线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。 线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数 上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
1、题目:题目应简洁、明确、有概括性,字数不宜超过20个字(不同院校可能要求不同)。本专科毕业论文一般无需单独的题目页,硕博士毕业论文一般需要单独的题目页,展示院校、指导教师、答辩时间等信息。英文部分一般需要使用Times NewRoman字体。2、版权声明:一般而言,硕士与博士研究生毕业论文内均需在正文前附版权声明,独立成页。个别本科毕业论文也有此项。3、摘要:要有高度的概括力,语言精练、明确,中文摘要约100—200字(不同院校可能要求不同)。4、关键词:从论文标题或正文中挑选3~5个(不同院校可能要求不同)最能表达主要内容的词作为关键词。关键词之间需要用分号或逗号分开。5、目录:写出目录,标明页码。正文各一级二级标题(根据实际情况,也可以标注更低级标题)、参考文献、附录、致谢等。6、正文:专科毕业论文正文字数一般应在3000字以上,本科文学学士毕业论文通常要求8000字以上,硕士论文可能要求在3万字以上(不同院校可能要求不同)。毕业论文正文:包括前言、本论、结论三个部分。前言(引言)是论文的开头部分,主要说明论文写作的目的、现实意义、对所研究问题的认识,并提出论文的中心论点等。前言要写得简明扼要,篇幅不要太长。本论是毕业论文的主体,包括研究内容与方法、实验材料、实验结果与分析(讨论)等。在本部分要运用各方面的研究方法和实验结果,分析问题,论证观点,尽量反映出自己的科研能力和学术水平。结论是毕业论文的收尾部分,是围绕本论所作的结束语。其基本的要点就是总结全文,加深题意。7、致谢:简述自己通过做毕业论文的体会,并应对指导教师和协助完成论文的有关人员表示谢意。8、参考文献:在毕业论文末尾要列出在论文中参考过的所有专著、论文及其他资料,所列参考文献可以按文中参考或引证的先后顺序排列,也可以按照音序排列(正文中则采用相应的哈佛式参考文献标注而不出现序号)。9、注释:在论文写作过程中,有些问题需要在正文之外加以阐述和说明。10、附录:对于一些不宜放在正文中,但有参考价值的内容,可编入附录中。有时也常将个人简介附于文后。
最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测
你要什么方面的,要的话QQ米我 我尽量发给你
售书问题优化模型摘要优化问题是工程技术、经济管理和科学研究等领域重做常见的一类问题,在解决极值问题中起着重要作用。零一规划也是常用的数学工具,能够有效的表示事物的有效性。本文是以一极具有实际意义的问题,而随着信息时代的发展,大学生接受知识的途径多种多样,报纸、杂志、图书一直赢得大学生不同程度的青睐,而且出现了电子图书这个时代的产物,对于这个实际意义较大的问题就应有简单易懂的模型,让人看起来比较容易接受。考虑到建立销售点,使它供书的人数达到最大,那就要在条件约束下建立优化模型,而选择两地之间是否有销售的关系为他们的决策变量,那样就使人易懂,易于理解。通过建立线性规划模型,并应用Linggo软件得到最优解,B和E之间建立代售关系即在B(E)建立代售点并向E(B)售书,D和G之间建立代售关系即在D(G)建立代售点并向G(D)售书,可是大学生的人数最大,为177千人。最优解可以有多种选择方法,这就有选择的灵活性。本模型适用于只考虑人数最大的地址的选择,具有较强的实用性和普遍性。关键字 售书问题 优化模型 零一规划 Linggo1.问题的重述一家出版社准备在某地向七个区大学生供应图书,每个区的大学生数量如图所示(单位:千人),出版社准备在该市设立两个图书代理销售点,每个代理点只能想该地区和一个相邻的地区售书,出版社知道售书覆盖的人群越大,所获得的利润也就也大,所以出版社要选择两个恰当的代理销售点使覆盖的人群最大。现在所要解决的是选在合适的代理销售点。2.问题分析 书是人们进步的阶梯,售书问题普遍受到人们的关注。近年来随着科学技术的发展,电子图书、网上书城等的出现,人们阅读的方式越来越多,而书的销售问题也越来越受销售商的关注。如何选择待销售点才能使卖出的书最多,销售商获得的利益最大,成为问题的关键所在。在许多候选地区中选择最优的地区,制定最优的规划方案,显然必须建立优化模型,每个地区都选与不选的可能性,这就必须用到0—1规划模型,立两个销售代理点, 在满足以下的条件的情况下,要想得到一个最优计划,出版社就需要设计一个合理有效的投资方案:1.只能建立两个销售代理点。2.每个销售代理点只能向本区和一个相邻区的大学生售书在上述要求中,将每两个相邻地区之间连线表示该地区建立售代关系,这种售代关系据有建立与不建立两种选择,显然每个地区只能选择一个销售或者代理,最优方案就是选择权值最大与次大的连线,将上述方案限制转化为约束条件,并使目标函数,约束条件决策标量转化为数学符号,利用LINGGO 软件来求最优解接,3符号的说明符号表示 符号说明A 34千人的地区B 29千人的地区C 42千人的地区D 21千人的地区E 56千人的地区F 18千人的地区G 71千人的地区x1 AB两地区之间建立代售关系x2 AC两地区之间建立代售关系x3 BE两地区之间建立代售关系x4 BD两地区之间建立代售关系x5 CD两地区之间建立代售关系x6 DG两地区之间建立代售关系x7 DF两地区之间建立代售关系x8 DE两地区之间建立代售关系x9 EF两地区之间建立代售关系x10 FG两地区之间建立代售关系X11 BC两地区之间建立代售关系Q 所能供应的大学生的数量4.