首页

> 论文发表知识库

首页 论文发表知识库 问题

导数在中学数学应用的毕业论文

发布时间:

导数在中学数学应用的毕业论文

数形结合就是运用图形来简化解题思路,数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。 作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: 一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。 七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。 八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。多做几个类似的题目啊....找本专题什么的强化一下就可以了

函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。1. 中值定理微分学中有费马引理、罗尔定理和拉格朗日中值定理。拉格朗日定理 如果函数 满足:(ⅰ)在闭区间 , 上连续;(ⅱ)在开区间 , 内可导,则在 , 内至少存在一点 ,使或由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。2. 用导数研究函数的性质为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。反过来,我们是否可以有导数的符号来判定函数的单调性呢?一阶导数的符号在 上任取两点 、 ,其中 < ,在区间[ , ]上应用微分中值定理,得到 ( < < )有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。由此我们可以归纳出函数单调性的判别法。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。此外,导数的绝对值告诉我们变化率的大小。当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。曲线的上下凹性设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的;如果在某一区间内 ,那么 在该区间式递减的。如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少, 点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。二阶导数的符号函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。局部极值性我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。 在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。 在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。函数的极大值和极小值概念是局部性的。如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。最大值与最小值在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可知,函数 在闭区间 , 的最大值、最小值必定存在;其次,如果最大值或最小值在开区间 , 内的某一点 取得,那么这个最大值或最小值 必定是函数 的一个极大值或极小值。于是,点 必定为函数 的驻点;最后,函数 的最大值或最小值也可能是在 或 处取得。我们通过一个例子来看一看最大值或最小值的求法过程。例5 求函数 在闭区间 , 上的最大值与最小值。

微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。

摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.

关键词:微积分;背景;作用;函数

一、微积分进入高中课本的背景及必要性

在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。

柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。

从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!

二、微积分在中学数学中的作用

1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.

2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。

3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。

三、国际上一些教材对微积分知识的处理

以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。

当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!

摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。

关键词:微积分;起源;内容;方法

微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:

一、微积分起源的介绍

微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。

介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。

二、介绍微积分内容及方法

微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。

三、为什么要学习高等数学

微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:

微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。

前言

21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。

一、我国微积分教学改革的现状

目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。

首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。

其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。

再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。

二、微积分课改的必要性

随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。

(1)社会高度发展提出的要求

微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。

(2)科技的发展提出的需要

当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。

(3)人类思维发展的需要

微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。

三、微积分课改的内容

根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。

1、课程基本理念的改革

微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。

2、课程内容的改革

根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。

3、课程设计的改革

原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。

4、教学方法的革新

(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。

(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。

5、教学工具的革新。

现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。

四、小结

1.导数在函数问题中的应用利用导数分析函数的性态是一种重要手段。在分析函数的图象、判断函数的单调性、求解函数的最值等方面,利用导数可使复杂问题简单化、程序化。分析函数的图象例1函数在定义域内可导,导函数的图象如图1所示,则函数的图象可能为()图1ABCD分析:当时,函数在对应的每一个解集的区间内均为减函数,当时,函数在对应的每一个解集的区间内均为增函数,由导数的图象可得函数的单调性应为减增、减增趋势,故选B。求参数的值例2已知函数在区间[-1,1]上是增函数,求实数a的取值所组成的集合A。解:又在[-1,1]上是增函数对恒成立,即对恒成立。设,那么问题就等价于即故所以A=.例3函数过曲线上的点p(1,f(1))的切线方程为,若函数在区间[-2,1]上单调递增,求b的取值范围。解:由求导可得过上p(1,f(1))的切线方程为:即,而过上p(1,f(1))的切线方程为。故有3+2a+b=3即2a+b=0又在区间[-2,1]上单调递增,在区间[-2,1]上恒有,即在[-2,1]上恒成立。(1)当时,,所以;(2)当时,,所以(3)当时,,则综合上述讨论可知,所求参数b的取值范围是:

导数在高中数学中的应用论文

大学高数论我知道怎么做

在物理中,比如说感应电动势的公式,有一个平均电动势的公式,就可以用导数求出它的瞬时电动势。其他还有很多应用的。貌似有那么一本书就是专门说导数应用的。。。

我还在上高中,目前我们用导数一般都是求函数的值域,以及其单调性、极大值、极小值,还可以求函数上某一点的切线的斜率,从而还能求过这个点的切线的方程!...

导数在实际生活中的应用

(一)导数在经济中的应用

导数在经济发展中具有重要的作用。随着经济的飞速发展,经济学家们面对共享经济下的各种复杂竞争,对其进行了深入研究。导数对于经济学的研究具有重要的意义,例如经济学中的边际问题、弹性问题等等都可以利用导数来解决。利用导数解决经济学中的一些复杂问题,能够将复杂问题简单化。导数是推动经济学发展的重要助推器,导数在经济学中的应用十分广泛。在经济管理中,我们可以利用需求函数来表示需求量和影响需求量的关系;如在研究商品供应量和商品价格的关系时,我们可以利用供给函数来表示。

(二)导数在物理中的应用

高中的物理学现象有时用导数来解决会更加简便化。从导数的定义看,用导数来表达物理规律更准确,更能使学生理解。导数的运用为物理学的研究提供了有力的方法,它也为我们学习物理提供了有利的途径,便于提高学生用数学思维来思考问题的能力。对于一些物理现象例如求最小拉力,最大速度等问题,我们都可以用导数来解决。例如物体重为G,停在滑动摩擦系数为U的水平面上,一人想用最小拉力F使木块沿水平面匀速运动,求最小拉力F。

这时我们可以用导数来分析解决。我们可以找出已知量和未知量,然后建立一定的函数式,再求导数,代入数据求出物理量。当导数为0时解方程,将自变量代入,求最大值和最小值,最后得出最小的拉力F。由此我们可以看出导数在解决物理等现象时非常有用,而且简化了复杂的物理问题。

导数在初等数学的应用毕业论文

大学高数论我知道怎么做

导数在生活中的应用如下:

导数是微分学的重要组成部分,是研究函数性质、曲线性态的重要工具,也是解决实际生活中某些优化问题的重要方法。探讨了运用导数求解实际生活中有关用料、成本、利润及选址方面问题的方法。

导数(Derivative)也叫微商,是一种特殊的极限,它反映了函数中因变量随自变量的变化而变化的快慢程度,是微积分中重要的基础概念是联系初等数学与高等数学的桥梁。

在研究几何、证明不等式等方面起着重要的作用,在探究函数性质、寻求函数极值与最值以及描绘函数图形等方面也起着重要的作用,同时,也为解决某些实际应用问题提供了重要的方法。

在实际生活中经常出现的一些谋求利润最大、耗材最少、或效率最高、位置最佳等与经济或科学研究有关的问题,这些问题称之为优化问题,如何找到解决该类问题的最佳方案是求解该类问题的关键,而利用导数就可以简捷地解决这些问题,从而真正解决我们的实际生活问题。

运用导数求解优化问题的方法与注意事项:实际生活中的优化问题,如选址最佳、用料最省、利润最大等问题,本质上就是最值问题,这些问题与求函数的最值问题有着密切的联系,而这些问题可以转化为函数问题,利用导数知识得以简捷的解决。

解决优化问题的方法:首先对现实问题进行分析,找出各个变量之间的关系,建立相对应的函数关系式,将实际问题转化为用函数表示的数学问题。

再结合实际情况确定自变量的定义域,创造函数在闭区间上求最值的情景,通过对函数求导、确定驻点和不可导点、比较函数在区间端点、极值点和不可导点处的函数值,获得所求函数的最大(小)值,最后将数学问题回归到现实问题,根据数学问题的答案回答优化问题最佳方案或策略。

应用 初等数学 [Abstract] The derivative is the forceful implement ①运用导数的有关知识研究函数的单调性和最值问题, ②利用导数的几何意义,

6导数在研究函数中的应用论文

初等中等高等指什么啊小学的就是一加一加减乘除应用题三角形面积这一类的。初中开始学函数一次函数二次函数。。几何里面学矩形菱形正方形圆的弧长啦,,,还有圆锥的侧面积全面积。高中有什么集合的。。- -。。你给的分好高是不是忽悠人的

