首页

> 论文发表知识库

首页 论文发表知识库 问题

北斗卫星导航系统论文

发布时间:

北斗卫星导航系统论文

中国开展卫星导航与定位研究最早始于上世纪60年代,随后由于受到文化大革命的干扰,研究一度中断直到70年代末才恢复。 1983年,一个名为“双星快速定位系统”的卫星导航与定位方案被提出。随后,陈芳允院士(863计划的倡导者之一)正式提出了研制双星“快速导航系统”(RDSS),1994年国家正式批准了该项目上马,并正式命名为“北斗卫星定位导航系统”。2000年发射了第一颗导航试验卫星,2003年又发射了两颗导航试验卫星,至此第一代卫星定位导航试验系统在地球同步轨道组网成功。技术特点与GPS不同,“北斗”系统使用的是与GEOSTAR(即1982年7月由美国三位科学家提出并于12月定名的Geostar系统,这是一种由两颗卫星构成的主动式卫星定位系统,最后由于GPS的迅速发展导致该研究在1991年9月面临撤资流产的命运)的定位系统类似的技术。“北斗”实际上是一个区域性卫星导航定位系统,由3颗(两颗工作卫星、一颗备用卫星)北斗定位卫星、1个地面控制中心为主的地面部份、北斗用户终端三部分组成。而GPS则是一个由24颗卫星组网,覆盖全球且不需要地面基站辅助的全球导航定位系统。两者最大的不同是在定位精度和通讯方面。GPS的定位精度可以控制在几米之内,“北斗”系统的定位精度在经过校准的情况下能达到20米左右,如果不校准则精度只有100米左右。此外,和GPS不同的是,“北斗”系统还可以提供双向通讯功能,用户与用户、用户与中心控制系统间均可实现双向简短数字报文通信。通过“北斗”系统,用户一次最多可以传输120个字符。“北斗”系统主要用于运输业。例如,通过使用该系统运输公司就可以获知本公司的所有车辆在国内的具体位置,以及过去一段时间以来它们的行驶轨迹。该系统还可以监视车辆状态和用于车辆防盗。该系统还提供一种功能,向用户通报正在发生的事故和犯罪状况。在“北斗”系统信号较弱的地区,用户可以辅助使用GPS信号。应用领域中国发展“北斗”系统有军民两种用途。与美国相类似,该系统的核心是用于军事目的,但是也可以为民用和商业领域提供多种服务。中国的主要考虑是,一旦爆发冲突,美国很可能关闭GPS系统或者加大民用码的误差。因此,中国认为保护国家利益需要发展不受制于外国的独立的卫星导航与定位系统。中国希望“北斗”系统无论在技术还是应用上,最终都能与GPS相抗衡。卫星定位导航功能在军用和民用上都具有重要用途。美国利用GPS的导航与定位功能所具备的精确制导能力被证明是打赢“信息化战争”必不可少的条件。在有可能与台湾发生的冲突中,精确制导能力更为重要,中国希望通过此种能力减少附带损伤。解放军还可以通过“北斗”系统的双向通信功能随时与己方部队联络并监控他们所处的位置。卫星导航与定位技术还可以运用到解放军的对潜通讯上,潜艇可不再需要上浮即可接收卫星信号。解放军海军的下一代弹道导弹潜艇可通过使用“北斗”系统获得更准确的目标定位信息,增强潜射导弹的精确制导能力。事实上,世界上第一代导航与定位系统——美国海军的“子午仪”系统,其最初的设计目的就是为了增强弹道导弹核潜艇的精确制导能力。中国的研究人员也在进行类似的研究。GPS不断扩大的市场占有率也刺激了中国在商业领域使用“北斗”系统的兴趣。根据评估,到2008年整个GPS的市场前景将达到220亿美元。除了运输业和个人移动通讯领域的运用,一些大型企业还需要GPS为它们提供精确的授时服务。卫星导航与定位方案被提出。随后,陈芳允院士(863计划的倡导者之一)正式提出了研制双星“快速导航系统”(RDSS),1994年国家正式批准了该项目上马,并正式命名为“北斗卫星定位导航系统”。2000年发射了第一颗导航试验卫星,2003年又发射了两颗导航试验卫星,至此第一代卫星定位导航试验系统在地球同步轨道组网成功。技术特点与GPS不同,“北斗”系统使用的是与GEOSTAR(即1982年7月由美国三位科学家提出并于12月定名的Geostar系统,这是一种由两颗卫星构成的主动式卫星定位系统,最后由于GPS的迅速发展导致该研究在1991年9月面临撤资流产的命运)的定位系统类似的技术。“北斗”实际上是一个区域性卫星导航定位系统,由3颗(两颗工作卫星、一颗备用卫星)北斗定位卫星、1个地面控制中心为主的地面部份、北斗用户终端三部分组成。而GPS则是一个由24颗卫星组网,覆盖全球且不需要地面基站辅助的全球导航定位系统。两者最大的不同是在定位精度和通讯方面。GPS的定位精度可以控制在几米之内,“北斗”系统的定位精度在经过校准的情况下能达到20米左右,如果不校准则精度只有100米左右。此外,和GPS不同的是,“北斗”系统还可以提供双向通讯功能,用户与用户、用户与中心控制系统间均可实现双向简短数字报文通信。通过“北斗”系统,用户一次最多可以传输120个字符。“北斗”系统主要用于运输业。例如,通过使用该系统运输公司就可以获知本公司的所有车辆在国内的具体位置,以及过去一段时间以来它们的行驶轨迹。该系统还可以监视车辆状态和用于车辆防盗。该系统还提供一种功能,向用户通报正在发生的事故和犯罪状况。在“北斗”系统信号较弱的地区,用户可以辅助使用GPS信号。

