制冷RefrigerationRefrigeration is the process of removing heat from an enclosed space, or from a substance, and rejecting it elsewhere for the primary purpose of lowering the temperature of the enclosed space or substance and then maintaining that lower temperature. The term cooling refers generally to any natural or artificial process by which heat is dissipated. The process of artificially producing extreme cold temperatures is referred to as cryogenics.Cold is the absence of heat, hence in order to decrease a temperature, one "removes heat", rather than "adding cold." In order to satisfy the Second Law of Thermodynamics, some form of work must be performed to accomplish this. This work is traditionally done by mechanical work but can also be done by magnetism, laser or other means. However, all refrigeration uses the three basic methods of heat transfer: convection, conduction, or radiation.Historical applicationsIce harvestingThe use of ice to refrigerate and thus preserve food goes back to prehistoric times.Through the ages, the seasonal harvesting of snow and ice was a regular practice of most of the ancient cultures: Chinese, Hebrews, Greeks, Romans, Persians. Ice and snow were stored in caves or dugouts lined with straw or other insulating materials. The Persians stored ice in pits called yahairas. Rationing of the ice allowed the preservation of foods over the cold periods. This practice worked well down through the centuries, with icehouses remaining in use into the twentieth century.In the 16th century, the discovery of chemical refrigeration was one of the first steps toward artificial means of refrigeration. Sodium nitrate or potassium nitrate, when added to water, lowered the water temperature and created a sort of refrigeration bath for cooling substances. In Italy, such a solution was used to chill wine.During the first half of the 19th century, ice harvesting became big business in America. New Englander Frederic Tudor, who became known as the "Ice King", worked on developing better insulation products for the long distance shipment of ice, especially to the tropics.First refrigeration systemsThe first known method of artificial refrigeration was demonstrated by William Cullen at the University of Glasgow in Scotland in 1748. Cullen used a pump to create a partial vacuum over a container of diethyl ether, which then boiled , absorbing heat from the surrounding air. The experiment even created a small amount of ice, but had no practical application at that time.In 1805, American inventor Oliver Evans designed but never built a refrigeration system based on the vapor-compression refrigeration cycle rather than chemical solutions or volatile liquids such as ethyl ether.In 1820, the British scientist Michael Faraday liquefied ammonia and other gases by using high pressures and low temperatures.An American living in Great Britain, Jacob Perkins, obtained the first patent for a vapor-compression refrigeration system in 1834. Perkins built a prototype system and it actually worked, although it did not succeed commercially.In 1842, an American physician, John Gorrie, designed the first system for refrigerating water to produce ice. He also conceived the idea of using his refrigeration system to cool the air for comfort in homes and hospitals (i.e., air-conditioning). His system compressed air, then partially cooled the hot compressed air with water before allowing it to expand while doing part of the work required to drive the air compressor. That isentropic expansion cooled the air to a temperature low enough to freeze water and produce ice, or to flow "through a pipe for effecting refrigeration otherwise" as stated in his patent granted by the U.S. Patent Office in 1851. Gorrie built a working prototype, but his system was a commercial failure.Alexander Twining began experimenting with vapor-compression refrigeration in 1848 and obtained patents in 1850 and 1853. He is credited with having initiated commercial refrigeration in the United States by 1856.Meanwhile, James Harrison who was born in Scotland and subsequently emigrated to Australia, begun operation of a mechanical ice-making machine in 1851 on the banks of the Barwon River at Rocky Point in Geelong. His first commercial ice-making machine followed in 1854 and his patent for an ether liquid-vapour compression refrigeration system was granted in 1855. Harrison introduced commercial vapor-compression refrigeration to breweries and meat packing houses and by 1861, a dozen of his systems were in operation.Australian, Argentinean and American concerns experimented with refrigerated shipping in the mid 1870s, the first commercial success coming when William Soltau Davidson fitted a compression refrigeration unit to the New Zealand vessel Dunedin in 1882, leading to a meat and dairy boom in Australasia and South America.The first gas absorption refrigeration system using gaseous ammonia dissolved in water (referred to as "aqua ammonia") was developed by Ferdinand Carré of France in 1859 and patented in 1860. Due to the toxicity of ammonia, such systems were not developed for use in homes, but were used to manufacture ice for sale. In the United States, the consumer public at that time still used the ice box with ice brought in from commercial suppliers, many of whom were still harvesting ice and storing it in an icehouse. Thaddeus Lowe, an American balloonist from the Civil War, had experimented over the years with the properties of gases. One of his mainstay enterprises was the high-volume production of hydrogen gas. He also held several patents on ice making machines. His "Compression Ice Machine" would revolutionize the cold storage industry. In 1869 he and other investors purchased an old steamship onto which they loaded one of Lowe’s refrigeration units and began shipping fresh fruit from New York to the Gulf Coast area, and fresh meat from Galveston, Texas back to New York. Because of Lowe’s lack of knowledge about shipping, the business was a costly failure, and it was difficult for the public to get used to the idea of being able to consume meat that had been so long out of the packing house.Domestic mechanical refrigerators became available in the United States around 1911.Widespread commercial useBy the 1870s breweries had become the largest users of commercial refrigeration units, though some still relied on harvested ice. Though the ice-harvesting industry had grown immensely by the turn of the 20th century, pollution and sewage had begun to creep into natural ice making it a problem in the metropolitan suburbs. Eventually breweries began to complain of tainted ice. This raised demand for more modern and consumer-ready refrigeration and ice-making machines. In 1895 German engineer Carl von Linde set up a large-scale process for the production of liquid air and eventually liquid oxygen for use in safe household refrigerators.Refrigerated railroad cars were introduced in the US in the 1840s for the short-run transportation of dairy products. In 1867 J.B. Sutherland of Detroit, Michigan patented the refrigerator car designed with ice tanks at either end of the car and ventilator flaps near the floor which would create a gravity draft of cold air through the car.By 1900 the meat packing houses of Chicago had adopted ammonia-cycle commercial refrigeration. By 1914 almost every location used artificial refrigeration. The big meat packers, Armour, Swift, and Wilson, had purchased the most expensive units which they installed on train cars and in branch houses and storage facilities in the more remote distribution areas.It was not until the middle of the 20th century that refrigeration units were designed for installation on tractor-trailer rigs (trucks or lorries). Refrigerated vehicles are used to transport perishable goods, such as frozen foods, fruit and vegetables, and temperature-sensitive chemicals. Most modern refrigerators keep the temperature between -40 and +20 °C and have a maximum payload of around 24 000 kg. gross weight (in Europe).Home and consumer useWith the invention of synthetic refrigerations based mostly on a chlorofluorocarbon (CFC) chemical, safer refrigerators were possible for home and consumer use. Freon is a trademark of the Dupont Corporation and refers to these CFC, and later hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC), refrigerants.Developed in the late 1920's, these refrigerants were considered at the time to be less harmful than the commonly used refrigerants of the time, including methyl formate, ammonia, methyl chloride, and sulfur dioxide. The intent was to provide refrigeration equipment for home use without endangering the lives of the occupants. These CFC refrigerants answered that need.The Montreal ProtocolAs of 1989, CFC-based refrigerant was banned via the Montreal Protocol due to the negative effects it has on the ozone layer. The Montreal Protocol was ratified by most CFC producing and consuming nations in Montreal, Quebec, Canada in September 1987. Greenpeace objected to the ratification because the Montreal Protocol instead ratified the use of HFC refrigeration, which are not ozone depleting but are still powerful global warming gases. Searching for an alternative for home use refrigeration, dkk Scharfenstein (Germany) developed a propane-based CFC as well as an HFC-free refrigerator in 1992 with assistance from Greenpeace.