首页

> 学术发表知识库

首页 学术发表知识库 问题

植物抗盐碱机制的研究进展论文

发布时间:

植物抗盐碱机制的研究进展论文

植物耐盐碱原理:在突发盐碱状况到来时植物不会立刻死掉,而是有机会转换形态继续存活的植物。耐盐碱是指能在盐碱环境下存活,但生长状况受影响。

盐碱地:

盐碱地是盐类集积的一个种类,是指土壤里面所含的盐分影响到作物的正常生长。

它的危害:

土地盐碱化不但造成了资源的破坏,农业生产的巨大损失,而且还对生物圈和生态环境构成威胁。另外,盐碱化过程通常与荒漠化过程相伴生,甚至相互促进相互转化。

耐盐碱的植物:

雪松。对土壤要求不严,酸性土、微碱性土均能适应,深厚肥沃疏松的土壤最适宜其生长,亦可适应黏重的黄土和瘠薄干旱地,耐干旱,不耐水湿。浅根性,抗风力差,对二氧化硫抗性较弱,雪松最适宜孤植,列植。

旱柳。较耐寒,耐干旱。喜湿润排水、通气良好的沙壤土,但在粘土或长期积水的低湿地上,容易烂根,引起枯梢,甚至死亡。稍耐盐碱,在含盐量0.25%的轻度盐碱地上仍可生长,对病虫害及大气污染的抗性较强。

中国土壤的盐化与碱化成分复杂且程度各不相同, 植物在长期进化过程中,从分子、细胞、生理生化水平等各个层面,形成了相应的机制来应对盐碱的胁迫,使其能够适应不同环境 。关于植物应对盐碱胁迫的内部调控机制的研究一直以来也是生物研究的热点内容, 对胁迫的信号传递和应答过程的深入了解将有助于提高作物的逆境适应能力 ,实现农业的可持续发展,并保障日益增长的世界人口的粮食安全。下面总计了5篇案例,覆盖了林木、草类植物、作物、药用植物等物种。

英文标题 :PagWOX11/12a activates PagCYP736A12 gene that facilitates salt tolerance in poplar 发表期刊 :Plant Biotechnol J. 影响因子 :9.803 发表时间 :2021/7/21 合作单位 :中国林业科学研究院

主要结果 : WUSCHEL related homeobox (WOX)转录因子WOX11和WOX12调控不定根和逆境响应。其在盐胁迫耐受的生理和分子调控机制仍有待进一步研究。本文研究了84K杨树(Populus alba P. glandulosa)中PagWOX11/12a在盐胁迫中的作用及其调控机制。盐胁迫强烈诱导了根系中PagWOX11/12a的生长。在杨树中过表达PagWOX11/12a可以增强其耐盐性,可以通过促进与生长相关的生物量来证明。相比之下,盐处理PagWOX11/12a的优势抑制植株的生物量增长下降。在盐胁迫条件下,过表达的PagWOX11/12a植株比未转基因的84K植株表现出更高的活性氧(ROS)清除能力和更低的过氧化氢(H2O2)积累能力,而抑制基因表现出相反的表型。

此外,PagWOX11/12a直接结合到PagCYP736A12的启动子区,调控PagCYP736A12的表达。在过表达PagWOX11/12a的杨树中,激活的PagCYP736A12可以增强活性氧清除能力,从而降低盐胁迫下根系中H2O2的含量。这些结果支持了PagWOX11/12a在杨树盐胁迫驯化中的重要作用,表明PagWOX11/12a通过直接调控杨树中PagCYP736A12的表达,调节活性氧清除,从而增强了杨树的耐盐性。

英文标题 :Elucidating the Molecular Mechanisms by which Seed-Borne Endophytic Fungi, Epichloë gansuensis, Increases the Tolerance of Achnatherum inebrians to NaCl Stress 发表期刊 :Int. J. Mol. Sci. 影响因子 :5.923 发表时间 :2021/12/7 合作单位 :兰州大学

主要结果 : 甘肃内生真菌增强了醉马草的耐盐性,增加了其生物量。然而,甘肃内生真菌提高寄主草耐盐性的分子机制尚不清楚。作者首先利用PacBio测序研究了醉马草的全长转录组信息。本研究共获得了738,588个全长非嵌合序列、36,105个转录本序列和27,202个完整的CDSs。共鉴定出了3558个转录因子(TFs)、15945个简单序列重复序列和963个长非编码rna。

结果表明,在NaCl浓度为0 mM和200 mM时,甘肃内生真菌在E+和E植物叶片中分别有2464和1817个基因表达差异。此外,NaCl胁迫对E+和E植株叶片中差异基因的调控量分别为4919个和502个。甘肃内生真菌差异表达了与光合作用、植物激素信号转导、氨基酸代谢、类黄酮合成过程和WRKY转录因子相关的转录本;

重要的是,在NaCl胁迫下,甘肃内生真菌上调了寄主草的生物学过程(油菜素内酯合成、氧化还原、细胞钙离子稳态、胡萝卜素合成、蛋白酶体泛素依赖蛋白分解代谢和原花青素合成),表明寄主草对NaCl胁迫的适应能力增强。

综上所述,本研究揭示了甘肃内生真菌提高寄主耐盐性的分子机制,为利用内生菌培育耐盐牧草分子育种提供了理论依据。

英文标题 :Comparative Transcriptome Analysis Reveals the Mechanisms Underlying Differences in Salt Tolerance Between indica and japonica Rice at Seedling Stage 发表期刊 :Front Plant Sci. 影响因子 :5.753 发表时间 :2021/10/27 合作单位 :武汉大学

主要结果 : 筛选和培育耐盐性较强的水稻品种是应对全球盐胁迫导致的水稻减产的有效途径。然而, 品种间 特别是 亚种间 耐盐性差异的分子机制尚不清楚。本研究对 耐盐型 水稻RPY geng和 敏感型 水稻洛恢9号(Chao 2R)在盐胁迫下的转录组进行了比较分析。

盐胁迫下,Chao 2R和RPY geng的差异表达基因分别为7208和3874个。其中,两种基因型共表达的DEGs有2714个,而在Chao 2R和RPY geng中特异性表达的差异基因分别有4494和1190个。GO分析结果为两种基因型的耐盐性差异提供了更合理的解释。在盐胁迫下,Chao 2R正常生命过程基因的表达受到了严重影响,而RPY geng调控了多个胁迫相关基因的表达以适应相同强度的盐胁迫,如次生代谢过程、氧化还原过程等。此外, 基于MapMan注释和转录因子鉴定,还发现了与RPY geng特异性差异基因集耐盐性相关的重要通路和转录因子(TF)。