2000年,首先建成北斗导航试验系统,使中国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。2012年12月27日,北斗系统空间信号接口控制文件正式版正式公布,北斗导航业务正式对亚太地区提供无源定位、导航、授时服务。2019年4月20日,第44颗北斗导航卫星发射成功。2019年5月17日23 时48分,中国在西昌卫星发射中心用长征三号丙运载火箭,成功发射了第四十五颗北斗导航卫星。扩展资料在现代化高速发展的中国,不仅是军事用途中,需要强大的导航系统,即使是在民用上,同样也不会例外。尤其是对于沿海地区的渔民而言,导航系统更是意义非凡。“北斗”系统的全面发展与普及,将为中国带来更加强大的民用导航体系。在经济社会中,不仅是在渔业中需要使用到导航系统。在人们的日常生活中,需要使用到导航系统的时候,也并不算少。从目前的一些相关资料上来看,中国导航系统的需求异常强大。“北斗”系统全面普及之后,必将促进中国经济的进一步发展。参考资料来源:百度百科—北斗导航定位卫星系统 0 1 May513514009来自百度知道认证团队 2019-09-21随着导航定位产业的发展,我国自主研制的北斗导航定位系统已在我国国民经济各方面发挥了重要作用,北斗系统从研制之初,就按“三步走”的战略发展,先后建成了北斗一号、北斗二号、北斗三号系统。1994年,启动北斗一号系统工程建设,2000年,发射2颗地球静止轨道卫星,建成系统并投入使用,采用有源定位体制,为中国用户提供定位、授时、广域差分和短报文通信服务,2003年,发射第3颗地球静止轨道卫星,进一步增强系统性能。2004年,启动北斗二号系统工程建设,2012年年底,完成14颗卫星(5颗地球静止轨道卫星、5颗倾斜地球同步轨道卫星和4颗中圆地球轨道卫星)发射组网。北斗二号系统在兼容北斗一号系统技术体制基础上,增加无源定位体制,为亚太地区用户提供定位、测速、授时和短报文通信服务。2017年11月5日,北斗三号第一、二颗组网卫星在西昌卫星发射中心成功发射,开启了北斗卫星导航系统全球组网的新时代,截至2019年,北斗三号已经成功发射了20颗卫星,已经形成了覆盖全球的服务能力。扩展资料:2020年,北斗3号的组网建设任务就将完成,届时,有着中国芯的北斗系统就可以全天时全天候为世界各地的每一个角落的用户提供高精度的导航定位。北斗卫星导航系统的建设、发展和应用将对全世界开放,为全球用户提供高质量的免费服务,积极与世界各国开展广泛而深入的交流与合作,促进各卫星导航系统间的兼容与互操作,推动卫星导航技术与产业的发展。参考资料:百度百科-北斗卫星导航系统 0 2 推荐于 2017-11-26中国开展卫星导航与定位研究最早始于上世纪60年代,随后由于受到文化大革命的干扰,研究一度中断直到70年代末才恢复。 1983年,一个名为“双星快速定位系统”的卫星导航与定位方案被提出。随后,陈芳允院士(863计划的倡导者之一)正式提出了研制双星“快速导航系统”(RDSS),1994年国家正式批准了该项目上马,并正式命名为“北斗卫星定位导航系统”。2000年发射了第一颗导航试验卫星,2003年又发射了两颗导航试验卫星,至此第一代卫星定位导航试验系统在地球同步轨道组网成功。技术特点与GPS不同,“北斗”系统使用的是与GEOSTAR(即1982年7月由美国三位科学家提出并于12月定名的Geostar系统,这是一种由两颗卫星构成的主动式卫星定位系统,最后由于GPS的迅速发展导致该研究在1991年9月面临撤资流产的命运)的定位系统类似的技术。“北斗”实际上是一个区域性卫星导航定位系统,由3颗(两颗工作卫星、一颗备用卫星)北斗定位卫星、1个地面控制中心为主的地面部份、北斗用户终端三部分组成。而GPS则是一个由24颗卫星组网,覆盖全球且不需要地面基站辅助的全球导航定位系统。两者最大的不同是在定位精度和通讯方面。GPS的定位精度可以控制在几米之内,“北斗”系统的定位精度在经过校准的情况下能达到20米左右,如果不校准则精度只有100米左右。此外,和GPS不同的是,“北斗”系统还可以提供双向通讯功能,用户与用户、用户与中心控制系统间均可实现双向简短数字报文通信。通过“北斗”系统,用户一次最多可以传输120个字符。“北斗”系统主要用于运输业。例如,通过使用该系统运输公司就可以获知本公司的所有车辆在国内的具体位置,以及过去一段时间以来它们的行驶轨迹。该系统还可以监视车辆状态和用于车辆防盗。该系统还提供一种功能,向用户通报正在发生的事故和犯罪状况。在“北斗”系统信号较弱的地区,用户可以辅助使用GPS信号。应用领域中国发展“北斗”系统有军民两种用途。与美国相类似,该系统的核心是用于军事目的,但是也可以为民用和商业领域提供多种服务。中国的主要考虑是,一旦爆发冲突,美国很可能关闭GPS系统或者加大民用码的误差。因此,中国认为保护国家利益需要发展不受制于外国的独立的卫星导航与定位系统。中国希望“北斗”系统无论在技术还是应用上,最终都能与GPS相抗衡。卫星定位导航功能在军用和民用上都具有重要用途。美国利用GPS的导航与定位功能所具备的精确制导能力被证明是打赢“信息化战争”必不可少的条件。在有可能与台湾发生的冲突中,精确制导能力更为重要,中国希望通过此种能力减少附带损伤。解放军还可以通过“北斗”系统的双向通信功能随时与己方部队联络并监控他们所处的位置。卫星导航与定位技术还可以运用到解放军的对潜通讯上,潜艇可不再需要上浮即可接收卫星信号。解放军海军的下一代弹道导弹潜艇可通过使用“北斗”系统获得更准确的目标定位信息,增强潜射导弹的精确制导能力。事实上,世界上第一代导航与定位系统——美国海军的“子午仪”系统,其最初的设计目的就是为了增强弹道导弹核潜艇的精确制导能力。中国的研究人员也在进行类似的研究。GPS不断扩大的市场占有率也刺激了中国在商业领域使用“北斗”系统的兴趣。根据评估,到2008年整个GPS的市场前景将达到220亿美元。除了运输业和个人移动通讯领域的运用,一些大型企业还需要GPS为它们提供精确的授时服务。卫星导航与定位方案被提出。随后,陈芳允院士(863计划的倡导者之一)正式提出了研制双星“快速导航系统”(RDSS),1994年国家正式批准了该项目上马,并正式命名为“北斗卫星定位导航系统”。2000年发射了第一颗导航试验卫星,2003年又发射了两颗导航试验卫星,至此第一代卫星定位导航试验系统在地球同步轨道组网成功。技术特点与GPS不同,“北斗”系统使用的是与GEOSTAR(即1982年7月由美国三位科学家提出并于12月定名的Geostar系统,这是一种由两颗卫星构成的主动式卫星定位系统,最后由于GPS的迅速发展导致该研究在1991年9月面临撤资流产的命运)的定位系统类似的技术。“北斗”实际上是一个区域性卫星导航定位系统,由3颗(两颗工作卫星、一颗备用卫星)北斗定位卫星、1个地面控制中心为主的地面部份、北斗用户终端三部分组成。而GPS则是一个由24颗卫星组网,覆盖全球且不需要地面基站辅助的全球导航定位系统。两者最大的不同是在定位精度和通讯方面。GPS的定位精度可以控制在几米之内,“北斗”系统的定位精度在经过校准的情况下能达到20米左右,如果不校准则精度只有100米左右。此外,和GPS不同的是,“北斗”系统还可以提供双向通讯功能,用户与用户、用户与中心控制系统间均可实现双向简短数字报文通信。通过“北斗”系统,用户一次最多可以传输120个字符。“北斗”系统主要用于运输业。例如,通过使用该系统运输公司就可以获知本公司的所有车辆在国内的具体位置,以及过去一段时间以来它们的行驶轨迹。该系统还可以监视车辆状态和用于车辆防盗。该系统还提供一种功能,向用户通报正在发生的事故和犯罪状况。在“北斗”系统信号较弱的地区,用户可以辅助使用GPS信号。

北斗导航系统是覆盖我国本土的区域导航系统。覆盖范围东经约70°一140°,北纬5°一55°。gps是覆盖全球的全天候导航系统。能够确保地球上任何地点、任何时间能同时观测到6-9颗卫星(实际上最多能观测到11颗)。基本数据北斗导航系统是在地球赤道平面上设置2颗地球同步卫星颗卫星的赤道角距约60°。gps是在6个轨道平面上设置24颗卫星,轨道赤道倾角55°,轨道面赤道角距60°。航卫星为准同步轨道,绕地球一周11小时58分。定位原理北斗导航系统是主动式双向测距二维导航。地面中心控制系统解算,供用户三维定位数据。gps是被动式伪码单向测距三维导航。由用户设备独立解算自己三维定位数据。“北斗一号”的这种工作原理带来两个方面的问题,一是用户定位的同时失去了无线电隐蔽性,这在军事上相当不利,另一方面由于设备必须包含发射机,因此在体积、重量上、价格和功耗方面处于不利的地位。定位精度北斗导航系统三维定位精度约几十米,授时精度约100ns。gps三维定位精度p码目前己由16m提高到6m,c/a码目前己由25-100m提高到12m,授时精度日前约20ns。用户容量

