首页

> 论文发表知识库

首页 论文发表知识库 问题

应用研究进展论文

发布时间:

应用研究进展论文

原子吸收光谱法在环境常规监测中的应用 西南科技大学分析测试中心 张伟〔摘要〕原子吸收光谱分析法(AAS)在环境分析化学中广泛使用。本文简述了近年来AAS在环境常规监测中的应用进展。〔关键词〕原子吸收光谱法环境监测应用原子吸收光谱法(AAS),因其灵敏度高、干扰小、精密度高、准确性好及分析速度快、测试范围广等诸多优点,在环境分析化学中广泛使用。20世纪80年代末,国家环保局在《环境监测技术规范》中的地表水和废水、大气和废气、生物测定部分,就将原子吸收光谱法列为《环境监测技术规范》中有关金属元素的标准分析方法。1.水环境监测适时地对地表水质量现状及发展趋势进行评价,对生产和生活设施所排废水进行监视性监测是常规环境监测的两项基本任务。原子吸收光谱分析主要应用于水环境中重金属的监测。龙先鹏[1]采用火焰原子吸收光谱法直接测定水中微量铜、铅、锌、镉元素的含量,在范围内,被测元素浓度与吸光度呈线性关系,相关系数不小于;最低检出限分别为、、、,相对标准偏差分别为、、、;该方法对标准样品的测试结果与国家标准方法基本一致,相对偏差均不大于。张美月等[2]以二乙胺基二硫代甲酸钠为配位剂、Triton X-114为表面活性剂,采用浊点萃取-火焰原子吸收光谱法测定水样中的痕量镉,检测限为μg/L,富集倍数为55,加标回收率为98%-102%;分离富集方法简单、安全、快捷,结果令人满意。陆九韶等[3]利用Al3+与Cu(Ⅱ)-EDTA发生定量交换反应,通过测定水相残余铜,从而间接测定水和废水中的铝。在线富集是原子吸收光谱检测分析发展的热点之一。高甲友[4]用含黄原脂棉的微型柱对试样中的Cd2+在线富集、盐酸洗脱后,采用火焰原子吸收光谱法在线测定水中的镉离子。富集50 mL溶液时此方法灵敏度可提高68倍。陈明丽等[5]用溴化十六烷基三甲胺(HDTMAB)改性的天然斜发沸石微填充柱,建立了顺序注射在线分离富集电热原子吸收法测定水中Cr(Ⅵ)及铬形态分布的方法;测定铬的检出限达到μg/L,精密度。用本法测定标准水样GBW08608中的铬,所得结果与标准值相符。冷家峰等[6]对螯合树脂富集-火焰原子吸收光谱法测定天然水体中痕量铜和锌的在线富集条件、干扰因素等进行研究,在线富集倍数达到两个数量级,在灵敏度与石墨炉原子吸收光谱法相当情况下,提高了测定准确度。痕量金属元素化学形态的分析比单纯元素的分析要复杂、困难得多,除要求测定方法灵敏度高、选择性好外,还要求分离效能高。联用技术,特别是色谱-原子吸收光谱联用,综合了色谱的高分离效率与原子吸收光谱检测的专一性的优点,是解决这一问题的有效手段。刘华琳等[7]自行设计了一种紫外在线消解氢化物发生接口,并将高效液相色谱-紫外在线消解-氢化物发生原子吸收联用仪器(HPLC-UV-HGAAS)用于砷的形态分析,以砷甜菜碱、砷胆碱、亚砷酸盐(As(Ⅲ))及砷酸盐(As(V))等进行了分离测定,实现了将分离后不能直接用于氢化物发生的大分子,通过紫外“在线”消解成小分子砷化合物的目的。李勋等[8]采用电化学氢化物发生与原子吸收光谱联用技术有效地实现了无机砷的形态分析。在电流为 A和1A条件下,As(III)和As(V)在0-40μg/L浓度范围内均呈良好的线性关系。As(III)和As(V)检出限分别为μg/L和μg/L;该方法成功应用于食用鲜牛奶中无机砷的形态分析。2.土壤、底泥和固体物分析景丽洁等[9]采用微波消解法预处理待测土壤,火焰原子吸收分光光度法测定污染土壤消解液中的锌、铜、铅、镉、铬5种重金属。土壤中锌、铜、铅、镉、铬的相对标准偏差分别为、、、和。方法简便、灵敏、准确,适用于污染土壤中重金属含量的测定。卢卫[10]采用悬浮液进样平台石墨炉原子吸收法测定土壤的痕量汞,精密度为,检出限达到×10-12g。宫青宇[11]采用直接固体进样、添加基体改进剂技术测定土壤中重金属铅含量,避免了土壤中复杂基体的影响,实现了土壤样品中铅的快速分析。王北洪等[12]采用了“硝酸-氢氟酸-过氧化氢”三酸消化体系和密封高压消解罐法对土壤样品进行消化,以原子吸收光谱法测定其中的铜、锌、铅、铬、镉。结果表明:采用该法测定土壤中的重金属时,测定结果准确可靠,实验条件易于控制,能够满足环境监测分析的要求,可以作为一种可行的土壤重金属元素分析方法。程滢等[13]把河流底泥经过氢氟酸和高氯酸消化,用火焰原子吸收法测定其中的铜,获得较好的结果。王畅等[14]利用流动注射系统中串联的阴、阳离子交换微型柱分离、NH4NO3+抗坏血酸和H2SO4两种洗脱液同时逆向洗脱,实现了对底泥可利用态铬中Cr(Ⅵ)和Cr(Ⅲ)同时在线分离和原子吸收光谱法测定。在交换时间2 min,洗脱50 s,Cr(Ⅵ)和Cr(Ⅲ)回收率分别为和。此法对实际样品中不同价态铬进行测定,铬回收率可达95%。Cr(Ⅵ)和Cr(Ⅲ)的检出限和最大相对标准偏差分别为μg/L、和μg/L、。王霞等[15]用冷原子吸收光谱法测定固体废物浸出液中的汞含量,检出限为μg/L,回收率在91%-101%之间。方法简便快速,线性范围宽。3.大气环境质量监测邹晓春等[16]以微孔滤膜采样、钯或镍作改进剂,用石墨炉原子吸收光谱法测定居住区大气中硒,检出限为,线性范围为0-50ng/mL,回收率;其中砷对测定硒有一定干扰,其它金属元素对测定无干扰。邹晓春在此基础上又对居住区大气中的镍进行了测定,检出限为 ng/mL,线性范围为0-35 ng/mL,回收率为,其他金属元素对测定镍未见明显干扰[17]。冯新斌等[18]对原有的光谱仪器进行简单改装,建立了两次金汞齐-冷原子吸收光谱法测定大气中的微量气态总汞的方法,检出限达到;100μL饱和汞蒸气连续测定结果表明其相对标准偏差<。在汞量范围内标准工作曲线线性关系良好。并且运用该法,对贵州省万山汞矿、丹寨汞矿、清镇汞污染农田、省农科院和中国科学院地球化学研究所等地大气气态总汞进行了测定。综上所述,原子吸收光谱法在环境监测分析中应用取得了不少成果,但在应用范围上还有待扩大,如在污染物的化学形态研究上尚待深入等。总之,随着环境监测事业的发展,原子吸收光谱法因具有其它方法所不能比拟的优势,必将在环境化学分析中展现广阔的应用前景。参考文献〔1〕龙先鹏.火焰原子吸收分光光度法直接测定水中微量铜、铅、锌、镉〔J〕.化学分析计量,2008,17(1):53-54.〔2〕张美月,李越敏,杜新等.浊点萃取-火焰原子吸收光谱法测定水样中的痕量镉〔J〕.河北大学学报(自然科学版),2009,29(4):407-411.〔3〕陆九韶,覃东立,孙大江等.间接火焰原子吸收光谱法测定水和废水中铝〔J〕.环境保护科学,2008,34(3):111-113.〔4〕高甲友.流动注射在线富集-火焰原子吸收光谱法测定水中痕量镉〔J〕.冶金分析,2007,27(1):61-63.〔5〕陈明丽,邹爱美,仲崇慧等.改性沸石填充柱在线分离富集电热原子吸收法测定水中铬(Ⅵ)及铬的形态分布〔J〕.分析科学学报,2007,23(6):627-630.〔6〕冷家峰,高焰,张怀成等.在线鳌合树脂富集火焰原子吸收光谱法测定天然水体中铜和锌〔J〕.理化检验-化学分册,2005,41(8):556-560.〔7〕刘华琳,赵蕊,韦超等.高效液相色谱-在线消解-氢化物发生原子吸收光谱联用技术〔J〕.分析化学,2005,33(11):1522-1526.〔8〕李勋,戚琦,薛珺等.电化学氢化物发生与原子吸收光谱联用对鲜牛奶中无机砷的形态分析〔J〕.食品研究与开发,2007,28(11):121-123.〔9〕景丽洁,马甲.火焰原子吸收分光光度法测定污染土壤中5种重金属〔J〕.中国土壤与肥料,2009,(1):74-77.〔10〕卢卫.悬浮液进样平台石墨炉原子吸收法测定土壤中痕量汞〔J〕.化学工程与装备,2009,(3):100-101.〔11〕宫青宇.直接固体进样-石墨炉原子吸收法测定土壤中铅含量〔J〕.内蒙古科技与经济,2009,6:69.〔12〕王北洪,马智宏,付伟利.密封高压消解罐消解-原子吸收光谱法测定土壤重金属〔J〕.农业工程学报,2008,24():255-259.〔13〕程滢,张莘民.火焰原子吸收分光光度法测定鱼内脏及河流底泥中的铜〔J〕.环境监测管理与技术,2003,15(2):28-30.〔14〕王畅,谢文兵,刘杰等.流动注射分离-原子吸收光谱法测定底泥中生物可利用态Cr(Ⅵ)和Cr(Ⅲ〔)J〕.分析化学,2007,35(3):451-454.〔15〕王霞,张祥志,陈素兰等.冷原子吸收光谱法测定固体废物浸出液中汞〔J〕.光谱实验室,2008,25(5):981-984.〔16〕邹晓春,李红华,徐小作.居住区大气中硒的原子吸收光谱法研究〔J〕.现代预防医学,2004,31(6):879-880.〔17〕邹晓春.石墨炉原子吸收光谱法测定居住区大气中镍〔J〕.职业与健康,2000,16(6):36-37.〔18〕冯新斌,鸿业汤,朱卫国.两次金汞齐-冷原子吸收光谱法测定大气中的微量气态总汞〔J〕.中国环境监测,1997,13(3):9-11.