函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。1. 中值定理微分学中有费马引理、罗尔定理和拉格朗日中值定理。拉格朗日定理 如果函数 满足:(ⅰ)在闭区间 , 上连续;(ⅱ)在开区间 , 内可导,则在 , 内至少存在一点 ,使或由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。2. 用导数研究函数的性质为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。反过来,我们是否可以有导数的符号来判定函数的单调性呢?一阶导数的符号在 上任取两点 、 ,其中 < ,在区间[ , ]上应用微分中值定理,得到 ( < < )有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。由此我们可以归纳出函数单调性的判别法。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。此外,导数的绝对值告诉我们变化率的大小。当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。曲线的上下凹性设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的;如果在某一区间内 ,那么 在该区间式递减的。如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少, 点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。二阶导数的符号函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。局部极值性我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。 在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。 在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。函数的极大值和极小值概念是局部性的。如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。最大值与最小值在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可知,函数 在闭区间 , 的最大值、最小值必定存在;其次,如果最大值或最小值在开区间 , 内的某一点 取得,那么这个最大值或最小值 必定是函数 的一个极大值或极小值。于是,点 必定为函数 的驻点;最后,函数 的最大值或最小值也可能是在 或 处取得。我们通过一个例子来看一看最大值或最小值的求法过程。例5 求函数 在闭区间 , 上的最大值与最小值。

导数的定义以及导数在实际中的应用如下:

导数的定义:导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

若某函数在某一点可导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

导数在实际中的应用:导数是用来分析变化的。以一次函数为例,我们知道一次函数的图像是直线,在解析几何里讲了,一次函数刚好就是解析几何里面有斜率的直线,给一次函数求导,就会得到斜率。

导数是微分学的重要组成部分,是研究函数性质、曲线性态的重要工具,也是解决实际生活中某些优化问题的重要方法。探讨了运用导数求解实际生活中有关用料、成本、利润及选址方面问题的方法。

导数的计算:

计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。

只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。

1.必要条件(可以想想x^3 这个函数)(x)'=e^(ax)*a+3=0 明显 a小于0 x={ln(-3/a)}/a 带入原式y=e^(ln(-3/a)+3ln(-3/a)}/a 可以解得a∈(-3/e,0)(x)'=3x^2+2ax+b x=-2,x=4代入 得a=-3 b=(x)’=lnx+1=0 x=1/e 单调递减区间是(0,1/e)(x+x)/(1+x^2) F(x)'={2(1+x^2)-4x^2}/(1+x^2)^2=0 x=-1或x=1 F(x)的单调增区间(-1,1)(x)’=3x^2-12 x=2、-2 极大值f(-2)=24 极小值f(2)=-8 f(-3)=17 f(3)=-1 所以 M-m=(x)’=3x^2-2ax+3a ⊿>0 得 a小于0或a大于(x)’=e^x+cosx 在定义域内一定大于0 所以最小值=f(0)=(x)’=a+1/2*(1/x^2)-1/x =(2ax^2 -2x+1)/(2x^2) 得 a大于0 根据 -b/(2a)=1/2a 大于0 (4ac-b^2)/4a 大于0 得 a大于(x)’=3x^2-2ax+a-1 把x=1、4、6代入 得 47/7<a<107/(x)’=6x^2+6ax+3b=0 代入x=1、2 得a=-3 b=(x)’=2x+2 且F(x)’∈(0,1) x∈(-1,-1/2)13. 楼主 题目有错么.....(x)’=(3x+2)(x-1) 极小值f(1)= f(-1)= 所以最小值=