通过Meta-QTLs定位和同源分析 ,在15个QTL中筛选出18个盐胁迫相关候选基因。本次研究结果不仅为水稻亚种耐盐性的差异提供了新的见解,而且还为增强水稻的耐盐性的基因编辑提供了关键的靶基因。

英文标题 :Comparative Transcriptome Analysis of Two Contrasting Chinese Cabbage (Brassica rapa L.) Genotypes Reveals That Ion Homeostasis Is a Crucial Biological Pathway Involved in the Rapid Adaptive Response to Salt Stress 发表期刊 :Front Plant Sci. 影响因子 :5.753 发表时间 :2021/6/14 合作单位 :山东农业大学

主要结果 : 盐是影响植物产量和品质的最重要的限制因素。 不同品种的大白菜具有不同的耐盐性,但对其耐盐机制的研究较少 。本研究通过对 39个大白菜品种 的发芽袋试验,确定100 mmol /L NaCl为最适处理浓度,综合比较分析,鲜重相对值和叶片电解质渗漏量相对值是鉴定大白菜耐盐性的方便指标。研究结果表明,在盐胁迫条件下, 耐盐植物青花45 和 盐敏感植物碧雨春花 均能实现渗透调节、离子稳态和光合作用。

并且比较了两个品种的转录组动态。共鉴定出2,859个差异表达基因,其中青花45差异表达基因数量明显少于碧雨春花。VDAC促进Ca2+的释放,间接促进Na+通过SOS2途径向液泡转运。阳离子/H(+)逆向转运蛋白17和V-H + - ATP酶促进Na+和H+的交换,维持Na+在液泡内,从而减轻盐胁迫对植物的伤害。半乳糖醇合成酶和可溶性蛋白合成的增加有助于缓解盐引起的渗透胁迫,共同调控植物的Na+含量和叶绿素的生物合成,使植物适应盐胁迫。

英文标题 :The transcriptome of saline-alkaline resistant industrial hemp (Cannabis sativa L.) exposed to NaHCO3 stress 发表期刊 :Industrial Crops and Products 影响因子 :5.645 发表时间 :2021/10/15 合作单位 :黑龙江八一农垦大学

主要结果 : 本文报道了工业大麻NaHCO3胁迫下的基因表达谱。在这项研究中,RNA-seq被用来研究基因表达分析的工业大麻根暴露于100毫米NaHCO3(以0、 1、6和12 h为不同时长)。

结果表明,植物激素信号转导与合成、苯丙素生物合成、淀粉、蔗糖、氮、氨基酸等代谢途径可能与工业大麻在NaHCO3胁迫下的响应有关。

此外,通过加权基因共表达网络分析确定了16个模块,其中6个模块与NaHCO3胁迫显著相关。这六个模块基本上富集在与内吞作用、淀粉和蔗糖代谢、氮代谢和苯丙素生物合成相关的通路中。关键通路的枢纽基因与GTP结合蛋白、谷氨酸合成酶、海藻糖磷酸、糖基转移酶和木质素合成相关。

本研究结果揭示了工业大麻对NaHCO3胁迫响应的分子机制。

植物对盐碱地的适应机理研究论文

植物耐盐碱原理:在突发盐碱状况到来时植物不会立刻死掉,而是有机会转换形态继续存活的植物。耐盐碱是指能在盐碱环境下存活,但生长状况受影响。

盐碱地:

盐碱地是盐类集积的一个种类,是指土壤里面所含的盐分影响到作物的正常生长。

它的危害:

土地盐碱化不但造成了资源的破坏,农业生产的巨大损失,而且还对生物圈和生态环境构成威胁。另外,盐碱化过程通常与荒漠化过程相伴生,甚至相互促进相互转化。

耐盐碱的植物:

雪松。对土壤要求不严,酸性土、微碱性土均能适应,深厚肥沃疏松的土壤最适宜其生长,亦可适应黏重的黄土和瘠薄干旱地,耐干旱,不耐水湿。浅根性,抗风力差,对二氧化硫抗性较弱,雪松最适宜孤植,列植。

旱柳。较耐寒,耐干旱。喜湿润排水、通气良好的沙壤土,但在粘土或长期积水的低湿地上,容易烂根,引起枯梢,甚至死亡。稍耐盐碱,在含盐量0.25%的轻度盐碱地上仍可生长,对病虫害及大气污染的抗性较强。

盐土植物又称盐地植物。指能在含盐量高的土壤中生长的植物,包括真盐土植物。一般具有肥厚多汁的茎叶,灰分中含盐量很高,如海篷子,能忍受6%甚至更浓的氯化钠溶液,体内渗透压很高。这类植物也称聚盐性植物。另一种是泌盐性植物,可将体内过剩的盐分从叶面分泌出来,如柽柳、胡杨、大米草、红树植物等都是。此外,还有一类植物能适应在盐渍化程度较轻的土壤中生长,它们根细胞对盐类透性很小,表现很少吸收土壤中盐分,称为不透盐植物,如蒿属、盐地紫菀、简婉、盐地和碱地毛风菊、獐茅、田菁等皆属此类。有些植物虽然并非典型的盐土植物,但有些也具有一定的耐盐碱的能力,如农作物中棉花、甜菜、向日葵、糜子、碱谷、高粱、大麦等作物也能适应一般盐渍化土壤上生长。典型盐土植物对土壤碱性也有一定适应能力,但当土壤碱性过重,例如pH>8.5时,大多数植物均不能生长,但西伯利亚滨藜、碱蓬、碱茅、芨芨草、药地瘤等可在碱性很强的土地上生长,为碱土植物。柽柳和碱蓬等既能在盐土上生长,也能在碱土上生长,所以又称盐碱土植物。

盐碱地的土壤溶液浓度太大,大于植物细胞的溶液浓度,细胞失水,影响细胞工作。另外土壤板结使气体不易夹杂在土壤中,导致呼吸效率下降。二者综合起来,严重影响了细胞的代谢,能量不足导致了吸收动力不足,所以植物同时缺少无机盐