中国北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度米/秒,授时精度10纳秒。2012年12月27日,北斗系统空间信号接口控制文件正式版正式公布,北斗导航业务正式对亚太地区提供无源定位、导航、授时服务。2013年12月27日,北斗卫星导航系统正式提供区域服务一周年新闻发布会在国务院新闻办公室新闻发布厅召开,正式发布了《北斗系统公开服务性能规范(版)》和《北斗系统空间信号接口控制文件(版)》两个系统文件。2014年11月23日,国际海事组织海上安全委员会审议通过了对北斗卫星导航系统认可的航行安全通函,这标志着北斗卫星导航系统正式成为全球无线电导航系统的组成部分,取得面向海事应用的国际合法地位。中国的卫星导航系统已获得国际海事组织的认可。

北斗导航系统论文开题报告

北斗卫星导航系统(BeiDou(COMPASS)NavigationSatelliteSystem)是中国正在实施的自主发展、独立运行的全球卫星导航系统。2018年底,北斗三号基本系统正式开通运行,后续继续完成全球覆盖,覆盖面积扩大将带来整体民用行业需求将进一步扩大。2019年中国卫星导航系统委员会主席王兆耀称我国2020年计划发射2-4颗北斗三号卫星,至2020年底全面完成北斗三号系统建设,我国北斗导航产业链正逐步完善。

北斗卫星导航系统产业链介绍

北斗卫星导航系统由空间段、地面段和用户段三大部分组成,导航用户段又可以细分为上中下游产业,上游基础部件是产业自主可控的关键环节,基础部件作为自主可控最关键的部分,主要由基带芯片、射频芯片、板卡、天线等构成;中游主要包括终端集成和系统集成,是产业发展的重点;下游的解决方案和运维服务提供众多行业应用。

北斗卫星导航产业链中的中间段及地面段两个环节,是国家核心基础设施,主要由国家投资完成,而导航用户段产业链环节,主要通过市场运作来满足社会需求。

产业链下游环节效益增长迅速

根据《2020中国卫星导航与位置服务产业发展白皮书》显示,由于芯片和终端价格仍保持在较低水平,2019年我国北斗卫星导航系统产业市场营收趋于稳定,产业链上游和中游的产值占比分别为和,仍呈下降趋势,而下游运维服务环节成长迅速,在产业链各环节中效益涨幅最快,其产值占比已增长到。

专业应用和消费应用占比较大

北斗卫星导航系统正式开通5年来,已广泛应用于交通、海事、电力、民政、气象、渔业、测绘市政管网等十几个行业领域,其中,专业应用领域和消费应用领域占据绝大部分。在各分类应用业务中,车辆监控、信息服务、车辆导航、个人跟踪占据了85%的份额。而作为专业行业应用的授时、海用、测绘、军用类业务占据份额较少,只有8%。

行业参与主体众多,军工企业占据主导地位

目前,我国卫星导航与位置服务领域企事业单位数量保持在14000家左右,从业人员数量超过50万。截至2019年底,业内相关上市公司(含新三板)总数为46家,上市公司涉及卫星导航与位置服务的相关产值约占全国总产值的9%。

空间段由航天科技集团下属单位主抓,地面段的研制生产以中电科集团等为主导,用户段的产品及系统市场化特征较为明显,参与主体众多,包括军工集团下属公司、地方国企参军公司及较多民参军企业。

—— 以上数据来源于前瞻产业研究院《中国北斗导航行业重点企业发展分析及投资前景报告》

北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的自主研发、独立运行的全球卫星导航系统。与美国GPS、俄罗斯格洛纳斯、欧盟伽利略系统并称全球四大卫星导航系统。北斗卫星导航系统建设目标是建成独立自主、开放兼容、技术先进、稳定可靠覆盖全球的导航系统。 北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。 该系统可在全球范围内全天候、全天时为各类用户提供高精度、高可靠的定位、导航、授时服务,并兼具短报文通信能力。中国以后生产定位服务设备的产商,都将会提供对GPS和北斗系统的支持,会提高定位的精确度。而北斗系统特有的短报文服务功能将收费,这个功能的实用性还有待观察。 2011年12月27日起,开始向中国及周边地区提供连续的导航定位和授时服务。四大功能短报文通信:北斗系统用户终端具有双向报文通信功能,用户可以一次传送40-60个汉字的短报文信息。 现在可以达到一次传送多达120个汉字的信息。目前在远洋航行中有重要的应用价值。 精密授时:北斗系统具有精密授时功能,可向用户提供20ns-100ns时间同步精度。 定位精度:水平精度100米(1σ),设立标校站之后为20米(类似差分状态)。工作频率:。 系统容纳的最大用户数:每小时540000户。北斗系统在国防上的应用,能使作战效能提高100-1000倍,作战费效比提高10-50倍,大大提高国防能力和减少国防经济的负担。 北斗将在智能交通、路况信息管理、道路堵塞治理、车辆监控和车辆自主导航方面有广泛的应用前景。配上接收机的话,可以准确地知道他的位置,并告诉公安系统包括监护者,从而实现实时监控。军用功能“北斗”卫星导航定位系统的军事功能与GPS类似,如:飞机、导弹、水面舰艇和潜艇的定位导航;弹道导弹机动发射车、自行火炮与多管火箭发射车等武器载具发射位置的快速定位,以缩短反应时间;人员搜救、水上排雷定位等。 这项功能用在军事上,意味着可主动进行各级部队的定位,也就是说大陆各级部队一旦配备“北斗”卫星导航定位系统,除了可供自身定位导航外,高层指挥部也可随时通过“北斗”系统掌握部队位置,并传递相关命令,对任务的执行有相当大的助益。换言之,大陆可利用“北斗”卫星导航定位系统执行部队指挥与管制及战场管理。民用功能个人位置服务 当你进入不熟悉的地方时,你可以使用装有北斗卫星导航接收芯片的手机或车载卫星导航装置找到你要走的路线。 气象应用 北斗导航卫星气象应用的开展,可以促进我国天气分析和数值天气预报、气候变化监测和预测,也可以提高空间天气预警业务水平,提升我国气象防灾减灾的能力。 除此之外,北斗导航卫星系统的气象应用对推动北斗导航卫星创新应用和产业拓展也具有重要的影响。 道路交通管理 卫星导航将有利于减缓交通阻塞,提升道路交通管理水平。通过在车辆上安装卫星导航接收机和数据发射机,车辆的位置信息就能在几秒钟内自动转发到中心站。这些位置信息可用于道路交通管理。 铁路智能交通 卫星导航将促进传统运输方式实现升级与转型。例如,在铁路运输领域,通过安装卫星导航终端设备,可极大缩短列车行驶间隔时间,降低运输成本,有效提高运输效率。未来,北斗卫星导航系统将提供高可靠、高精度的定位、测速、授时服务,促进铁路交通的现代化,实现传统调度向智能交通管理的转型。 海运和水运 海运和水运是全世界最广泛的运输方式之一,也是卫星导航最早应用的领域之一。目前在世界各大洋和江河湖泊行驶的各类船舶大多都安装了卫星导航终端设备,使海上和水路运输更为高效和安全。北斗卫星导航系统将在任何天气条件下,为水上航行船舶提供导航定位和安全保障。同时,北斗卫星导航系统特有的短报文通信功能将支持各种新型服务的开发。 航空运输 当飞机在机场跑道着陆时,最基本的要求是确保飞机相互间的安全距离。利用卫星导航精确定位与测速的优势,可实时确定飞机的瞬时位置,有效减小飞机之间的安全距离,甚至在大雾天气情况下,可以实现自动盲降,极大提高飞行安全和机场运营效率。通过将北斗卫星导航系统与其他系统的有效结合,将为航空运输提供更多的安全保障。 应急救援 卫星导航已广泛用于沙漠、山区、海洋等人烟稀少地区的搜索救援。在发生地震、洪灾等重大灾害时,救援成功的关键在于及时了解灾情并迅速到达救援地点。北斗卫星导航系统除导航定位外,还具备短报文通信功能,通过卫星导航终端设备可及时报告所处位置和受灾情况,有效缩短救援搜寻时间,提高抢险救灾时效,大大减少人民生命财产损失。

