,将废旧干电池分类、破碎后,置于浸出槽中,加入稀硫酸(100~120g/L)进行浸出,得到硫酸锌溶液,可用电解法制得金属锌,滤渣经洗涤分离出铜帽、炭棒后,剩余物Mn02、水锰石经煅烧后制得Mn02。所用方法有焙烧一浸出法和直接浸出法。 湿法与火法相比较,具有投资少,成本低,建厂速度快,利润高、工艺灵活等优势,但不能保障有害成份完全回收。 3 废电池回收利用过程中二次污染的防治 以上的三种回收方法皆简单易行,但各有不足,存在着二次污染的问题,通过大量实验测定,我们得到了防治二次污染的可行方法。 首先将废旧干电池分类,以机械进行剖开后,分离出铜帽、锌皮,可分别回收利用。剩余的炭包物质经磁选除铁后,按1:4的固液比用水浸制1小时,取上层清液进行蒸发、结晶,沉淀物的主要成份是Mn02、MnO(OH)、乙炔黑、碳棒等物质,加入回转窑炼到600摄氏度,产生的烟气经冷凝后可得凝缩液,定期清洗即可得纯汞。同时也防止汞蒸气污染环境。在煅烧的过程中,混合物中大量的乙炔黑与碳,将Mn02还原为MnO。其反应过程如下: 2Mn0 2 +C--->2MnO+C0 2 把此煅烧物按固液比1:4加入浓度小于2mol/L硫酸溶液中,在温度80℃下浸制1小时,发生如下反应: MnO+H 2 S0 4 --->MnS0 4 +H 2 0 得到硫酸锰盐溶液,同时,也将引人其他可溶性重金属硫酸盐。 所得的锌皮及铜等金属可直接重熔利用,氯化铵可以制肥料或提纯作为化工试剂,硫酸锰是动、植物生长的激素成份,可用于油漆油墨的吹干剂和一些有机合成反应的催化剂,此外也用于造纸、陶瓷、印染和电解锰的生产试剂。表1为锌锰干电池可回收物质的成份。 这种回收方法投资较少,采用的设备简单,易于在中小城市得以实现,从而免除了废旧电池的运输问题。 废电池回收之后的溶液,浓缩并与EDTA反应生成金属络合物,可以彻底消除二次污染。经测定,回收废电池后的溶液中所含重金属量符合国家环保标准。若要将这些金属进行分离,利用其稳定性不同可分级处理。表2为金属离子与EDTA络合稳定常数。 4 废旧电池回收过程中存在的问题及建议 ①电池回收后无法处置,一般都采用堆放。堆放过程中电池有可能泄漏或有毒物质扩散。 ②由于电池的种类繁多,假冒产品多,也给电池回收带来了困难,有的电池是含汞电池,有的是含镉电池,有的以氯化铵为电解液,而有的则以氯化锌为电解液,因此建议生产厂家用统一的标准标识电池的种类及内含的主要成份,以便回收利用。 ③加强高性能环保型电池的开发,实现普通民用电池的无汞化。 ④回收处理废电池,国家应从政策上给予扶持。