植物抗旱的研究进展论文

叶面蒸发面积小细胞内液浓度高,吸水能力强根系发达,利于吸收水分望采纳,多谢

植物抗旱机理研究进展水资源短缺以及土壤盐渍化是目前制约农业生产的一个全球性问题,全球约有20%的耕地受到盐害威胁,43%的耕地为干旱、半干旱地区。干旱与盐害严重影响植物的生长发育,造成作物减产,并使生态环境日益恶化。在我国,仅2001年华北、西北和东北地区的466.7万hm2稻的种植面积就因为缺水而减少了53.3万 hm2。在自然条件下,由于环境胁迫而严重影响了作物生长发育,其遗传潜力难以发挥,干旱、盐渍不仅影响了作物的产量,而且限制了植物的广泛分布,因此,提高作物的抗旱、耐盐能力已经成为现代植物研究工作中急需解决的关键问题之一。现将植物特殊生理结构功能综述如下。 1植物形态结构特征对其耐旱机制的影响 1.1根系 植物根系是植物直接吸收水分的重要器官,它对植物的耐旱功能具有至关重要的作用。纵深发达的根系系统可使植物充分吸收利用贮存在土壤中的水分,使植物度过干旱期。对高粱的根系解剖学研究发现,高粱根系吸水每天以3.4 cm的稳定速率下伸,直到开花后约10 d,在有限水分条件下,吸水的多少由根系深度决定,深层吸水差是由于根长不够所致。此外,根水势能也能反映根系的吸收功能。根水势低,吸水能力强。据报道,高粱根水势一般为-1.22~1.52 Mbar,而玉米仅为-1.01~1.11 Mbar,高粱的吸水能力约是玉米的2倍(Cnyxau,1974),对干旱的耐受能力也强于玉米。一般认为抗旱性强的植物,根水势低,利于水分吸收。 1.2叶片 作为同化和蒸腾器官的叶片,在长期干旱胁迫下,叶片的形态结构会发生变化,其形态结构的改变与植物的耐旱性有着密切的关系。主要表现在:叶片表皮外壁有发达的角质层,角质层是一种类质膜,其主要功能是减少水分向大气散失,是植物水分蒸发的屏障。厚的角质层可提高植物的能量反射与降低蒸腾,从而增强植物的抗旱性;具有表皮毛,可以保护植物避免强光照射,减少蒸腾;具有大的栅栏组织/海绵组织比和小的表面积/体积比,发达的栅栏组织,分布于叶的背腹两面,可使干旱缺水植物萎蔫时减少机械损伤。而小的表面积/体积比,可以最大程度减少水分丧失。韦梅琴的4种委陵菜属植物解剖研究,也证实了这一点。 2渗透调节 水分胁迫条件下会积累有机分子相溶性溶质或渗压剂,有效地提高植物的渗透调节能力、增强植物的抗逆性。 2.1脱落酸与植物抗旱性 脱落酸(Abscisicacid,ABA)是植物五大类激素之一,大量的试验表明:当植物处于干旱、低温、盐碱、环境污染等不利环境下,植物体内脱落酸大量增加。脱落酸的增加,使植物对不利环境产生抗性。尤其是脱落酸的增加和气孔的关闭一致,这对植物抗旱是非常有利的。脱落酸除能调节气孔开闭外,还能促进根系对水和离子的吸收。20世纪80年代初人们就广泛承认,缺水时叶片合成的脱落酸通过韧皮部运到根部,促进根对水和离子的透性。番茄变种实验证明,脱落酸含量低于正常番茄的变种的根对水的吸收有较强的阻力,而这种阻力可因外施脱落酸而减少。另外,脱落酸能促进芽的休眠,使生长速度下降,促进同化物质的积累,这些都可以减少蒸腾,提高植物保水能力,对植物抗旱是十分有利的。 2.2脯氨酸与植物抗旱性 脯氨酸积累是植物为了对抗干旱胁迫而采取的一种保护性措施。Irigoyen(1992)发现,轻度水分胁迫,苜蓿根瘤组织积累较多的脯氨酸,并认为脯氨酸可保护蛋白质在水分胁迫下的不变性.脯氢酸亲水基与蛋白质亲水基相互作用使蛋白质稳定性提高,乃至严重水分胁迫下苜蓿根瘤代谢酶和结构蛋白质可能会受积累的脯氨酸的保护,减轻严重干旱对组织的危害程度。在正常情况下,植物中游离的脯氨酸含量仅为O.2~0.6 mg·g-1干重,占总游离氨基酸的百分之几,而在干旱条件下,脯氨酸可成10倍地增加,占总游离氨基酸的30%。水分胁迫下脯氨酸的积累一方面增强了植物的渗透调节作用,使组织的抗脱水力加大;另一方面脯氨酸的偶极性保护丁膜蛋白结构的完整性,同时增强了膜的柔韧性。脯氨酸可能是一有用的干旱伤害传感器(Droughtinjurysensor。同时,脯氨酸还有作为自由基清除剂,调节细胞质PH值,防止酶变性,防止细胞质酸化的作用。 2.3甜菜碱与植物抗旱性 近年研究结果指出,甜菜碱可能是作为植物的主要渗透调节物质之一而对植物的抗旱性起作用。其依据是渗透胁迫条件下,植物体内的甜菜碱醛脱氧酶(BADH)和胆碱单氧化酶(CMO)活性升高,这两种酶在高等植物中,具有将胆碱氧化为甜菜碱的作用,并在细胞质中积累甜菜碱,甜菜碱的积累能够保持细胞与外界环境的渗透平衡和稳定复合蛋白四级结构,从而提高植物对干旱胁迫的适应性。因此,Nomura等(1998)认为:在受到干旱胁迫的细胞中,甜菜碱似乎是起到一种低分子量分子伴侣的作用,稳定RuBP羧化酶的构象并使其处于功能状态,部分抵消了干旱的胁迫。甜菜碱在叶绿体中合成,作为一种渗透调节物质,在植物受到环境胁迫时在细胞内积累降低渗透势,还能作为一种保护物质具有极为重要的“非渗透调节”功能,维持生物大分子的结构和完整性,维持其正常的生理功能,解除高浓度盐对酶活性的毒害和保护呼吸酶及能量代谢过程。还能影响细胞内离子的分布。 2.4水孔蛋白与植物抗旱性 水孔蛋白是植物体中水分跨膜运输的主要途径。是作为跨膜通道的主嵌人蛋白(MIP)家族中有运输水分功能的一类蛋白质。水孔蛋白可分为3类:TIP(Tonoplast Intrinsic Protein,液泡膜水通道蛋白)、MIP(Major Intrinsic Protein,主体水通道蛋白)及NLM(Nodulin-6-like Major Intrinsic Protein与Nodulin-6类主体水通道蛋白)。水孔蛋白、H+/ATPase和Na+/H+反向运输蛋白在调节细胞水势和胞内盐离子分布中起信号导作用。植物体可以通过调控水孔蛋白等膜蛋白以加强细胞与环境的信息交流和物质交换,改变膜对水分的通透性,实现渗透调节,以增强植物的抗旱、耐盐能力。 3活性氧清除 植物受到水分、盐分胁迫时,产生活性氧,对细胞造成损伤,具体表现在4个方面:①活性氧能与酶的巯基或色氨酸残基反应,导致酶失活;②活性氧会破坏核酸结构,攻击核酸碱基,使嘌呤碱和嘧啶碱结构变化,导致变异出现或变异的积累;③DNA是蛋白质合成的信息,由于活性氧对DNA复制过程的损伤,从而妨碍蛋白质合成;④启动膜脂过氧化反应,使维持细胞区域化的膜系统受损或瓦解。