问题假设选择代理销售点时,只考虑该地区总人数以及相邻地区,对人员的迁入迁出,人员的消费能力,人们的需求不予考虑;1、 只有两个销售代理点,且每个销售代理点只能向该区和他临近的去售书。2、 7个销售区中没有人员的流动3、 书的供应量远远满足学生的需求4、 销售代理点向两个地区的学生销售书的价格相同。5、 不考虑邻区因学生买书的路费问题而减少书的购买。6、 售书多少与人数多少成正比。7、 人人的消费能力是相等的。5.模型的建立决策变量:设在ABCDEFG中的某两地之间代售关系Xi(i=1,2,3…10).Xi=1表示在其建立代售关系。Xi=0表示没有建立代售关系目标函数:所能供应的大学生的数量Q千人;则Q=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10+71*x11;约束条件1.只能建立两个销售代理点。x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;2.与A建立代售关系只能有一个即x1+x2<=1;与B建立代售关系只能有一个即x2+x5+x11<=1;与C建立代售关系只能有一个即x1+x3+x4+x11<=1;与D建立代售关系只能有一个即x4+x5+x6+x7+x8<=1;与E建立代售关系只能有一个即x3+x8+x9<=1;与F建立代售关系只能有一个即x7+x9+x10<=1;与G建立代售关系只能有一个即x6+x10<=1;综上所述:Max Q=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10;x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;x1+x2<=1;x2+x5+x11<=1;x1+x3+x4+x11<=1;x4+x5+x6+x7+x8<=1;x3+x8+x9<=1;x7+x9+x10<=1;x6+x10<=1;6.模型的求解在lingo中输入以下代码,见附录1.通过运行LINDO教学软件,我们可以得到该售书问题的最优解,即建立代售关系的最优方案,其截图为: Objective value: Variable Value Reduced Cost X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 从中可以看到在B和E之间建立代售关系即在B(E)建立代售点并向E(B)售书,D和G之间建立代售关系即在D(G)建立代售点并向G(D)售书,可是大学生的人数最大,为177千人。(详细结果见附录2)但考虑到地区中人数的问题,以及现实中去买书的路费问题,所以销售代理点应建立在人数较多的地区,在B、E地区中E区人较多为56千人,在D、G地区中G区中人数较多为71千人,所以最好把两个销售代理点建在E区和G区。7.模型的评价和推广 通过查看该区图可以粗略知道应选择人数最大地区为代售点,在题中假设的前提下,选择人数最大的地区为代售点,覆盖了大部分人口,此模型的建立,很好的应用数学知识将选择销售代理点的问题抽象化,使选择我们的选择不再主观、盲目,而是更全面、深入、条理。选择最少的变量考虑问题简化了模型建立的分析。这也是模型最大的弊端数据的真实性受到了很大的限制对实际应用很不利。虽然假设的变量比较多,但人们可以较容易理解。题中假设的太多假设,有些脱离实际,考虑现实当中的销售点间的运输路程、交通便利程度、学生在校期间的对书的消费情况,不同人群之间的消费能了等情况,8.参考文献【1】姜启源 谢金星 叶俊 数学建模(第三版)高等教育出版社 2003【2】.附录附录1:max=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10;x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;x x1+x2<=1;x2+x5+x11<=1;x1+x3+x4+x11<=1;x4+x5+x6+x7+x8<=1;x3+x8+x9<=1;x7+x9+x10<=1;x6+x10<=1; 附录2:Global optimal solution found. Objective value: Total solver iterations: 0Variable Value Reduced Cost X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Row Slack or Surplus Dual Price 1 2 3 4 5 6 7 8 9 10
一样,都是一个老师的吧
问题一:数学建模怎么做啊? 刚参加完九月份的全国大学生数学建模竞赛。一份基本的的数学建模论文要包含以下几个方面: 摘要,问题的背景与提出,问题的分析,模型的假设,符号说明,模型的建立与求解,模型的评价与推广,参考文献。 正规的数学建模论文篇幅一般在20页以上。考虑到你读初三,老师的要求不会这么高,而且你的能力应该还有所欠缺。我的建议为你按照自己实际情况选择一个有一定挑战性的题目,题目的性质类似于应用题,但又和普通的应用题不同,可以没有确定答案,针对问题本身做一些分析和探讨,最好能和实际相结合。 要注意的是假设要合理,要有数学模型(包括一些方程,不等式等),要有分析思路,并且要对自己建立的模型进行优缺点评价,最好能做相应推广。 问题二:1.什么是数学模型?数学建模的一般步骤是什么? 2.数学建模需要具备哪些能力和知识? 答的好悬赏加 100分 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解. 