这方面的研究很多,具体一些[1]刘智伟,孙业新,种振宇,李志峰,. 利用高炉矿渣生产微晶玻璃的研究应用[J]. 莱钢科技,2006,(3). [2]韩立国,卢安贤,李秀英,. 锂离子玻璃及微晶玻璃固体电解质的发展及应用[J]. 材料导报,2009,(7). [3]陈福,桑磊,高淑兰,赵恩录,李军明,. Sol-Gel法制备LAS微晶玻璃的研究现状与应用进展[J]. 玻璃,2009,(9). [4]杨玮,. 工业废渣和尾矿在微晶玻璃方面的应用[J]. 金属矿山,2009,(12). [5]俞平利,马拴锁,. 山西翼城高炉渣在微晶玻璃中的应用[J]. 华侨大学学报(自然科学版),2008,(1). [6]张光磊,高辉,刘海涛,朱文尚,. 生物微晶玻璃的制备和性能及其应用[J]. 中国组织工程研究与临床康复,2008,(1). [7]黄志国,. 金矿尾矿在微晶玻璃建材方面的应用[J]. 广东建材,2008,(4). [8]殷海荣,吕承珍,李阳,李慧,. 零膨胀锂铝硅透明微晶玻璃的研究与应用现状[J]. 硅酸盐通报,2008,(3). [9]肖家乐,冯有利,丁生祥,郝珺,徐永艳,. 微晶玻璃相分析的应用[J]. 矿业快报,2008,(8). [10]梁铁山,. 煤炭固体废物在微晶玻璃中的应用[J]. 中国煤炭,2008,(11). [11]刘金彩,. 微晶玻璃饰面材料的应用与发展[J]. 上海建材,2007,(2). [12]吴建锋,丁培,徐晓虹,张亚涛,. 矿渣微晶玻璃的应用及发展[J]. 佛山陶瓷,2007,(6). [13]丽江望远镜盛大揭幕 肖特天文应用光学玻璃突显光芒由肖特集团“Zerodur”微晶玻璃制成主镜镜坯[J]. 光机电信息,2007,(6). [14]韩滨,周嶅,祖成奎,朱宝京,陈江,赵慧峰,刘永华,. 微晶玻璃在电子封接中的应用[J]. 中国建材科技,2007,(3). [15]芦玉峰,堵永国,肖加余,张为军,胡君遂,唐珍兰,吴剑锋,王跃然,. BaO-Al_2O_3-SiO_2系微晶玻璃的研究进展和应用[J]. 材料科学与工程学报,2007,(4). [16]王倩,王丽萍,王承东,. 建筑微晶玻璃的发展概况及应用前景[J]. 山东轻工业学院学报(自然科学版),2007,(3). [17]王传彬,沈强,裘慧广,张联盟,. 低膨胀微晶玻璃在动高压物理中的应用[J]. 材料导报,2007,(S3). [18]陈福,赵恩录,张文玲,李军明,曾雄伟,. 装饰用CaO-Al_2O_3-SiO_2系统微晶玻璃板材的研究进展及应用[J]. 陶瓷,2007,(12). [19]侯朝霞,苏春辉,. 光功能微晶玻璃应用与研究进展[J]. 激光与光电子学进展,2006,(2). [20]石成利,梁忠友,. 硬盘用基板微晶玻璃的研究与应用[J]. 陶瓷,2006,(3). [21]石成利,梁忠友,. 硬盘用基板微晶玻璃的研究与应用[J]. 山东陶瓷,2006,(1). [22]王立久,任启芳,. 工业废渣在微晶玻璃中的应用[J]. 粉煤灰,2006,(2). [23]林杰,. 高温液态矿渣在微晶玻璃生产中的应用研究[J]. 南方金属,2006,(2). [24]梁晓娟,周永强,刘海涛,. 废玻璃在建筑微晶玻璃中的应用研究[J]. 中国陶瓷,2006,(5). [25]柯尊斌,卢安贤,刘树江,黄光锋,鲁飞,. 可机械加工微晶玻璃应用研究的新进展[J]. 硅酸盐通报,2006,(1). [26]姜玉丹,张一麟,李秋义,. 应用增钙液态渣制备微晶玻璃的热处理工艺研究[J]. 中国建材科技,2006,(3). [27]杨东辉,. 微晶玻璃在牙齿修复材料上的应用[J]. 辽宁大学学报(自然科学版),2006,(3). [28]张红霞,张小福,卢安贤,. 微晶玻璃在立方氮化硼砂轮结合剂中的应用研究[J]. 新技术新工艺,2006,(5). [29]吴茂,沈卓身,. 微晶玻璃的特性、种类及其应用[J]. 中国陶瓷,2006,(6). [30]李克庆,许永,刘保顺,. 尾矿微晶玻璃配料优化系统的设计及应用[J]. 建筑材料学报,2006,(5).

本科毕业论文bai,是正规在校本科生毕业的必du须进行写作的文章,他是大学zhi期间,同学在dao他所学习的学科知识的总结。但是大学我们基本没有练习过科研论文的写作,所以很多同学在进行毕业论文写作的时候,无从下手。本站小编经过多年实践特总结,本科毕业论文写作相关技巧。关键词:毕业论文、本科、写作技巧、方法总结。一、如何确定毕业论文的题目每年各个学校、各个学院都有对毕业论文的基本要求,除了毕业论文的基本样式、基本字符数的要求,同时也都标明了每个学生的大体的写作方向。那么我们如何选题呢?1、可以根据导师的提议拟定2-3个毕业论文题目,2、可以根据自己几年的学习,在自己感兴趣的领域拟定几个题目给导师。最后和毕业论文导师一起把毕业论文的题目给定下来。劝大家一句,如果自己水平很一般的话最好听导师的话,这个大家都懂的。最后毕业论文通过与否,是导师说了算。所以,从开始到结束。一定不要和导师有什么分歧(他们说的都是对的)。如果自己水平的确很高,是可以写一些比较前言的东西的,但是这类本科毕业生毕竟少数,水平再高还是要听导师的。所以总结第一点,听导师的!二、如何写开题报告

论文应用进展和研究进展一样吗

所谓研究进展,就是对相关方面研究的前沿动态所作的总结性的文章。

“研究”一词常被用来描述关于一个特殊主题的资讯收集。利用有计划与有系统的资料收集、分析和解释的方法,获得解决问题的过程。研究是主动和系统方式的过程,是为了发现、解释或校正事实、事件、行为、理论,或把这样事实、法则或理论作出实际应用。

研究是应用科学的方法探求问题答案的一种过程,因为有计划和有系统的收集、分析与解释资料的方法,正是科学所强调的方法。

扩展资料:

引证释义:

一、研究

1、钻研;探索。

现代曹禺 《北京人》即北京是中国的首都,第一幕:“ 袁先生并不是个可怕的怪物!他是研究人类学的学者。”

2、商讨;考虑。

现代老舍 《茶馆》第二幕:“ 崔先生 叫,你快去!咱们的事,有工夫再细研究!”

二、进展

事情向前发展。

1)现代罗正纬 《滦州革命纪实初稿·新民山东同乡会之革命运动》:“协统潘矩楹 、标统萧广传 辈防范綦严,颇难进展。”

2)现代刘白羽 《火光在前》第五章:“这话王春听了自然不舒服,不过事情进展很快,船已悄悄拢齐,就摆开一条线向江南前进了。”

参考资料来源:百度百科-研究

参考资料来源:百度百科-进展

进展就是有突破,研究有成绩。

所谓研究进展,就是对相关方面研究的前沿动态所作的总结性的文章。

“研究”一词常被用来描述关于一个特殊主题的资讯收集。利用有计划与有系统的资料收集、分析和解释的方法,获得解决问题的过程。研究是主动和系统方式的过程,是为了发现、解释或校正事实、事件、行为、理论,或把这样事实、法则或理论作出实际应用。

研究是应用科学的方法探求问题答案的一种过程,因为有计划和有系统的收集、分析与解释资料的方法,正是科学所强调的方法。

扩展资料:

研究进展,是对某一领域,某一专业或某一方面的课题、问题或研究专题搜集大量相关资料,然后通过分析、阅读、整理、提炼当前课题、问题或研究专题的最新进展、学术见解或建议,对其做出综合性介绍和阐述的一种学术论文。

好的研究,不但可以为下一步的学位论文写作奠定一个坚实的理论基础和提供某种延伸的契机,而且能表明写本综述的作者对既有研究文献的归纳分析和梳理整合的综合能力,从而有助于提高对学位论文水平的总体评价。

参考资料来源:百度百科-研究

参考资料来源:百度百科-进展

指为获得新知识而进行的创造性的研究,它主要是针对某一特定的实际目的或目标。应用研究的特点:一是具有特定的实际目的或应用目标,具体表现为:为了确定基础研究成果可能的用途,或是为达到预定的目标探索应采取的新方法(原理性)或新途径。二是在围绕特定目的或目标进行研究的过程中获取新的知识,为解决实际问题提供科学依据。三是研究结果一般只影响科学技术的有限范围,并具有专门的性质,针对具体的领域、问题或情况,其成果形式以科学论文、专著、原理性模型或发明专利为主。一般可以这样说,所谓应用研究,就是将理论发展成为实际运用的形式。

光催化研究进展应用论文

H3PW12O40-TiO2/SiO2超声光催化降解罗丹明B的研究以硅胶为载体,采用浸渍法制备了H3PW12O40-TiO2/SiO2催化剂.通过对染料罗丹明B的超声光催化降解,探讨了催化剂的组成、用量、酸度、催化剂重复使用次数等因素对罗丹明B降解率的影响.结果表明:含4gH,PW12O40的TiO2溶胶浸渍在11gSiO2上的催化效果最佳.催化剂最佳用量为.初始罗丹明B溶液的pH为1时,反应速率最快.催化剂经活化处理后,重复使用6次,对罗丹明B的降解率仍达.相同条件下比较H3PW12O40-TiO2/SiO2和TiO2/SiO2对罗丹明B的降解效果发现,H2PW12O40可显著提高TiO2超声光催化降解罗丹明B的降解率.