锂空气电池论文的研究进展怎么写

使能量密度达到现有任何电池的三倍,研究显示金属催化物在提高电池效率上起到重要作用。该校机械工程和材料科学与工程副教授YangShao-Horn表示,许多研究团队如今正致力于锂-空气电池的研究,但目前还缺乏对何种电极材料能够促进电池内部电化学反应发生的理解。Shao-Horn和其团队成员在4月1日出版的《电化学与固态快报》上报道了其研究成果,在锂-空气电池中使用金或铂金电极作为催化剂具有比单一碳电极高得多的反应活性和效率。此外,这项研究也为进一步研究寻找更佳的电极材料,如金和铂金或其他金属的合金材料或金属氧化物材料以及减少使用昂贵材料奠定基础。论文的第一作者、博士生Yi-ChunLu指出,研究团队开发了一种分析电池中不同催化剂活性的方法,现在可以基于这项研究来试验多种可能的材料,以确定控制催化剂活性的物理特性,最终能够预测催化剂的反应活动。锂-空气电池原理与锂离子电池类似,而后者目前是便携式电子产品使用的主要电源,而且在电动汽车电源的竞争中也占据了领先地位。但由于锂-空气电池使用了碳基空气电极和空气流替代锂离子电池较重的传统部件,因此电池质量更轻,这也使得包括IBM和通用汽车等大企业纷纷投身于锂-空气电池技术的开发当中。但锂-空气电池在成为可商用化产品之前还有一系列的问题需要解决,其中最大的问题是如何确保在经过了许多次的充放电过程后仍能保持其电力水平,可用在电动汽车或电子产品中。研究人员还需要详细研究充放电过程的化学问题,如产生了那些化合物,在哪里产生,以及它们之间如何相互反应等。Shao-Horn坦承,目前这方面的研究还处于初级阶段,部分企业将锂-空气电池研究视之为10年期的研发项目,但这是一个非常有前景的领域,如果能够克服许多科学和工程挑战,真正实现能量密度达到目前锂离子电池的两到三倍,将能够首先应用在便携式电子产品如笔记本电脑和手机上,降低成本后更可作为电动汽车电源。该项研究受到美国能源部的资助,MartinFamilySocietyofFellowsforSustainability和美国国家科学基金会也给予了支持。根据《日刊工业新闻》报道,日本旭化成株式会社和Central硝子株式会社两家企业正式参加美国IBMAlmaden Reseach Center正在进行的锂空气电池研究项目。按照该项目研究分工,旭化成将利用其掌握的先进膜技术,负责开发重要的有关膜部件;Central硝子负责开发新型电解液和高性能添加剂。研究小组计划到2020年实现锂空气电池的大量生产和推广应用。

▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授 通讯单位:吉林大学

论文DOI:10.1038/s41467-020-15712-z

针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。

锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。

单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。

▲图一 单原子催化剂的合成过程。

单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。

▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。

▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。

N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。

▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。

受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。

▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。

为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。

▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。

单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。

▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。

N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。

单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。

参考文献 [1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.

徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:Nat.Commun.3篇、Nat.Energy 1篇、Angew.Chem.Int.Ed. 2篇、Adv.Mater.3篇、Energy Environ.Sci.1篇、ACS Nano 1篇、ACS Cent.Sci.1篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。