大量的研究实验表明,植物体内广泛存在的抗氧化酶系统(超氧化物歧化酶SOD)、过氧化氢酶CAT、过氧化物酶POD等)能有效清除活性氧,保证细胞正常的生理功能,维持其对干旱胁迫的抗性。有研究表明,耐旱植物在逆境条件下能使保护酶活力维持在一个较高水平,有利于清除自由基,降低膜脂过氧化水平,从而减轻膜伤害程度。 4LEA蛋白与植物抗旱性 LEA蛋白(Late Embryogenesis Abundant protein)是指胚胎发生后期种子中大量积累的一系列蛋白质。LEA蛋白广泛存在于高等植物中。在植物个体发育的其他阶段,也能因ABA或脱水诱导而在其他组织中高水平表达。一般认为,LEA蛋白在植物细胞中具有保护生物大分子,维持特定细胞结构,缓解干旱、盐、寒等环境胁迫的作用。LEA蛋白大多是高度亲水的。高度亲水性有利于LEA蛋白在植物受到干旱而失水时,能够部分替代水分子,蛋白质的多羟基能保持细胞液处于溶解状态,从而避免细胞结构的塌陷,稳定细胞结构,尤其是膜结构。在干旱脱水过程中细胞液的离子浓度会迅速升高,高强度的离子浓度会造成细胞的不可逆伤害。在第3组LEA蛋白的基元序列所构成的兼性α-螺旋结构中,亲水和疏水氨基酸分别处于螺旋的特定位置,形成分子内螺旋束,其表面具有束缚阴离子和阳离子的能力,因此,也能控制高盐、缺水伤害。 5植物抗旱相关基因的研究 了解植物适应干旱胁迫的分子机理有利于开展抗旱基因工程研究,对提高植物抗旱能力,促进农业生产的发展具有非常重要的意义。 5.1编码植物抗旱关键基因的克隆 1)与脯氨酸合成酶相关的基因,即脯氨酸合成酶基因族。其中包括了吡咯啉-5-羧酸合成酶基因P5CS及PVAB2,吡咯琳-5-羧酸还原酶基因P5CR及PproC1,榆钱菠菜脯氨酸转运蛋白基因Ah-ProT1,编码s-腺甘甲硫氨酸合成酶基因SAM1和SAM3硫醇蛋白酶的rd19A、rd21A基因等。将脯氨酸合成途径中的第1个酶——P5CS基因转入烟草和水稻后,转基因植株中P5CS mRNA的含量明显提高,转化植株的耐旱能力也比对照有所增加。此外,大量研究也表明,在干旱胁迫条件下,P5CS水平提高,胁迫解除,P5CS基因表达水平下降,乙酰胆碱由胆碱单加氧酶(Choline Monooxygenase,CMO)或胆碱脱氢酶(Betaine Aldehyde Dehydrogenase CDH)、甜菜碱醛脱氢酶(Betain Aldehyde Dehydragenase,BADH)两步催化合成甜菜碱。现已在菠菜、甜菜、山菠菜中成功克隆出CMO基因,从烟草中克隆出CDH基因,从甜菜、菠菜、山菠菜、大麦、水稻及木本植物海榄雌中克隆出BADH基因。此外,乙酰胆碱氧化酶(Choline Oxidase,COD)因为可以把乙酰胆碱一步合成甜菜碱而日益受到人们的关注。目前,codA基因已从水稻、拟南芥中成功克隆。Sakamoto等(1998)用编码codA基因转化水稻,获得两种分别在细胞的两个不同部位表达的乙酰胆碱氧化酶转化株,这两种转化株的耐盐、抗旱以及耐低温的能力均有所增强。 2)LEA基因、水孔蛋白基因及脱水素基因。Xu等(1996)用来自大麦的一种LEA蛋白基因HVA1转化水稻,使其在水稻中过量表达,结果发现水稻的耐旱能力明显提高,且提高幅度与LEA蛋白的表达量一致,为LEA蛋白在植物耐旱、抗盐过程中的作用提供了直接证据。棉花11个LEA相关基因,分别是D19、B19.1、D11、rab、16A-D、HVA1、D113、le2、D29和D34,以及拟南芥CORl5a、pRABA T1两个基因已经成功分离。拟南芥中有30个基因编码水孔蛋白得到克隆,其中,12种属于TIP,12种属于MIP,6种属于NLM。已经得到克隆的编码Na+/H+反向运输蛋白的基因包括:拟南芥中的AtN HX1、SOS1(Salt Overly Sensitive),小麦的 TαN HX1 和水稻的OsN HX1基因。脱水素是一种广泛存在于高等植物中的干旱诱导蛋白,具有很强的亲水性和热稳定性。具有保护植物细胞的大分子在脱水过程中不受伤害的功能。由于脱水素是在种子成熟时发挥作用,因此也把它归于LEA蛋白。脱水素基因是一个大的基因家族,目前已有多个脱水素基因或相关基因被克隆及定位,如大麦中dhn1、dhn11,玉米中的dhn1/rabl7和dhn2以及拟南芥中的dhnX、cor47、rab18 等。 5.2抗逆相关的转录因子及双组分系统基因 抗逆相关的转录因子的研究近来也日益受到重视,它们可以控制一系列的下游胁迫反应,从而启动信号传导中的级联反应,使细胞产生相应的抗逆性。至今,已克隆出了大量的与植物抗旱相关的转录因子。例如,拟南芥 DREB1A~C 和 DREB2A~B,CBF1~3、Hs、At-GluR2、ATHB6、SCOF-1、Atmyb2等。 在拟南芥和烟草中还发现双组分系(Two-tom-ponent System)基因的存在,其基因产物为“感受器”和“反应调节器”合二为一的激酶蛋白。如拟南芥的双组分系统基因 ATRR1 和 ATRR2 受干旱、高盐及低温的诱导。烟草双组分系统基因 NTHK1 和 NTHK2 则受高盐胁迫处理的诱导。双组分系统基因被诱导表达后,产生一系列的细胞应激反应,提高植物的干旱胁迫适应能力。 6展望 水分不足是限制农业发展的重要因子,提高植物自身抗旱性和水分利用效率来发展农业存在着较大的潜力,发展前景十分广阔。植物抗旱是一个复杂的问题,研究表明,植物的抗旱性是由多基因控制的,不同作物和品种适应干旱的方式是多种多样的,一些作物具有综合性的、几种机理共同起作用的抗旱特性。 探讨作物的抗旱机理,力求认识作物抗旱的本质,提高水分利用效率,改良作物的抗旱性已成为日前倍受关注的研究内容。目前,培育耐旱抗盐作物品种的主要途径有:①将野生耐旱植物驯化成作物;②建立在形态(如株高、生长以及根系发达程度等),生理(如渗透调节等)、分子标记(RFLP、RAPD等)选择基础之上的传统育种;③利用组织培养和诱变生物技术产生突变表型进行培育;④传统育种方式;⑤基因工程培育等。