数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一. 数学建模的一般方法和步骤 建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性.建模的一般方法: 机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义. 测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.测试分析方法也叫做系统辩识. 将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法. 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致如下: 1、 实际问题通过抽象、简化、假设,确定变量、参数; 2、 建立数学模型并数学、数值地求解、确定参数; 3、 用实际问题的实测数据等来检验该数学模型; 4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模. 数学模型的分类: 1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等. 2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等. 数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等基本的数学知识.同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等. 参加数学建模竞赛需知道的内容 一、全国大学生数学建模竞赛 二、数学建模的方法及一般步骤 三、重要的数学模型及相应案例分析 1、线性规划模型及经济模型案例分析 2、层次分析模型及管理模型案例分析 3、统计回归模型及案例分析 4、图论模型及案例分析 5、微分方程模型及案例分析 四、相关软件 1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。 五、数模十大常用算法 1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。 六、如何查阅资料 七、如何写作论文 八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。 九、如何才能获奖:比较完整,有几处创新点。 十、如何信息处理:WORD、LaTeX,飞秋、QQ。 其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要...>> 问题三:怎么建立一个好的数学模型? 一个好的数学模型,首先应该是可以把所提问题解决的,只有能解决问题的模型才是好的模型。其次,就在于模型的创造性,创造性并不是说你非得自己找出个新的方法或者算法来,而是即使你用的是久的算法,但是你用在一个新的领域,并且很好的解决了问题,具有很好的适应性,那样就是一个好的数学模型。注意,数学模型可能是公式,也可能是某种算法,当然也可能是图表类的东西。 问题四:数学建模的一般步骤是什么?? 模型准备 了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。 模型假设 根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立 在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。 模型求解 利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。 模型分析 对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。 模型检验 将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。 模型应用与推广 应用方式因问题的性质和建模的目的而异。而模型的推广就是在现有模型的基础上对模型有有一个更加全面,考虑更符合现实情况都适用的模型。 问题五:支北是什么? 5分 福州话里是脏话也.. 形容女人的.... 问题六:常见的建立数学模型的方法有哪几种 ―般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义
在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划,选择一个最好的方案,就会取得最好的效果。可见,筹划是十分重要的。现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。
线性规划问题在经济生活中的应用详见线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法_在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料;二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是在一定条件下,合理安排人力物力等资源,使经济效果达到最优一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题文章根据线性规划问题在现实生活中的意义进行相关讨论与探究,介绍了线性规划问题产生的背景、特点和实际运用情况,以及线性规划问题在经济生活中运用的意义.