电池材料研究进展论文

由于中国和印度的经济持续强劲增长,在2006年至2030年期间,其一次能源需求的增长将占世界一次能源总需求增长量的一半以上。中东国家占全球增长量的11%,增强了其作为一个重要的能源需求中心的地位。总的来说,非经合组织(Non-OECD)国家占总增长量的87%。因此,它们占世界一次能源需求比例从51%上升至62%,它们的能源消费量超过经合组织(OECD)成员国2005年的消费量。 全球石油需求(生物燃料除外)平均每年上升1% ,从2007年8500万桶/日增加到2030年1.06亿桶/日。然而,其占世界能源消费的份额从34%下降到30% 。 现代可再生能源技术发展极为迅速,将于2010年后不久超过天然气,成为仅次于煤炭的第二大电力燃料。可再生能源的成本随着技术的成熟应用而降低,假设化石燃料的价格上涨以及有力的政策支持为可再生能源行业提供了一个机会,使其摆脱依赖于补贴的局面,并推动新兴技术进入主流。在本期预测中,风能、太阳能、地热能、潮汐和海浪能等非水电可再生能源(生物质能除外)的增长速度为7.2%,超过任何其它能源的全球年均增长速度。电力行业对可再生能源的利用占大部分的增长。非水电可再生能源在总发电量所占比例从2006年的1%增长到2030年的4%。尽管水电产量增加,但其电力的份额下降两个百分点至14%。经合组织(OECD)国家可再生能源发电的增长量超过化石燃料和核发电量增长的总和。 目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。 目前可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。 我国政府高度重视可再生能源的研究与开发。国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。近年来在国家的大力扶持下,我国在风力发电、海洋能潮汐发电以及太阳能利用等领域已经取得了很大的进展。 新能源(或称可再生能源更贴切)主要有:太阳能、风能、地热能、生物质能等。生物质能在经过了几十年的探索后,国内外许多专家都表示这种能源方式不能大力发展,它不但会抢夺人类赖以生存的土地资源,更将会导致社会不健康发展;地热能的开发和空调的使用具有同样特性,如大规模开发必将导致区域地面表层土壤环境遭到破坏,必将引起再一次生态环境变化;而风能和太阳能对于地球来讲是取之不尽、用之不竭的健康能源,他们必将成为今后替代能源主流。 太阳能发电具有布置简便以及维护方便等特点,应用面较广,现在全球装机总容量已经开始追赶传统风力发电,在德国甚至接近全国发电总量的5%-8%,随之而来的问题令我们意想不到,太阳能发电的时间局限性导致了对电网的冲击,如何解决这一问题成为能源界的一大困惑。 风力发电在19世纪末就开始登上历史的舞台,在一百多年的发展中,一直是新能源领域的独孤求败,由于它造价相对低廉,成了各个国家争相发展的新能源首选,然而,随着大型风电场的不断增多,占用的土地也日益扩大,产生的社会矛盾日益突出,如何解决这一难题,成了我们又一困惑。 再生能源和非再生能源 人们对一次能源又进一步加以分类。凡是可以不断得到补充或能在较短周期内再产生的能源称为再生能源,反之称为非再生能源。风能、水能、海洋能、潮汐能、太阳能和生物质能等是可再生能源;煤、石油和天然气等是非再生能源。地热能基本上是非再生能源,但从地球内部巨大的蕴藏量来看,又具有再生的性质。核能的新发展将使核燃料循环而具有增殖的性质。核聚变的能比核裂变的能可高出 5~10倍,核聚变最合适的燃料重氢(氘)又大量地存在于海水中,可谓“取之不尽,用之不竭”。核能是未来能源系统的支柱之一。 随着全球各国经济发展对能源需求的日益增加,现在许多发达国家都更加重视对可再生能源、环保能源以及新型能源的开发与研究;同时我们也相信随着人类科学技术的不断进步,专家们会不断开发研究出更多新能源来替代现有能源,以满足全球经济发展与人类生存对能源的高度需求,而且我们能够预计地球上还有很多尚未被人类发现的新能源正等待我们去探寻与研究。 中国是目前世界上第二位能源生产国和消费国。 现代可再生能源技术发展极为迅速,将于2010年后不久超过天然气,成为仅次于煤炭的第二大电力燃料。可再生能源的成本随着技术的成熟应用而降低,假设化石燃料的价格上涨以及有力的政策支持为可再生能源行业提供了一个机会,使其摆脱依赖于补贴的局面,并推动新兴技术进入主流。在本期预测中,风能、太阳能、地热能、潮汐和海浪能等非水电可再生能源(生物质能除外)的增长速度为7.2%,超过任何其它能源的全球年均增长速度。电力行业对可再生能源的利用占大部分的增长。非水电可再生能源在总发电量所占比例从2006年的1%增长到2030年的4%。尽管水电产量增加,但其电力的份额下降两个百分点至14%。经合组织(OECD)国家可再生能源发电的增长量超过化石燃料和核发电量增长的总和。 目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。 目前可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。 我国政府高度重视可再生能源的研究与开发。国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。近年来在国家的大力扶持下,我国在风力发电、海洋能潮汐发电以及太阳能利用等领域已经取得了很大的进展。 新能源(或称可再生能源更贴切)主要有:太阳能、风能、地热能、生物质能等。生物质能在经过了几十年的探索后,国内外许多专家都表示这种能源方式不能大力发展,它不但会抢夺人类赖以生存的土地资源,更将会导致社会不健康发展;地热能的开发和空调的使用具有同样特性,如大规模开发必将导致区域地面表层土壤环境遭到破坏,必将引起再一次生态环境变化;而风能和太阳能对于地球来讲是取之不尽、用之不竭的健康能源,他们必将成为今后替代能源主流。 太阳能发电具有布置简便以及维护方便等特点,应用面较广,现在全球装机总容量已经开始追赶传统风力发电,在德国甚至接近全国发电总量的5%-8%,随之而来的问题令我们意想不到,太阳能发电的时间局限性导致了对电网的冲击,如何解决这一问题成为能源界的一大困惑。 风力发电在19世纪末就开始登上历史的舞台,在一百多年的发展中,一直是新能源领域的独孤求败,由于它造价相对低廉,成了各个国家争相发展的新能源首选,然而,随着大型风电场的不断增多,占用的土地也日益扩大,产生的社会矛盾日益突出,如何解决这一难题,成了我们又一困惑。