数学在初中教学中应用的论文

数学思维能力的好坏直接关系到分析其他问题的能力,初中课堂教学效果的好坏也直接影响到初中学生数学思维能力的培养,因此应当引起 教育 教学工作者足够的重视。本文是我为大家整理的初中数学教育教学论文 范文 ,欢迎阅读! 初中数学教育教学论文范文篇一:初中数学合作学习对策 一、合作学习内涵机理论述 所谓的合作学习,实质上就是进行班级成员科学分组,确保组内学生能够针对对应课题进行深入交流和同步学习,最终派出代表将组内核心观点表述完整,在获得教师合理性评论建议后加以整改,以此实现对应教学规范引导指标。 二、目前我国初中数学合作学习期间存在的冲突性问题整理研究 首先,合作探究式问题设置形式过于简易单一。须知此类学习交流模式在于激发个体思维创新和合作意识,只有经过各类角度分析整编过后,才能绽放出独到的智慧结晶。可现实中,教师始终关注课程进度和应试结果,对于学生主观能动性关注度不够,尤其在鸭架式口语灌输讲解氛围中,学生对于既有知识感知趣味丢失,后期自主性学习动力也就不足。如若长期放置不管,对于学生今后身心健康发展是极为不利的。其次,合作小组内部成员分工秩序极为紊乱。事实上,合作学习理念主张吸纳各类学生观念,确保话题内涵讨论结果的多元特性。可实际布置活动期间,由于教师规则指导不够规范,使得对应任务难以及时交接到个体成员之上,尤其大部分学生作为独生子女,个人主义思想极为深刻,基本上只会将注意力集中投射在自身感兴趣的单元之上,造成固定小组向心力溃败结果,关于真正意义上的合作探究学习风尚难以保持延续。一般情况下,学习成绩优异的学生会成为问题提出、结论 总结 代表,至于其余个体完全扮演旁观者角色,小组其间隐藏的思维两极分化效应显著。最终学习好的个体素质得以合理提升,而成绩不高的个体将继续沉沦。最后,教师普遍不会参与到初中数学探究式合作学习流程中。在其思维体系中,片面地认为一切工作都将交付给学生,而应尽的实践活动设计组织、关键知识点提醒引导、课堂秩序科学规范监管职责,却顺势抛之度外。长此以往,学生整体上便处于放任自流境遇之中,在得不到合理肯定激励结果基础上,失去自主性学习动力,经常合作交流期间讨论其余话题内容,令课堂安定和谐秩序全面消散。也就是说,目前初中数学课堂合作教学基本上流于形式,对应的个体素质规范调试指标难以顺利贯彻。 三、新课标背景下初中数学合作学习规范引导策略解析 (一)合作探究内容的科学选取设置 结合客观层面分析,初中数学教材的确存在部分教学内容难以开展合作交流模式,而指导教师要做的就是,尽量挖掘学生整体兴趣感知点,尽量寻找一些高难度且令学生产生疑惑的课题内容。经过高层次认知任务分配布置过后,学生才好联合既有知识、生活分析 经验 加以科学探讨解读,这样对于个体思维架构完善显得相对有利一些。 (二)针对小组学生个体进行科学分工指导 其核心任务在于明确组内成员之间性格、能力互补功效,确保学生经过较难话题讨论期间能够相互辅助,建立标准正向竞争合作学习风尚,使得平时不爱讲话的同学也能轻松参与进来。这就需要教师尽量合理安排座位,将以往单纯样式的观众席位模式全面遏制,让同一组相对熟悉的学生聚集在一起,确保话题交流深度的有机彰显结果。之后进行不同组间探究结果整理评估,实施不同阶段发言代表人的交替规则,针对表现优异的学生个体加以现场鼓舞激励。 (三)尊重并鼓励学生布置多元化合作探究模式 初中数学教学内容着实丰富,为了确保学生逻辑和感性思维得到进一步灵活衔接,教师必须确保单位课堂学习内容和探究任务的明确特性,令各类学生都能针对合作探究模式创新改革问题发表自身建议,确保单位成员都能有所作为,竭尽全力令单位任务可以在预设时间范畴之内得以顺利完成。另一方面,教师需要在各小组完成任务后要多给予鼓励。对于成绩比较差的学生,教师要采取特殊照顾、单独辅导的 方法 ,让每一名学生都不掉队,给予他们充分的自信心,发挥作为集团一员的特殊作用。 四、结语 综上所述,初中教学内容丰富,对于学生 逻辑思维 引导开发和人文情感协调都将产生独特调试功效。教师要做的就是,尽量关注并挖掘学生个体身心发展特征,做好合作学习小组成员划分任务,确保学生彼此之间产生高效互补启示作用,进一步为后续课题深度解读和个体发展前景科学预测绽放提供标准疏通性建议。 作者:张小荣 单位:江苏省南通市海安县孙庄初级中学 初中数学教育教学论文范文篇二:初中数学智能教学研究 一、初中生智能 智能简单地说,就是智慧和能力。主要体现于大脑的功能,表现为大脑对外界信息加工处理的本领,它包括感知能力、记忆能力、想象能力和思维判断的能力,感知能力和记忆能力是智慧的基础,想象能力和思维判断的能力是智慧的核心。反映在数学上,就是区分形状不同的几何图形,不同变量变化的规律,从具体的形象思维——抽象概括思维——逻辑思维,对前人总结的定理、公示、法则的在现,洞察二维、三维空间物体相互位置关系,以及以记忆为基础的各种思维判断能力。中学生经过六年小学阶段教育,已具备一定的“数学与逻辑推理能力”,从生理学角度来看,其大脑的四个功能区,即感受区、判断区、想象区已基本成熟,接近成年人这一阶段,人的认识呈“飞跃”式发展。初中生从十一、二岁进入学校,到十四、五岁初中 毕业 ,这一段时间有人把它称为人生中“黄金时段”我们就要抓住人生中的“黄金时段”,适时开发中学生智能,培养学生的创新精神,才能获得智能资源的大丰收。 二、发展智能是初中数学教学的重要任务 数学作为一门研究现实世界空间形成和数量关系的科学,是学习和研究现代科学技术必不可少的基础知识和基本工具。作为教师不能奢望每个学生都能成为一代娇子,但也完全可能让每个学生在他现有智能基础上得到充分的发展。为提高整个一代人的智能水平做出最大努力,这一出发点也可列为中学教师应尽的责任之一。中学数学的教学任务不仅要传授知识,尤其重要的是开发智力和培养能力。所以在数学教学中,传授知识和发展智能是相互影响、相互制约、不可分割的有机统一体。那种把发展智能和传授知识相对立起来,或者严重脱节的倾向,把发展智能神秘化,甚至认为高不可攀的观点都是错误的。作为一名学生教师应该清楚自己不仅是知识的传授者,而且是智能的开发者,应该把主要力量放在开发学生的智能上,在人生的最重要的“黄金时段”发掘人的最宝贵的东西——智能。 三、初中生的智能开发 开发学生的智能,要遵循客观规律。使每个学生的创造力和创造精神得到发展,凡有利于这一工作的工作,都属于开发智能的范畴。作为中学数学教师,在开发学生智能方面应该认识并做到以下几点:从人性角度看,人既是主体性与客观性的统一,又是能动性和受动性的统一,也是独立性与依赖性的统一。学生在学习活动中表现为:我要学和要我学。我要学是基于学生对学习的一种内在需要,表现为学习兴趣。学生有了学习兴趣,学习活动对他来讲就不是一种负担,而是一种享受,一种愉快的体验,学生会越学越想学,越学越爱学,有兴趣的学习事半功倍。兴趣是学生学好知识的、内在的、直接的动力,不断激发学生的学习兴趣,使学生始终处于积极的思维状态,是发展学生智能的基础。有人说:“生趣才能爱学,爱学才能增加,增加才能长智。”可见,生趣是爱学、增加、长智的起点。在实际的教学工作中,每节课都必须精心设计,以激发学生的求知欲。例如在讲“函数”时授课前让学生先计算:2的4次方是多少?2/3的三分之二次方是多少?学生在解决了第一题后,所学知识不能解出第二题,于是就有了找到解法的欲望。这时教师就顺势导出将要学习的新知识——函数。从而达到了激发学生学习兴趣的目的。 作者:卢占武 单位:河北省廊坊市固安县沙垡中学 初中数学教育教学论文范文篇三::初中数学教学中数学思维培养 一、数学思维的特点 任何一门学科都具有其自身的特点,数学作为一门基础学科,更是具备了严谨性和抽象性的显著特点,只有牢牢把握数学的特点,在严谨性和抽象性特点的指导下开展教学工作,才能更好的培养学生严谨的数学 思维方式 。 1.数学思维具有严谨性 数学是一门对逻辑性思维要求十分严格的学科,它要求教学人员对概念和定义有精准的把握和透彻的理解,对于问题的结论,也应做到反复论证,以便在教学中能够完整的表达数学名词的实质意义。在实际教学过程中,不同学生对知识的理解能力也各不相同,因此在传授知识的过程中不能够向数学科学一样做到绝对精准,这就要求老师因材施教,差别化的对待不同学生,进行数学思维的培养,进而逐步走向严谨。 2.数学思维具有抽象性 所谓抽象性,就是指用数学来表示客观存在的事物的本质特征和物与物之间的关联性。所有的数学定义都是从客观事物中总结归纳而来的,并不断提升,不断探索新的规律和法则,最终形成的完整的数学体系。而在这个过程中,抽象性不断加深,概况性不断提升,人们对事物的认识程度也就不断加深。因此,与其他学科思维相比,数学学习所需的 抽象思维 更有层次性。 二、培养初中生良好思维方式的方法 具备良好的思维方式是学好一门学科的关键,而思维的发展也需要一定的知识基础作铺垫。在初中教学中,也应掌握恰当的方式方法,综合运用不同技巧加强对学生数学思维的培养和引导。 1.不断拓展学生的思维 在教学过程中,老师的教授讲解固然重要,但也应适当给予学生独立思考的时间,并在习题练习的过程中对知识进行把握和充分理解。教师在对一些特殊概念和知识的讲解过程中应与学生深入探讨,而非停留在只教授不讨论、只讲概念不深入探究的阶段。要加强对学生自主学习能力的培养,带动学生学习的主动性,从而逐步拓宽学生的思维,增强学生数学学习的逻辑思维能力。另外,也要充分利用学生的错误,在学生错误解答题目或错误理解概念时,应当深入分析出错的原因,从根本上纠正错误的思维方式。 2.运用正确的引导方式和教学方式 教师在教学过程中,要有清晰的头脑和明确的思维逻辑方式,在讲解过程中应有步骤、有层次的进行讲解。例如,在初中数学中引入绝对值的概念,这就区别于低年级的数学教学,介绍负数的概念给学生,从而拓宽了学生对于数字的理解范围。对于|x|,x的值不是单一的+x,而是分成不同的情况。它的值可能是-x,也可能是+x,也可能是0。而教师在讲解绝对值概念时,也应结合数轴上的点来介绍绝对值的大小,即到原点零的距离。另外,对于不同版本的课本和教材,也应有不同的 教学方法 和顺序,适时调整教学活动,不拘泥于课本,才能更好的培养学生的思维能力,提升学生数学学习的整体能力。 3.培养学生的学习兴趣 学习兴趣是促进学生进步和发展的最大动力,因此,老师在教学的同时要善于培养学生的学习兴趣,有利于学生更快速的理解知识,使学生能够积极主动的学习而非被动听课。同时,应关心稍稍落后的学生,适时的给予鼓励和并加以引导,促使他们积极思考,不断发掘新问题,提出疑惑,并和学生一同思考解答。例如,在讲解“如何求解一元二次方程的根”的问题时,应带领学生尝试不同方法进行求解。详细介绍因式分解法、图象求解法、配方法等多种方法,并对应习题进行练习讲解,而不是固定的只讲解一种方法,应让学生自主选择合适的方法。 4.运用现代教学方式和技术进行课堂教学 随着科技的不断进步与发展,计算机电子技术的进步,应将其综合运用到数学教学中,对于几何学的教学,可采用动态图的演示方式,更加具体的使学生感受到图形的变化以及变化过程中的规律,及时进行归纳总结。对于没有条件的地区,教师在教授过程中,应有过硬的绘图功底,通过绘制主要的图形变化过程帮助学生理解课堂知识,拓宽思维。 三、结束语 数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,因此应当引起教学工作者足够的重视。在适当时应摒弃传统落后的教学观念,结合新的思维方式进行教学,留给学生充分的独立思考空间,激发学生学习数学的兴趣,使学生在学习过程中做到举一反三,让学生在自主学习的过程中发现数学的乐趣,并养成良好的思维方式,从而为今后的数学学习以及其他学科的学习打下扎实的基础。 作者:顾伟军 单位:江苏省滨海县坎北初级中学