第一,国家安全建立自己的卫星导航系统,避免在将来的战争中受制于人,同时我们还有了同样的手段可以反制敌人。(导弹要导航,行军要定位,还得知道哪可以躲,哪可以藏,敌人躲在哪,这都要靠卫星导航定位系统,如果我们用别人的,不自己开发,那将来打起仗来,敌人不给我们用他的系统我们该怎么办,或者敌人给我用,但是给我们提供错误虚假信息怎么办,我们信息泄露了怎么办?最关键的,就是我们有了自己的系统之后,我们就可以打敌人了,这样敌人在开战之前也要想一想后果了。所以说,为了国家安全,我们要建立这个)第二,经济效益他每年能创造巨大的经济效益。一方面,我们省去原来用来引进国外系统的巨额资金。另一方面,我们自己的系统以低价服务国内用户,可以让更多行业部门应用上这种高科技设备,从而创造更多的社会价值和物质财富。还有一方面,我们可以将我们的系统,投放到国际市场,参与国际竞争,赚取外汇。第三,技术储备科学技术的发展永不止步,我们发展了自己的卫星导航系统,我们就有了相应的技术储备,也就意味着我们国家的科学技术水平已经达到了世界先进水平,有了这些技术储备,我们就可以在将来的新的一轮科技大潮中抢占制高点,引领世界,而不是总像这三百年以来一样被西方人牵着鼻子走。总有一天,我们要回复汉唐,重新成为全世界的领头羊。

北斗卫星论文格式

关于“北斗卫星”的说明文开头宏观介绍北斗卫星,具体可以这样写:

1、基本情况:

中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,也是继GPS、GLONASS之后的第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。

2、国际合作:

全球范围内已经有137个国家与北斗卫星导航系统签下了合作协议。随着全球组网的成功,北斗卫星导航系统未来的国际应用空间将会不断扩展。

北斗卫星导航系统的基本组成:

(1)北斗系统由空间段、地面段和用户段三部分组成。

(2)空间段由若干地球静止轨道卫星、倾斜地球同步轨道卫星和中圆地球轨道卫星组成。

(3)地面段包括主控站、时间同步/注入站和监测站等若干地面站,以及星间链路运行管理设施。

(4)用户段包括北斗及兼容其他卫星导航系统的芯片、模块、天线等基础产品,以及终端设备、应用系统与应用服务等。

以上内容参考:百度百科-北斗卫星导航系统

全球卫星导航系统生态研究论文

GPS系统对抗若干分析摘要 本文阐述了GPS导航系统对现代战争的影响及导航对抗的概念,总结了GPS导航系统的发展现状、局限性,提出了针对GPS导航对抗的有效方法,并对干扰技术的可行性进行了分析。关键词 全球卫星导航系统(GPS) 导航对抗 信息对抗1 引 言现代战争的主要形式是信息对抗,信息对抗最突出的表现形式是体系对抗。在体系的同步、定位、整合过程中,GPS扮演着重要作用。当前美军GPS导航系统已经进一步现代化,精度实现了优于6m,可以说GPS导航系统是当前技术最成熟、应用最广泛、定位最精确的军民两用导航系统,更具有显著的军事导航作用,促使了美军独霸了全球军事制高点。但是,GPS导航系统本身具有很多弱点,如卫星的生存能力不强,信号强度较弱、易受干扰等,从而成为信息对抗的一个重要方面。2 GPS导航系统对现代战争的影响及导航对抗的概念导航要解决的核心问题有两个:一是被导航的平台现在处于什么位置;二是哪一条路线可以引导平台到达目的地。最原始的导航工具用的是罗盘,后来是无线电。1957年后无线电导航进入了一个新时代。GPS导航开发成功,又经过30多年的相继完善,能够在全球范围内向任意多的用户实时、连续、全天候提供高精度的坐标、速度与时间基准,为现代全球体系的目标导航带来极大的便利,对现代战争产生了深远影响:一是足够限度延长了打击距离,缩短了打击时间。GPS系统实时测距,用户接收机无源工作,一个能移动的武器打击平台,只要燃料足够,加装GPS接收机后就能够飞向世界的任何一个角落。二是极大降低了打击成本。一个GPS制导的武器打击平台,在防区外发射,可以精确命中目标,误差只有1~2米,大大节省了打击成本。三是提高了战场的指挥效率。依赖GPS的正常运作与武器GPS定位仪,战场实现了时间同步精确与机动控制有序。四是突破了战争的时间跨度。GPS系统全天候提供数据,不分白天黑夜,无论天晴下雨,增加了武器打击的突然性。随着“信息对抗”的提出,出现了导航对抗概念,它是信息对抗的延伸与发展。美军最先提出“导航战”的概念:在战场环境下,保证己方充分、可靠地利用卫星导航定位,同时阻止敌军利用卫星导航,但以基本上不使民用卫星导航受影响为条件。导航对抗的终极目的是争夺导航资源控制权,基本要素是保护和阻止,基本内涵是:1)绝不容许用提高精度的GPS导航来针对自己的部队或国家利益;2)使对方不能使用GPS与自己对抗;3)保证民间使用GPS时受到的破坏或精度降级达到最小程度;4)保证友军、盟友能接收同一系统信号。

GNSS测量是用接收机与天线组成的测量系统,我整理了gnss测量技术论文,有兴趣的亲可以来阅读一下!

GNSS测量技术在城市测量中的应用

摘要:GNSS城市测量技术内容主要包括城市CORS系统建设、城市GNSS网建设、城市GNSS RTK测量、城市GNSS高程测量等,本文主要就这几方面的技术应用作了简要应用分析。

关键词:GNSS;CORS系统;控制网;RTK测量;高程测量

Abstract: GNSS measurement technology mainly includes the construction of city, city CORS city GNSS network construction, city, city GNSS RTK measurement of GNSS height measurement, this paper focuses on several aspects of this technology are briefly applied analysis.

Key words: GNSS; CORS system; control network; RTK measurement; height measurement

中图分类号:P224

全球导航卫星系统(GNSS)技术的应用,导致传统测量的布网方法、作业手段和内外作业程序发生了根本性的变革,为城市测量提供了一种崭新的技术手段和方法。全球导航定位系统具有全球性、全天候、高效率、多功能、高精度的特点。在用于大地定位时,测站间不要求互相通视,无需造标,不受天气条件影响。一次观测,可以获得测站点的三维坐标。卫星定位城市测量技术内容包括城市CORS系统建设、城市GNSS网建设、城市GNSS RTK测量、城市GNSS高程测量等,适用于城市各等级控制测量、工程测量、变形测量和地形测量等。GNSS技术将以高速度、高精度、低成本为城市建设服务,快速、及时、准确地为城市规划、建设和管理提供测绘保障。

一、城市CORS系统建设

GNSS技术已在国内导航、定位、科学研究领域得到广泛应用。一个城市只应建设一个城市CORS系统,避免重复建设和资源浪费。系统建设不但要满足城市测绘部门对定位的需求,还要综合考虑地震、气象、土地和其他行业对系统的需求[1]。具体实施可根据城市和经济发展情况可以一次建设完成,也可分期建设,城市CORS系统作为城市重要的空间数据基础设施之一,首先要满足城市对空间定位的不同服务需求。

城市CORS网的布设不同于城市常规GNSS网的布设,常规GNSS网的边长一般较短,而CORS网站间距离可根据系统功能设计而适当加长。下表1列举了部分城市及地区已建成的CORS网平均边长。