【耐旱植物的抗旱机制】1、植物形态结构特征对其耐旱机制的影响 (1)根系。植物根系是植物直接吸收水分的重要器官,它对植物的耐旱功能具有至关重要的作用。纵深发达的根系系统可使植物充分吸收利用贮存在土壤中的水分,使植物度过干旱期。一般认为抗旱性强的植物,根水势低,利于水分吸收。 (2)叶片。作为同化和蒸腾器官的叶片,在长期干旱胁迫下,叶片的形态结构会发生变化,其形态结构的改变与植物的耐旱性有着密切的关系。主要表现在:叶片表皮外壁有发达的角质层,角质层是一种类质膜,其主要功能是减少水分向大气散失,是植物水分蒸发的屏障。厚的角质层可提高植物的能量反射与降低蒸腾,从而增强植物的抗旱性;具有表皮毛,可以保护植物避免强光照射,减少蒸腾;具有大的栅栏组织/海绵组织比和小的表面积/体积比,发达的栅栏组织,分布于叶的背腹两面,可使干旱缺水植物萎蔫时减少机械损伤。而小的表面积/体积比,可以最大程度减少水分丧失。韦梅琴的4种委陵菜属植物解剖研究,也证实了这一点。 2、渗透调节。水分胁迫条件下会积累有机分子相溶性溶质或渗压剂,有效地提高植物的渗透调节能力、增强植物的抗逆性。 (1)脱落酸与植物抗旱性。脱落酸是植物五大类激素之一,大量的试验表明:当植物处于干旱、低温、盐碱、环境污染等不利环境下,植物体内脱落酸大量增加。脱落酸的增加,使植物对不利环境产生抗性。尤其是脱落酸的增加和气孔的关闭一致,这对植物抗旱是非常有利的。脱落酸除能调节气孔开闭外,还能促进根系对水和离子的吸收。另外,脱落酸能促进芽的休眠,使生长速度下降,促进同化物质的积累,这些都可以减少蒸腾,提高植物保水能力,对植物抗旱是十分有利的。 (2)脯氨酸与植物抗旱性 。脯氨酸积累是植物为了对抗干旱胁迫而采取的一种保护性措施。脯氢酸亲水基与蛋白质亲水基相互作用使蛋白质稳定性提高,乃至严重水分胁迫下苜蓿根瘤代谢酶和结构蛋白质可能会受积累的脯氨酸的保护,减轻严重干旱对组织的危害程度。在正常情况下,植物中游离的脯氨酸含量仅为O.2~0.6 mg·g-1干重,占总游离氨基酸的百分之几,而在干旱条件下,脯氨酸可成10倍地增加,占总游离氨基酸的30%。水分胁迫下脯氨酸的积累一方面增强了植物的渗透调节作用,使组织的抗脱水力加大;另一方面脯氨酸的偶极性保护丁膜蛋白结构的完整性,同时增强了膜的柔韧性。脯氨酸还有作为自由基清除剂,调节细胞质PH值,防止酶变性,防止细胞质酸化的作用。 (3)甜菜碱与植物抗旱性。近年研究结果指出,甜菜碱可能是作为植物的主要渗透调节物质之一而对植物的抗旱性起作用。其依据是渗透胁迫条件下,植物体内的甜菜碱醛脱氧酶(BADH)和胆碱单氧化酶(CMO)活性升高,这两种酶在高等植物中,具有将胆碱氧化为甜菜碱的作用,并在细胞质中积累甜菜碱,甜菜碱的积累能够保持细胞与外界环境的渗透平衡和稳定复合蛋白四级结构,从而提高植物对干旱胁迫的适应性。甜菜碱在叶绿体中合成,作为一种渗透调节物质,在植物受到环境胁迫时在细胞内积累降低渗透势,还能作为一种保护物质具有极为重要的“非渗透调节”功能,维持生物大分子的结构和完整性,维持其正常的生理功能,解除高浓度盐对酶活性的毒害和保护呼吸酶及能量代谢过程。还能影响细胞内离子的分布。 (4)水孔蛋白与植物抗旱性 。水孔蛋白是植物体中水分跨膜运输的主要途径。是作为跨膜通道的主嵌人蛋白(MIP)家族中有运输水分功能的一类蛋白质。水孔蛋白、H+/ATPase和Na+/H+反向运输蛋白在调节细胞水势和胞内盐离子分布中起信号导作用。植物体可以通过调控水孔蛋白等膜蛋白以加强细胞与环境的信息交流和物质交换,改变膜对水分的通透性,实现渗透调节,以增强植物的抗旱、耐盐能力。 3、活性氧清除。植物受到水分、盐分胁迫时,产生活性氧,对细胞造成损伤。植物体内广泛存在的抗氧化酶系统(超氧化物歧化酶SOD)、过氧化氢酶CAT、过氧化物酶POD等)能有效清除活性氧,保证细胞正常的生理功能,维持其对干旱胁迫的抗性。耐旱植物在逆境条件下能使保护酶活力维持在一个较高水平,有利于清除自由基,降低膜脂过氧化水平,从而减轻膜伤害程度。 4、LEA蛋白与植物抗旱性 。LEA蛋白是指胚胎发生后期种子中大量积累的一系列蛋白质。LEA蛋白广泛存在于高等植物中。在植物个体发育的其他阶段,也能因ABA或脱水诱导而在其他组织中高水平表达。一般认为,LEA蛋白在植物细胞中具有保护生物大分子,维持特定细胞结构,缓解干旱、盐、寒等环境胁迫的作用。LEA蛋白大多是高度亲水的。高度亲水性有利于LEA蛋白在植物受到干旱而失水时,能够部分替代水分子,蛋白质的多羟基能保持细胞液处于溶解状态,从而避免细胞结构的塌陷,稳定细胞结构,尤其是膜结构。在干旱脱水过程中细胞液的离子浓度会迅速升高,高强度的离子浓度会造成细胞的不可逆伤害。在第3组LEA蛋白的基元序列所构成的兼性α-螺旋结构中,亲水和疏水氨基酸分别处于螺旋的特定位置,形成分子内螺旋束,其表面具有束缚阴离子和阳离子的能力,因此,也能控制高盐、缺水伤害。 植物抗旱是一个复杂的问题,研究表明,植物的抗旱性是由多基因控制的,不同作物和品种适应干旱的方式是多种多样的,一些作物具有综合性的、几种机理共同起作用的抗旱特性。