初中数学教学论文范文

在社会的各个领域,大家或多或少都会接触过论文吧,论文可以推广经验,交流认识。那么一般论文是怎么写的呢?以下是我帮大家整理的初中数学教学论文范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

论文摘要: 数学这门学科是一门比较重要的基础学科,较强的逻辑性和抽象性是数学知识的重要特点,因此对于数学的教学能够提高学生的综合能力和素质。初中数学的学习是学生学习比较重要的时期,因此这个时期对于数学的教学方法对学生的数学学习有着关键的作用,所以必须要重视这个阶段数学的教学方法。本文通过对初中数学教学存在的问题进行分析,从而提出了一系列改进初中数学教学的对策。

论文关键词: 初中数学;教学;问题;对策

一、学习数学的重要性

1.对于数学的学习可以满足人们的一种需要,例如日常生活、工作中的计数、计算以及推理。在我们的日常生活和工作中,对于事物的计数、数量之间各种运算以及比较,这些都是离不开数学的,需要数学知识和思想方法的支持。也许是因为在日常生活中所应用的数学知识都是比较简单的,所以感觉不到对它的应用。

2.对于数学的学习可以使人的思维品质和思维水平得到锻炼,比如人的计算能力、空间想象能力以及逻辑思维能力等。数学科学具有严谨、缜密的特点,所以在学习这门科学的时候除了能够掌握一定的知识外,自然也能锻炼严谨、缜密的思维。也就是说通过对数学的学习,可以让人在做事情的时候产生比较清晰的思路,运用比较科学的方法,从而能够根据已知和未知事物之间的某种联系将事物可能发展的趋势和结果进行一个大体的推断,所以说对于数学的学习可以使人的大脑和身体得到很好的锻炼。

3.数学已经深入到自然科学、社会科学的各个领域。数学掌握着这个信息化社会,把握住数学,能够在这个社会上具有一定的领导能力。由此可以看出,具有数学读写能力的人和不具有这种能力的人之间的差距越来越大,而且其程度也是非常惊人的。数学知识支持多产的、技术强大的精英阶层。曾经得到过诺贝尔奖的杨振宁说过:数学在他的科学生涯中起着不可忽视的作用,因此有些学者将信息时代也称之为数学时代,由此可以看出对于数学知识的学习可以帮助我们进入到其他学科的学习中。

4.通过对数学的学习,可以让我们体会到数学工作者身上的那种科学、严谨的科学态度和作风,从而激励自己提高自身的科学素养。纵眼望去,我们可以发现历史上无数的数学家都有着兢兢业业、刻苦勤奋、勇于创新的精神,通过学习他们的这种精神,让自己能够得到熏陶和震撼。

二、初中数学教学存在的问题

1.教师角度。

(1)教学情境的设置过于牵强,过度地重视教学中的趣味性,而忽视了数学的味道,甚至有些情境的设置离题目太远,根本就不切实际,显得非常生硬,而又刻意。对于一些知识来说,找不到合适的情境来解释也是很正常的,并不是说每个知识点都必须要设置一定的情境,有些问题可能就是来自数学本身,所以对于情境的设定一定要尊重学生的知识背景和认知结构。

(2)没有明确的教学目标,而且没有透彻的理解课标含义。

新课标提出了三位目标,分别是学科知识、数学技能以及情感态度价值观。但是很多教师对此的理解存在着误差;或者是理解了,但是执行起来却存在着偏差。只侧重于对基础知识和基本技能的教授,并以此为教学的主体,从而导致了课标的失衡,使数学的教学过于简单和过于程序化。也就是说,在教学中,只重视了训练,而忽视了培养。

(3)教学方法过于单调,没有灵活性。

很多教师对于数学的教学还停留在以往单一的方法上,所有的教学只是为了应付集体备课,并没有对其进行深层次地挖掘和研究,不能形成自己的教学风格,缺乏与学生的互动环节。另外,对于所有的学生都采取一样的教学方式,根本就没有任何的变动,缺乏必要的灵活性,很难做到对数学教学的因材施教。

(4)评价方式存在漏洞。

在调查中发现有一些教师在课堂上根本就无法展现一名教师的修养和内功,因为他们不能够对学生做出非常合理的课堂评价。这些教师一般存在的问题就是缺乏评价语言或者是评价比较肤浅、过度、琐碎,不存在一定的启发性和激励性,根本达不到课堂评价应有的效果。还有一些教师在评价的时候语言过激,让学生感觉到其语言上的讽刺性,从而伤害了学生的自尊心。课堂评价如果不能很好地促进学生的情感发展,引发灵感的碰撞;或者是不能够发挥其指导、激励的功能,那只能说明其已经失去了存在的意义。(5)在教学过程中,教师缺乏和学生的互动。在课堂上,一些教师对于数学的教授就是照本宣科,整个教授过程都是在以教师为主导,这样就出现了本末倒置的现象。因为在教学的过程中,学生是主体,教师所要做的就是引导学生进入到学习的氛围中,进行有效的活动,并不断地积累经验,将其归纳总结成数学问题。

2.学生角度。

(1)作业完成不到位。

对于初中生来说,他们自制力比较差,并没有明确的学习目标,在学习上往往缺乏一定的主动性。在初中阶段,对于数学的学习来说,作业完成的不认真或者是完不成作业一直是比较难解决的问题。由于作业是在家中完成,很多家长对学生学习的监督很少,再加上学生自身较差的自制力,这就导致了很多学生完不成作业,甚至出现了抄作业的现象。很多学生在做作业的时候,书写不认真、审题不认真、检查也不认真,在作业中稍微遇到点困难就会选择放弃。这样做的后果就是教师花费了过多的时间去处理作业,而造成了课堂教学的简单化,同时也妨碍了一些成绩好的同学的进步,从而形成了较差的教学效果。

(2)不喜欢学习数学,缺乏学习的兴趣。

由于数学学科复杂多变的特点,很多学生对于它的学习提不起任何的兴趣,所以在上课的时候经常会表现的非常冷漠,给人筋疲力尽的感觉,更有甚者直接以睡觉的方式进行默默的抗拒。

(3)缺乏正确的学习方法。

很多学生对于数学的学习根本就没有正确的方法,所能做的就是对一些公式进行死记硬背,不懂得去推理和计算,在他们的心里只要记住就可以了,殊不知数学是千变万化的,如果只是单纯的靠记忆,注定是学不会数学的。

(4)频繁的考试对学生数学学习的负影响。

现在很多学校都有着各种形式的考试,例如周考、月考等,这种频繁的考试不仅让学生精力上感觉到疲惫,更重要的是当学生成绩较差的时候,往往会挫伤其自尊心,影响他们学习数学的积极性,更严重的现象可能是学生出现厌学情绪,久而久之就放弃了对数学的学习。

三、改进初中数学教学的对策

1.让学生能够对数学采取乐意学习的态度。

数学是一门比较抽象的学科,所以对于这样一门难以理解的学科要想让学生拥有持久的学习积极性,就要采取有效的教学方式,从而让学生能够从“厌学”转变成“乐学”。小学数学的重点是培养学生的运算能力,虽然计算量大,但一般都是比较具体的数字,而初中数学则出现了用字母代替数字,从而提高了数学的抽象性。这表明初中数学又是学习数学的一个新的征程。那么要想让学生做到“乐学”,就需要教师采取新颖的教学方式,根据教学目标,创建符合条件的情境,从而使学生能够看到一些比较直观的案例。同时还需要兼并运用一些具有启发式的教学,增加教学的趣味性,从而使学生能够将注意力完全的放到教学中,展现出最积极的思维能力,诱导他们的学习动机,借此来增加学生学习的乐趣。在教导的过程中,教师要尽可能的符合教学内容的需求,创设出表面比较浅显,但是需要认真思考的一些问题,让每个学生都能够参与到教学活动中,使学生有自己的观察、分析、思考、判断的能力。将这种方式教授于学生让他们能够从中体会到学习数学的乐趣。