负载在g‑C3N4纳米片的PtCo合金和周围Co单原子的协同作用促进整体水分解

研究背景

太阳能驱动的全分解水可大规模生产氢气和氧气,是满足清洁能源需求和解决化石燃料危机的理想策略。然而,在不消除牺牲试剂或不需要施加外部偏压的情况下,水分解需要协同活性位点,以连接空间分离的析氢和析氧反应。具有最高原子利用效率的原子分散催化剂已成为催化领域的前沿。然而,单组分单原子催化剂在整个光催化水分解反应(OWS)中的应用却鲜有报道。

内容简介

基于此,近日华东师范大学姚叶锋和王雪璐团队设计了一种双组分协同光催化剂,其包含单原子Co(CoSAs)中心和PtCo合金纳米颗粒(Nps)的分散体负载在C3N4纳米片上。CoSAs中心是析氢反应(HER)的高活性位点,PtCo合金是析氧反应(OER)的高活性位点。当两个不同的反应中心结合时,它们之间会产生协同效应,这表明CoSAs中心和PtCo合金Nps之间可能存在质子或羟基溢出现象。CoSAs中心和PtCo合金的协同促进了OWS反应实现最大原子利用率和最佳双功能活性之间的协同。这种结合为开发OWS原子分散催化剂提供了一个很有前景的模型。相关论文以” Synergistic Promotionof Single-Atom Co Surrounding a PtCo Alloy Based On a g‑C3N4 Nanosheet for Overall Water Splitting”发表在ACS Catal.

本文亮点

1. 设计了一种新型的双组分协同光催化剂CoSAs/PtCo@CNN,由负载在纳米片g-C3N4上的CoSAs和PtCo合金纳米颗粒组成。该催化剂有效地促进了光催化整体水分解反应。

2. 纳米片C3N4具有大的比表面积和高的孔容,为CoSAs的形成提供了丰富的N配位。CoSAs和PtCo合金的协同活性在最大原子利用率和析氢析氧双功能反应性之间架起了一座桥梁。

3. CoSAs/PtCo@CNN在可见光照射下,三乙醇胺(TEOA)存在下,催化剂在整个水裂解反应中的产氢活性高达μmol/h·g,产氢活性为 mmol/h·g。

4. 这项研究不仅为构建协同合金位点开发高效的单原子光催化剂提供了一种有希望的策略,而且还提供了对结构的深入了解 通过光催化过程进行的整体水分解反应的活性关系。

图文解析

TEM,FT-IR

CN样品由膨胀和连续结构中的大波浪层组成。负载金属后,金属颗粒聚集在大块CN的表面或次表面。经过两步煅烧后,所得CNN样品转变为薄、松散、柔软的丝状纳米片结构。煅烧方法导致了CN层的卷曲,使金属颗粒更均匀、更稳定地负载在表面上。红外光谱结果表明CNN样品的C-NH-C键的振动明显强于CN样品中的振动,表明CNN具有高浓度的-NH-缺陷位点,可能会增强水分子的光催化活性。

NMR

在D2O 处理(表示为 CNN-D)之前和之后获得的 CNN 样品的1D 1H MAS 核磁结果表明当 CNN 样品中残留水通过 D2O 处理被氘化时,CNN-D 的 Hw 信号显著减弱。这表明CNN样品具有易于吸附和解吸水分子的双重优势。相反,在 D2O 处理后,普通 CN 样品的Hw 信号强度或其位置没有显著变化,表明由于氢交换没有明显的结构变化。氘交换后, CNN-D 样品的 CN3, Ha 峰的相关性显著降低, 表明边缘氨基(Ha) 和 d 氘化水之间存在强烈的质子交换。相比之下, CN-中的质子交换的证据Ha和氘化水之间的D样品几乎没有氘处理前后的变化。

XANES,HAADF-STEM

为了进一步了解铂和钴金属的配位化学,测试了CoSA/PtCo@CNN催化剂的X射线吸收近边缘结构(XANES)光谱。在CoSAs中形成Co(II)Nx配位中心外,合金中的Co4s和4p轨道还通过与Pt电子结合发生杂化。EXAFS分析表明PtxCo合金和N-Co(II)连接性结构形成。Pt L3边缘的EXAFS光谱中电子的径向分布发生了Å的偏移,表明Pt Co键的形成。Co 原子分散在单金属位点,中心 Co 原子由四个 N 原子配位稳定。少量的 CoSA可以通过长距离的 Co-N-C 协调。像差校正的HAADF-STEM结果表明分离出单个纳米颗粒具有 nm 间距的晶面(Pt3Co 平面)并被许多孤立的金属原子包围。结合 XANES 分析,纳米粒子(NPs)和孤立的金属原子分别为PtxCo 合金和单个 Co 原子。CoSAs/PtCo@CNN 催化剂的组成为大多数 Pt 原子参与形成随机分布的PtCo 合金。额外的Co原子不均匀地分散在 PtCo 合金簇。很少量的Co单原子远离单纳米粒子。所有这些形式共同构成CoSAs/PtCo结构体。

EPR,UV-vis

CoSAs/PtCo@CNN 催化剂用于在紫外-可见光照射下在整个水分解反应中生成产物,而无需使用任何电子牺牲剂,通过原位 EPR 光谱观察到悬浮液中•OH(羟基自由基)的特征信号。这种强烈的•OH 信号表明该途径涉及水的单电子氧化以产生•OH。在 CoSAs@CNN 上仍然没有检测到 •OH 信号,CoSAs/PtCo@CNN表现出高活性产氢气(高达 μmol/h·g)和 μmol/h g的活性用于整个水分解反应中的 O2。在整个水分解反应中观察到 H2O2 产物。催化剂使用3次后,PtCo合金上的Co0保持稳定的结构。在单组分催化剂 CoSAs@CNN 或 PtCo@CNN 上没有检测到可测量的 H2 或 O2 物种,这表明单原子 Co 和纳米片CNN 上负载的 PtCo 合金复合材料之间存在协同。

DFT

理论计算给出了CoSAs/PtCo@CNN对 HER 的反应途径。第二步(OH* O*)为 OER 过程的决速步。对于合金表面的 Pt 位点、合金表面的 Co 位点和 CoSAs 位点,此步骤的 ΔGO* 值分别为 、和 eV。对于 PtCo 合金表面的 Co 位点,每个基元步骤都是吸热的,其决速步基本上可用于完成 OER 半电池反应。如上所述,这种协同作用是通过 CoSAs配位的 N 原子产生的,N原子充当 HER 半反应的高活性位点。同时,由纳米片 C3N4负载的 PtCo 合金纳米颗粒是OER 的高活性位点。

该研究主要计算及测试方法

做同步辐射 找易科研

做球差电镜 找易科研

做计算 找易科研

纳米光催化技术在大气污染治理中的应用论文

在学习和工作中,大家都跟论文打过交道吧,论文是学术界进行成果交流的工具。如何写一篇有思想、有文采的论文呢?下面是我整理的纳米光催化技术在大气污染治理中的应用论文,欢迎大家分享。

摘要: 现如今,环境污染问题已成为全球性的问题,加大环境保护力度,促进环境与经济的协调发展是世界经济发展的主要手段。大气污染作为环境污染中的一种,加大大气污染的治理力度,缓解温室效应给社会发展带来的难题,有利于实现和谐社会的建设。基于此,文章主要对纳米光催化技术进行了分析,并对其在大气污染治理中的应用进行了研究,以供相关人士参考。

关键词: 纳米光催化技术;大气污染;治理应用

纳米光催化技术在大气污染中的应用,可以提高大气污染的治理水平。由于纳米光催化技术的光敏效果较好,容易达到其反应条件,效率高,对环境及人体具有无害的特点,所以,纳米光催化技术已成为当前社会最先进的空气净化技术。对纳米光催化技术进行分析与研究,充分了解其在大气污染治理中的应用,有利于解决我国严重的.雾霾问题,优化人们的生活环境,促进经济的快速发展。

一、纳米光催化技术理论

太阳能作为“取之不尽,用之不竭”的清洁能源之一,在能源短缺和环境污染日趋严重的今天,其有效利用显得尤为重要。而光催化污染物降解技术既能充分利用太阳能,又能解决大气污染物的处理难题。纳米光催化技术作为一种新型的大气污染物治理方法,在大气污染控制方面具有巨大的应用潜力。与传统的物理吸附法(活性炭)相比,利用纳米光催化技术净化空气具有以下优势:催化降解反应可以在常温常压下进行;操作简便;在太阳光的激发下,能有效去除大气中的污染物如NOx和VOCs,不会造成二次污染。

光催化技术理论主要基于“Fu-jishima-Honda”效应,20世纪70年代后期,Frank和Bard关于水中氰化物在TiO2表面的光分解研究及Carey等关于多氯联苯在TiO2紫外光下的降解研究,极大推动了光催化技术在环境污染治理方面的研究。半导体材料的催化氧化机理如下:当能量大于禁带宽度的光照射半导体催化剂时,价带(va-lenceband,VB)上的电子被激发,跃过禁带进入导带(conductionband,CB),而在价带上产生与电子()对应的空穴(),即产生自由电子-空穴对,活泼的电子、空穴在电场作用下可以分别从半导体的导带、价带迁移至半导体/吸附物界面,而且跃过界面,使被吸附物还原和氧化;同时也存在着电子、空穴的复合。价带空穴()将吸附的H2O氧化为羟基自由基(),导带电子()将空气中的O2还原为超氧自由基()。这两个自由基(),是降解污染物的关键活性基团。其反应原理如下:

二、纳米光催化技术的实际应用

纳米光催化技术在大气污染治理中的应用比较广泛,TiO2作为应用效果较好的光催化剂,具有较好的抗酸碱性、耐光腐蚀性,其化学性质稳定性较好,来源丰富,能源较大,具有产生的光生电子和空穴的电势电位较高等优势。但是,在实际的纳米光催化技术应用过程中,容易受到催化剂、有机物浓度的影响。因此,在大气污染治理过程中,相关人员应重视这些因素对光催化技术的影响。