那么某一个顶点其实就是某组超平面的交点,这一组超平面对应的约束就是在某一个顶点取到“=”号的约束(也就是基)。顶点对应到代数意义就是一组方程(取到等号的约束)的解 线性规划里面的约束(等式或不等式可以看作是超平面Hyperplane或者半空间Half space)。可行域可以看作是被这组约束,或者超平面和半空间定义(围起来)的区域。 那么某一个顶点其实就是某组超平面的交点,这一组超平面对应的约束就是在某一个顶点取到“=”号的约束(也就是基)。顶点对应到代数意义就是一组方程(取到等号的约束)的解。 用矩阵去理解运筹学线性规划 (Linear Programming)-- 最简单和基础的优化问题,如上图, 目标函数 (max)和 约束条件 (.)都是线性的,自变量x是实数变量,P问题(多项式时间可解);或许有些读者没有学过线性代数,更简单的例子: min x1+x2 . 3x1-4x2> 5, x1,x2>=0。特点: (1) 目标函数求最大值(有时求最小值)(2) 约束条件都为等式方程,且右端常数项bi都大于或等于零. 约束条件都为等式方程,需要解除松弛变量和剩余 变量(3) 决策变量xj为非负。 对于无约束的变量,如(X3 无约束)可以用类似 X3=X4-X5替换,且 X4>=0,X5>=0即每一个线性规划问题(称为原始问题)有一个与它对应的对偶线性规划问题 对偶问题与原始问题之间存在着下列关系: ①目标函数对原始问题是极大化,对对偶问题则是极小化。 ②原始问题目标函数中的收益系数是对偶问题约束不等式中的右端常数,而原始问题约束不等式中的右端常数则是对偶问题中目标函数的收益系数。 ③原始问题和对偶问题的约束不等式的符号方向相反。 ④原始问题约束不等式系数矩阵转置后即为对偶问题的约束不等式的系数矩阵。 ⑤原始问题的约束方程数对应于对偶问题的变量数,而原始问题的变量数对应于对偶问题的约束方程数。 ⑥对偶问题的对偶问题是原始问题,这一性质被称为原始和对偶问题的对称性。 1 若原问题及其对偶问题都具有可行解,则两者都具有最优解。且他们的最优解的目标函数值相等 2对于线性规划的原问题和对偶问题,若其中有一个有最优解,则另一个也一定有最优解 3如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解 线性规划中的唯一最优解是指最优表中非基检验数全部为0 其变量均具有非负约束,其约束条件当目标函数求极大值时均取《号,当目标函数求极小值时均取>=号
最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测
1、多元线性回归的理论主体。2、多元线性回归模型的标准形式,多元线性回归模型的参数估计。3、多元线性回归模型的检验和预测原理。
第一节 一元线性回归方程的显著性检验由上面的讨论知,对于任何的两个变量x和Y的一组观测数据( )(i=1,2,……,n)按公式(10)和(11)都可以确定一个回归方程 然而事前并不知道Y和x之间是否存在线性关系,如果两个变量Y和x之间并不存在显著的线性相关关系,那么这样确定的回归方程显然是毫无实际意义的.因此,我们首先要判断Y和x是否线性相关,也就是要来检验线性假设 是否可信,显然,如果Y和x之间无线性关系,则线性模型的一次项系数 =0;否则 0.所以检验两个变量之间是否存在线性相关关系,归根到底是要检验假设 根据现行假设对数据所提的要求可知,观察值 , ,…… 之间的差异,是有两个方面的原因引起的:(1)自变量x的值不相同;(2)其它因素的影响,检验 是否成立的问题,也就是检验这两方面的影响哪一个是主要的问题.因此,就必须把他们引起的差异从Y的总的差异中分解出来.也就是说,为了选择适当的检验统计量,先导出离差平方和的分解因式.[6]一、离差平方和的分解公式观察值 (i=1,2,……,n),与其平均值 的离差平方和,称为总的离差平方和,记作 因为 = 其中:=2 =2 =2 =2 所以= 由于 中的 , 为(10)和(11)所确定.即它们满足正规方程组(9)的解.因此定义项= 于是得到了总离差平方和的分解公式: 其中(19)是回归直线 上横坐标为 的点的纵坐标,并且 的平均值为 , 是 这n个数的偏差平方和,它描述了 的离散程度,还说明它是来源于 的分散性,并且是通过x对于Y的线性影响而反映出来的,所以, 称为回归平方和而 = 它正是前面讨论的 的最小值,在假设(1)式的条件下它是由不可观察的随机变量 引起的,也就是说,它是由其它未控制的因素及试验误差引起的,它的大小反映了其它因素以及试验误差对实验结果得影响.我们称 为剩余平方和或残差平方和.[7]二、 、 的性质及其分布由以上分析可知,要解决判断Y和x之间是否存在线性相关关系的问题,需要通过比较回归平方和和剩余平方和来实现.为了更清楚地说明这一点,并寻求出检验统计量,考察估计量 , 的性质及其分布.(一) 的分布 由(14)式可知= 在 相互独立且服从同一分布 的假定下由(2)知 , ,…… 是P个相互独立的随机变量,且 (i=1,2,……,n)所以他们的平均值 的数学期望为:因为 是 的线性函数,且有:这说明 是 的无偏估计量且 的方差为所以 即: 同样可证,对于任意给定的 其对应的回归值 (它是 的点估计)适合( , (二) 方差 的估计及分布因为 = = = 由 、 及 可得 = 又由于 及E(L),E(U)得=E(L)+E(U) =(n-2) 从而,说明了 = = 是 的无偏估计量,由此可见,不论假设 成立与否, 是 的一个无偏估计量,而 仅当假设成立时,才是 的一个无偏估计量,否则它的期望值大于 .说明比值 (20)在假设成立时有偏大倾向,也就是说,如果F取得值相当大,则没有理由认为x和Y之间有线性相关关系,也就是下面我们将采用F作为检验统计量的原因.另外,由于 , 是 的最小二乘估计,由(8)式可知=0 , =0这表明 中的n个变量 , …… 之间有两个独立的线性约束条件,