[citation needed]The tenets of the Montreal Protocol were put into effect in the United States via the Clean Air Act legislation in August 1988. The Clean Air Act was further amended in 1990. This was a direct result of a scientific report released in June 1974 by Rowland-Molina, detailing how chlorine in CFC and HCFC refrigerants adversely affected the ozone layer. This report prompted the FDA and EPA to ban CFCs as a propellant in 1978 (50% of CFC use at that time was for aerosol can propellant).In January 1992, the EPA required that refrigerant be recovered from all automotive air conditioning systems during system service. In July 1992, the EPA made illegal the venting of CFC and HCFC refrigerants. In June 1993, the EPA required that major leaks in refrigeration systems be fixed within 30 days. A major leak was defined as a leak rate that would equal 35% of the total refrigerant charge of the system (for industrial and commercial refrigerant systems), or 15% of the total refrigerant charge of the system (for all other large refrigerant systems), if that leak were to proceed for an entire year. In July 1993, the EPA instituted the Safe Disposal Requirements, requiring that all refrigerant systems be evacuated prior to retirement or disposal (no matter the size of the system), and putting the onus on the last person in the disposal chain to ensure that the refrigerant was properly captured. In August 1993, the EPA implemented reclamation requirements for refrigerant. If a refrigerant is to change ownership, it must be processed and tested to comply with the American Refrigeration Institute (ARI) standard 700-1993 (now ARI standard 700-1995) requirements for refrigerant purity. In November 1993, the EPA required that all refrigerant recovery equipment meet the standards of ARI 740-1993. In November 1995, the EPA also restricted the venting of HFC refrigerants. These contain no chlorine that can damage the ozone layer (and thus have an ODP (Ozone Depletion Potential) of zero), but still have a high global warming potential. In December 1995, CFC refrigerant importation and production in the US was banned. It is currently planned to ban all HCFC refrigerant importation and production in the year 2030, although that will likely be accelerated.Current applications of refrigerationProbably the most widely-used current applications of refrigeration are for the air-conditioning of private homes and public buildings, and the refrigeration of foodstuffs in homes, restaurants and large storage warehouses. The use of refrigerators in our kitchens for the storage of fruits and vegetables has allowed us to add fresh salads to our diets year round, and to store fish and meats safely for long periods.In commerce and manufacturing, there are many uses for refrigeration. Refrigeration is used to liquify gases like oxygen, nitrogen, propane and methane for example. In compressed air purification, it is used to condense water vapor from compressed air to reduce its moisture content. In oil refineries, chemical plants, and petrochemical plants, refrigeration is used to maintain certain processes at their required low temperatures (for example, in the alkylation of butenes and butane to produce a high octane gasoline component). Metal workers use refrigeration to temper steel and cutlery. In transporting temperature-sensitive foodstuffs and other materials by trucks, trains, airplanes and sea-going vessels, refrigeration is a necessity.Dairy products are constantly in need of refrigeration, and it was only discovered in the past few decades that eggs needed to be refrigerated during shipment rather than waiting to be refrigerated after arrival at the grocery store. Meats, poultry and fish all must be kept in climate-controlled environments before being sold. Refrigeration also helps keep fruits and vegetables edible longer.One of the most influential uses of refrigeration was in the development of the sushi/sashimi industry in Japan. Prior to the discovery of refrigeration, many sushi connoisseurs suffered great morbidity and mortality from diseases such as hepatitis A[citation needed], and Diphyllobothriosis, from a common oceanic tapeworm - Diphyllobothrium latum Oiler99 (talk) 19:09, 26 May 2008 (UTC) . However the dangers of unrefrigerated sashimi was not brought to light for decades due to the lack of research and healthcare distribution across rural Japan. Around mid-century, the Zojirushi corporation based in Kyoto made breakthroughs in refrigerator designs making refrigerators cheaper and more accessible for restaurant proprietors and the general public.Methods of refrigerationMethods of refrigeration can be classified as non-cyclic, cyclic and thermoelectric.Non-cyclic refrigerationIn these methods, refrigeration can be accomplished by melting ice or by subliming dry ice. These methods are used for small-scale refrigeration such as in laboratories and workshops, or in portable coolers.Ice owes its effectiveness as a cooling agent to its constant melting point of 0 °C (32 °F). In order to melt, ice must absorb 333.55 kJ/kg (approx. 144 Btu/lb) of heat. Foodstuffs maintained at this temperature or slightly above have an increased storage life. Solid carbon dioxide, known as dry ice, is used also as a refrigerant. Having no liquid phase at normal atmospheric pressure, it sublimes directly from the solid to vapor phase at a temperature of -78.5 °C (-109.3 °F). Dry ice is effective for maintaining products at low temperatures during the period of sublimation.Cyclic refrigerationMain article: Heat pump and refrigeration cycleThis consists of a refrigeration cycle, where heat is removed from a low-temperature space or source and rejected to a high-temperature sink with the help of external work, and its inverse, the thermodynamic power cycle. In the power cycle, heat is supplied from a high-temperature source to the engine, part of the heat being used to produce work and the rest being rejected to a low-temperature sink. This satisfies the second law of thermodynamics.A refrigeration cycle describes the changes that take place in the refrigerant as it alternately absorbs and rejects heat as it circulates through a refrigerator. It is also applied to HVACR work, when describing the "process" of refrigerant flow through an HVACR unit, whether it is a packaged or split system.Heat naturally flows from hot to cold. Work is applied to cool a living space or storage volume by pumping heat from a lower temperature heat source into a higher temperature heat sink. Insulation is used to reduce the work and energy required to achieve and maintain a lower temperature in the cooled space. The operating principle of the refrigeration cycle was described mathematically by Sadi Carnot in 1824 as a heat engine.The most common types of refrigeration systems use the reverse-Rankine vapor-compression refrigeration cycle although absorption heat pumps are used in a minority of applications.Cyclic refrigeration can be classified as:Vapor cycle, and Gas cycle Vapor cycle refrigeration can further be classified as:Vapor compression refrigeration Vapor absorption refrigeration
据学术堂了解论文写作时,在最后部分参考文献中,总会有部分同学出现自己手打参考文献或者自己复制文献的情况,这样做不仅效率低,而且会出现参考文献不规范的情况,下面我就说说如何快速,准确的引用参考文献。工具:中国知网步骤:
1、找到自己需要引用的论文
2、选中,点击导出/参考文献
3、直接复制,或者导出
按照这种方法,就是标准的论文参考文献,在论文中直接复制到论文就行。
你是学建筑环境也设备工程的不
1、学位论文
[序号]主要责任者.文献题名[D].出版地:出版单位,出版年:起止页码(可选).