(一)催化剂对纳米光催化技术的影响。纳米光催化技术的原理,是利用催化剂净化大气的。在反应过程中,催化剂的表面积、粒径等等,都会影响纳米光催化反应。如:当催化剂的粒径不断缩小时,溶液中的单位质量粒子就会增多,虽然光的吸附效率有所增加,但是,光吸收不易饱和;当催化剂系统的表面积增加时,就意味着催化剂参加反应的面积增大,有利于催化反应的进行,反之,则不利于催化反应的进行。另外,催化剂的表面羟基及混晶效应,也是影响纳米光催化反应的另一因素。

(二)光源与光强对大气污染的影响。纳米光催化技术常用的光源有黑光灯、高低压汞灯、紫外灯、杀菌灯等,波长在200-400nm的范围内。一般情况下,在纳米光催化反应过程中,其光的强度越强,催化反应速度就会逐渐趋于常数,但是,光量子效率则会随着光强度的变化而变化。此外,PH值不同,外加助催化剂及无机盐等等,在一定程度上也会影响纳米光催化技术的反应。

三、纳米光催化大气污染控制技术与其他技术的联用

(一)室内污染控制与通风技术。目前常用室内环境净化与通风技术有主动式和被动式2种。前者是将室内环境净化装置与机械通风系统有机结合起来成为一个整体,而后者采用空气净化过滤器结合自然通风系统。这两种技术均涉及高效通风技术,前者主要针对外源性污染,可采用高效低阻过滤的方式;而后者主要针对内源式污染,比较有效的方式为各种室内净化技术。目前主要通风方式包括混合通风、置换通风和个性化送风。混合通风和置换通风均以营造室内可感风环境为目的,若将空调设定温度调高必然会引起室内人员热舒适性的降低;个性化送风由于其实际使用中制约较多,在实际工程中较少。

(二)过滤技术。过滤技术主要包括纳米纤维过滤技术、光催化纤维过滤技术、膜过滤技术。纳米纤维过滤技术具有一定梯度结构的复合过滤材料可大大提高过滤性能,已用于室内空气净化、水体有机物净化等领域,有望实现大规模工程化应用;纳米光催化技术是一种新型的处理大气污染物的方法,在大气污染控制方面具有巨大的应用潜力。

四、结语

在大气污染治理过程中,单独利用纳米光催化技术的效果并不是特别明显,因此,在治理大气污染过程中,相关人员应将纳米光催化技术与其他先进的大气净化技术进行有效结合,提高大气污染治理效果,保证人们生活健康。

参考文献:

[1]曹军骥,黄宇.纳米光催化技术在大气污染治理中的应用[J].科技导报,2016,17:64-71.

[2]王韶昱.光催化技术在室内空气净化器中的应用研究[D].浙江大学,2013.