2.多对学生进行表扬。

每个人都渴望得到别人的赞赏,尤其是学生,更加希望得到教师的表扬,所以要用多表扬、少批评的手段来激励学生。如果教师不注意自己的教学方式,在课堂上对学生进行批评,结果只能是让学生产生逆反心理,从而做出一些放弃学习的行为。所以在课堂上,教师应该努力的创造一种比较和谐的教学氛围,做到对学生的理解和尊重,再加上适当的激励手段,这样就可以使各种程度上的学生都能够体会到成功的喜悦,进而得到精神上的满足。在课堂的提问中,要将各个学生群的水平都兼顾到,让每个水平的学生都有能够答对问题的机会,然后给予回答问题的每一个同学一定的鼓励和肯定,以温和、热情、多赞扬的方法对待自己的学生,一定要少批评、少指责、少否定,让每个学生都能够有所收获,都能获得成功,享受到成功的喜悦。对于考试来说,由于学生的层次不一样,教师可以针对每个层次的学生进行出题,这样可以让他们在考试中看到自己的进步,从而体会到成功的喜悦,促进学生进入一个学习的良性循环中。我相信这样的方式肯定能够增强学生学习的欲望,培养他们学习的兴趣,从而提高学习数学的积极性。

3.教师需要提高自身的业务能力。

需要教师能够对教材达到灵活运用的效果,这就要求教师要有较强的开发能力,深刻体会出新教材的意图,全面熟悉新旧教材的变动情况;需要教师具有创造性的指导能力,即能够对学生的各个方面进行综合科学的分析,并对学生的创造性给予一定的指导;需要教师具有体察教学行为的反思能力,即对自己教学活动和教学行为进行有意识地分析和总结,并从中认知到自己教学的不足。

学生的成长并不是在一堂课上实现的,这是一个循序渐进的过程。对于数学的学习可以满足人们的一种需要,可以使人的思维品质和思维水平得到锻炼,可以让我们体会到数学工作者身上的那种科学、严谨的科学态度和作风,从而激励自己提高自身的科学素养。数学已经深入到自然科学到社会科学的各个领域,所以在对数学的教学过程中,教师需要在提高自身业务能力的基础上,努力做到让学生能够对数学采取乐意学习的态度,并对学生进行不断地激励,让其能够成为数学王者。总之,身为教育工作者,要做到一切为了学生。

参考文献:

[1]白东明,金磊。浅谈初中生数学学习兴趣的.培养[J].才智,2012,(1):062.

[2]吴越明。初中数学教学存在的问题及对策[J].中学教学参考,2014,(27):41.

摘要:目前在中考升学率的压力下,初中数学课堂教学往往是“满堂灌”,课后的课业负担较重,严重影响了学生的全面发展和身心健康。根据20多年来亲身的教学经历,从五个方面就如何减轻学业负担,规范教学和管理,提高课堂45分钟的效率谈了心得体会。

关键词:初中数学;教学特点;教学效率

当前初中数学的课堂教学“满堂灌”、课后的课业负担重、教学质量偏低已成为教育界有关人士关注的焦点。传统的教学方式严重影响了学生学习数学的积极性,影响了学生的全面发展和身心健康。要使学生轻松地学习数学,教师应当采取措施,精心备课,注重教学方法,优化课堂教学。教学过程中以学生为主体,激发学生学习数学的兴趣,引导学生积极主动思考,使学生成为学习的主人,从而切实减轻学生过重的学业负担。

我们还应当认识到“减负”不单纯指减少课时、课本内容、作业量,它不仅是形式上的减少,更是一场关于全面提高教学质量,规范教学和管理的改革。

笔者在使用浙教版新教材的过程中,结合实际教学经验,从五方面就如何减轻学业负担,提高数学课堂效率总结体会如下。

一、初中数学教学的特点

义务教育阶段的数学课程具有基础性、普及性和发展性。所以在教学过程中对教师提出了较高的要求,教师在教学过程中应当尊重个体差异、面向全体学生,在基础知识与创新能力、传统与现代等各方面找到一个平衡点。

初中生正处青春期,自我表现欲突出,心理呈现出矛盾性和不稳定性。反映到数学课堂上,常出现注意力不集中、不愿意主动学习等现象。因此,营造良好的课堂氛围至关重要。这就要求教师努力优化课堂结构,激发学生学习的兴趣和主动性,全面提高教学质量。

二、具体措施

1.精心备好每一节课

减轻学业负担的重点就在于教师如何有效地利用课堂45分钟,提高教学质量。因此,教师在“减负”这场改革中起着举足轻重的作用。

课堂的45分钟教学时间应当合理地利用,任何人都不能浪费,所以教师必须下工夫、花气力去认真钻研《义务教育数学课程标准》,吃透教材,全面把握初中数学教学的重难点,找准每节课的关键,然后突出重点,分散难点,因材施教,合理安排好课堂进程的快慢以及课堂教学的时间。

教师备好课,不仅要备教材,把握每节课的重难点,还要备好学生,了解学生的基本情况,其中包括学生的认知能力、基础知识情况、接受能力等。只有这样,才能真正地做到因人施教,在课堂上有的放矢地把握学生。课堂知识有利于学生的接受和吸收,从而才可以减轻学生的学业负担,提高学习的质量。

2.激发学生学习的兴趣

兴趣是动力的先导,也是成功的关键。如果教师可以激发学生学习的兴趣,将枯燥的数学公式和定理以生动巧妙的方式向学生讲解,把轻松和乐趣带进数学课堂,课堂的效率也会大大提高。

在初中数学课堂的实际教学中,应当注意以下几点:

(1)可在讲课前设置问题,引起学生注意和思考,从而使学生产生学习的愿望和浓厚的兴趣。比如,教学“概率”时,教师可以设置“摸奖游戏”:箱子里有10个白球,10个红球,每个学生可以摸5次,连续摸到4个红球就算中奖。通过对中奖概率的分析,学生更加明白“摸奖”的小概率和现实意义,同时也被概率的现实作用深深地吸引住了。

(2)教师可以进行情境创设,联系生活实例,或者利用情感式教学,激发学生的兴趣。

(3)教师应当尊重学生的表现欲,适当设置问题进行课堂讨论,鼓励学生积极参与、有不同的想法,并引导学生得出正确的结论。比如,教学“三角形面积的计算”时,教师可以让学生动手将两个完全一样的三角形拼成学过的图形,学生参与的积极性很高,拼成了平行四边形、长方形、正方形,然后教师再引导学生思考拼成的图形与原来三角形的底、高、面积的关系,从而得出三角形面积的计算公式。

(4)教师可以利用多种教学方式和手段,采用多媒体辅助教学,为教学内容增添直观性和形象生动性。

总之,教师应当在充分了解学生的同时,构建和谐的师生关系,注重激发学生对数学的兴趣,诱发学生的探究欲望,最大限度地挖掘学生的潜能。

3.以学生为本,引导学生积极思考

传统的课堂上,课堂的内容、模式、形式都由教师决定,学生参与的积极性不高,课堂效率低。学生往往不会主动思考、不会分析、不能用所学的知识解决实际问题。这样极大程度地扼杀了学生学习数学的热情和兴趣。由于忽略了学生的主观能动性,没有启发学生积极主动思考,虽然学生在课堂上“听明白了”教师所传授的知识,却没有把课堂知识转化为自己的知识,遇到问题时还是一知半解。

素质教育的核心就是目前大力提倡的创新能力,而创新能力是以探究心理为基础的,所以学生探索精神的培养就至关重要。在教学过程中,教师不要直接给出数学公式或定理,而要引导学生积极思考,主动发现和总结出规律。再比如,遇到难题时,教师不要直接帮学生解出来,而要适当地引导学生,让学生以独立思考或小组合作的方式想出解决方法,并引导学生分析方法的可行性。