例如:[4]赵天书.诺西肽分阶段补料分批发酵过程优化研究[D].沈阳:东北大学,2013.
2、专著、论文集、报告
[序号]主要责任者.文献题名[文献类型标识].出版地:出版者,出版年:起止页码(可选).
例如:[1]刘国钧,陈绍业.图书馆目录[M].北京:高等教育出版社,1957:15-18.
3、论文集中的析出文献
[序号]析出文献主要责任者.析出文献题名[A].原文献主要责任者(可选)原文献题名[C].出版地:出版者,出版年:起止页码.
例如:[7]钟文发.非线性规划在可燃毒物配置中的应用[A].赵炜.运筹学的理论与应用——中国运筹学会第五届大会论文集[C].西安:西安电子科技大学出版社,1996:468.
扩展资料:
参考文献类型及文献类型,根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:
1、专著M ; 报纸N ;期刊J ;专利文献P;汇编G ;古籍O;技术标准S ;
2、学位论文D ;科技报告R;参考工具K ;检索工具W;档案B ;录音带A ;
3、图表Q;唱片L;产品样本X;录相带V;会议录C;中译文T;
4、乐谱I; 电影片Y;手稿H;微缩胶卷U ;幻灯片Z;微缩平片F;其他E。
参考文献类型:专著[M],会议论文集[C],报纸文章[N],期刊文章[J],学位论文[D],报告[R],标准[S],专利[P],论文集中的析出文献[A],杂志[G]。
参考资料来源:百度百科——参考文献标准格式
暖通专业在计算 方法 、程序编制和工程应用几方面都取得了显著成绩。下面是由我整理的暖通专业技术论文,谢谢你的阅读。
暖通空调技术与节能
摘要:随着人们生活水平的日益提高,人们生活的节奏逐渐加快及心理压力的不断增大,使得人们的工作生活环境应该予以重视。而在人们的工作生活环境中倡导环保和节能的生活方式越来越重要。本文主要是对暖通空调技术与节能进行分析。
关键词:暖通空调 技术 节能
2009年9月22日,国家主席胡锦涛在联合国气候变化峰会开幕式上发表题为《携手应对气候变化挑战――在联合国气候变化峰会开幕式上的讲话》的重要讲话,郑重承诺今后中国将进一步把应对气候变化纳入经济社会发展规划,并继续采取强有力的 措施 :一是加强节能、提高能效工作;二是大力发展可再生能源和核能;三是大力增加森林碳汇;四是大力发展绿色经济,积极发展低碳经济和循环经济,研发和推广气候友好技术。明确提出了建设生态文明的重大战略任务,强调要坚持节约资源和保护环境的基本国策,坚持走可持续发展道路,在加快建设资源节约型国家。可见节能对于一个国家乃至世界时是多么的重要。本文主要从节能方面浅谈暖通空调技术。
1.室内设计参数
常规情况下,在冬季供暖时,室内计算温度每降低1℃,能耗将减少约5%~10%;在夏季供冷时,室内计算温度每升高1℃,能耗将减少约8%~10%。室内设计参数必须在规定的参数范围内取值。近几年,低温地板辐射采暖系统已经取代散热器采暖,之所以采用这种方式,主要是因为这种方式具有能耗小、舒适性高、容易分户计量、不占用房间使用面积等优点。
2.采暖设计
采暖空调热负荷为12650KW,热指标为。热源由城市热网供给,一次水供回水温度为95/70℃,经热交换后,高温二次水供回水温度为85/60℃,供采暖系统及空气、新风处理机组使用。各类机房、自行车库等设5-8℃的值班采暖,人防掩蔽体采暖设计温度为18℃,厕所为16℃;低温二次水供回水温度为60/50℃,供风机盘管和汽车坡道化雪系统使用,或者化雪系统由于什么原因没有使用。为保证一层室内良好的温度环境,抵挡大门的冷风侵入,在各大门入口处均设置了热空气幕。
以空气为热泵的热源在寒冷地区进行采暖是当前研究的 热点 。因为它和以往的燃煤、燃油、直接用电等取暖方式比较的话,在环保、节能、安全使用,甚至经济等方面有突出的优点,其可推广性也超过了水源、地源热泵。
2.1地板采暖的空气热泵机组容量的选择
机组容量(W)=当地建筑采暖设计负荷()×用户采暖的建筑面积()÷(1-)×0.85-0.9
2.2室外机最好安装在冬季主导风的背风面,应该设置遮雪蓬,机组如果安装在平台上,则底面应抬高至少20cm,以免化霜结冻,机组吸风口距障碍物至少25cm,双机之间距离至少20cm。
2.3地板下埋管的设计
空气热泵作为热源时,供水温度或供回水平均温度应尽可能设计得低些,以使机组效率尽可能高,又由于工程实践证明本机组的供回水温差较少仅2℃-3℃,所以,选择地下埋管时可参照“低温热水地板辐射供暖应用技术规程”( DBJ/T01-49-2000)附录 E-1至 E-3中平均水温35℃一栏,按照地板所需散热量选择间距,然后,将管道直径放大到Φ20/16成间距缩小一档即可。
3.风系统设计
3.1集中空调系统的排风热回收
一直以来,业内人士只是从经济方面的角度来衡量热回收装置的利弊,而环保与节能则被忽视。当今,业内人士考虑的角度有所转变,现在从环保和节能这个角度来衡量热回收装置的利弊。
空调区域排风中的热能量是非常多的,如果把这些热能量加以回收利用,那么环保和节能定会实现。如果新风和排风采用专门独立的管道输送,那么有利于集中热回收装置的设置。新风和排风采用热回收装置进行湿热或者全热交换,节能效果非常明显的表现出来。
3.2空调风系统
(1)有资料显示,以我国南方地区为例,夏季室内设计温度如果每降低1℃或冬季设计温度每升高1℃,其工程投资将增加6%,能耗将增加8%。该数据很明显地说明,适当提高夏季以及降低冬季的室内空气温度,都将起到显著的节能效果。与此同时,为保证室内空气质量以及人们对新鲜空气的需要,现行《采暖通风与空气调节设计规范》对最小新风量作出明确规定,要求建筑满足国家现行有关卫生标准。研究表明,加大新风量能够在一定程度上解决室内空气质量问题,但增加了空调能耗。新风定值必须按照规范来确定,因为新风量对于能耗和人体健康有着非常重要的作用,如果人员密度较大时,新风的供应按人员的密度来进行的话是非常不经济的。我国建筑采用了新风需求控制(检测室内CO2浓度),值得注意的是:新风量变化,排风量随着也发生变化,否则造成负压,可能会适得其反。