纳米抗体应用研究进展论文

大羊驼血细胞中提取的抗体,可制作新型纳米抗体,体外实验显示,这些纳米抗体可与新冠病毒的刺突蛋白紧密结合,阻止其感染人体细胞。

1 引 言 磁性纳米粒子是近年来发展起来的一种新型材料,因其具有独特的磁学特性,如超顺磁性和高矫顽力,在生物分离和检测领域展现了广阔的应用前景[1]。同时,因磁性氧化铁纳米粒子具有小尺寸效应、良好的磁导向性、生物相容性、生物降解性和活性功能基团等特点[2~4], 在核磁共振成像、靶向药物、酶的固定、免疫测定等生物医学领域表现出潜在的应用前景[5~7]。但由于其较高的比表面积,强烈的聚集倾向,所以通常对其表面进行修饰,降低粒子的表面,能得到分散性好、多功能的磁性纳米粒子。对磁性纳米粒子的表面进行特定修饰,如果在修饰后的粒子上引入靶向剂、药物分子、抗体、荧光素等多种生物分子,可以改善其分散稳定性和生物相容性, 以实现特定的生物医学应用。此外,适当的表面修饰或表面功能化还可以调节磁性纳米粒子表面的反应活性[8],从而使其应用在细胞分离、蛋白质纯化、核酸分离和生物检测等领域。本文介绍了磁性氧化铁纳米粒子的制备方法, 比较了各种制备方法的优缺点,并对其在生物分离及检测中应用的最新进展进行了评述。2 磁性氧化铁纳米粒子的合成方法 磁性纳米粒子的制备是其应用的基础。目前已发展了多种合成和制备方法,如共沉淀法、水热合成法、溶胶凝胶法和微乳液法等,上述方法均可制备高分散、粒度分布均匀的纳米粒子,并能方便地对其表面进行化学修饰,这些方法的优点和缺点见表1。 在这些合成方法当中,共沉淀法是水相合成氧化铁纳米粒子最常用的方法。该方法制备的磁性纳米颗粒具有粒径小,分散均匀,高度生物相容性等优点,但制得的颗粒存在形状不规则,结晶差等缺点。通过在反应体系中加入柠檬酸,可得到形状规则、分散性好的纳米粒子。利用这种方法合成的磁性纳米材料被广泛应用在生物化学及生物医学等领域[9]。微乳液法制备纳米粒子,产物均匀、单分散,可长期保持稳定,通过控制胶束、结构、极性等,可望从分子规模来控制粒子的大小、结构、特异性等。微乳液合成的磁性纳米粒子仅溶于有机溶剂,其应用受到限制。通常需要在磁性纳米粒子的表面修饰上亲水分子,使其溶于水,从而能应用于生物、医学等领域。 热分解法是有机相合成氧化铁纳米粒子最多也是最稳定的方法。利用热分解法制备的纳米Fe3O4颗粒产物具有好的单分散性,且呈疏水性,可以长期稳定地分散于非极性有机溶剂中。该方法合成的氧化铁纳米粒子虽然具有粒径均一的特点,但必须在其表面偶联亲水性及生物相容性好的生物分子或制备成核壳结构,才可用于生物医学领域。表1 磁性氧化铁纳米粒子的制备方法(略)此外,绿色化学和生物方法合成氧化铁纳米粒子也备受关注[28,29]。磁性氧化铁纳米粒子除具有的表面效应、小尺寸效应、量子效应、宏观量子隧道效应等纳米粒子基本特性外,它同时还具有超顺磁特性、类酶催化特性和生物相容性等特殊性质,因此在医学和生物技术领域中的应用引起了人们的广泛兴趣。 3 磁性氧化铁纳米材料在生物分离与生物检测的应用 磁性氧化铁纳米材料在生物分离的应用 磁性氧化铁纳米粒子可以通过外界磁场来控制纳米粒子的磁性能,从而达到分离的目的,如细胞分离[30,31]、蛋白分离[32] 和核酸分离[33]等。此外磁性氧化铁纳米粒子由于兼有纳米、磁学和类酶催化活性等性能,不仅能够实现被检测物的分离和富集,而且能够使检测信号放大,在生物分析领域也都具有很好的应用前景[34,35]。磁性纳米粒子(MNP)能够应用于这些领域主要基于它的表面化学修饰,包括非聚合物有机固定、聚合物有机固定、无机分子固定及靶向配体修饰等[36](图1)。纳米粒子表面功能化修饰是目前研究的热点。 磁性氧化铁纳米材料在细胞分离方面的应用 细胞分离技术的目的是快速获得所需目标细胞。传统细胞分离技术主要根据细胞的大小、形态以及密度的差异进行分离,如采用微滤、超滤以及超离心等方法。这些方法操作简单,但是特异性差,而且存在纯度不高、制备量偏小、影响细胞活性等缺点,因此未能被广泛地用于细胞的纯化研究[37]。近年来,随着对磁性纳米粒子研究的深入,人们开始利用磁性纳米粒子来分离细胞[38,39]。如磁性氧化铁纳米粒子在其表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质、外源凝结素等),利用它们与目标细胞的特异性结合,在外加磁场的作用下将细胞分离、分类以及对其种类、数量分布进行研究。张春明等[40]运用化学连接方法将单克隆抗体CD133连接到SiO2/Fe3O4复合粒子的表面得到免疫磁性Fe3O4纳米粒子,利用它分离出单核细胞和CD133细胞。经培养后可以看出,分离出来的CD133细胞与单核细胞一样,具有很好的活性,能够正常增殖形成集落,并且在整个分离过程中对细胞的形态以及活性没有明显的毒副作用,这与Kuhara等[30]]报道的采用磁分离技术分离CD19+和CD20+细胞的结果一致。Chatterjee等[39]采用外源凝结素分别修饰聚苯乙烯包被的磁性Fe3O4微球和白蛋白磁性微球,利用凝结素与红细胞良好的结合能力,快速、高效的分离了红细胞。此外,磁性粒子在分离癌细胞和正常细胞方面的动物实验也已获得成功。 磁性氧化铁纳米材料在蛋白质和核酸分离中的应用 利用传统的生物学技术(如溶剂萃取技术等)来分离蛋白质和核酸程序非常繁杂,而磁分离技术是分离蛋白、核酸及其他生物分子便捷而有效的方法。目前在外磁场作用下,超顺磁性氧化铁纳米粒子已广泛应用于蛋白质和核酸的分离。 Liu等[41]利用聚乙烯醇等表面活性剂存在下制备出共聚磁性高分子微球,表面用乙二胺修饰后用于分离鼠腹水抗体,得到很好的分离效果。Xu等[42]在磁性氧化铁纳米粒子表面偶联多巴胺分子,用于多种蛋白质的分离纯化。多巴胺分子具有二齿烯二醇配体,它可以与氧化铁纳米粒子表面配位不饱和的Fe原子配位,形成纳米颗粒多巴胺复合物,此复合物可以进一步偶联次氨基三乙酸分子(NTA),NTA分子可特异螯合Ni+,对于具有6×His标签的蛋白质的分离纯化方面表现出很高的专一性。Liu等[43]用硅烷偶联剂(AEAPS)对核壳结构的SiO2/Fe2O3复合粒子的表面进行处理,研究复合磁性粒子对牛血清白蛋白(BSA)的吸附情况,结果表明BSA与磁性复合粒子之间是通过化学键作用被吸附的,复合粒子对BSA的最大吸附量达86 mg/g,显示出在白蛋白的分离和固定上有很大的应用潜力。Herdt等[44]利用羧基修饰的吸附/解离速度快的核壳型(Fe3O4/PAA)磁性纳米颗粒与Cu2+亚氨基二乙酸(IDA)共价交联,通过Cu2+与组氨酸较强的亲和能力实现了组氨酸标记蛋白的选择性分离,分离过程如图2所示。 磁性纳米粒子也是核酸分子分离的理想载体[45]。DNA/mRNA含有单一碱基错位,它们的富集和分离在人类疾病诊断学、基因表达研究方面有着至关重要的作用。Zhao等[46]合成了一种磁性纳米基因捕获器,用于富集、分离、检测痕量的DNA/mRNA分子。这种材料以磁性纳米粒子为核,包覆一层具有生物相容性的SiO2保护层,表面再偶联抗生素蛋白维生素H分子作为DNA分子的探针,可以将10-15 mol/L DNA/mRNA有效地富集,并能实时监控产物。Tayor等[47]用硅酸钠水解法、正硅酸乙酯水解法制备SiO2/Fe2O3磁性纳米粒子并对DNA进行了分离。结果表明,SiO2功能化的Fe2O3磁性纳米粒子对DNA的吸附分离效果明显好于单独Fe2O3磁性纳米粒子的分离效果,但是其吸附机理有待进一步研究。 磁性氧化铁纳米材料在生物检测中的应用 基于磁学性能的生物检测磁性氧化铁纳米粒子因其特有的磁导向性、小尺寸效应及其偶联基团的活性,兼有分离和富集地作用,使其在生物检测领域有广泛的应用。当检测目标为低含量的蛋白分子时,不能通过聚合酶链反应(PCR)对其信号进行放大,而磁微球与有机染料或量子点荧光微球结合可以对某些特异性蛋白、细胞因子、抗原和核酸等进行多元化检测,实现信号放大的作用。Yang等[48]采用一对分子探针分别连接荧光光学条码(彩色)和磁珠(棕色),对DNA(顶端镶板)和蛋白质(底截镶板)生物分子进行目标分析(图3)。如果目标DNA序列或蛋白存在,它将与两个磁珠结合一起,形成了一个三明治结构,经过磁选,光学条码可以在单磁珠识别目标水平下,通过分光光度计或是在流式细胞仪读出。通过此方法检测目标分子是基于数百万个荧光基团组成的微米尺寸光学条码信号的扩增而检测出来,其基因和蛋白的检出限可达到amol/L量级,甚至更低。 Nam等[49]利用多孔微粒法(每个微粒可填充大量条形码DNA)和金纳米微粒为基础的比色法生物条形码检测技术检测了人白细胞介素2(IL2),检出限可达到30 amol/L,比普通的酶联免疫分析技术的灵敏度高3个数量级。Oh等 [50]利用荧光为基础的生物条形码放大方法检测了前列腺特异性抗原(PSA)的水平,其检出限也低于300 amol/L,而且实现了快速检测。 在免疫检测中,磁性纳米粒子作为抗体的固相载体,粒子上的抗体与特性抗原结合,形成抗原抗体复合物,在磁力作用下,使特异性抗原与其它物质分离,克服了放免和酶联免疫测定方法的缺点。这种分离具有灵敏度高、检测速度快、特异性高、重复性好等优点。Yang等[51]通过反相微乳液法制备了粒径很小的SiO2包覆的Fe3O4磁性纳米粒子,生物分子通过诱导这些高单分散的磁性纳米粒子可用于酶的固定和免疫检测。Lange等[52]采用直接或三明治固相免疫法(生物素基化抗IgG抗体和共轭连接链霉素的磁性纳米粒子组成三明治结构)和超导量子干涉法(SQUID),研究它们在确定抗原、抗体相互作用免疫检测中的应用,结果表明特异性键合的磁性纳米颗粒的驰豫信号大小依赖于抗原(人免疫球蛋白G,IgG)的用量,这种磁弛豫(Magnetic relaxation)免疫检测方法得到的结果与广泛使用的ELISA方法的结果相当。 因磁性纳米粒子独特的性能,在生物传感器上也有潜在的应用前景。Fan等[53]在磁珠上偶联被检测物的一级抗体,在金纳米颗粒上连接二级抗体,两者反应后,利用HClNaClBr2将Au氧化为Au3+,催化发光胺(Luminol)化学发光,人免疫球蛋白G(IgG)的检出限可达2 × 10-10 mol/L ,实现了磁性纳米颗粒化学发光免疫结合的方法对IgG进行生物传感分析(图4)。 类酶催化特性在生物检测中的应用 Cao等[54]发现Fe3O4磁性纳米粒子能够催化H2O2氧化3,3',5,5'四甲基联苯胺(TMB)、3,3'二氨基联苯胺四盐酸盐(DAB)和邻苯二胺(OPD),使其发生显色反应,具有类辣根过氧化物酶(HRP)活性(图5),而且其催化活性比相同浓度的辣根过氧化物酶高40倍。并且Fe3O4磁性纳米粒子可以运用磁分离手段进行重复性利用,显著降低了生物检测的实验成本,利用此特性可进行多种生物分子的检测。 利用葡萄糖氧化酶(GOx)与Fe3O4磁性纳米粒子催化葡萄糖的反应(见式(1)和(2)),通过比色法检测葡萄糖,其检测的灵敏度达到5×10-5 ~ 1×10-3 mol/L 。由于Fe3O4磁性纳米粒子制备简单、稳定性好、活性高,成本低,因而比普通酶更有竞争优势,这也为葡萄糖的检测提供了高灵敏度和选择性的分析方法,在生物传感领域的应用上展现了巨大的潜能,为糖尿病人疾病的诊断提供了快速、灵敏的检测方法。然而要提高检测灵敏度,合成催化效率高的Fe3O4磁性纳米粒子及多功能磁性纳米粒子是关键。Peng等[56]用电化学方法比较了不同尺寸Fe3O4纳米粒子的催化活性发现,随着尺寸的变小,磁性纳米粒子的催化活性变高。Wang等[57]制备的单分散哑铃型PtFe3O4纳米粒子,由于本身尺寸和结构特点,可更大限度地提高催化活性。本研究组已经合成了分散性好和磁性高的氧化铁纳米粒子并对其进行了表征,利用其磁学和催化特性,已开展了葡萄糖等生物分子的检测,该方法的检出限达到1 μmol/L,具有灵敏度高、操作简便和成本低等优点[58]。总之,Fe3O4磁性氧化铁纳米粒子不但具有显著的超顺磁性,而且具有类辣根过氧化物酶催化特性,可通过使用过氧化物敏感染料,设计了一系列(如乙肝病毒表面抗原等)的免疫检测模型[59],因此超顺磁性纳米粒子在生物分离和免疫检测领域具有广阔的应用前景。4 结 语 随着纳米技术的迅速发展,磁性氧化铁纳米粒子的开发及其在生物医学、生物分析、生物检测等领域的潜在应用已经越来越受到重视,但同时也面临很多挑战和问题。(1)构建并制备尺寸小、粒径均一、分散性和生物相容性好及催化性能高的多功能磁性纳米粒子;(2)根据被检测生物分子的特点设计多功能磁性氧化铁纳米粒子,实现高灵敏度、特异性检测;(3)利用纳米氧化铁颗粒作为分子探针进行实时、在线、原位、活体和细胞内生物分子的检测。这些问题不仅是纳米材料在生物分子检测领域应用需要解决的难点,也是目前其进行生物分子检测研究的热点和重点。【参考文献】 1 Perez J M, Simeone F J, Saeki, Y, Josephson L, Weissleder R. J. Am. Chem. Soc., 2003, 125(34): 10192~101932 Kim G J, O'Regan R M, Nie S M. 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2005,17:714~7163 LIU JunTao(刘军涛), LIU RuPing(刘儒平), WANG MiXia(王蜜霞), LIU ChunXiu(刘春秀), LUO JinPing(罗金平), CAI XinXia(蔡新霞). Chinese J. Anal. Chem.(分析化学), 2009, 37(7): 985~9884 Lang C, Schuler D, Faivre D. Macromol. Biosci., 2007, 7(2): 144~1515 Silva G A. Surg. Neurol., 2007, 67(2):113~1166 Corot C, Robert P, Idee J M, Port M. Adv. Drug Delivery. Rev., 2006, 58(14): 1471~15047 Kohler N, Sun C, Wang J, Zhang M Q. Langmuir., 2005, 21(19), 8858~88648 LI BaoYu(李宝玉). Biomedical Nanomaterials(纳米生物医药材料). Beijing(北京): Chemical Industry Press(化学工业出版社), 2004: 1419 Tartaj P, Morales M P, GonzalezCarreno T, VeintemillasVerdaguer S, Serna C J. J. Magn. Magn. Mater., 2005, 290: 28~3410 ZHANG Xin(张 鑫), LI XinGang(李鑫钢), JIANG Bin(姜 斌). Chinese Chem. Industry. Eng.(化学工业与工程), 2006, 23(1): 45~4811 Wu J H, Ko S P, Liu H L, Jung M H, Lee J H, Ju J S, Kim Y K. Colloids Surf. A, 2008, 313/314: 268~27212 CHENG HaiBin(程海斌), LIU GuiZhen(刘桂珍), LI LiChun(李立春), GUAN JianGuo(官建国), Yuan RunZhang(袁润章). J. Wuhan University of Technology(武汉理工大学学报), 2003, 25(5): 4~613 QIU XingPing(邱星屏). J. Xiamen University: Natural Science(厦门大学学报:自然科学版), 1999, 38(5): 711~71514 Mao B D, Kang Z H, Wang E B, Lian S Y, Gao L, Tian C G, Wang C L. Mater. Res. Bull., 2006, 41(12): 2226~223115 Fan R, Chen X H, Gui Z, Liu L, Chen Z Y. Mater. Res. Bull., 2001, 36(3~4): 497~50216 Wang H W, Lin H C, Yeh Y C, Kuo C H. J. Magn. Magn. Mater., 2007, 310(2): 2425~242717 Harris L A, Goff J D, Carmichael A Y, Riffle J S, Harburn J J, St Pierre T G, Saunders M. Chem. Mater., 2003, 15(6):1367~137718 SONG LiXian(宋丽贤), LU ZhongYuan(卢忠远), LIAO QiLong(廖其龙). J. Funct. Mater.(功能材料), 2005, 36(11): 1762~176819 Itoh H, Sugimoto T. J. Colloid. Interface. Sci., 2003, 265(2): 283~29520 Xu J, Yang H B, Fu W Y, Du K, Sui Y M, Chen J J, Zeng Y, Li M H, Zou G. J. Magn. Magn. Mater., 2007, 309(2): 307~31121 Li Z, Wei L, Gao M Y, Lei H. Adv. Mater., 2005, 17(8): 11301~11305 22 Sun S H, Zeng H. J. Am. Chem. Soc., 2002, 124(28): 8204~820523 Bang J H, Suslick K S. J. Am. Chem. Soc. 2007, 129(8): 224224 Vijayakumar R, Koltypin Y, Felner I, Gedanken A. Mater. Sci. Eng. A, 2000, 286(1): 101~10525 Pinkas J, Reichlova V, Zboril R, Moravec Z, Bezdicka P, Matejkova J. Ultrason. Sonochem., 2008, 15(3): 257~26426 Khollam Y B, Dhage S R, Potdar H S, Deshpande S B, Bakare P P, Kulkarni S D, Date S K. Mater. Lett., 2002, 56(4): 571~57727 HAI YanBing(海岩冰), YUAN HongYan(袁红雁), XIAO Dan(肖 丹). Chinese Chem. Res. Appl.(化学研究与应用), 2006, 18(6): 744~74628 Jun Y W, Huh Y. M, Choi J S, Lee J H, Song H T, Kim S, Yoon, S, Kim K S, Shin J S, Suh J S, Cheon J. J. Am. Chem. Soc., 2005, 127(16), 5732~573329 Bharde A A, Parikh R Y, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad B L V, Shouche Y S, Ogale S, Sastry M. Langmuir, 2008, 24(11): 5787~579430 Kuhara M, Takeyama H, Tanaka T, Matsunaga T. Anal. Chem., 2004, 76(21): 6207~621331 Y, G. Biofuctionalization of Nanamaterials. WileyVCH: Weinheim 200532 Safarik I M S. Biomagn. Res. Technol., 2004, 2(1): 7