表1部分城市及地区CORS网

根据对部分城市及地区已建成的CORS网平均边长的统计和分析,制定了城市CORS网的平均边长为40km这一指标。为了满足CORS系统厘米级的实时定位服务精度。在具体布设中可以根据城市地理位置、城市规模和建设应用等情况,有针对性地确定CORS站密度。但是相邻CORS站最长间距不宜超过80 km。由于地壳形变、自然灾害、地下水的过量开采等原因,可能导致城市CORS站站址的不稳定,应定期对CORS网进行坐标解算,解算周期不应超过一年。CORS站坐标的平面位置变化不应超过;高程变化不应超过3cm。当CORS站坐标的变化量不符合规定时,应分析原因,并应及时更新CORS站坐标或另选新站。对于地面沉降严重的区域,可另行制定高程变化的变化量限值。

二、城市GNSS控制网建设

GNSS网的布设应遵循从整体到局部、分级布网的原则。城市首级GNSS网应一次全面布设,加密GNSS网可逐级布网、越级布网或布设同级全面网。GNSS网布设特征:如果某GNSS网由n个点组成,每点的设站次数为m,用N台GNSS接收机来进行观测时,观测的时段数C:C=n﹒m/N一个时段中用N台GNSS接收机来进行同步观测时,可组成非独立的基线向量数:N(N-1)/2,所以该GPS网中共有非独立的基线向量数:J总=C﹒N(N-1)/2每个时段中可测定的独立基线向量数为N-1条,故在该网中独立基线向量数总数为:J独= C﹒(N-1)

在由n个点组成的GNSS网中只需要有(n-1)条基线向量就可以确定这n个点的相对位置(如果其中有一个点的坐标是已知的,就可以确定其余n-1个点的坐标)。因此, 该GNSS网的必要基线向量数:J必= n-1网中实际测定的独立基线向量数为C﹒(N-1)条,所以,网中的多余基线向量数为:J多= J独- J必= C﹒(N-1)-(n-1)举例:某GNSS网由80个点组成,现准备用5台GNSS接收机来进行观测,每个点重复设站为4次。则全网的观测时段数C为:C=n﹒m/N=80×4/5=64全网共有基线向量数:J总=C﹒N(N-1)/2=64×5×4/2=640条

网中独立基线向量数为:J独= C﹒(N-1)=64×4=256条。GNSS网的必要基线向量数:J必= n-1=80-1=79条。网中的多余基线向量数为:J多= J独- J必= 256-79=177条。三、城市GNSS RTK测量技术及其应用

RTK测量可采用单基站RTK测量和网络RTK测量两种方法进行。已建立CORS系统的城市,宜采用网络RTK测量。在实际作业过程中,有一些通信信号较弱或覆盖不到的困难地区,无法实时进行单基站RTK和网络RTK测量,现场可以采用后处理动态测量的模式进行RTK测量。单基站RTK测量的基准站设置是关键性的第一步。基准站的选择直接影响到作业半径和效率。若基准站选择不当,基准站观测数据质量和无线通讯信号传播质量无法保证。该基准站支持的所有流动站都不能顺利作业,或者造成基准站频繁迁站,影响工作进程。基准站的设置要与当前作业方式匹配,还要与流动站的模式匹配。

静态GNSS控制网测量可以通过基线精度、重复基线差及环闭合差和平差等作业过程对成果进行检验;RTK测量每个测设点都是相互独立的,点与点之间没有直接关系,对于因意外产生的粗差无法发现[2]。因此,为提高RTK测量的可靠性,保证仪器各种设置正确,测量过程中应选择一定数量的已知坐标点进行测量校核,以检查用户站设备的可靠性以及坐标转换参数的准确性。

利用已有RTK测设的控制点时,应进行坐标或几何检核。对已有的RTK控制点,可以作为RTK测量时的校核点,也可以作为同等级布设的控制点。该校核点如果要作为控制点使用时,应与新布设的控制点统一。统一进行控制点间的边长、角度以及坐标检核,应达到精度要求。RTK测量的精度会受到各种因素的影响。由于载波相位进行测量具有多值性,初始化过程中各种误差以及数据链传输过程中外界环境、电磁波干扰产生的误差的影响,可能导致整周未知数解算不可靠。同时,RTK测设点间的相互独立,与传统测量强调的相邻点间相对关系有着根本上的区别。

四、城市GNSS高程测量技术及实例应用

GNSS高程测量按作业过程应分为高程异常模型的建立、GNSS测量和数据处理。高程异常模型可利用已有模型。高程系统中最常用的有正高系统(以大地水准面作为参考基准面)和正常高系统(以似大地水准面为参考基准面)。我国使用的高程系统是正常高系统。采用GNSS测量技术测定地面点的高程是以地心坐标的地球椭球面为基准的大地高H,大地水准面和似大地水准面相对于地球椭球面有一个高度差,分别称为大地水准面差距N和高程异常ζ。大地高H、正高Hg和正常高Hγ之间按下列公式计算: H=Hg+NH=Hγ+ζ如果能够比较精确地确定地面点的高程异常,则用GNSS测量方法可精确测定地面点的正常高。

GNSS静态测量技术要求浅析

摘要:本文介绍了常用规范中有关卫星定位静态测量的技术要求,并对各规范的不同技术要求进行了比较与分析。

关键词GNSS静态测量GNSS测量常用规范GNSS技术要求比较与分析

中图分类号:P258]文献标识码: A 文章编号:

卫星定位技术具有全球性、高效率、多功能、高精度的特点。卫星定位静态测量其定位精度高达10-6~10-7,广泛应用于各种类型和等级的控制网的建立。有关卫星定位测量(以下简称GNSS测量)常用的规范较多,各个规范分别从相应的专业标准制定了详细的GNSS测量技术要求,使GNSS测量的应用具有良好的可操作性,发挥了巨大的作用。下面就常用规范中有关GNSS静态测量的技术要求作一些比较与分析:

1、坐标系统

满足测区内投影所引起的长度变形值不大于,是建立或选择平面坐标系的前提条件和基本准则;而确定控制网的位置基准则是GNSS网基准设计的主要问题,可根据测区的地理位置、平均高程来选择适宜的坐标系统。GNSS测量所获得的是空间基线向量或三维坐标向量,属于其相应的空间坐标系(WGS-84坐标系)。规范要求应将其转换至国家统一的高斯正形投影分带平面直角坐标系(2000国家大地坐标系、1954年北京坐标系、1980西安坐标系)或建筑施工坐标系等其他独立的坐标系的坐标。转换时通常应具备坐标系统相对应的参考椭球及基本参数、坐标系的中央子午线经度、坐标系的投影面高程及测区平均高程异常值、起算点的坐标和起始方位角以及纵、横坐标加常数等。

2、精度分级和技术设计

GNSS网精度指标通常采用相邻点的基线长度中误差公式:来衡量,GNSS网的全中误差不应超过其理论值。按照精度和用途,《全球卫星定位系统(GPS)测量规范》(以下简称《GNSS国标》)把GNSS测量的等级划分为A、B、C、D、E五个等级,并按相邻点基线向量中误差的水平分量、垂直分量来衡量相应级别的精度。而其它规范则是采用传统的三角形网按边长和精度来划分等级,用最弱间接边的相对中误差来衡量精度。相比较而言,前者较抽象,后者虽然较直观,但是遗憾的是,大多数的GPS随机软件中给出的却是直接观测边的精度。技术设计是为了得到最优化的布测方案,应根据项目的实际情况、GNSS网的目的、精度要求、控制点的密度、卫星状况、接收机的类型和数量、道路交通状况以及测区已有测量资料等,依据国家有关规范(规程),并按照优化设计的原则进行综合设计。

规范要求:GNSS网应由一个或若干个独立观测环构成,各同步图形之间采用边连式或网连式,避免出现自由基线。因为自由基线不参与构成几何闭合图形,不具备检查和发现观测成果中粗差的能力。限制最简独立环的边数是为了避免基线误差互相掩盖,含较大误差的边不能被有效地捡出,从而导致网的可靠性降低。要求对独立观测边构成的同步环和异步环进行闭合差检查,是为了检查观测质量、评定精度。