主要有一下几个原因:

1 、渗透调节渗透调节是植物在水分逆境下降低渗透势、抵抗逆境胁迫的一种重要方式,作为植物的重要耐旱和抗逆生理机制,近些年得到较广泛研究。John等认为渗透调节物质分无机离子和有机溶质两大类。前者以K+和其他离子为主,主要调节液泡的渗透势,维持膨压等生理过程;后者以脯氨酸、甜菜碱、可溶性糖等为主,主要调节细胞质的渗透势,同时对酶、蛋白质和生物膜起保护作用。

2、水分胁迫下的活性氧伤害与植物的抗氧化防御系统一般认为干旱条件下植物细胞膜系统的完整性和功能的受损与活性氧的大量累积直接相关。通常情况下,植物通过多种途径产生超氧化物自由基0主等自由基,同时细胞内存在清除这些自由基的一整套抗氧化防御系统,两者对立统一,形成平衡,不足以使植物受到伤害。但一旦植物遭受干旱胁迫,作为其最原初的反应之一,活性氧的产生和抗氧化系统之间的平衡体系就被破坏,自由基积累,导致植物细胞膜系统受到伤害,膜脂发生过氧化,丙二醛(MDA)含量增加,质膜透性加大,离子外流,代谢紊乱,致使植物遭受伤害。其直接的实验依据是干旱胁迫下丙二醛含量的增加。丙二醛是逆境胁迫下脂质过氧化的一个产物,其含量多少是脂质过氧化作用强弱的重要指标之一。许多研究表明,干旱引起细胞膜透性的增加与脂质过氧化水平之间存在显著正相关,干旱加速脂质过氧化作用是导致膜损伤的主要因素。自Mclord和Fridovich(1969)首次从牛血红细胞中发现超氧化物歧化酶(SOD)以来,生物活性氧代谢的研究受到了普遍重视。植物体内存在酶促与非酶促两类活性氧清除系统。酶促系统主要包括SOD等抗氧化酶;非酶促系统主要包括维生素E等。其中抗氧化酶中SOD酶最为重要。由于SOD的作用是将OE歧化为H202和02,故SOD是机体防御氧负离子的第一道防线。大量研究表明,玉米的抗旱性与水分胁迫下上述酶的活性成显著正相关,抗旱性强的玉米品种,其SOD、CAT、POD保护酶活性较高。在小麦上的研究表明,SOD在清除因干旱胁迫而导致活性氧伤害细胞膜方面比POD和CAT起更为重要的作用,抗旱品种的增加量大于不抗旱品种。同时研究还发现SOD同工酶和POD同工酶的类型与抗旱性有关。目前超氧化物歧化酶基因已在苜蓿上转化成功,一定程度上提高了苜蓿抗氧化能力。

3、水通道蛋白

4、胚胎发育晚期丰富表达蛋白(Lea蛋白)

具体参考文献见附件。

林木抗盐碱性研究论文

中国土壤的盐化与碱化成分复杂且程度各不相同, 植物在长期进化过程中,从分子、细胞、生理生化水平等各个层面,形成了相应的机制来应对盐碱的胁迫,使其能够适应不同环境 。关于植物应对盐碱胁迫的内部调控机制的研究一直以来也是生物研究的热点内容, 对胁迫的信号传递和应答过程的深入了解将有助于提高作物的逆境适应能力 ,实现农业的可持续发展,并保障日益增长的世界人口的粮食安全。下面总计了5篇案例,覆盖了林木、草类植物、作物、药用植物等物种。

英文标题 :PagWOX11/12a activates PagCYP736A12 gene that facilitates salt tolerance in poplar 发表期刊 :Plant Biotechnol J. 影响因子 :9.803 发表时间 :2021/7/21 合作单位 :中国林业科学研究院

主要结果 : WUSCHEL related homeobox (WOX)转录因子WOX11和WOX12调控不定根和逆境响应。其在盐胁迫耐受的生理和分子调控机制仍有待进一步研究。本文研究了84K杨树(Populus alba P. glandulosa)中PagWOX11/12a在盐胁迫中的作用及其调控机制。盐胁迫强烈诱导了根系中PagWOX11/12a的生长。在杨树中过表达PagWOX11/12a可以增强其耐盐性,可以通过促进与生长相关的生物量来证明。相比之下,盐处理PagWOX11/12a的优势抑制植株的生物量增长下降。在盐胁迫条件下,过表达的PagWOX11/12a植株比未转基因的84K植株表现出更高的活性氧(ROS)清除能力和更低的过氧化氢(H2O2)积累能力,而抑制基因表现出相反的表型。

此外,PagWOX11/12a直接结合到PagCYP736A12的启动子区,调控PagCYP736A12的表达。在过表达PagWOX11/12a的杨树中,激活的PagCYP736A12可以增强活性氧清除能力,从而降低盐胁迫下根系中H2O2的含量。这些结果支持了PagWOX11/12a在杨树盐胁迫驯化中的重要作用,表明PagWOX11/12a通过直接调控杨树中PagCYP736A12的表达,调节活性氧清除,从而增强了杨树的耐盐性。

英文标题 :Elucidating the Molecular Mechanisms by which Seed-Borne Endophytic Fungi, Epichloë gansuensis, Increases the Tolerance of Achnatherum inebrians to NaCl Stress 发表期刊 :Int. J. Mol. Sci. 影响因子 :5.923 发表时间 :2021/12/7 合作单位 :兰州大学

主要结果 : 甘肃内生真菌增强了醉马草的耐盐性,增加了其生物量。然而,甘肃内生真菌提高寄主草耐盐性的分子机制尚不清楚。作者首先利用PacBio测序研究了醉马草的全长转录组信息。本研究共获得了738,588个全长非嵌合序列、36,105个转录本序列和27,202个完整的CDSs。共鉴定出了3558个转录因子(TFs)、15945个简单序列重复序列和963个长非编码rna。

结果表明,在NaCl浓度为0 mM和200 mM时,甘肃内生真菌在E+和E植物叶片中分别有2464和1817个基因表达差异。此外,NaCl胁迫对E+和E植株叶片中差异基因的调控量分别为4919个和502个。甘肃内生真菌差异表达了与光合作用、植物激素信号转导、氨基酸代谢、类黄酮合成过程和WRKY转录因子相关的转录本;

重要的是,在NaCl胁迫下,甘肃内生真菌上调了寄主草的生物学过程(油菜素内酯合成、氧化还原、细胞钙离子稳态、胡萝卜素合成、蛋白酶体泛素依赖蛋白分解代谢和原花青素合成),表明寄主草对NaCl胁迫的适应能力增强。