2020年7月13让,在英国BBC的一篇对英国罗莎琳德·富兰克林研究所的科詹姆斯·奈史密斯教授的采访中,关于他对于新型冠状病毒的抗体研究工作的问题进行讯问。

奈史密斯教授对BBC报道的媒体人说,他目前取得了较为不错的进展,近日在对给予大羊驼的抗体混合物进行临床试验,在大羊驼体内中发现了两种纳米抗体,这两种抗体可以过阻断新冠病毒刺突与ACE2受体的结合,从而可以将人体于病毒细胞之间隔离开来。

之前已经从证据上可以表明,如果从已经从冠状病毒中恢复成功的人群中,进行采取抗体的血样,注射到患有冠状病毒的人身上,可以达到治愈的效果。此次发现的羊驼体内的两种纳米抗体就是属于这种抗体。奈史密斯教授想通过这种途径,将羊驼体内的纳米抗体注射到患有冠状病毒的人体内进行治愈,但是目前还在研究中。并且这种抗体称为纳米抗体。

但是这种抗体还是在科学家严格管控程序设计出来的抗体,目前还在努力的研究中。

大羊驼体内抗体能中和新冠病毒意味着什么

首先这是一个巨大的发现成就,从动物体内发现可以中和冠状病毒的抗体是一件好事,如果能加以应用在人体内,这将是一种新疫苗的方向。

同时大羊驼身上发现了这种抗体,可能还意外着大羊驼其实在很早之前就患有这种病毒,从而根据演化之后产生出这种抗体。大羊驼体内的纳米抗体发现给全球疫情研究提供了新思路,新的可能的解决方法,如果研制成功,这可以做到缓解全球疫情的贡献。

有网友们得知这个消息后,不经大喊,“真乃神兽也!”,并且希望这个“神兽”大羊驼能拯救全人类。

目前全球疫情依然严重,虽然我国几乎已经复工复学,并且还陆续开放了人群集聚的电影院,但是作为普通人我们不能放松警惕,在外依然要合理的保护自己,带好口罩。这些天如新疆,突发了疫情的情况,还有前段时间的北京。疫情依然潜伏着,我们作为个体只能做好保护自己的举措,戴口罩,勤洗手,少去人多嘴杂的地方。

科学家们如上面提到的奈史密斯教授,和全球的疫情方向研究的学者,科学家们还继续为着全人类的疫情解放做着自己的努力。希望此次从羊驼体内提取的纳米抗体能实验成功,如果成功的话,尽快的投入全球进行使用,让我们不再担心害怕。

最后,关于从大羊驼体内发现抗体的这件事,你是怎么看的呢?你认为靠谱吗?

新型冠状病毒目前仍在世界范围内广泛传播,全球累计感染人数超过亿,死亡人数超过500万1。尽管目前各类疫苗已实现大面积的推广接种,但依旧没能阻止新冠疫情的蔓延。而且随着疫情的发展,新冠病毒也在持续变异,给世界各国带来了沉重的灾难,有效的预防和治疗是彻底消灭新冠病毒的关键。来源于羊驼的纳米抗体被证实在预防和治疗冠状病毒方面具有极大的应用潜力(表1)。 表1.纳米抗体在新冠预防和治疗中的研究 纳米抗体的由来: 纳米抗体(Nanobodies, Nbs)是由比利时科学家Hamers-Casterman及其团队于1993年在自然杂志中首次报道发现,在骆驼科动物(骆驼,羊驼及其近亲物种)血液中发现有一部分抗体是缺失轻链的“重链抗体”,该抗体只包含一个重链可变区(VHH)和两条重链CH2与CH3区(图1)。VHH保留了全部的抗原结合能力,是最小的保留完整抗原结合片段,被称为单域抗体(Single-domain antibodies),VHH晶体为,长4nm,分子量只有15 kDa。 图1.常规抗体与纳米抗体示意图 纳米抗体相对于传统抗体的优势: 与传统抗体相比,纳米抗体还具有人源化简单、亲和力高、稳定性高、可微生物表达、免疫原性低、可溶性好、渗透力强、可识别隐藏表位等优势。纳米抗体独特的物理和化学稳定性等为诊断和治疗提供了新的研究工具。在抗体药物研发、医学基础研究以及疾病诊断和治疗方面越来越受关注。 全球获批上市的纳米抗体药物: 2018年欧盟批准全球首款用于治疗成年获得性血栓性血小板减少性紫癜的纳米抗体药物—Caplacizumab,通过阻断超大vWF多聚体与血小板的相互作用,从而防止凝血的发生。2021年康宁杰瑞制药,思路迪医药和先声药业合作开发的PD-L1抗体恩维达在中国获批上市,是中国第一个获批上市的纳米抗体药物。目前,已有多款纳米抗体药物处于临床试验阶段(表2)。 表2.处于临床阶段的纳米抗体药物 纳米抗体制备流程: 纳米抗体的制备过程主要包括目的抗原制备、免疫羊驼、抗体库制备、高亲和力抗体筛选、重组抗体表达和抗体活性分析功能鉴定(图2)。 图2.纳米抗体的制备流程 纳米抗体的应用: 1.疾病诊断:分子影像,肿瘤诊断,成像引导手术。 2.细胞治疗:靶向放射治疗,递送化疗药物,免疫治疗。 3.抗体药物开发:寻找靶点→设计药物→生物试验→临床试验→审批上市。 参考文献 : 1. Sun X, Yang S, et al. Nanobody-Functionalized Cellulose for Capturing SARS-CoV-2. Appl Environ Microbiol. 2022 Jan 5:aem0230321. doi: . Epub ahead of print. PMID: 34985974. 2. Wrapp D, De Vlieger D, et al. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell. 2020 May 28;181(5):. 3. Wu Y, Li C, et al. Identification of Human Single-Domain Antibodies against SARS-CoV-2. Cell Host Microbe. 2020 Jun 10;27(6):. 4. Huo J, Le Bas A, et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol. 2020 Sep;27(9):846-854. 5. Hanke L, Vidakovics Perez L, et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat Commun. 2020 Sep 4;11(1):4420. 6. Xiang Y, Nambulli S, et al. Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science. 2020 Dec 18;370(6523):1479-1484. 7. Schoof M, Faust B, et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science. 2020 Dec 18;370(6523):1473-1479. 8. Sun, D., Sang, Z. et al. Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by targeting diverse and conserved epitopes. Nat Commun 12, 4676 (2021). 9. Wu X, Cheng L, et al. A potent bispecific nanobody protects hACE2 mice against SARS-CoV-2 infection via intranasal administration. Cell Rep. 2021 Oct 19;37(3):109869. 10. Redecke V, Tawaratsumida K, et al. A rapid and affordable point of care test for antibodies against SARS-CoV-2 based on hemagglutination and artificial intelligence interpretation. Sci Rep. 2021 Dec 30;11(1):24507. 11. Vanlandschoot P, Stortelers C, et al. Nanobodies®: new ammunition to battle viruses. Antiviral Res. 2011 Dec;92(3):389-407.  编辑人:张涛涛