第一节 一元线性回归方程的显著性检验由上面的讨论知,对于任何的两个变量x和Y的一组观测数据( )(i=1,2,……,n)按公式(10)和(11)都可以确定一个回归方程 然而事前并不知道Y和x之间是否存在线性关系,如果两个变量Y和x之间并不存在显著的线性相关关系,那么这样确定的回归方程显然是毫无实际意义的.因此,我们首先要判断Y和x是否线性相关,也就是要来检验线性假设 是否可信,显然,如果Y和x之间无线性关系,则线性模型的一次项系数 =0;否则 0.所以检验两个变量之间是否存在线性相关关系,归根到底是要检验假设 根据现行假设对数据所提的要求可知,观察值 , ,…… 之间的差异,是有两个方面的原因引起的:(1)自变量x的值不相同;(2)其它因素的影响,检验 是否成立的问题,也就是检验这两方面的影响哪一个是主要的问题.因此,就必须把他们引起的差异从Y的总的差异中分解出来.也就是说,为了选择适当的检验统计量,先导出离差平方和的分解因式.[6]一、离差平方和的分解公式观察值 (i=1,2,……,n),与其平均值 的离差平方和,称为总的离差平方和,记作 因为 = 其中:=2 =2 =2 =2 所以= 由于 中的 , 为(10)和(11)所确定.即它们满足正规方程组(9)的解.因此定义项= 于是得到了总离差平方和的分解公式: 其中(19)是回归直线 上横坐标为 的点的纵坐标,并且 的平均值为 , 是 这n个数的偏差平方和,它描述了 的离散程度,还说明它是来源于 的分散性,并且是通过x对于Y的线性影响而反映出来的,所以, 称为回归平方和而 = 它正是前面讨论的 的最小值,在假设(1)式的条件下它是由不可观察的随机变量 引起的,也就是说,它是由其它未控制的因素及试验误差引起的,它的大小反映了其它因素以及试验误差对实验结果得影响.我们称 为剩余平方和或残差平方和.[7]二、 、 的性质及其分布由以上分析可知,要解决判断Y和x之间是否存在线性相关关系的问题,需要通过比较回归平方和和剩余平方和来实现.为了更清楚地说明这一点,并寻求出检验统计量,考察估计量 , 的性质及其分布.(一) 的分布 由(14)式可知= 在 相互独立且服从同一分布 的假定下由(2)知 , ,…… 是P个相互独立的随机变量,且 (i=1,2,……,n)所以他们的平均值 的数学期望为:因为 是 的线性函数,且有:这说明 是 的无偏估计量且 的方差为所以 即: 同样可证,对于任意给定的 其对应的回归值 (它是 的点估计)适合( , (二) 方差 的估计及分布因为 = = = 由 、 及 可得 = 又由于 及E(L),E(U)得=E(L)+E(U) =(n-2) 从而,说明了 = = 是 的无偏估计量,由此可见,不论假设 成立与否, 是 的一个无偏估计量,而 仅当假设成立时,才是 的一个无偏估计量,否则它的期望值大于 .说明比值 (20)在假设成立时有偏大倾向,也就是说,如果F取得值相当大,则没有理由认为x和Y之间有线性相关关系,也就是下面我们将采用F作为检验统计量的原因.另外,由于 , 是 的最小二乘估计,由(8)式可知=0 , =0这表明 中的n个变量 , …… 之间有两个独立的线性约束条件,
实验三 多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。【实验内容】建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为: 。其中,L、K分别为生产过程中投入的劳动与资金,时间变量 反映技术进步的影响。表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。表3-1 我国国有独立核算工业企业统计资料年份 时间 工业总产值Y(亿元) 职工人数L(万人) 固定资产K(亿元)1978 1 3139 2 3208 3 3334 4 3488 5 3582 6 3632 7 3669 8 3815 9 3955 10 4086 11 4229 12 4273 13 4364 14 4472 15 4521 16 4498 17 4545 资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型一建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量 : GENR T=@TREND(77)⒋建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。 