只有让学生积极地思考,才可以将课堂知识转化为学生自己的知识,从而做学习的主人。

4.尊重个体差异,面向全体学生

新课标倡导的目标是:“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。”这就要求教师了解和尊重学生的个体差异。教学时既要因材施教,又要面向全体学生。

在授课中,教师可以针对知识点设计不同难度的台阶,使不同层次的学生有同等的参与机会,使基础好的学生和学习有困难的学生都可以在原有基础上得到提高,并获得同样的成就感。例如,在“完全平方公式的因式分解”教学中,我设置了5个台阶:

①(x+3)2=x2+()x+()

②z2-10xz+25x2=()

③(x-y)2-8(x-y)+16=()

④x2y+6xy2+9y3=()

⑤若9x2+mx+16是一个完全平方式,则m=()

在教学过程中,要尽可能地使所有学生都能主动参与教学过程,鼓励学生用多样化的方法解决问题,提出各自解决问题的方法,积极与他人交流,吸取他人的经验,从而提高学生的思维水平。

5.重视知识的联系与整合,提高学生解决问题的能力

通过联想,可让学生将所学知识整合起来,做到举一反三,形成自己的能力。比如,九年级数学中反比例函数,教师可将其与前面学到的一次函数y=kx+b(k≠0)联系起来,讨论当k分别为正值和负值时两函数图像的关系,在学习新知识的同时,深化对旧知识的理解。

知识的整合不仅指的是课本知识间的相互整合,更重要的是课本知识与实际生活、其他学科的相整合。教学过程中所选的题材应尽量来源于实际生活,重视知识之间的联系,从而激发学生的兴趣,使学生可以应用所学知识解决实际问题。比如,教学“勾股定理”这一内容时,教师可以从其发现历史来讲解,并从生活中找出这一定理的运用。教师也可以将勾股定理与其他领域的内容联系起来,在解决其他相关问题时使用到勾股定理。这样通过知识的联系与整合,可以使一点一线的知识形成面,提高学生综合运用所学知识解决实际问题的能力。

总之,要使学生真正轻松地学习数学,教师应精心备课,把握好课堂45分钟,激发学生学习数学的兴趣和探索精神,使学生真正成为学习的主人,真正要让学生在课堂上“会学”而不仅仅是“学会”,从而切实减轻学生过重的学业负担。

初中数学的教学论文范文

导语:在初中数学教学中,只有把数学理论知识和现实问题相结合,才能激发学生的数学思维,下面要为大家分享的就是初中数学的教学论文范文,希望你会喜欢!

摘要 :

本文从初中数学出发,针对现在中国初中数学教学中存在的不足,进而对于怎样提升学生对于数学课堂的兴趣落实探索。初中数学体系十分基础,知识结构十分严谨并且紧密结合,所以需要学生维持对于数学坚持不懈的兴趣,通过这种方式才可以紧跟教学进度,从而提升学生的主动学习的动力。

关键词 :

初中数学;教学;学生;学习兴趣

1、使用多媒体教学办法激发兴趣

当前普遍应用于课堂的多媒体教学能够将难以理解的抽象知识更加形象地表现给学生,展现的办法更加直接和容易理解,除了可以辅助学生更加直观地深入观察空间以外,还可以提升学生在学习中视觉以及听觉的辅助效果,并可以帮助学生深入构筑的数学知识的课堂情景当中,从而帮助学生创设更加活泼的课堂气氛,辅助学生获得更多学习方面的经验,极大限度地提升学生对于数学的兴趣。譬如说,数学教师在初中课堂上讲述关于行程方面的数学题时,如果学生无法精确地明晰什么是两地、同时出发等概念,就一定会阻碍学生获得正确的解题办法。这个时候数学教师就能够通过使用多媒体的办法放映动画版的解题过程,其成果必然十分显著。教师在数学课堂中通过使用多媒体办法的先进的影像技术,能够把关于行程方面题目的不同状况更加形象深刻的显示在数学课堂之中,通过把数学知识通过更加新奇的娱乐办法解答出来,帮助学生构筑更加生动活泼的教学氛围,增强学生针对数学概念和相关知识点的学习兴趣,极大程度增强了学生的好奇心,从而高度提升了学生对于数学学习的兴趣。

2、使用语言艺术激发兴趣

在初中数学的课堂上,数学教师若具备较强的语言艺术,使用更加幽默的教学语言能够产生对于学生求知的诱惑力,一方面可以调整学生对于数学学习的心情,另一方面还可以构筑更为和谐的数学课堂气氛,从而提升学生课堂数学知识掌握的效率,这也成为了教师使用语言艺术的魅力。语言艺术能够辅助数学知识更加形象具体的实现,能够帮助教师将较为抽象难以理解的数学教学内容通俗化,也能够推动课堂中难以理解的数学理论更加通俗易懂,这在极大意义上可以高度激发学生对于数学知识的兴趣。因此,数学教师在初中教学课堂中,可以更频繁地使用一些生活中较为常见的案例,这样才可以激发学生对于数学的兴趣。譬如说,教师在进行样本这一节的讲授过程中,能够通过将生活中购买葡萄的案例进行辅助讲授,买家往往会询问“葡萄甜不甜”,此时的卖家往往会让买家进行品尝,而这种品尝自然只能是一个或者几个,无法进行全部品尝,此刻就展现了样本的含义——仅仅抽取主体的部分当做调查课题就可以估计总体,这样就能够辅助学生对其进行理解,也可以高效激发学生学习兴趣。

3、展现日常使用的数学知识激发兴趣

学习是为了能够切实地运用知识。因此初中数学教师在课堂上,必须更加看重如何引领其学生正确使用课堂数学知识,进而理解日常生活过程中可能产生的疑问,必须帮助学生明白数学知识是怎样使用的,他们才可能更加主动地进行数学知识的吸收,这样才能形成良性循环,极大限度地提升学生的好奇心,增强并培育学生对于数学知识的兴趣。譬如说,学习了“三角形”的数学知识,教师能够引领学生走入日常生活,譬如要求学生去测量并通过计算得到河岸宽度等一些很难直接测量的事物。教师还能够鼓励学生进行必要的讨论课,引领学生搜寻生活中可以看到的数学知识进行探讨。不仅如此,教师还需要能够将生活中可能出现的情况加入进数学教学中,推动学生更深层地明白数学其实在生活中随处可见,这就提升了学生对于数学知识的使用意识以及创造意识,从而激发学生对于数学知识的兴趣。

4、使用分层教学办法激发兴趣

每个学生都是独立具有其独特个性的,当然从教学角度来说,每个学生接收知识的层次也不尽相同。因此身为初中数学教师,必须高度明白这一特性,在数学教学中更加看重使用分层教学的办法,依据学生的现实状况依据其所在层次实现不同地教学。针对数学基础知识掌握不扎实的学生,教师在进行课堂提问以及作业批改的时候需要相对宽松,通过这种方式维护学生的自尊心以及学习自信心,推动学生可以更加深刻地体验学习的趣味;针对数学知识接收较快的学生,教师则可以适当提升难度,进而激发这类学生对数学更加深层次的探索。不仅如此,教师还需要适当鼓励学生。在学生在接受数学知识的过程中陷入困境时,教师必须激励学生主动克服困难;学生有所进步的时候应当对学生进行表扬。教师必须更多地看重学生具备的优点,在学习过程中重视表扬的作用,辅助学生产生得到学习成就的快乐,从而高度鼓励学生产生对于数学学习的热忱,激发其兴趣。

5、结语

综合上文,在初中数学的教学进程中,学生对于数学知识的学习兴趣是能够更快接收课程知识的关键条件。所以,数学教师在进行数学教学进程中,必须使用不同的办法和手段,激发学生的潜力,经过以上办法激励学生针对数学知识的学习兴趣,通过这种方式学生才可以推动学习兴趣变为动力,才可以更加主动地落实课堂知识的实践,从而高效增强数学课堂的教学成果。

参考文献:

[1]赵云涛.新课改下初中数学教学存在的问题及其对策[J].学周刊,2017(23).