(2)暖通设计师对于规范中新风量的规定表示赞同。暖通设计师认为,在目前中央空调清洗不够规范的背景下,加大新风量是必要的。不过,对于室内设计温度的要求,他们却持保留态度。业内人士有这样的一个说法:“如果说节能像一棵树,有很多枝杈可以作为思路,那么,业主方的意见更像那个根。他们的态度,将成为决定暖通专业乃至建筑节能的根本性因素。”业内人士表示,建设方的意见非常重要。
要想增加新风量或者增强风机盘管处理室内回风的能力,风机盘管加新风的新风口应单独或布置在盘管出风口的旁边,而不应该布置在盘管回风吸入口。
(3)房间面积或空间较大、人员较多或有必要集中进行温度控制的空气调节区,其空气调节风系统宜采用全空气空调系统,不宜采用风机盘管系统,以利于集中处理、调节,发挥有利因素,弥补之前产生的问题。
(4)建筑空间高度大于或等于10m、且体积大于时,宜采用分层空调系统。与全室性空调方式比,分层空调系统夏季可以节能30%左右,但是冬季并不节能。通常设计时,夏季的气流组织为喷口侧送,下回风,高大空间上部排风;而冬季一般在底层设置地板辐射或地板送风供暖系统,也可将上部过热的空气通过风道送至房间下部。
(5)多个空气调节区合用1个空气调节风系统,各区负荷变化较大、低负荷运行时间较长,且需要分别调节室内温度,在经济条件允许时,宜采用全空气变风量空气调节系统。设计时应注意:要求采用风机调速改变系统风量,而不能采用恒速风机而改变系统阻力调节;其次,应采取保证最小新风量的措施,避免因送风量减少,造成新风量减少而不满足卫生要求的后果;再者,调节末端送风口风量时,推荐采用串联式风机驱动型末端装置以保证室内的气流分布。
(6)在某些情况下,像屋顶传热量较大、吊顶内发热量较大、吊顶空间较大(此时的吊顶至楼板底的高度超过1.0m),如果采用吊顶内回风,导致空调区域增大、空调耗能上升,这样非常不利于节能。所以对于建筑顶层或者吊顶上部有较大热量、吊顶空间较高时,直接从吊顶回风是不合理的。
4.围护结构
北京市建筑设计研究院原院长、北京市建筑设计研究院顾问总工程师吴德绳认为,暖通专业既然是建筑节能的支柱力量,因此,目光不仅要盯住如何优化暖通空调系统设计,更应该有所转移,在围护结构设计方面重点考虑。
围护结构在节能工作中,扮演着愈来愈重要的角色。所谓围护结构节能,通常是指通过改善建筑物围护结构的热工性能,使得建筑在夏季隔绝室外热量进入室内,冬季防止室内热量泄出室外,以保持室内尽可能接近舒适温度,减少通过辅助设备来达到合理舒适室温的负荷,并最终达到节能的目的,如通过采暖、制冷设备达到节能。
传统住宅建筑的围护结构是普通黏土砖,简单架空屋面和单层玻璃钢窗,它们的传热系数分别为1.96、1.66和6.4。而“节能住宅”的围护结构中外墙和屋面采取了保温措施,外窗采用中空塑钢窗或断热中空铝合金窗,它们的传热系数分别为 1.5、1.0和3.0,使围护结构的节能贡献约占25%。采用能效比高的采暖、空调设备(按照国家标准,房间空调器的能效比:制冷>2.3,采暖>1.9),使采暖、空调设备的节能贡献约占25%,两者相加总体达到节能50%的目标。
据介绍,围护结构的节能设计应该从墙体、窗户、屋面等三个方面考虑。对于设计人员而言,如何处理建筑玻璃幕墙的问题,在业内一直存在很大争议。普通玻璃幕墙是建筑节能不能实现的因素之一。统计数据表明,夏季通过玻璃窗的日照热可占制冷机最大负荷的30%,冬季单层玻璃的热损失约可占锅炉负荷的20%。窗体节能技术主要从减少渗透量、减少传热量、减少太阳辐射能三个方面考虑。另外,在保证室内采光良好的前提下,合理确定窗墙比十分重要。当窗墙面积比超过50%时,负荷将明显增加。不仅是外围护结构,内围护结构在设计中同样重要。暖通设计师要比普通建筑师更懂得建筑节能的途径,所以暖通设计师和普通建筑师多进行沟通效果才会更好。
5.实现节能
暖通空调的设计师在方案设计时,首先应深入了解业主的能源状况以及对空调的使用状况和是否有余热、废气等条件,然后对各种能源方案进行合理综合的对比。设计师在设计时应考虑的重点是:如何利用可再生能源和低品位能源。
暖通设计师在设计阶段完成基础工作之后,最关键的就是环保和节能的实现,而环保和节能的实现是通过综合利用各种先进技术、利用各种可再生资源来实现的。
利用自然条件来满足人们对于室内温度的需求,这是最理想的方式。现在通过各种设备实现对温度的调节,只不过是对人们的过错进行补救。冷热源是设计师最关注的一点,因为其能耗往往能占空调系统总能耗的50%左右。
地源热泵系统就是在这种形势下快速发展起来的,它利用地下恒温层土壤热显著提高空调系统效率。同时,采用新能源利用的供给方式,实现冷、热、电三联供;利用燃气、汽、电力能量转换的原理联合循环使用,将工业流程最尾端的余热收集起来,用于供冷系统空调冷冻水和供热系统的生活热水,这样,能源的利用率可提高至70%~80%左右。这些都给暖通空调设计师提供了广泛的节能设计思路。
6. 总结
随着全球逐渐变暖这种现象的出现,空调现在已经是人们生活中不可或缺的一部分,它使人们工作生活更加舒适,人们对于空调也有了一定的依赖性。然而,环保和节能是当今非常重要的问题,因此,在暖通空调设计方面,暖通空调的环保和节能是目前空调技术方面发展的方向,也就是说,城市供热环保和节能是目前亟须加强和可持续发展的问题。
参考文献:
[1] 赵君利. 暖通空调节能从设计开始.中国建设报,2010,(03).
[2] 胡锦涛活动报道集,2009,(09)
[3] 刘金瑶,李婉茹,刘鹏华. 浅谈暖通空调的节能.暖通空调,2008,(04).
[4] 张莉,李尧,朱玉明.暖通空调节能设计分析.山西建筑,2010,(09).
[5]__荣.建筑工程的暖通空调设计.施工技术与设计,2008,(07).
[6] 万蓉. 基于气候的采暖空调耗能及室外计算参数研究.西安建筑科技大学, 2009,(08).