有机阳离子以及卤素阴离子空位缺陷是制约钙钛矿太阳能电池高效率以及长期稳定性的主要因素,如何同时消除这两种缺陷是当下的难题。基于此,北京大学工学院周欢萍研究员课题组提出一种新的消除机制,即在钙钛矿活性层中引入氟化物,利用氟极高的电负性,实现氟化物同时与有机阳离子形成强氢键以及与铅离子形成强离子键的双重效果。研究从而有效消除了有机阳离子以及卤素阴离子的空位缺陷,大大提升了电池的光电转换效率和长期稳定性。相关研究于2019年5月13日在国际顶级学术期刊《自然能源》( Nature Energy )上发表,题为“Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells”(doi:10.1038/s41560-019-0382-6)。 太阳能作为一种取之不尽用之不竭的清洁能源备受研究人员关注,而将太阳能转换为电能的太阳能电池也是世界上众多课题组青睐的材料。近年来,有机无机杂化钙钛矿太阳能电池以其高效率、低成本的优势获得了学术界和产业界的众多关注,而其光电转换效率也在短短几年内迅速提升至24.2%,是单节电池中当下效率最高的薄膜太阳能电池。 然而,这类电池稳定性不佳是严重阻碍其商业化应用的主要因素。相比于传统无机光伏材料,有机-无机杂化钙钛矿材料晶格较软,且是一种离子晶体,易在外界环境的干扰下发生离子迁移,形成大量的空位缺陷,从而诱导晶格塌缩以及组分分解,从而使其不再具备优异的光电转换能力。 在众多的空位缺陷中,卤素阴离子和有机阳离子空位由于其较低的缺陷形成能而普遍存在于钙钛矿表面以及晶界,该两种空位缺陷不仅会影响太阳能电池的工作效率,且会诱导钙钛矿晶体的进一步退化,形成更多的体相缺陷。针对这两种缺陷之前报道的工作主要集中在钝化单一缺陷,即有机阳离子或卤化物空位,无法做到“鱼与熊掌兼得”。如何同时消除这两种缺陷,实现钙钛矿太阳能电池的更高效率和高稳定性是钙钛矿材料目前最为棘手的问题。针对上述重要问题,周欢萍课题组提出了一种全新的消除机制,即通过在钙钛矿活性层中引入氟化钠,利用氟极高的电负性,实现氟化物同时与有机阳离子形成强氢键以及与铅离子形成强离子键的双重效果。基于此离子键和氢键的化学键调制,可以固定钙钛矿组分中的有机阳离子和卤素阴离子,从而消除了相应的空位缺陷,电池效率和稳定性都得到了明显提升。氟化钠引入的电池器件最高效率达到了21.92%(认证值为21.7%),且没有明显的迟滞现象。同时,引入氟化钠的器件表现出优异的热稳定性和光稳定性,在一个太阳的连续光照射或85°C加热1000小时后,器件仍可分别保持原有效率的95%和90%,在最大功率点处连续工作1000小时后可以保持原有效率的90%。该方法解决了钛矿太阳能电池中限制其稳定性的两个重要因素——有机阳离子和卤素阴离子空位,并可推广至其他的钙钛矿光电器件;且化学键调制的方法对于其他面临类似问题的无机半导体器件也具有重要参考意义。该论文的第一作者是周欢萍课题组的2017级博士生李能旭,周欢萍特聘研究员为通讯作者。合作者还包括埃因霍温理工大学Shuxia Tao课题组和北京理工大学陈棋课题组、北京理工大学洪家旺课题组、香港大学杨世和课题组、中南大学谢海鹏老师、特温特大学Geert Brocks教授等。该工作得到了国家自然科学基金委、 科技 部、北京市自然科学基金、北京市科委、先进电池材料理论与技术北京市重点实验室等联合资助。 周欢萍课题组近期致力于提高钙钛矿太阳能电池的效率和稳定性,取得的一系列重要进展相继在 Science (DOI: 10.1126/science.aau5701), Nature Energy (DOI: 10.1038/s41560-019-0382-6), Nature Communications (DOI: 10.1038/s41467-019-09093-1;DOI: 10.1038/s41467-019-08507-4 和 DOI: 10.1038/s41467-018-05076-w), Advanced Materials (DOI: 10.1002/adma.201900390), Journal of the American Chemical Society (DOI: 10.1021/jacs.7b11157) 上发表。

相关百科

热门百科

首页
发表服务