[2]李灿钊.初中数学教学要注重学生综合应用能力的培养[J].中国教育学刊,2017(06).

摘要:

随着时代进步,教育理念改革的`提出,怎样有效提高初中数学教学课堂效率成为每个人心中越来越重要的一个问题。其中,提高老师教学课堂有效的教学方法之一就是问题导学法。运用导学法不但能够培养学生的逻辑思维能力,还能增强学生自觉找到问题并解决问题的能力。因此,我们应该在实际教学中充分运用问题导学法进行教育,激发学生的学习主动性,有效提高初中数学课堂的效率。

关键词:

初中数学教学;问题导学法;应用策略

在运用问题导学法课堂教学过程中,教师提出的问题要有引导性的作用,对学生有一定的启发,帮助学生提高学习数学知识的效率。另外,教师应该合理的运用这一方法,让课堂氛围变得生动有趣,激发学生的兴趣,提高学生学习数学知识的积极性,从而使学生更好的去分析解决问题。在实际教学中教师要把学生作为课堂的主体,善于运用问题导学法进行教学,帮助学生有效提高数学学习成绩。

一、现阶段的问题导学法在初中数学教学中的应用

随着素质教育化的不断改革,教师要摒弃老旧式的教学理念,学习创新更多更有效的教学方法,以其特有的课堂魅力提高学生对初中数学知识的兴趣,这样不仅能够帮助提高课堂效率,还能促进问题导学法在课堂教学中的充分运用。但是,有些教师并没有摒弃老旧式的教学方法,在课堂上只是一味的给学生进行理论教学,以至于学生觉得数学课堂枯燥乏味,不愿意学习数学知识。教师依然占据主体,掌控课堂,让学生被动学习,不能发挥其主观能动性,这不但不利于学生学习数学知识,还不能使问题导学法在课堂中合理应用。因此,教师们要认真了解现阶段数学导学法在初中数学课堂的应用,改变传统的教学观念,在课堂中多运用问题导学法。

二、问题导学法在初中数学教学中的应用策略

1、提高导入问题的质量。教师在选择课堂导入问题的时候,要选择跟教学内容密切相关的问题,而且要能够符合学生的身心发展,问题要能吸引学生的注意力,在进一步提高问题的难度,这样学生会更好的学习教学内容。例如:在对七年级下册《相交线与平行线》进行教学时,教师要提出能够分层次的问题,先提出简单的问题,再在此基础上增加难度,帮助学生分析问题,这样做不但可以增强课堂效率,吸引学生的注意力,还能对教学内容感兴趣,提高学生逻辑思维能力。

2、引导学生思考问题。教师要想更好的运用问题导学法,就要把怎样通过引导让学生积极分析思考问题放在重要的位置,所以在具体教学中,教师要先对问题进行认真分析和研究。一方面,为了让学生更好的了解问题,就可以先让学生提前预习,让学生对要学的知识有个大概的认知。另一方面,在分析问题的过程中,教师要把教学内容跟之前提到的问题结合起来,引导学生进行相关思考,然后进一步帮助学生找到答案。

3、做好课堂提问。在运用问题导学法时,教师要提前准备好课堂提问的内容,使学生对教师提出的问题感兴趣,加强学生学习的主动性。教师可以进行多样化教学,提高学生学习数学新知识的积极性。例如,在对七年级“平面直角坐标系”进行教学时,可以运用多媒体课件,展示具体的图像,让学生进行观察,通过观察提出一些问题,这样不但能让学生对教学内容感兴趣,也能培养学生积极主动学习的能力。教师也可以通过游戏的方法进行提问,让学生在做游戏中轻松学习数学知识。

4、对所学知识进行巩固。在通过问题导入法课堂教学后,为了进一步加深学生对所学知识的掌握程度,教师要进行巩固训练,一般就会通过让学生完成课后习题的方法进行考核。因此,老师要布置一些跟教学知识点相关的习题,让学生独立完成,对所学内容进行练习和巩固。另外,经过分析学生的解答,可以了解到学生具体的学习情况,然后针对学生没有很好掌握的地方,再次进行详细讲解,提升初中数学课堂的教学质量。

5、因人施教,重视每一个学生。每个学生的学习基础是不同的,但是,这不是说要把学生分成几个不同的层次,而是说要在平时的学习过程中重视每一个学生,不能只注重学习好的学生,也要把学习基础差的同学放在重点。所以,在课堂上要找好问题的切入点,不同学生不同要求。起点比较低的教学,能够让每个同学都参与进来,可以让学生更轻松的学到数学知识,提高学生的自信心。

三、结束语

经过上边的综合分析,问题导学法在初中数学课堂中的应用可以发挥非常重要的作用。所以,教师要认真学习并应用问题导学法进行教学,这样不仅仅能改变老旧式的教学模式,让初中数学课堂的效率更高,还能加强学生的学习兴趣,提高学生解决问题能力和逻辑思维能力。

参考文献

[1]王福利.问题导学法在初中数学教学中的实施要点分析[J].求知导刊,2015,(23):12-23.

[2]唐茜.谈初中数学教学中实施素质教育[J].雅安职业技术学院学报,2012,(02):46-67.

[3]王琪华.关于初中数学教学应用问题导学法的思考[J].知识文库,2015,(23):78-89.

摘要:

学习习惯和学生的智力没有直接联系,而是指学生为了使学习更有效率在学习上形成的个人的一种自觉学习的习惯。现在,大家对养成良好的学习习惯非常重视,尝试着让学生用更好更有效率的学习方式去学习,并使之成为一种习惯,自觉地去遵守,最终让学生受益匪浅。数学解方程教学在初中数学中占据重要的地位,本文结合中学生性格特征和数学学科本身的特点,积极探索了良好的学习习惯对初中数学解方程教学的影响。

关键词:

初中数学;学习习惯;解方程

我在初中数学解方程教学中对于学生良好学习习惯的培养主要做了以下几个方面:

一、培养学生认真预习的好习惯

预习是学生自己摸索、自己动手、动脑、自己阅读课文的过程,可以培养学生的自学能力。上新课前,我深钻教材,根据教学内容和学生的实际设计导学案,在学习新课的前一天把学案发给每一位学生,引导学生根据学案内容结合本节课本进行思考,探究,并把结论(还要附带解题思路)标注在学案相对位置,然后把一节课的主要内容总结出来,把疑难问题记录下来,有能力的同学还可以自己先完成课本的随堂练习。

二、培养学生认真听课的习惯

众所皆知,读书有三到,也就是非常重要的三点,只有这三点学生都具备了,那么他们才会在学习时更加认真,完全沉浸在学习中。但是这三点学生自己具备是比较困难的,必须还要有老师的指导,如对学生的课堂表现作出一定的评定,这一点是非常重要的,对学生们形成良好的习惯具有很大的促进作用。除此之外,老师还要更加细心,对学生的各种表现加以留意,并从中发现学生的优点,从各个方面去观察,对有进步和表现较好的同学进行夸奖。举个例子,如果一个成绩靠后的学生举手想要回答问题,那么我会让他第一个起来回答,并且对他这一勇敢的表现进行夸奖。如果一个害羞的学生回答问题,我就会对他这一表现进行夸奖,让他更有勇气。即使有些学生会答错或者不知道回答什么,我都不会对他们抱怨,而是对他们更加耐心,并且加以引导。总的来说,在多种情况下会给他们多种夸奖和鼓励,这样,他们就会更加自信勇敢地回答问题,并且对课堂也会充满了兴趣,学习也就会更加认真。

三、培养学生自主探究、合作交流的习惯

在教学中,我给学生留有足够的时间和空间自主探究,让他们经历观察、描述、思考、推理、交流和应用等等,让学生亲身体验如何做数学、如何实现数学的再创造,这样就使学生从逐步学会到自己会学,真正成为学习的主人。例如在学习解一元一次方程x-5=8时,起初学生会根据等式的基本性质做题,在等号左右两边同时加5,后来经过观察、思考、交流,学生能发现常数项-5从等号左边移到右边变为+5,从而总结出可以通过移项变号解这道方程,也知道解方程的每一步变形是根据等式的基本性质得到的。