透明质酸应用研究进展论文

1.An YH (通讯作者)et al. Modulation and impact of class I major histocompatibility complex by neural stem cell-derived neurotrophins on neuroregeneration. Med Hypotheses. 2007, 68: 176-9. (SCI 收录)2. An YH (安沂华). et al. Potential of stem cell based therapy and tissue engineering in the regeneration of central nervous system. Biomed. Mater. 2006, 1: .An YH. (安沂华)et al. Differentiation of rat neural stem cells and its relationship with environment. Biomed. Environ. Sci. 2004, 17: 1-7. (SCI 收录)4.An YH. (安沂华)et al. Neural stem cells transplantation improved the neurological function of cerebral ischemic rat. J Neurochemistry. 2004, 88: Supple 1. (SCI 收录)5.An, YH.(安沂华)et al. Effect of rat Schwann cell secretion on proliferation and differentiation of human neural stem cells. Biomed. Environ. Sci. 2003, 16: 90-94.(SCI收录)6.An, YH.(安沂华)et al. Research on the Molecular Biological Mechanism of Melatonin to Inhibit Neural Cell Apoptosis. J Neurochemistry. 1998, 70: Supple 2, S52.(SCI收录)7.Wan H, An YH(安沂华)et al. Schwann cells transplantation and the repair of brain stem injury in rats. Biomed. Environ. Sci. 2003, 16: 105-111.(SCI收录)8.Wan H,An YH(安沂华)et al. Differentiation of rat embryonic neural stem cells promoted by co-cultured Schwann cells. Chin Med J. 2003, 116(3): 350-354(SCI收录)9.AnYH(安沂华)et al. Protective Effect of Melatonin on Neural Cells Against the Cytotoxicity of Oxyradicals. Chin Med Sci J. 2000, 15(1): .AnYH(安沂华)et al. Neurotoxicity of Amyloid bProtein Blocked by Free Radical Scavengers. J Har Med Univ. 1998, 32: .张儒有,郑永日,胡韶山,程洪斌,安沂华(通讯作者)。神经干细胞移植治疗脑卒中后遗症50例临床效果分析. 中国临床康复. 2006, 10: .安沂华,程洪斌,张儒有,张赞,李纪仲。神经干细胞临床应用和前景展望. 内科急危重症杂志. 2005, 11: .神经干细胞和施万细胞共移植治疗脊髓损伤。中华实验外科杂志,2006,.胎鼠神经干细胞超顺磁性氧化铁颗粒标记移植后MRI研究. 放射学实践, 2006, .A Model of Focal Cortical Infarction in Rat: Minimally Invasive Craniotomy. 中国康复理论与实践, 2006, .用于神经干细胞移植的大鼠脑梗死模型的建立. 中国脑血管病杂志, 2006, .脑梗死大鼠脑内移植超顺磁性氧化铁颗粒标记神经干细胞后的MR示踪研究. 中华放射学杂志, 2006, .高压氧对大鼠脊髓损伤后内源性神经干细胞的诱导作用. 中国康复理论与实践, 2006, .应用细胞移植方法治疗脑出血存在的问题与策略. 中国微侵袭神经外科杂志, 2005, .两种方法诱导骨髓基质细胞向成骨表型分化的比较. 中国康复理论与实践, 2005, .应用组织工程学修复周围神经损伤的研究进展.中华实验外科杂志, 2005, 07: .安沂华,翟晶,历俊华,等. 离体培养神经干细胞的超微结构学研究. 中国康复理论与实践杂志. 2004, 10(1): .安沂华,江涛, Dunyue Lu, 等. 神经营养素与中枢神经系统损伤后突触的再生修复. 中国微侵袭神经外科杂志. 2004, 9(1): .安沂华,万虹,王红云,等. 神经干细胞移植改善脑缺血大鼠的神经功能研究. 中华实验外科杂志. 2003, 20(8): .安沂华等. 血清和雪旺氏细胞诱导大鼠胚胎神经干细胞分化的比较. 中风与神经疾病杂志. 2003, 20: .安沂华等.大鼠雪旺氏细胞促进人胚胎神经干细胞的生长和诱导其分化.中华神经外科杂志. 2002, 18(5): .安沂华等.大鼠胚胎神经干细胞移植治疗脑出血的实验研究。中华神经外科杂志. 2002,18(1):50-.安沂华等. 褪黑激素防止氧自由基对神经细胞的毒性作用。中华临床医药杂志. 2002,32:5271-.安沂华等. 联合应用亚低温和冬眠疗法治疗重度颅脑损伤. 中国康复理论与实践. 2004, 10(3): .闫长祥,安沂华,等. 神经干细胞与自体筋膜联合修复家兔面神经损伤. 中国康复理论与实践杂志. 2004, 10(1): .历俊华,安沂华,等.巢蛋白在已分化的神经干细胞中表达时程的研究. 中华实验外科杂志. 2003, 20(9):32.闫长祥,安沂华等. 脊髓神经干细胞培养、分化及其特异性研究. 中华神经外科杂志. 2003, 19(2): .万虹,安沂华等.体内外不同环境对大鼠胚胎神经干细胞分化的影响. 中华神经外科杂志. 2002, 18(5): .万虹,安沂华等. 雪旺氏细胞促进共培养大鼠胚胎干细胞的分化. 中华神经外科杂志. 2002, 18: .张相彤,安沂华等. 成年大鼠脑创伤后神经前体细胞的增殖及迁移. 中华神经外科杂志. 2002, 18(5): .杨树源,安沂华. 再述神经干细胞的研究及其应用前景. 中华神经外科杂志. 2002, 18(5): .王红云,安沂华等. 大鼠胚胎神经干细胞培养方法的比较. 首都医科大学学报. 2002, 23(4): .雪旺氏细胞与自体筋膜联合修复面神经损伤的实验研究. 中华神经外科杂志, 2004, .自体血脑内注射建立大鼠脑出血模型实验研究. 中国康复理论与实践, 2004, .大鼠脊髓源性神经干细胞的培养分化及其特异性研究. 中华神经外科杂志, 2003, .程小燕, 王红云,安沂华,等.异种大鼠神经干细胞脑内移植未导致明显的免疫排斥反应. 中国康复理论与实践杂志, 2003, 9: .安沂华等. 神经内窥镜第三脑室造瘘术一例. 中华神经外科杂志. 2000, 7:.安沂华等. 褪黑激素在治疗中枢神经系统疾病方面的临床应用. 中风与神经疾病杂志. 2000, 1:.安沂华等. 三磷胞苷辅助治疗22例中重度颅脑损伤. 新医学. 2000,31:.安沂华等. 大鼠第四脑室接触脑脊液神经元的扫描电镜观察. 哈尔滨医科大学学报. 1992, 7增刊:.额骨颧突后蝶翼锁孔入路的内窥镜解剖学研究. 中华神经外科杂志, 2000, .半导体激光辅助神经内窥镜治疗梗阻性脑积水. 中华神经外科杂志, 2000, .前纵裂窥镜锁孔入路对Willis环前部的局部解剖学研究. 中国微侵袭神经外科杂志, 2000, 1.

近日,玻尿酸 科技 企业国纤美正式宣布与“中国玻尿酸之父”、国家糖工程技术研究中心主任凌沛学院士达成战略合作,双方将在玻尿酸科研成果转化、玻尿酸技术在功能食品领域的应用等方面进行深入合作。在此次签约会上,双方强强联手研发的口服玻尿酸产品——悦彦秀壹号糖果正式面世。

打破国际垄断,39年如一日专注玻尿酸研究

人体中的透明质酸含量约为15g,在人体的生理活动中发挥着重要作用。组织和器官中的透明质酸减少,可导致关节炎、动脉硬化、脉搏紊乱和脑萎缩等。人体中透明质酸的减少会产生早老症。

上个世纪90年代以前,国内透明质酸主要从鸡冠中提取,原材料数量有限且成本高。同时,透明质酸与动物组织中的蛋白质和其它多糖以复合体形式存在,分离纯化工艺复杂、收率低,产能十分有限。那段时期,国内的玻尿酸主要依靠进口,一度被西方所垄断。

早在1983年,凌沛学即投入到玻尿酸的研发中。为了实现玻尿酸的国产化,以凌沛学为代表的科研团队经过数百次实验,终于在90年代中期在国际上率先发明了利用生物技术发酵法生产玻尿酸,实现中国玻尿酸量产并推向了全球,被中国生化制药工业协会授予“中国透明质酸之父”。

他所创建的透明质酸理论技术体系和产品质量达到国际先进水平,将玻尿酸技术应用到医疗领域,治疗几千万眼科、骨科、皮肤科患者,为中国医疗事业的发展做出了重要贡献。中国成为玻尿酸领域的强国,凌沛学的贡献功不可没。

凌沛学院士专注研究玻尿酸39年,数十年如一日坚持不懈科研工作,拥有300多项国内外专利,先后获得2项国家 科技 进步二等奖、1项三等奖,何梁何利基金科学与技术创新奖,山东省科学技术最高奖,中国青年 科技 奖。凌院士还入选全国杰出专业技术人才、国家有凃出贡献中青年专家等诸多荣誉,获得国家级奖项4项,省部级奖20余项,发表学术论文100余篇。

2021年,凌沛学当选国际欧亚科学院院士,是玻尿酸领域唯一的院士。

百亿级食品级玻尿酸新赛道开启

2021年1月7日,国家卫生 健康 委员会发文,批准透明质酸钠(透明质酸,俗称玻尿酸)为“新食品原料”,可应用于普通食品添加。

清华大学药学院教授、药理学研究所主任王钊联合首都医科大学基础医学院、北京协和医院临床营养科等作者在《食品科学》期刊发表论文《经口给予透明质酸的生理功能及其作用机制研究进展》。

论文指出:“经体内、体外实验以及患者双盲实验初步证明,口服透明质酸在维持皮肤 健康 、修复关节损伤、调节肠道免疫、缓解干眼等方面扮演着重要的角色,对人体皮肤、眼部、关节,有一定保护功效,且口服透明质酸可以提高紫外线照射后皮肤中水分含量,最终实现改善皮肤状态、减缓皮肤衰老的功效。”

关于口服玻尿酸,中国工程院陈坚院士公开表示,研究表明口服高分子量透明质酸经过胃肠化学消化以及部分酶解后,部分透明质酸钠被人体吸收,有助于维持人体的透明质酸含量。另外,每日口服补充120 mg、200 mg的透明质酸钠可以在保护胃肠道 健康 、护眼、缓解骨关节炎、改善皮肤功效等方面发挥作用。

安信证券研究报告提出:玻尿酸未来有望作为食品原料搭配胶原蛋白、虾青素等成分,结合消费者喜好推出不同组合或剂型,应用于下游乳及乳制品、饮料、巧克力制品、糖果及其他功能性食品。

自2021年玻尿酸入食获批以来,玻尿酸食品成为新的风口和赛道。安信证券预判,中长期国内食品级玻尿酸终端产品市场空间有望达154亿元,其中,国纤美成为玻尿酸食品领域“最早吃螃蟹”的 科技 企业之一。

悦彦秀壹号糖果,口服玻尿酸的新黑马

国纤美在成立之初,就制定了聚焦“玻尿酸+”的中长期战略,国纤美通过与玻尿酸最顶级的科学家进行强强合作,构建了一体化的“玻尿酸+”产学研用平台。此次与凌沛学院士的战略合作,正式拉开了国纤美“玻尿酸+”战略的序幕。

国纤美旗下的悦彦秀壹号糖果,即采用了凌沛学院士的最新科研成果与最新专利技术——全分子量玻尿酸Gaussian HA,它通过酶工程切割、梯度光热处理及低温干燥等技术,将大、中、小玻尿酸分子进行均衡分布,通过协同机制,使全分子玻尿酸和这些有效成分快速被人体的皮肤、关节、眼部等各个部位吸收,从而达到抗衰修复、细胞保护的效果。