点击下页还有更多>>>暖通专业技术论文
对水暖施工中常见问题的分析论文
摘要:
本文根据作者的实际工作经验,分析了水暖工程施工质量在施工中的重要性,对给排水与暖卫工程在施工过程中经常遇到的质量问题进行了概括和总结,从而使水暖工程的质量得到保证。
关键词: 水暖工程;施工质量;管线;套管;防水问题
合理的设计,规范化的施工,正确的材料选用,严格的质量检验是建设任何一个高质量工程都不可或缺的必备环节。建筑水暖工程是一个需要与建筑、结构、电气等相关专业相互协调、相互配合的分部工程,施工质量控制不好,工程投入使用后,给排水和采暖系统中的跑、冒、滴、漏、堵等影响使用功能的质量问题,这些问题的存在严重困扰了用户,不利于今后的管理。为了最大程度上满足用户的需要,给用户提供一个周到的服务,就必须提高水暖工程的质量。这篇文章将结合工程产生的问题进行分析,对水暖工程出现的问题进行总结,探索。
1、工程的主材问题。
当水暖工程建设完成后,由于材料的问题往往需要后期的维护。对出现问题的水管进行维修更换。这种做法一方面影响了用户的正常使用,另一方面直接提高了水暖工程的建设成本,造成资源浪费。为了改善当前的状况,在进行水暖施工程建设的时候,应当注重材料的选取,使用正规的材料,明确标明产品的名称,规格等参数,关于厂家的信息也应当明确标明。在材料的选取过程中应当参照国家的相关标准,根据国家政策的变化而变化,坚持与时俱进。
2、管线的铺设问题。
水暖工程问题频发的另外一个关键因素是管线的铺设不合理。水暖管的线路设计不合理,也有线路的设计合理但是没有经过专业人员的施工大大影响了施工的效果。各种线路交叉现象严重。要想提高线路的科学性,保证水暖工程的质量,应当着重提高工作人员的专业技能。应当根据建筑本身的结构合理的布线,对于水暖管较为复杂的地方应当加强管理,由专业人员进行督导。在水管的排序和布局上应当坚持如下的几个原则:第一,大水管优先,小水管应当为大水管让路。第二,坚持具有水压的水管优先。第三,通风管优先的原则。最后,还要注意管道甩口位置的选取,避免由于位置的错选对以后造成麻烦。
3、套管的安装问题。
为了提高水暖工程的质量,提高水暖材料的使用周期,需要使用套管。然而,套管的使用注意事项最容易被忽略。有些套管在安装的时候没有被固定,水暖工程正式运行之后,套管往往随管而动,一方面影响了美观,另一方面带来了严重的安全隐患。还有些工程乱用管套,其在管中没有实际的作用。相反,有时候还会给墙壁带来压力。还有一些穿墙管忽视套管的使用,没有安装套管不利于管道的转折,所以很多没有安装套管的管道穿墙往往与梁的距离过近,给梁带来压力。在这种情况下必须使用套管,及时改变管道的方向,择优选择管道的通路。还有一些条件下也需要使用套管。例如:管道需要穿过地下室,穿过潮湿的地方,下水道,硬度较大的环境等。
4、消防问题。
其实,在管道的布局中应当充分的考虑到消防,因为水暖工程质量不合格顶多影响用户的使用,但是一旦发生灾害,消防工程不好将会直接影响公众的生命财产安全。在水暖工程的建设过程中,还需要消防部门的参与,管道布局应当是经过管道施工和消防两个施工单位协调的结果。但是,在建筑施工的前期,消防单位并不参与,这就导致在消防单位施工的时候会存在这样或者那样的问题。最常见的问题是消防设施的放置和电梯通风口的选择等。如果电梯的送风口选择不合理,将会在电梯运行的过程带来很多负担。即使是在建筑建设的过程中预留了空间,但是在建设的过程中,建筑材料的堆砌导致预留的'空间逐渐的缩小,不能满足安装的要求。还有一些建筑在建设的过程也预留了消防栓箱口,但由于对于尺寸和安装的不熟,导致预留的空间不能起到作用。
5、防水问题。
当前,水暖工程出现最多,最为普遍的问题就是渗漏,经过研究发现,主要是由下列原因造成的。
a、承压管道设备未能规定试压甚至不试压。
b、管道过楼板套管埋设不合理。
c、立管穿越楼板的预留孔洞尺寸及堵孔不符合要求。
d、卫生设备安装不牢。
e、管道连接处理不当。
f、排水管甩口留置位置不当。
g、水暖材料设备不合理等。
6、给排水问题。
住宅地的管道铺设应当注意管道的卫生,尤其是提供居民生活用水的管道质量和卫生条件更应当严格把关。使用的管道应当有厂家提供的卫生合格证书。现阶段,我国倡导使用的管道材料有两种,一种为塑料管,另外一种为铝塑管。两种管的物理性质相似,硬度大,但是容易破裂,韧性差。当由硬度较大的物体撞击管道后通常会出现破裂的现象。此外,在塑料管的使用上,还要注意管道与管道之间的距离。一般竖直塑料管道之间的距离确定应当比金属管道距离小,还要注意管道支架的建立,稳固管道。当使用金属管架来加固塑料管时,还要用塑料带等物质裹在管道与金属支架之间,保护塑料管道不被磨坏。
7、采暖问题。
除了上述的漏水问题上,采暖管道的一个常见的问题是暖气泄露,散热器无法发挥作用等。导致该问题的因素有很多,下面将针对几个典型的问题进行分析。
第一,管道之间的连接不紧密,阀门的质量不行,存在渗漏现象,还有一些装置的丝扣拧不紧等。
第二,在暖气供应初期,由于人为的错误操作导致采暖管道的管壁压力过大,温度过高。温度的变化将导致管道的性能发生变化,无法有效的排水。在温度过低的环境中,管道、管件、阀门、散热器被冻裂漏水。对于以上出现的种种问题,应当采取切实有效的措施来改进。对于施工的材料进行管理,保证施工的材料标准化,拒绝使用假冒伪劣产品。应当注重管道的衬垫材料选取,当前普遍使用的材料是石棉等。要做好管道之间连接部分的密封工作。丝扣要紧,焊接管件要求焊口平直度、焊缝加强面符合施工规范要求,焊波要均匀一致,焊口表面无烧穿、没有裂缝和明显的结瘤、夹渣、气孔等缺陷。当采暖设备安装完成后,应当对整个设备进行水压测试,直到整个装置不出现漏水,漏气现象,压力在标准的范围内才算符合标准。此外,水压测试工作也是十分必要的。