综上所述,本研究揭示了甘肃内生真菌提高寄主耐盐性的分子机制,为利用内生菌培育耐盐牧草分子育种提供了理论依据。

英文标题 :Comparative Transcriptome Analysis Reveals the Mechanisms Underlying Differences in Salt Tolerance Between indica and japonica Rice at Seedling Stage 发表期刊 :Front Plant Sci. 影响因子 :5.753 发表时间 :2021/10/27 合作单位 :武汉大学

主要结果 : 筛选和培育耐盐性较强的水稻品种是应对全球盐胁迫导致的水稻减产的有效途径。然而, 品种间 特别是 亚种间 耐盐性差异的分子机制尚不清楚。本研究对 耐盐型 水稻RPY geng和 敏感型 水稻洛恢9号(Chao 2R)在盐胁迫下的转录组进行了比较分析。

盐胁迫下,Chao 2R和RPY geng的差异表达基因分别为7208和3874个。其中,两种基因型共表达的DEGs有2714个,而在Chao 2R和RPY geng中特异性表达的差异基因分别有4494和1190个。GO分析结果为两种基因型的耐盐性差异提供了更合理的解释。在盐胁迫下,Chao 2R正常生命过程基因的表达受到了严重影响,而RPY geng调控了多个胁迫相关基因的表达以适应相同强度的盐胁迫,如次生代谢过程、氧化还原过程等。此外, 基于MapMan注释和转录因子鉴定,还发现了与RPY geng特异性差异基因集耐盐性相关的重要通路和转录因子(TF)。

通过Meta-QTLs定位和同源分析 ,在15个QTL中筛选出18个盐胁迫相关候选基因。本次研究结果不仅为水稻亚种耐盐性的差异提供了新的见解,而且还为增强水稻的耐盐性的基因编辑提供了关键的靶基因。

英文标题 :Comparative Transcriptome Analysis of Two Contrasting Chinese Cabbage (Brassica rapa L.) Genotypes Reveals That Ion Homeostasis Is a Crucial Biological Pathway Involved in the Rapid Adaptive Response to Salt Stress 发表期刊 :Front Plant Sci. 影响因子 :5.753 发表时间 :2021/6/14 合作单位 :山东农业大学

主要结果 : 盐是影响植物产量和品质的最重要的限制因素。 不同品种的大白菜具有不同的耐盐性,但对其耐盐机制的研究较少 。本研究通过对 39个大白菜品种 的发芽袋试验,确定100 mmol /L NaCl为最适处理浓度,综合比较分析,鲜重相对值和叶片电解质渗漏量相对值是鉴定大白菜耐盐性的方便指标。研究结果表明,在盐胁迫条件下, 耐盐植物青花45 和 盐敏感植物碧雨春花 均能实现渗透调节、离子稳态和光合作用。

并且比较了两个品种的转录组动态。共鉴定出2,859个差异表达基因,其中青花45差异表达基因数量明显少于碧雨春花。VDAC促进Ca2+的释放,间接促进Na+通过SOS2途径向液泡转运。阳离子/H(+)逆向转运蛋白17和V-H + - ATP酶促进Na+和H+的交换,维持Na+在液泡内,从而减轻盐胁迫对植物的伤害。半乳糖醇合成酶和可溶性蛋白合成的增加有助于缓解盐引起的渗透胁迫,共同调控植物的Na+含量和叶绿素的生物合成,使植物适应盐胁迫。

英文标题 :The transcriptome of saline-alkaline resistant industrial hemp (Cannabis sativa L.) exposed to NaHCO3 stress 发表期刊 :Industrial Crops and Products 影响因子 :5.645 发表时间 :2021/10/15 合作单位 :黑龙江八一农垦大学

主要结果 : 本文报道了工业大麻NaHCO3胁迫下的基因表达谱。在这项研究中,RNA-seq被用来研究基因表达分析的工业大麻根暴露于100毫米NaHCO3(以0、 1、6和12 h为不同时长)。

结果表明,植物激素信号转导与合成、苯丙素生物合成、淀粉、蔗糖、氮、氨基酸等代谢途径可能与工业大麻在NaHCO3胁迫下的响应有关。

此外,通过加权基因共表达网络分析确定了16个模块,其中6个模块与NaHCO3胁迫显著相关。这六个模块基本上富集在与内吞作用、淀粉和蔗糖代谢、氮代谢和苯丙素生物合成相关的通路中。关键通路的枢纽基因与GTP结合蛋白、谷氨酸合成酶、海藻糖磷酸、糖基转移酶和木质素合成相关。

本研究结果揭示了工业大麻对NaHCO3胁迫响应的分子机制。

林木抗性选育设计方案写法:1、写明选择育种的途径。2、写明耐盐突变体的筛选的方法。3、写明选择育种的目的即可。4、林木抗性育种名词解释:选育具有抵抗各种不良因子的优良品种或类型的树种,其中包括抗病性、抗虫性、抗寒性、抗旱性、抗风性、耐湿性、抗盐碱性、抗草性和抗环境污染等。

低洼盐碱地地势低平、排水不畅,加之强烈蒸发,盐分不断积累于地表,水文、地质条件恶化。因此在低洼盐碱地造林,要慎重选择树种。乔木树种刺槐。刺槐的根可直接固定氮素,是沙碱地造林的先锋树种,但不宜在排水不良的低洼地种植。垂柳。喜生活在湿地和水边,中度耐盐碱,可作盐碱地重要防护林树种。旱柳。是沙碱地速生树种之一,耐水湿,适宜在轻度硫酸盐土地上生长。在涝碱相随地区的河渠两侧及盐碱洼地可种植,宜作为先锋树种及薪炭林。亦是农田防护林的良好树种。臭椿。生长迅速,为盐碱地初期造林的先锋树种,并可护岸防风。可在渠道两侧及地势较高处的道路两侧种植。苦楝。耐盐力仅次于刺槐,能在干燥瘠薄的盐碱地上生长,虫害少、生长快、萌芽力强。毛白杨。在肥沃湿润的地方生长良好,在轻盐碱地也能正常生长,并能耐短期水淹。适宜做速生丰产林、农田防护林以及四旁绿化的优良树种。杂交杨。如中林46杨、69杨等,在土壤含盐量0.5%、常年地下水位低于1米、雨季有积水的情况下生长正常,为用材林、防护林、四旁绿化的良好速生树种。白榆。较耐盐碱,土壤含盐量不超过0.4%时生长良好。可做材林、农田防护林及四旁绿化的优良树种。桑树。耐盐、耐水性都很强,可在农田防护林两侧种植。梨树。为耐寒、耐涝、中度耐盐性果木树种之一,如用杜梨作为嫁接梨树的砧木,耐涝碱性更强。能在含盐量0.6%的土壤上生长。杏树。为最耐盐碱性果树之一。枣树。对土壤的要求不严,除沼泽地和重碱性土地外,均可栽培。对土壤酸碱度的适应能力很强,对地下水位的高低也无严格要求,甚至在积水30厘米~70厘米,历时30天的情况下生长仍无明显影响。泡桐。适宜沙碱地生长,主要作为农田防护林,但怕水淹,不耐湿。 灌木树种 紫穗槐。生长迅速,适应性强,可做盐碱沙地区防风林带中的低层林木,在土壤含盐量0.4%时生长良好。白蜡条。能在含盐量为0.2%~0.5%的低湿土壤上生长。可做四旁绿化树种及培育白蜡干。水淹多天仍能成活生长。怪柳。耐旱、耐瘠,高度耐盐碱,可防风、固沙、护岸,盐碱地区各级渠道两侧及草木不生的盐碱地皆可栽种。杞柳。落叶灌木,生长迅速,适应性强,耐轻度盐碱,可固沙护岸。适宜在轻度盐碱湿地,河滩碱地、平原坡地、沙碱荒地种植。