“均衡分布的全分子玻尿酸,可通过精准地缓释、控释与长效吸收的方式渗透到细胞膜中,实现持续长效的保健功效。”国纤美执行总裁薇薇表示,“除了全分子量玻尿酸之外,悦彦秀壹号糖果还特别添加了抗坏血酸、鱼肽胶原蛋白肽、抗性糊精、酵母抽提物、Y-氨基丁酸等有效成分,在有效成分的综合作用下,可达到良好的抗衰保健效果。”

在过去的十五年里,薇薇从摆地摊开始,带领团队管理过三千多家大 健康 门店,积累了丰富的线下渠道拓展经验与门店管理经验。2021年,薇薇进一步放大自身优势,极富远见地与“玻尿酸之父”凌沛学院士进行战略合作,精准布局“玻尿酸+”战略。

与凌沛学院士的战略合作,确保了产品的安全 健康 与强功效性,而强大的线下渠道拓展能力,有助于国纤美开辟新的线下大 健康 市场,而这正是被玻尿酸巨头所忽略的领域。

强大的研发基因与领先的渠道优势,构成了国纤美的核心竞争力。薇薇表示,国纤美将进一步打造“玻尿酸+”的产学研用平台,成为全球首屈一指的玻尿酸 科技 企业,用优质的玻尿酸产品为国人的 健康 造福。

导语: 提起玻尿酸,爱美的女生应该不陌生,护肤所用的化妆水、精华、乳液、面霜等产品往往都含有玻尿酸,玻尿酸注射也是医美中的热门项目。那么玻尿酸究竟是什么呢?从哪里来?又有哪些功能和应用呢?

玻尿酸是什么?

为什么宣称含玻尿酸的护肤品,成分表上却找不到玻尿酸?这可能是很多女生的疑惑。其实,玻尿酸只是我们日常的俗称,其学名为透明质酸(Hyaluronic Acid),成分表中也以透明质酸(钠)的名字出现。透明质酸钠是透明质酸的钠盐形式,性质更稳定,实际使用中也以透明质酸钠更为常见。

透明质酸是由D-葡萄糖醛酸和N-乙酰氨基葡萄糖构成的双糖单元重复连接而成的高分子,分子式为(C14H21NO11)n,其中n就是双糖单元的数量,n不同,透明质酸的相对分子质量也不一样,不同分子量的透明质酸具有不同的作用。

透明质酸及其盐广泛存在于生物体内,是细胞基质和多种组织的重要组成成分,眼玻璃体、皮肤、脐带、关节滑液等组织中都分布有透明质酸。

透明质酸有哪些生理功能?

透明质酸作为我们体内的天然物质,对于维持人的正常机能和延缓衰老有着重要作用。透明质酸具有保湿、润滑关节、调控细胞增殖分化迁移、促进创伤愈合、抗氧化等多种生理功能。

保湿 ——保湿作用是透明质酸最重要的生理功能之一。透明质酸在细胞外基质中有很强的保水作用,其与胶原蛋白、弹性蛋白等物质共同组成含有大量水分的胞外胶状基质,正是这种基质使得皮肤柔韧并富有弹性。随着年龄的增长,人体内的透明质酸含量也会降低。皮肤中透明质酸减少,会使得皮肤组织细胞和细胞间的水分含量降低,以透明质酸为主组成的胶状基质所填充的空间减少,导致细胞排列紧密,胶原蛋白失水硬化,皮肤变得粗糙、失去弹性进而长出皱纹。

润滑关节 ——透明质酸是关节滑液的重要组成成分。行走或运动时,滑液可以减少关节摩擦、缓冲撞击,减少对关节的损伤。

调控细胞增殖、分化、迁移 ——透明质酸可以通过与细胞外基质及细胞膜上的多种蛋白受体结合,来参与细胞信号传导,调控细胞的各种活动,包括细胞增殖、分化、迁移等,从而起到调节机体生理功能的作用。同时透明质酸能够调节组织的水平衡,为细胞的迁移和增殖提供便利环境。

促进创伤愈合 ——研究发现,组织损伤后伤口局部的透明质酸含量会明显增加。透明质酸可与血纤蛋白组成凝块在伤口愈合过程中发挥构造功能,并通过调节炎症反应、促进血管生成、调控胶原蛋白合成、加速创面上皮细胞增生等促进伤口愈合。

抗氧化 ——紫外线照射皮肤会产生氧自由基,体内过量的活性氧会破坏蛋白质、脂质和DNA,而透明质酸可以消除自由基,保护细胞免受活性氧的影响。

透明质酸是如何生产出来的?

人体中含有天然的透明质酸,那么我们使用的各类产品中的透明质酸是如何得来的呢?

透明质酸最初由美国哥伦比亚大学眼科教授Karl Meyer和John 于1934年从牛眼玻璃体中提取分离。20世纪70年代,科学家们开始从鸡冠中提取透明质酸,并实现了透明质酸的有限量产。但从动物组织中提取透明质酸,提取率极低,产量很低,导致透明质酸的价格十分昂贵,甚至远超黄金的价格。当时透明质酸主要用于眼科手术和关节滑液注射等医学领域。再后来,微生物发酵法制备透明质酸的技术不断发展,彻底解决了鸡冠提取法原料受限、工艺复杂和病毒污染风险等问题。发酵法不受动物原料限制,成本较低,易于规模化生产,且产品纯度也较高,现在已成为透明质酸的主要生产方法。

将发酵菌放入含葡萄糖、蛋白胨、酵母粉、水等营养物质的培养基中,在适宜的营养、温度和PH值条件下,发酵菌开始不断分裂增殖。葡萄糖通过细胞膜进入发酵菌体内后,经过复杂的反应,最终合成D-葡萄糖醛酸和N-乙酰氨基葡萄糖,这两种物质在细胞膜蛋白的作用下,不断交替连接延长,就形成了透明质酸长链。不同分子量的透明质酸可以发挥不同的作用。科学家将可降解透明质酸的酶作用在特定的点位上,就可以将透明质酸长链切割成不同分子量的短链,这也为透明质酸的应用带来了更多可能。

由于纯透明质酸存在稳定性差、易降解、在人体内保留时间短等缺点,科学家们也在通过多种方法对透明质酸进行化学改性,提高其机械强度及抗降解能力,也由此产生了多种透明质酸衍生物。

透明质酸有哪些应用?

目前,透明质酸在护肤、医疗和食品领域都有一定的应用。

首先,透明质酸在护肤品中应用广泛,发挥着重要作用,可以说无处不在。

保湿 ——在护肤品中,透明质酸主要作为保湿剂、增稠剂、乳化剂使用。透明质酸在低相对湿度下的吸湿量较高,而在高相对湿度下的吸湿量较低,这种特性正好适应皮肤在不同季节及湿度环境下的需求,因此被称为理想的智能保湿剂。

防晒修复 ——紫外线照射皮肤所产生的活性氧自由基可导致脂质过氧化,破坏细胞膜,引起色素沉着。涂抹含有透明质酸的产品可以促进表皮细胞增殖和分化,清除氧自由基,加速愈合紫外线引起的皮肤灼伤、变红、变黑、脱皮等,促进皮肤再生。

润滑和成膜 ——透明质酸具有很强的润滑和成膜性。涂抹含有透明质酸的护肤品后,透明质酸会在皮肤表面形成一层透气水化膜,使皮肤更加润滑和滋润,还能在一定程度上隔离细菌,利于消炎修复。透明质酸用在护发产品中,也可以在头发表面形成保护膜,起到保湿、润滑、消除静电等作用。

透明质酸在医学领域应用也十分广泛,包括疾病治疗和医疗美容。而且,透明质酸最早也是应用于医学领域。

眼科 ——眼科手术是最早使用透明质酸的领域之一。透明质酸在眼科手术中主要用于补充白内障手术或人工晶体植入术等眼科手术造成的玻璃体液缺失;还可用作眼科手术的黏弹性保护剂,减少手术对眼内组织的损伤,为手术操作提供便利。此外,透明质酸也是治疗干眼症的滴眼液的主要成分。

皮肤科 ——透明质酸可作为填充剂进行皮下注射,有效改善皮肤轮廓,消除癜痕、伤口、皱纹等引起的皮肤凹陷;透明质酸具有修复皮肤伤口的作用,含有透明质酸成分的敷料被广泛用于烫伤及医美术后的创伤修复中;还可用于缓解湿疹和皮炎引起的灼烧感、痒、疼痛等症状。

骨科 ——关节腔内注射高分子透明质酸可有效缓解关节炎患者的疼痛症状,润滑关节,促进骨质修复,改善关节功能。

此外,透明质酸还在手术后防粘连、药物缓释、靶向给药等诸多医学领域发挥着重要作用。

2008年,我国批准透明质酸钠为新资源食品,使用范围为保健食品原料。2021年1月,又批准将透明质酸钠使用范围扩大至乳及乳制品类,酒类,可可制品、巧克力和巧克力制品(包括代可可脂巧克力及制品)以及糖果,冷冻饮品。可见,透明质酸的应用越来越广泛。

可以说玻尿酸在我们的生活中无处不在,相信随着技术的进步,越来越多的玻尿酸产品会被开发出来,更好地满足我们的 健康 和美好生活需要。

参考材料:

[1]蒙亮亮,杜桐,王欣欣,王鹏,纪桢.透明质酸在化妆品中的应用研究进展[J].山东化工,2018,47(18):52-54+56.

[2]苏译旻,王焱,林彤.透明质酸在皮肤科的应用[J].中国麻风皮肤病杂志,2018,34(05):314-316+320.

[3]张堃,简军,张政朴.透明质酸的结构、性能、改性和应用研究进展[J].高分子通报,2015(09):217-226.

[4]陈建澍,王婧茜,易喻,龚海平,应国清.透明质酸及其衍生物研究进展[J].中国生物工程杂志,2015,35(02):111-118.

[5]杨素珍,阚洪玲,张天民.透明质酸在美容化妆品方面的应用[J].食品与药品,2010,12(07):275-278.

[6]世界透明质酸博物馆线上科普素材

相关百科

热门百科

首页
发表服务