3、选点、埋石

如果点位不符合GNSS测量要求,将引起失锁、周跳、多路径效应误差,GNSS观测中的粗差及劣质观测值就增多。首先要求测站点的顶空开阔。由于GNSS卫星信号本身很微弱,所以GNSS测量选点时还应注意:避开周围的电磁波干扰源以保证GNSS接收机能正常工作;限制卫星高度角以减弱对流层的影响;远离强烈反射卫星信号的物体以减弱多路径效应的影响。规范要求应先进行图上技术设计和优化,并进行精度估算,最后再按技术设计的要求进行现场踏勘落实,对符合要求的旧有的控制点要充分利用。对GNSS点的标石和标志的埋设要求稳固,以易于长期保存、利用。

4、GNSS观测

GNSS接收机应在检定合格的有效期内使用,其标称精度应高于相应等级GNSS网的规范要求。由于双频接收机采用双频改正技术,可以很好地消除电离层折射误差的影响,所以基线边较长或等级较高的GNSS网采用双频接收机观测,精度提高尤为显著。为保证GNSS网中各相邻点具有较高的相对精度,网中距离较近的点一定要进行同步观测,以获得它们之间的直接观测基线。

各规范还对卫星截止高度角、同时观测的有效卫星数、时段长度、数据采样间隔率、PDOP值以及同步观测的接收机数目作了具体的规定。

随着卫星高度的降低,卫星信号接收的信噪比随之减小,对流层影响加大,测量误差也随之增大。各规范一般都要求卫星高度角不低于15°,这样可以在简化模型条件下保证所需的测量精度。

规定有效卫星数是因为同步观测的卫星越多,多余观测量就越多,成果精度也相应地提高。

观测时段长度和数据采样间隔率的限制是为了获得足够的数据量,从而有利于整周模糊度的解算和载波相位观测值周跳的探测。

PDOP值的大小与观测卫星在空间的几何分布有关,限制PDOP值是为了选择最佳的观测时间段,从而获得高精度的观测值。

有别于其他规范的重复设站数的规定,《工程测量规范》(以下简称《工规》)则提出了“独立基线的观测总数不少于必要观测基线数的倍”的规定。笔者认为:这两种提法的根本都在于增加多余的观测基线。通常作业中,按仪器的标称精度约有3% ~5%左右的闭合差不合格,有了多余基线,那么就可以舍去不合格的基线,从而保证网的观测质量。对于GNSS观测时间的确定,笔者在作业中发现,GNSS卫星信号良好的时候,采用双频接收机进行城市四等和一级GNSS测量时,由于其边长相对较短,观测时段分别采用30~40分钟和20~30分钟是可行的,从而提高工作效率。

5、成果资料

GNSS测量是基础性的测量成果,应长期保存,工作完成后,应提交完整的成果资料。包括:任务或合同书、技术设计书、已有成果资料的利用情况、仪器检校记录资料、点之记、外业原始观测记录、平差计算手簿、技术总结、检查报告、设计网图、观测网图、数据处理用图、成果图、坐标等成果资料及说明以及以上资料的电子文件光盘。

以上仅就常用规范中有关GNSS静态测量的技术要求作了一些浅显的比较与分析,在进行GNSS静态测量时,我们应根据项目的特点、精度和密度等要求,依据合适的规范进行设计、施测,以充分发挥GNSS技术的先进性、优越性。