第三,当整个水暖工程投入使用后,总闸门不要全部打开,这样对管道造成的压力过大可能导致管道破裂。此外,压力过大,导致水流量增加,管壁温度升高,影响管件,阀门等部件的性能。如果水暖工程出现异常,应当及时将管道内的水排出来,否则可能导致管道和管道的附属部件产生异常情况,造成安全隐患。
参考文献:
[1]张恒亮,李宏伟。在建筑施工中水暖问题的分析[J]。中国高新技术,2010,9。
[2]汪小芬,徐颖,怎样做好暖通工程安装工作[J]。建筑知识,2009,10。
《暖通空调》是本杂志,本专业的核心期刊,自己去随便下载几篇都是暖通行业相关的。 翻译借助百度翻译和自己那点水平,这小事儿还用求助..要原创的我可以提供
暖通专业在计算 方法 、程序编制和工程应用几方面都取得了显著成绩。下面是由我整理的暖通专业技术论文,谢谢你的阅读。
暖通空调技术与节能
摘要:随着人们生活水平的日益提高,人们生活的节奏逐渐加快及心理压力的不断增大,使得人们的工作生活环境应该予以重视。而在人们的工作生活环境中倡导环保和节能的生活方式越来越重要。本文主要是对暖通空调技术与节能进行分析。
关键词:暖通空调 技术 节能
2009年9月22日,国家主席胡锦涛在联合国气候变化峰会开幕式上发表题为《携手应对气候变化挑战――在联合国气候变化峰会开幕式上的讲话》的重要讲话,郑重承诺今后中国将进一步把应对气候变化纳入经济社会发展规划,并继续采取强有力的 措施 :一是加强节能、提高能效工作;二是大力发展可再生能源和核能;三是大力增加森林碳汇;四是大力发展绿色经济,积极发展低碳经济和循环经济,研发和推广气候友好技术。明确提出了建设生态文明的重大战略任务,强调要坚持节约资源和保护环境的基本国策,坚持走可持续发展道路,在加快建设资源节约型国家。可见节能对于一个国家乃至世界时是多么的重要。本文主要从节能方面浅谈暖通空调技术。
1.室内设计参数
常规情况下,在冬季供暖时,室内计算温度每降低1℃,能耗将减少约5%~10%;在夏季供冷时,室内计算温度每升高1℃,能耗将减少约8%~10%。室内设计参数必须在规定的参数范围内取值。近几年,低温地板辐射采暖系统已经取代散热器采暖,之所以采用这种方式,主要是因为这种方式具有能耗小、舒适性高、容易分户计量、不占用房间使用面积等优点。
2.采暖设计
采暖空调热负荷为12650KW,热指标为。热源由城市热网供给,一次水供回水温度为95/70℃,经热交换后,高温二次水供回水温度为85/60℃,供采暖系统及空气、新风处理机组使用。各类机房、自行车库等设5-8℃的值班采暖,人防掩蔽体采暖设计温度为18℃,厕所为16℃;低温二次水供回水温度为60/50℃,供风机盘管和汽车坡道化雪系统使用,或者化雪系统由于什么原因没有使用。为保证一层室内良好的温度环境,抵挡大门的冷风侵入,在各大门入口处均设置了热空气幕。
以空气为热泵的热源在寒冷地区进行采暖是当前研究的 热点 。因为它和以往的燃煤、燃油、直接用电等取暖方式比较的话,在环保、节能、安全使用,甚至经济等方面有突出的优点,其可推广性也超过了水源、地源热泵。
2.1地板采暖的空气热泵机组容量的选择
机组容量(W)=当地建筑采暖设计负荷()×用户采暖的建筑面积()÷(1-)×0.85-0.9
2.2室外机最好安装在冬季主导风的背风面,应该设置遮雪蓬,机组如果安装在平台上,则底面应抬高至少20cm,以免化霜结冻,机组吸风口距障碍物至少25cm,双机之间距离至少20cm。
2.3地板下埋管的设计
空气热泵作为热源时,供水温度或供回水平均温度应尽可能设计得低些,以使机组效率尽可能高,又由于工程实践证明本机组的供回水温差较少仅2℃-3℃,所以,选择地下埋管时可参照“低温热水地板辐射供暖应用技术规程”( DBJ/T01-49-2000)附录 E-1至 E-3中平均水温35℃一栏,按照地板所需散热量选择间距,然后,将管道直径放大到Φ20/16成间距缩小一档即可。
3.风系统设计
3.1集中空调系统的排风热回收
一直以来,业内人士只是从经济方面的角度来衡量热回收装置的利弊,而环保与节能则被忽视。当今,业内人士考虑的角度有所转变,现在从环保和节能这个角度来衡量热回收装置的利弊。
空调区域排风中的热能量是非常多的,如果把这些热能量加以回收利用,那么环保和节能定会实现。如果新风和排风采用专门独立的管道输送,那么有利于集中热回收装置的设置。新风和排风采用热回收装置进行湿热或者全热交换,节能效果非常明显的表现出来。
3.2空调风系统
(1)有资料显示,以我国南方地区为例,夏季室内设计温度如果每降低1℃或冬季设计温度每升高1℃,其工程投资将增加6%,能耗将增加8%。该数据很明显地说明,适当提高夏季以及降低冬季的室内空气温度,都将起到显著的节能效果。与此同时,为保证室内空气质量以及人们对新鲜空气的需要,现行《采暖通风与空气调节设计规范》对最小新风量作出明确规定,要求建筑满足国家现行有关卫生标准。研究表明,加大新风量能够在一定程度上解决室内空气质量问题,但增加了空调能耗。新风定值必须按照规范来确定,因为新风量对于能耗和人体健康有着非常重要的作用,如果人员密度较大时,新风的供应按人员的密度来进行的话是非常不经济的。我国建筑采用了新风需求控制(检测室内CO2浓度),值得注意的是:新风量变化,排风量随着也发生变化,否则造成负压,可能会适得其反。