图3-1 我国国有独立核算工业企业生产函数的估计结果因此,我国国有独立工业企业的生产函数为: (模型1) =() () () () 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为,资金的边际产出为,技术进步的影响使工业总产值平均每年递增亿元。回归系数的符号和数值是较为合理的。 ,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量 对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的 统计量值为,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的 统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除 统计量最小的变量(即时间变量)而重新建立模型。二建立剔除时间变量的二元线性回归模型; 命令:LS Y C L K则生产函数的估计结果及有关信息如图3-2所示。 图3-2 剔除时间变量后的估计结果因此,我国国有独立工业企业的生产函数为: (模型2) =() () () 从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为,资金的边际产出为,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的 检验值都比较大,显著性概率都小于,因此模型2较模型1更为合理。三建立非线性回归模型——C-D生产函数。C-D生产函数为: ,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得: 在EViews软件的命令窗口中依次键入以下命令:GENR LNY=log(Y)GENR LNL=log(L)GENR LNK=log(K)LS LNY C LNL LNK则估计结果如图3-3所示。 图3-3 线性变换后的C-D生产函数估计结果即可得到C-D生产函数的估计式为: (模型3) = () () () 即: 从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。方式2:迭代估计非线性模型,迭代过程中可以作如下控制:⑴在工作文件窗口中双击序列C,输入参数的初始值;⑵在方程描述框中点击Options,输入精度控制值。控制过程:①参数初值:0,0,0;迭代精度:10-3;则生产函数的估计结果如图3-4所示。 图3-4 生产函数估计结果此时,函数表达式为: (模型4) =()(-)() 可以看出,模型4中劳动力弹性 =,资金的产出弹性 =,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。②参数初值:0,0,0;迭代精度:10-5; 图3-5 生产函数估计结果从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。③参数初值:0,0,0;迭代精度:10-5,迭代次数1000; 图3-6 生产函数估计结果此时,迭代953次后收敛,函数表达式为: (模型5) =()()() 从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理, ,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。④参数初值:1,1,1;迭代精度:10-5,迭代次数100; 图3-7 生产函数估计结果此时,迭代14次后收敛,估计结果与模型5相同。比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。二、比较、选择最佳模型估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:一回归系数的符号及数值是否合理;二模型的更改是否提高了拟合优度;三模型中各个解释变量是否显著;四残差分布情况以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Residual/ Actual, Fitted, Residual Table(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。模型1的各期残差中大多数都落在 的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。模型2、模型3、模型5都具有合理的经济意义,都通过了 检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。 图3-8 回归方程的残差分析 图3-9 模型1的残差分布图3-10 模型2的残差分布图3-11 模型3的残差分布图3-12 模型4的残差分布图3-13 模型5的残差分布
在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考