参考文献

[1] 全球定位系统(GPS)测量规范(GB/T18314-2009),测绘出版社,2009。

[2] 卫星定位城市测量技术规范(CJJ/T73-2010),中国建筑工业出版社,2010。

[3] 铁路工程卫星定位测量规范(TB10054-2010),中国铁道出版社,2010。

[4] 李征航、黄劲松 GPS测量与数据处理 武汉大学出版社,2010。

2010年5月19日至21日,第一届中国卫星导航学术年会在北京成功举办。年会主题是“交流合作,共享北斗”。 本届年会由中国卫星导航系统专项管理办公室,科技部、国防科技工业局、交通部、教育部的有关司局,中国科学院高技术研究与发展局和中国卫星导航定位应用管理中心共同主办,由中国科学院国家授时中心、北京大学和西安测绘研究所承办。孙家栋院士担任本次会议科学委员会主席。从事北斗系统建设和应用的有关部门、科研院所和企业等各方面的专家、代表共1000余人参加了会议。国内相关权威专家就卫星导航最新进展及发展趋势做了特邀报告,与会代表分别就北斗卫星导航系统工程与项目管理、导航新理论与新技术、全球卫星导航系统应用与产业化等问题展开专题讨论。年会还分别在北京大学和清华大学设有两个国际交流会场,国内外卫星导航领域的知名专家学者,就相关学术问题进行深度探讨。北斗卫星导航系统建设成就和应用成果专题展览也同时在国家会议中心举办。 2011年5月18日至20日,第二届中国卫星导航学术年会在上海世博中心成功举办。年会主题是“设计北斗的未来”。 华人卫星导航定位技术论坛(CPGPS)和上海国际导航产业科技发展论坛加入了第二届年会。第二届年会接待了国家有关部委、有关科研院所、企业集团、高校和学会协会领导、嘉宾共216位,参会人员共计1660人。共征集到来自143个单位的会议摘要730篇,会议论文633篇。年会收录论文582篇。第二届年会论文出版分为三种形式:电子版收录、会议文集(ISTP检索)295篇、推荐期刊发表(SCI、EI检索)111篇。共计31家媒体对本次年会进行了全方位、多角度宣传报道,有网络媒体对年会进行了现场直播报道。国内导航业内相关媒体《国际太空》,《卫星应用》、《全球定位系统》、《导航天地》等也在随后对年会进行宣传和报道。中央电视台4套《今日关注》栏目对冉承其主任和杨元喜院士进行了30分钟的专访报道。中央电视台13套在19日《新闻30分》对年会进行了详细报道。中国卫星导航学术年会已受到社会各方高度的关注。为促进导航产业的发展,第二届年会特别设立应用产业化高端论坛板块,邀请了国家有关部门、国内外有关企业和研发机构,探讨卫星导航应用和产业化等相关热点问题。同时,为增进国际学术交流,在年会板块中设立各GNSS主管部门报告高端论坛,特别邀请了国外卫星导航系统主管部门领导和卫星导航领域知名专家学者参会。中、美、俄、欧和日等国家和地区卫星导航系统主管部门官员,就卫星导航系统的计划、发展和政策进行研讨。大会建立了国际沟通的平台,从各GNSS主管部门系统最新情况介绍到知名专家特邀报告、再到特邀嘉宾交流互动,国内外官员和学者专家就GNSS政策、技术、应用、国际合作以及其它国内外共同关注的热点议题进行了全面沟通,建立了国际间交流、沟通、合作、共谋发展的平台。第二届会议优秀论文集已经被世界三大检索中的科技会议录索引ISTP检索,部分优秀论文将推荐至EI、SCI相关检索期刊发表。 第三届中国卫星导航学术年会于2012年5月17-20日在广州保利世贸博览馆成功召开,年会主题是“走向应用的北斗”,涵盖学术交流、高端论坛、展览展示和科学普及等内容。 第三届年会接待了国家有关部委、有关科学院所、企业集团、高校和学会协会领导、嘉宾共300多位,参会人员共计2205人,比第二届增加了33%的参会人数。国外导航领域专家共有88人参加年会特邀报告和分会等学术研讨。共征集到来自144个单位的会议摘要956篇,会议论文602篇。第三届年会论文出版分为四种形式:电子版收录、会议文集(EI检索)189篇(国外Springer出版)、推荐期刊发表(《中国科学》《Advances in SpaceResearch》SCI检索)22篇、CNKI中国知网数据库收录全文302篇摘要210篇。第三届年会各类报告共计599篇(GNSS主管部门报告、大会特邀报告、产业化论坛报告、分会特邀报告、分会口头报告、张贴报告等)。第三届年会展览展示,即第三届中国卫星导航技术与应用成果展的展览面积已经达到10000多平米,并且新增了北斗行业应用展、北斗车载应用产业联盟企业展和学科人才建设展。参展单位由36家增加到96家,由以展板为主展示,演变为实物成果展出。会议三天内观众共计约3500人。第三届年会科学普及情况:第三届“北斗杯”全国青少年科技创新大赛征集作品数量达到815件,参赛作品按照华北区、东北区、华东区、中南区、西北区和西南区的划分,分赛区组织评比,获奖师生参与了年会开幕式现场的颁奖典礼。此外科普方面还连续举办了“院士科普讲座”和“科普大讲堂”等活动为广泛宣传北斗卫星导航知识做出了积极贡献。中央电视台等共计36家媒体参与了对第三届年会的宣传,各类报道共计507篇,信息转载量973万条。央视《新闻直播间》栏目对年会进行了专题报道,中央电视台2012年5月19日19:00的《新闻联播》栏目报道了第三届年会的情况。 第四届中国卫星导航学术年会于2013年5月15-17日在武汉国际会展中心隆重召开,年会主题是“北斗应用——机遇与挑战”。 体现了我国北斗卫星导航系统应用推广和产业化阶段以来,面临的国际、国内的整体环境和在机遇与挑战并存的背景下,北斗卫星导航系统的建设、应用、产业化、国际合作与人才培养方面的现状。中国卫星导航系统委员会副主席刘国治、年会科学委员会主席孙家栋院士和武汉市人民政府市长唐良智莅临第四届中国卫星导航学术年会,并作开幕致辞。中国卫星导航学术年会是由中国卫星导航系统管理办公室、科学技术部高新技术发展与产业化司、国防科工局系统工程一司、交通运输部综合规划司、教育部科学技术司、中国卫星导航定位应用管理中心、中国科学院高技术研究与发展局等共同发起的导航学术会议。年会组委会设在中国科学院卫星导航总体部,主要负责年会工作的策划、组织、管理和执行。四天的时间里,共有 2700 多位国内外卫星导航领域的知名专家、学者和企业家参加了本次会议,通过学术交流、高端论坛、展览展示、应用产业化论坛等一系列活动,分享卫星导航领域最新成果,共商卫星导航系统发展,共谋卫星导航应用未来。国内外专家在卫星导航理论、技术、应用和标准化等方面,展示创新性成果,其中有相当一部分是国际先进水平的首次亮相。与会国内外专家围绕精密定轨与定位、兼容与互操作信号设计等前沿热点问题,开展了广泛的交流。本届年会设置九个分会议题,共征集到627 篇论文,其中 181 篇进入 EI 检索文集,另有 287 篇被收录进年会电子文集。在第四届年会的高端论坛上,来自中、美、俄、欧等国家和地区的卫星导航系统的主管部门官员,就卫星导航领域的新进展及发展趋势作了精彩的报告。此外,本届年会在继续安排了青年优秀论文评选和“北斗杯”青少年科技创新大赛的基础上,新设置了年会优秀论文奖项,一批优秀后备人才涌现出来。第四届年会成果丰硕,不仅极大推动了北斗系统建设与技术发展,而且在应用推广和人才培养方面迈上新台阶,为北斗系统持续发展提供了源动力。作为年会组委会的支持单位,中国科学院卫星导航总体部已成功举办了第二届、第三届、第四届中国卫星导航学术年会,从中积累了大量的工作经验,工作流程进一步程序化、规范化和国际化,为年会逐渐成为开放交流的国际化平台做出了贡献。 中国卫星导航学术年会是由中国卫星导航系统管理办公室学术交流中心主办,中国卫星导航系统管理办公室、科学技术部高新技术发展与产业化司、国防科工局系统工程一司、交通运输部综合规划司、工业和信息化部电子信息司、中国卫星导航定位应用管理中心、中国科学院高大科技任务局、中国航天科技集团公司、中国航天科工集团公司、中国电子科技集团公司及南京市人民政度共同支持的导航学术会议,会议已在“北”“上”“广”“汉”成功举办四届,第五届中国卫星导航学术年会(CSNC 2014)已于2014年5月21-23日在江苏南京召开。相关领导肯定了前四届年会所取得的成果,并对第五届年会寄予了更高的期望,希望第五届年会在前四届年会的基础上再升华、再提高,奠定国内导航领域的领先地位,逐步将年会走向国际化。第五届年会定于2014年5月21日至23日在南京金陵会议中心召开,涵盖学术交流、高端论坛、展览展示和科学普及四大版块活动。预计第五届年会的注册参会人数将会超过2000人,注册参展单位将超过100家,中国卫星导航学术年会已受到社会各方高度的关注。第五届中国卫星导航学术年会的主题是“北斗应用—创新 融合 共享”,创新契合年会总旨,融合契合当代应用发展环境,共享契合国际发展趋势。第五届年会学术交流包括:大会特邀报告、分会特邀报告、分会报告、张贴报告等主要形式,邀请国内外专家对热门学术话题进行探讨,并设立九个分会场进行多方向分领域的学术交流。会议设置的九个议题共征集到来自240家单位的479篇全文,参与年会优秀论文评选,其中493篇论文参与青年优秀论文评选,经过层层选拔,最终40篇优秀论文将在“青优”终评中脱颖而出,另有9篇杰出论文将获得“年优”奖项。2014年组委会将继续与Springer合作,出版英文版EI检索论文集,计划收录论文170篇,此外,另有《CSNC2014电子文集》由中国学术期刊(光盘版)电子杂志社出版,所载论文被录入“中国知网”的中国重要会议论文全文数据库。第五届“北斗杯”青少年科技创新大赛备受瞩目,大赛将从覆盖全国的六大赛区征集上百件优秀参赛作品,最终甄选出的优秀获奖者,将赴南京参加开幕式颁奖典礼。第五届中国卫星导航学术年会高端论坛包括各GNSS主管部门报告、大会特邀报告和应用产业化论坛。其中各GNSS主管部门报告高端论坛,将特别邀请国外卫星导航系统主管部门领导和卫星导航领域知名专家学者参会。各GNSS主管部门报告将邀请中国、美国、俄罗斯、欧洲等国家和地区的卫星导航系统主管部门介绍系统进展情况,探讨卫星导航系统政策、发展和国际合作。应用产业化高端论坛版块是上届年会的亮点,第五届年会继续设立本版块,邀请国家有关部门、国内外有关企业和研发机构,探讨卫星导航应用和产业化等相关热点问题,旨在促进导航产业的发展。另外展览展示方面,北斗行业应用成果展、示范应用展、北斗企业院所应用成果展,将体现第五届年会主题“北斗应用—创新 融合 共享”。 第六届年会已于2015年5月13-15日在中国西安曲江国际会议中心召开,主题是“开放 连通 共赢”,年会主题可以进一步阐释为“深度开放合作,全方位互连互通,打造共赢产业新生态。其中“开放”契合系统市场发展需求,“连通”契合当代应用发展环境,“共赢”契合时下国际发展趋势。会议共安排了高端论坛、学术交流、科学普及、展览展示等四大板块及相关活动,充分交流全球卫星导航领域最新技术成果,深入探讨卫星导航应用模式和产业发展,集智共商北斗卫星导航系统发展大计。 “两弹一星”功勋科学家、国家最高科学技术奖获得者、北斗卫星导航系统工程高级顾问、年会科学委员会主席孙家栋院士在致辞中说,卫星导航在地理测绘、工程建设、交通运输、精准农业、气象预报等各行业应用已完全超越了人类的想象力,深刻改变人类生产和生活方式。近几年,卫星导航与信息数据相结合,从移动互联网到大数据、云计算再到互联网,极大地降低了卫星导航数据获得的成本。如今,卫星导航正在和人工智能技术相结合,将在智能交通、智能医疗等各个领域促进产业信息融合,实现卫星导航价值的驱动创新。年会还邀请了中国、美国、俄罗斯、欧洲等国家和地区的卫星导航系统主管部门官员和国际知名专家学者,就卫星导航领域最新进展和发展趋势作大会特邀报告,与会代表围绕北斗/GNSS应用,卫星导航信号体制及兼容与互操作,精密定轨与精密定位,卫星导航增强与完好性监测,北斗/GNSS用户终端,政策法规、标准及知识产权等议题进行深入交流。年会同期举办第六届中国卫星导航技术与成果展,并增设第一至五届中国卫星导航学术年会回顾展,全面展示年会举办五年来在卫星导航理论、技术、工程、应用及人才培养等方面取得的丰硕成果。年会颁发了优秀论文奖、青年优秀论文奖和第六届“北斗杯”全国青少年科技创新大赛奖等奖项。本届年会由中国卫星导航系统管理办公室、科学技术部高新技术发展及产业化司、国防科工局系统工程一司、工业和信息化部电子信息司、交通运输部综合规划司、中国卫星导航定位应用管理中心、中国科学院重大科技任务局、中国工程院国际合作局、中国航天科技集团公司、中国航天科工集团公司、中国电子科技集团公司、陕西省工业和信息化厅共同支持,中国电子科技集团公司第二十研究所、西安电子科技大学等10家单位共同承办。国内外卫星导航系统主管部门官员、卫星导航领域专家学者、卫星导航应用企业代表等2000余人参加会议。