(2)暖通设计师对于规范中新风量的规定表示赞同。暖通设计师认为,在目前中央空调清洗不够规范的背景下,加大新风量是必要的。不过,对于室内设计温度的要求,他们却持保留态度。业内人士有这样的一个说法:“如果说节能像一棵树,有很多枝杈可以作为思路,那么,业主方的意见更像那个根。他们的态度,将成为决定暖通专业乃至建筑节能的根本性因素。”业内人士表示,建设方的意见非常重要。
要想增加新风量或者增强风机盘管处理室内回风的能力,风机盘管加新风的新风口应单独或布置在盘管出风口的旁边,而不应该布置在盘管回风吸入口。
(3)房间面积或空间较大、人员较多或有必要集中进行温度控制的空气调节区,其空气调节风系统宜采用全空气空调系统,不宜采用风机盘管系统,以利于集中处理、调节,发挥有利因素,弥补之前产生的问题。
(4)建筑空间高度大于或等于10m、且体积大于时,宜采用分层空调系统。与全室性空调方式比,分层空调系统夏季可以节能30%左右,但是冬季并不节能。通常设计时,夏季的气流组织为喷口侧送,下回风,高大空间上部排风;而冬季一般在底层设置地板辐射或地板送风供暖系统,也可将上部过热的空气通过风道送至房间下部。
(5)多个空气调节区合用1个空气调节风系统,各区负荷变化较大、低负荷运行时间较长,且需要分别调节室内温度,在经济条件允许时,宜采用全空气变风量空气调节系统。设计时应注意:要求采用风机调速改变系统风量,而不能采用恒速风机而改变系统阻力调节;其次,应采取保证最小新风量的措施,避免因送风量减少,造成新风量减少而不满足卫生要求的后果;再者,调节末端送风口风量时,推荐采用串联式风机驱动型末端装置以保证室内的气流分布。
(6)在某些情况下,像屋顶传热量较大、吊顶内发热量较大、吊顶空间较大(此时的吊顶至楼板底的高度超过1.0m),如果采用吊顶内回风,导致空调区域增大、空调耗能上升,这样非常不利于节能。所以对于建筑顶层或者吊顶上部有较大热量、吊顶空间较高时,直接从吊顶回风是不合理的。
4.围护结构
北京市建筑设计研究院原院长、北京市建筑设计研究院顾问总工程师吴德绳认为,暖通专业既然是建筑节能的支柱力量,因此,目光不仅要盯住如何优化暖通空调系统设计,更应该有所转移,在围护结构设计方面重点考虑。
围护结构在节能工作中,扮演着愈来愈重要的角色。所谓围护结构节能,通常是指通过改善建筑物围护结构的热工性能,使得建筑在夏季隔绝室外热量进入室内,冬季防止室内热量泄出室外,以保持室内尽可能接近舒适温度,减少通过辅助设备来达到合理舒适室温的负荷,并最终达到节能的目的,如通过采暖、制冷设备达到节能。
传统住宅建筑的围护结构是普通黏土砖,简单架空屋面和单层玻璃钢窗,它们的传热系数分别为1.96、1.66和6.4。而“节能住宅”的围护结构中外墙和屋面采取了保温措施,外窗采用中空塑钢窗或断热中空铝合金窗,它们的传热系数分别为 1.5、1.0和3.0,使围护结构的节能贡献约占25%。采用能效比高的采暖、空调设备(按照国家标准,房间空调器的能效比:制冷>2.3,采暖>1.9),使采暖、空调设备的节能贡献约占25%,两者相加总体达到节能50%的目标。
据介绍,围护结构的节能设计应该从墙体、窗户、屋面等三个方面考虑。对于设计人员而言,如何处理建筑玻璃幕墙的问题,在业内一直存在很大争议。普通玻璃幕墙是建筑节能不能实现的因素之一。统计数据表明,夏季通过玻璃窗的日照热可占制冷机最大负荷的30%,冬季单层玻璃的热损失约可占锅炉负荷的20%。窗体节能技术主要从减少渗透量、减少传热量、减少太阳辐射能三个方面考虑。另外,在保证室内采光良好的前提下,合理确定窗墙比十分重要。当窗墙面积比超过50%时,负荷将明显增加。不仅是外围护结构,内围护结构在设计中同样重要。暖通设计师要比普通建筑师更懂得建筑节能的途径,所以暖通设计师和普通建筑师多进行沟通效果才会更好。
5.实现节能
暖通空调的设计师在方案设计时,首先应深入了解业主的能源状况以及对空调的使用状况和是否有余热、废气等条件,然后对各种能源方案进行合理综合的对比。设计师在设计时应考虑的重点是:如何利用可再生能源和低品位能源。
暖通设计师在设计阶段完成基础工作之后,最关键的就是环保和节能的实现,而环保和节能的实现是通过综合利用各种先进技术、利用各种可再生资源来实现的。
利用自然条件来满足人们对于室内温度的需求,这是最理想的方式。现在通过各种设备实现对温度的调节,只不过是对人们的过错进行补救。冷热源是设计师最关注的一点,因为其能耗往往能占空调系统总能耗的50%左右。
地源热泵系统就是在这种形势下快速发展起来的,它利用地下恒温层土壤热显著提高空调系统效率。同时,采用新能源利用的供给方式,实现冷、热、电三联供;利用燃气、汽、电力能量转换的原理联合循环使用,将工业流程最尾端的余热收集起来,用于供冷系统空调冷冻水和供热系统的生活热水,这样,能源的利用率可提高至70%~80%左右。这些都给暖通空调设计师提供了广泛的节能设计思路。
6. 总结
随着全球逐渐变暖这种现象的出现,空调现在已经是人们生活中不可或缺的一部分,它使人们工作生活更加舒适,人们对于空调也有了一定的依赖性。然而,环保和节能是当今非常重要的问题,因此,在暖通空调设计方面,暖通空调的环保和节能是目前空调技术方面发展的方向,也就是说,城市供热环保和节能是目前亟须加强和可持续发展的问题。
参考文献:
[1] 赵君利. 暖通空调节能从设计开始.中国建设报,2010,(03).
[2] 胡锦涛活动报道集,2009,(09)
[3] 刘金瑶,李婉茹,刘鹏华. 浅谈暖通空调的节能.暖通空调,2008,(04).
[4] 张莉,李尧,朱玉明.暖通空调节能设计分析.山西建筑,2010,(09).
[5]__荣.建筑工程的暖通空调设计.施工技术与设计,2008,(07).
[6] 万蓉. 基于气候的采暖空调耗能及室外计算参数研究.西安建筑科技大学, 2009,(08).