四、培养学生认真审题的习惯

做题时,首先要求学生认真看清楚题目,然后理解其中的含义,看清楚题目是算对题的第一步,也是最重要的一步,因而,进行这一方面的培训可以让学生们培养细心严谨的习惯,让学生把学过的知识和题目紧紧联系在一起,从而举一反三,让学生计算速度得到提高,并且准确率大大提升。例如解方程,对于一部分不认真审题和观察题的学生,他们会先用完全平方公式展开得到,再去括号得,最后通过解一元二次方程求出x的值,认真审题和观察题的学生会在方程两边同时除以4得,再开方就可以解出x的值,这样既能使运算简单化又能提高做题的质量。

五、培养学生检验的习惯

“查”就是在做完题后从头再检查一遍,因为不可能所有人一次就能算对,每个人都有马虎的时候,所以检查是必不可少的,只要学生在做完题目后好好看一看,一般就能找出马虎而造成的错误并且改正错误,使正确率提高。但是一些学生认为太过麻烦,从不检查,或者自己觉得自己检查不出来,就让自己的父母检查,要不就等老师检查,过后再去改正这些错误。有些学生验算,只不过是一种形式,比如解方程的x等于多少时,解得x=0是错误的,学生代入方程中检验,右边=4+0=4,最终得出方程左边等于右边。学生根本就没有好好计算一下左边究竟等于多少,而是看右边等于多少,就直接写左边等于多少。针对这些不检查的坏习惯,教师布置作业时要少而精,使学生能有时间验算;批改完作业后如发现错误,发给学生自己检查,找出错误所在,草稿纸上订正后再交给老师批改,订正后全部正确再让学生订在作业本上,这样不仅能促使学生通过自己的检查找出错误所在,引以为戒,而且能培养学生认真负责,自觉检查的习惯。

六、培养学生自主复习的习惯

我们的学生绝大多数来自乡镇,周围学习环境较差,父母文化程度低,他们既没精力也没能力去管孩子的学习,因此这些孩子缺乏良好的学习习惯,他们的学习主要靠老师在抓,在查,在督促,在鼓励他们多思考、多做练习、多问问题,在帮助孩子养成主动学习,积极思考的数学学习习惯。总而言之,良好的学习习惯是学生取得优秀成果的最重要的一点,只要这样,数学对于学生来说也就更加简单有趣,最终老师才会培养出在数学方面非常优秀的学生。当然,养成良好的学习习惯需要一段时间,这个过程是比较漫长复杂的。因此教师要针对学生们的不同情况,不同阶段,做出切实可行的方针,不能超出他们的能力范围之外,让学生们慢慢在这个过程中一步步养成,并且让这些习惯慢慢渗透到他们的各个方面,最终受益终生。

参考文献:

[1]数学课程标准[S].北京:北京师范大学出版社,2012.

[2]顾云燕.新课程背景下“解方程”教学的思考与实践[J].河北教育,2009.

[3]赵辰虎.初中数学教学中培养学生良好的学习习惯[J].学周刊b版,2013.

摘要:

文章从四个方面探究了新课程改革背景下的初中数学教学策略,即创设教学情境,培养学生的兴趣,激发学生的学习意识;培养学生的思维习惯,激活学生的学习思维;开展实践教学,培养学生的实践能力,掌握有效的学习技能;运用信息技术教学,加速学生知识的形成,开拓学生的思维模式。

关键词:

新课程;初中数学;培养兴趣

通过对《新课程标准》理论的进一步研究和学习,笔者意识到想要激发学生的积极性,数学教学必须转变观念,真正落实学生主体地位。如何有效地落实学生的主体地位,激发学生的积极参与,自觉地学习数学?笔者谈谈几点策略。

一、创设教学情境,培养学生的学习兴趣,激发学生的学习意识

《数学课程标准》对广大数学教师提出了“情境教学”的教学建议。因此,在数学课堂教学过程中,教师应立足于现实情境,从学生的经验中激发学生学习数学的热情。例如,在讲授“面面垂直判定定理”时,教师情境引入“建筑工地上,工人师傅正在砌墙,为保证墙面与地面的垂直,用一根吊着铅锤的绳子,来看看细绳和墙面是否吻合…”伴随着教师的叙述,向学生展示与叙述对应的图片。接下来,教师抛出问题“工人师傅或许不知道其中的秘密,但同学们能找到理论依据吗?”教学期间,教师利用话语描述并结合图片展示创设教学情境,将抽象的知识具体化,激发学生的学习意识。只有这样,学生的认知过程和情感过程才会统一,才会为创造性思维的形成增添动力。当然,创设良好的教学情境,必须从学生的学习兴趣出发,从知识形成的过程出发,贴近学生的生活,从而激发学生的积极性和挑战性。

二、培养学生的思维习惯,激发学生的学习思维

《新课程改革》要求教师在教育观念和教学方式上进行根本性变革,打破传统师生关系的旧模式,架起架子,重塑师生平等和谐的师生关系。所以,教师应以平等的态度,启发学生的思维,激发学生的思维主动性,鼓励学生思考,争当学生的顾问。例如,当学生学完“圆的本质”之后,教师提出了“车轮为什么要变成圆形”,让学生充分发挥自由的想象力,自由交流和沟通。这样,不仅可以激发学生的积极性,而且可以培养学生的思维能力,鼓励学生敢于思考,勇于发表见解。无形中营造了一个富有生命活力的严谨又活跃的教学氛围。在这种和谐的师生关系下,数学思维和方法的渗透,良好思维品质的培养,学习思维能力的培养就水到渠成,事半功倍。

三、开展实践教学,培养学生的实践能力,引导学生掌握有效的学习技能

学生是数学学习的主人,有效的数学教学应为学生提供充分的参与数学活动的机会,激发学生的学习潜能,引导学生积极参与自主学习。具体地说,在开展一个实践教学活动时,可以采取以下步骤。

首先,学生自己观察物体或现象,或操作某些学习装置,在观察过程中要独立思考,及时与同伴进行讨论交流[1],以弥补他们在单纯的观察和操作中的不足。第二,教师按一定的顺序给学生们推荐活动,最好是课堂内外形式相结合,保证整个学习过程中活动的连续性和稳定性。第三,每位学生都要记录活动的过程,进行反思,弥补不足。例如,在“轴对称图形”教学中,教师首先折叠一张方格纸,然后用剪刀随机切割一个图形,最后展开方格纸。这时,一个轴对称图形便出现在学生面前,教师引导学生注意观察并鼓励做出类似操作。通过动手实践,学生虽然剪出的图形的形状不同,但它们都具有共同的对称性。在此基础上,推导了轴对称图形的有关知识,学生对其抽象概念和性质产生了深刻的印象[2]。

四、运用信息技术教学,加速学生知识的形成,激发学生数学思维

《新课程标准》下的数学教学不能仅靠传统的粉笔和黑板来实现。在教学中,教师经常会遇到要用更多的语言来解释的概念、动态图形及公式等知识点,而这往往也是教学的重点和难点。所以教师必须掌握现代教学方法,利用多媒体辅助,为学生提供丰富的知识和材料。例如,“2017年晋江质检的数学试卷”中最后一道填空题中,在求EF的取值范围过程中,绝大部分学生能正确求解最小值,但在求最大值时,需要不断地作图加上合情的推理才能快速找到最大值的特殊位置。在平时的教学中,如果教师能恰当地利用多媒体技术对这类题目进行展示并讲解其变化的过程,就能增加学生对这类动点问题的内在认识,减少恐惧心理,形成足够的几何动态意识,做到“动中取静,以静制动”,从而达到解题目的。

总之,教师在教学中要不断完善自己的教学策略,合理应用不同课型的特征及相关理论,使教师的教学与时俱进,更能融入学生的思维中,从而达到有效教学。

参考文献

[1]向爱民.初中数学教与学[J].读与写(教育教学刊),2011,8(1):104-105.

[2]吴开国.在初中数学课堂教学中有效实施创新教育的研究[J].金色年华:教学参考,2010(9):96.

相关百科

热门百科

首页
发表服务