植物抗病基因工程的研究进展论文

重点植物组织培养 植物体细胞杂交 应用:快速繁殖无病毒植物 大规模生产药物、食品添加济 色素杀崇虫济等 制造人工种子等

20世纪后期,生物工程迅速发展,给人类生活带来了巨大的变化。有人说,生物工程给人类带来了更大的希望,也有人说,它也会相应给人类带来灾难。学者们众说纷纭,褒贬不一。其中,植物转基因工程更是如此。植物转基因工程就是指通过基因枪等基因工程手段,将一种或几种外源基因转移到原本不具有这些基因的植物体内,并使之有效表达,产生相应性状,这种具有相应性状的植物称之为转基因植物。1983年,第一例转基因植物———转基因烟草问世。从此,转基因植物的研究就以惊人的速度发展,人类看到了更大的希望。1986年,抗虫和抗除草剂的转基因棉花首次进入田间实验,此后转基因植物在全球范围内飞速发展,种植面积不断扩大,给人类带来了非常明显的经济效益。在这同时,人类也注意到了它可能潜在着的一系列危害,即可能对环境产生不利影响,影响到生物多样性的保护和持续利用,并且对人类健康也可能有潜在的危害。1转基因植物的利用植物转基因工程的目的旨在通过导入有用的外源基因,获得转基因植物,用于植物的改良和有效成分的生产。目前在抗除草剂、抗虫、抗病、控制果实成熟以及植物生物反应器等方面已获得了一系列令人鼓舞的成果。1.1抗除草剂的转基因植物化学除草剂在现代农业中起着十分重要的作用,理想的除草剂必须具有高效、广谱的杀草能力,而对作物及人畜无害。但这样的除草剂成本越来越高,通过转基因技术,在作物中导入抗除草剂基因,获得抗除草剂作物,就能有效地解决这些问题,提高经济效益,使除草剂的应用更加方便。据报道,现已成功地获得了转aro A基因的番茄、油菜、大豆、杨树等,在田间试验中表现出对除草剂的良好抗性。1.2抗虫的转基因植物虫害对农业生产的危害非常严重,如能在植物体内转入抗虫基因,使植物获得抗虫性,增加对虫害的抵抗力,将对农业生产具有重要意义。基于这个目的,人们现已成功地将苏云金芽孢杆菌(Bacillusthurigiensis)的B.t毒蛋白基因转入了烟草、番茄、马铃薯、甘蓝、棉花、杨树等植物,使这些植物获得了抗虫性。1.3抗病的转基因植物据报道,将烟草花叶病毒(TMV)、黄瓜花叶病毒(CMV)、马铃薯X和Y病毒(PVX和PVY)、大豆花叶病毒(SMV)、苜蓿花叶病毒(AIMV)等病毒的外壳蛋白基因导入不同的植物体后,这些植物均获得了对相应病毒的抗性,这有望应用于农业生产。1.4抗逆的转基因植物68小分子化合物(如脯氨酸、甜菜碱、葡萄糖等)与植物忍受环境渗透胁迫的能力有关,人们若能将与脯氨酸或甜菜碱等合成有关的酶的基因克隆后转入植物,有望提高植物对干旱和盐碱等逆境的抗性。有报道说,人们现已成功地将相关基因转入了烟草、苜蓿、马铃薯等植物,使它们获得了对不同逆境的抗性。1.5植物生物反应器生产药物蛋白生物反应器(bioreactor)是指利用生物系统大规模生产有重要商业价值的外源蛋白质,用于医疗保健和科学研究。将不同的基因转入植物,可使转基因植物产生植物抗体、口服疫苗、植物药物和人类蛋白质等。据报道,到目前为止,人们已成功地获得了4种具有潜在医疗价值的植物抗体。2转基因植物存在的潜在风险2.1转基因作物对生态环境的潜在风险在耕地上栽种那些实验室里培育出来的转基因植物可能会对生态环境造成许多负面影响,转基因植物对非目标生物可能造成危害,转基因植物通过基因漂变对其它物种也可能产生有害影响。2.2对人类健康的潜在危害转基因食品里的新基因可能对消费者造成健康威胁,因为转基因植物是在传统植物接受了动物、植物、微生物的基因的基础上形成的,所以很可能对人类健康产生影响。人们正在关注这样一些问题:毒性问题、过敏反应问题、对抗生素的抵抗作用问题、营养问题等。3展望20世纪末生物技术取得了突飞猛进的发展,其涉及面之广、进展之快乃前所未有。从1986年美国批准第一个转基因作物进行大田试验,至1999年4月,已有4987个转基因作物被批准进行大田试验。自1994年至1999年五年间转基因农作物的种植面积增加了23倍多。美国的转基因抗虫棉花的种植面积已占其棉花总种植面积的13%。从发展趋势看,转基因植物将向多元化发展,例如品质改良、高产、抗逆(抗旱、抗寒、抗低光照、耐盐碱、耐瘠薄等)的基因工程发展。随着转基因技术的深入发展,人们也将把转基因植物应用到医药化工领域,建立基因工厂,从而利用转基因植物生产各种化工原料和药品,摆脱传统化工厂对日益短缺的化工原料的依赖和生产过程中对环境的严重污染。在21世纪,科学技术更加透明,更加公平,人们需要更多、更大的知情权,所以,国际社会对这个问题给予了极大关注,各国政府也高度重视。争论本身就是推动社会前进的动力。通过争论,弄清是非,避免破坏性后果的发生,这将推动科学技术沿着健康的道路发展前进。任何科学技术都不应该滥用,但也不能扼杀能给人类和社会创造巨大财富的技术成果。在应用植物转基因工程技术中,人类应该像对待其它科学技术一样,扬长避短,全面、理性地看问题,把握尺度,使植物转基因工程更加健康地发展,造福全人类。

相关百科

热门百科

首页
发表服务