点击下页还有更多>>>暖通专业技术论文
一、参考文献著录格式1 、期刊作者.题名〔J〕.刊名,出版年,卷(期)∶起止页码2、 专著作者.书名〔M〕.版本(第一版不著录).出版地∶出版者,出版年∶起止页码3、 论文集作者.题名〔C〕.编者.论文集名,出版地∶出版者,出版年∶起止页码4 、学位论文作者.题名〔D〕.保存地点.保存单位.年份5 、专利文献题名〔P〕.国别.专利文献种类.专利号.出版日期6、 标准编号.标准名称〔S〕7、 报纸作者.题名〔N〕.报纸名.出版日期(版次)8 、报告作者.题名〔R〕.保存地点.年份9 、电子文献作者.题名〔电子文献及载体类型标识〕.文献出处,日期二、文献类型及其标识1、根据GB3469 规定,各类常用文献标识如下:①期刊〔J〕 ②专著〔M〕 ③论文集〔C〕 ④学位论文〔D〕 ⑤专利〔P〕 ⑥标准〔S〕 ⑦报纸〔N〕 ⑧技术报告〔R〕2、电子文献载体类型用双字母标识,具体如下:①磁带〔MT〕 ②磁盘〔DK〕 ③光盘〔CD〕 ④联机网络〔OL〕3、电子文献载体类型的`参考文献类型标识方法为:〔文献类型标识/载体类型标识〕。例如: ①联机网上数据库〔DB/OL〕 ②磁带数据库〔DB/MT〕③光盘图书〔M/CD〕 ④磁盘软件〔CP/DK〕 ⑤网上期刊〔J/OL〕 ⑥网上电子公告〔EB/OL〕三、举例1、期刊论文〔1〕周庆荣,张泽廷,朱美文,等.固体溶质在含夹带剂超临界流体中的溶解度〔J〕.化工学报,1995(3):317—323〔2〕Dobbs J M, Wong J M. Modification of supercritical fluid phasebehavior using polor coselvent〔J〕. Ind Eng Chem Res, 1987,26:56〔3〕刘仲能,金文清.合成医药中间体4-甲基咪唑的研究〔J〕.精细化工,2002(2):103-105〔4〕 Mesquita A C, Mori M N, Vieira J M, et al . Vinyl acetate polymerization byionizing radiation〔J〕.Radiation Physics and Chemistry,2002, 63:4652、专著〔1〕蒋挺大.亮聚糖〔M〕.北京:化学工业出版社,2001.127〔2〕Kortun G. Reflectance Spectroscopy〔M〕. New York: Spring-Verlag,19693、论文集〔1〕郭宏,王熊,刘宗林.膜分离技术在大豆分离蛋白生产中综合利用的研究〔C〕.//余立新.第三届全国膜和膜过程学术报告会议论文集.北京:高教出版社,1999.421-425〔2〕Eiben A E, vander Hauw J K.Solving 3-SAT with adaptive genetic algorithms 〔C〕.//Proc 4th IEEE Conf Evolutionary Computation.Piscataway: IEEE Press, 1997.81-864、学位论文〔1〕陈金梅.氟石膏生产早强快硬水泥的试验研究(D).西安:西安建筑科学大学,2000〔 2 〕 Chrisstoffels L A J . Carrier-facilitated transport as a mechanistic tool insupramolecular chemistry〔D〕.The Netherland:Twente University.19885、专利文献〔1〕Hasegawa, Toshiyuki, Yoshida,et al.Paper Coating composition〔P〕.EP 0634524.1995-01-18〔 2 〕 仲前昌夫, 佐藤寿昭. 感光性树脂〔 P 〕. 日本, 特开平09-26667.1997-01-28〔3〕Yamaguchi K, Hayashi A.Plant growth promotor and productionthereof 〔P〕.Jpn, Jp1290606. 1999-11-22〔4〕厦门大学.二烷氨基乙醇羧酸酯的制备方法〔P〕.中国发明专利,CN1073429.1993-06-23 6、技术标准文献〔1〕ISO 1210-1982,塑料——小试样接触火焰法测定塑料燃烧性〔S〕〔2〕GB 2410-80,透明塑料透光率及雾度实验方法〔S〕7、报纸〔1〕陈志平.减灾设计研究新动态〔N〕.科技日报,1997-12-12(5)8、报告〔1〕中国机械工程学会.密相气力输送技术〔R〕.北京:1996
我国外文版刊名是根据某种特殊的译法或国外常用习惯来取名的,给检索带来一定的麻烦。 为提高检索和利用效率,笔者通过实践和调查分析,根据其刊名特点把它们归纳成下列四种类型t1直译刊名的期刊。如l Chinese Geogra]Dllieal Sei—once=中国地理科学I Water Treatment:水处理
我检索外文期刊的经验是:
首先可以在中文期刊的参考文献查找你适用的外文期刊,这是一个比较容易进入检索外文期刊的方法。
然后就是在Web of Science、Elsevier、IEEE Xplore 等地方检索。下面以IEEE Xplore为例。
1、你可以直接输入你需要查找相关关键词的文献,前面的检索范围默认“ALL”,这样它会查找出题目或摘要与你关键词相匹配的文献。
2、如果你需要的文献要包含多个关键词,你可以在检索一个关键词后,在“Search within result”中填写第二个关键词,然后搜索。
3、你也可以通过书籍、杂志、作者来查找你需要的期刊。
在通过关键词查找是,可通过“ ”AND“ ”或“ ”OR“ ”等格式来同时查找你想要同时包含几个关键词的文献。Web of Science的检索方法和IEEE的差不多,它的界面使用起来我觉得更方便。
Web of Science 与IEEE Xplore介绍
Web of Science
ISI Web of Science 是全球最大、覆盖学科最多的综合性学术信息资源,收录了自然科学、工程技术、生物医学等各个研究领域最具影响力的超过8700多种核心学术期刊。
利用Web of Science 丰富而强大的检索功能--普通检索、被引文献检索、化学结构检索,您可以方便快速地找到有价值的科研信息,既可以越查越旧,也可以越查越新,全面了解有关某一学科、某一课题的研究信息。
IEEE Xplore
IEEE Xplore是一个学术文献数据库,主要提供计算机科学、电机工程学和电子学等相关领域文献的索引、摘要以及全文下载服务。它基本覆盖了电气电子工程师学会(IEEE)和工程技术学会(IET)的文献资料,收录了超过2百万份文献。
以上内容参考: 百度百科-ISI Web of Science
百度百科-IEEE Xplore
《暖通空调》是本杂志,本专业的核心期刊,自己去随便下载几篇都是暖通行业相关的。 翻译借助百度翻译和自己那点水平,这小事儿还用求助..要原创的我可以提供
我国外文版刊名是根据某种特殊的译法或国外常用习惯来取名的,给检索带来一定的麻烦。
暖通空调 [1002-8501] 本刊收录在:中国科技期刊引证报告(2007年版) 提示: 《引证报告》2007年版影响因子: 0.328 本刊收录在:中国科技期刊引证报告(2008年版) 提示: 《引证报告》2008年版影响因子:0.353 本刊收录在:中文核心期刊要目总览(2004年版) 提示: 排序:建筑科学 - 第20位 本刊收录在:中文核心期刊要目总览(2008年版) 提示: 排序:建筑科学 - 第20位 主题分类: Engineering: General and Others Engineering: Energy Engineering 土木建筑工程类: 土木建筑工程类 建筑科学: 建筑科学 A类期刊凡被SSCI、A&HCI收录及中国社会科学期刊,学校认定为A类一级按CSSCI的学科分类(以国标分类为基础)即:管理学、马克思主义、哲学、宗教学、语言学、中国文学、外国文学、艺术学、历史学、考古学、经济学、政治学(含国际问题、台港澳问题)、法学、社会学、民族学、新闻与传播学、图书、情报与档案学、教育学、体育学、统计学、心理学、综合性社科、高校综合性社科学报、人文、经济地理、环境科学、港台澳地区及海外等26个文科学科,并根据学校现有学科设置,拟选定所属一级学科的全国性、权威性综合性期刊23种,认定为A类二级当然,不同学校有不同规定但sci ei 一定是A类 暖通空调为sci附网址一个:
building & environment、international communication on heat and mass transfer、applied thermal engineering。SCI一般指科学引文索引。 《科学引文索引》美国科学信息研究所的尤金·加菲尔德(Eugene Garfield)于1957 年在美国费城创办的引文数据库。