北斗导航论文答辩

北斗星卫星导航系统的作用和意义:一、意义1,国家安全建立自己的卫星导航系统,避免在将来的战争中受制于人,同时我们还有了同样的手段可以反制敌人。2,经济效益北斗星卫星导航系统每年能创造巨大的经济效益。一方面,我们省去原来用来引进国外系统的巨额资金。另一方面,我们自己的系统以低价服务国内用户,可以让更多行业部门应用上这种高科技设备,从而创造更多的社会价值和物质财富。还有一方面,我们可以将我们的系统,投放到国际市场,参与国际竞争,赚取外汇。3,技术储备科学技术的发展永不止步,我们发展了自己的卫星导航系统,我们就有了相应的技术储备,也就意味着我们国家的科学技术水平已经达到了世界先进水平,有了这些技术储备,我们就可以在将来的新的一轮科技大潮中抢占制高点。二、作用北斗卫星导航系统建设目标是建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的导航系统,提供短报文通信、精密授时、精确定位等服务。北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。扩展资料:北斗导航系统的主要功能和用途一、四大功能:1、短报文通信:北斗系统用户终端具有双向报文通信功能,用户可以一次传送40-60个汉字的短报文信息。2、精密授时:北斗系统具有精密授时功能,可向用户提供20ns-100ns时间同步精度。3、定位精度:水平精度100米(1σ),设立标校站之后为20米(类似差分状态)。4、系统容纳的最大用户数:540000户/小时。二、北斗导航系统的用途:1、个人位置服务当你进入不熟悉的地方时,你可以使用装有北斗卫星导航接收芯片的手机或车载卫星导航装置找到你要走的路线。2、气象应用北斗导航卫星气象应用的开展,可以促进中国天气分析和数值天气预报、气候变化监测和预测,也可以提高空间天气预警业务水平,提升中国气象防灾减灾的能力。3、道路交通管理卫星导航将有利于减缓交通阻塞,提升道路交通管理水平。通过在车辆上安装卫星导航接收机和数据发射机,车辆的位置信息就能在几秒钟内自动转发到中心站。4、铁路智能交通卫星导航将促进传统运输方式实现升级与转型。5、海运和水运北斗卫星导航系统将在任何天气条件下,为水上航行船舶提供导航定位和安全保障。同时,北斗卫星导航系统特有的短报文通信功能将支持各种新型服务的开发。6、航空运输通过将北斗卫星导航系统与其他系统的有效结合,将为航空运输提供更多的安全保障。7、应急救援北斗卫星导航系统除导航定位外,还具备短报文通信功能,通过卫星导航终端设备可及时报告所处位置和受灾情况,有效缩短救援搜寻时间,提高抢险救灾时效,大大减少人民生命财产损失。8、指导放牧2014年10月,北斗系统开始在青海省牧区试点建设北斗卫星放牧信息化指导系统,主要依靠牧区放牧智能指导系统管理平台、牧民专用北斗智能终端和牧场数据采集自动站,实现数据信息传输,并通过北斗地面站及北斗星群中转、中继处理,实现草场牧草、牛羊的动态监控参考资料来源:搜狗百科-北斗导航系统

北斗卫星导航系统突出的特点是具有定位、授时、短报文通信功能向外界发出求救信号、可以为全球船舶、飞机指明方向。

一、北斗卫星导航系统

北斗卫星导航系统(英文简称COMPASS,中文音译名称BeiDou)是中国正在实施的自主发展、独立运行的全球卫星导航系统。该系统主要服务国民经济建设,旨在为中国的交通运输、气象、石油、海洋、森林防火、灾害预报、通信、公安以及国家安全等诸多领域提供高效的导航定位服务。中国此前已成功发射四颗北斗导航试验卫星和两颗北斗导航卫星,将在系统组网和试验基础上,逐步扩展为全球卫星导航系统。另据了解,为推动公从更多参与和了解北斗导航卫星研制、发射、运行、应用等方面的最新进展及相关信息,北斗卫星导航系统官方网站()也于十五日零时正式开通。资料:北斗卫星导航系统构成北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括五颗静止轨道卫星和三十颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段由北斗用户终端以及与美国GPS、俄罗斯GLONASS、欧洲GALILEO等其他卫星导航系统兼容的终端组成。北斗卫星导航系统建设目标建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。目前全世界有4套卫星导航系统:中国北斗、美国GPS、俄罗斯“格洛纳斯”、欧洲“伽利略”v

北斗卫星导航系统(BeiDou(COMPASS)NavigationSatelliteSystem)是中国正在实施的自主发展、独立运行的全球卫星导航系统。2018年底,北斗三号基本系统正式开通运行,后续继续完成全球覆盖,覆盖面积扩大将带来整体民用行业需求将进一步扩大。2019年中国卫星导航系统委员会主席王兆耀称我国2020年计划发射2-4颗北斗三号卫星,至2020年底全面完成北斗三号系统建设,我国北斗导航产业链正逐步完善。

北斗卫星导航系统产业链介绍

北斗卫星导航系统由空间段、地面段和用户段三大部分组成,导航用户段又可以细分为上中下游产业,上游基础部件是产业自主可控的关键环节,基础部件作为自主可控最关键的部分,主要由基带芯片、射频芯片、板卡、天线等构成;中游主要包括终端集成和系统集成,是产业发展的重点;下游的解决方案和运维服务提供众多行业应用。

北斗卫星导航产业链中的中间段及地面段两个环节,是国家核心基础设施,主要由国家投资完成,而导航用户段产业链环节,主要通过市场运作来满足社会需求。

产业链下游环节效益增长迅速

根据《2020中国卫星导航与位置服务产业发展白皮书》显示,由于芯片和终端价格仍保持在较低水平,2019年我国北斗卫星导航系统产业市场营收趋于稳定,产业链上游和中游的产值占比分别为和,仍呈下降趋势,而下游运维服务环节成长迅速,在产业链各环节中效益涨幅最快,其产值占比已增长到。

专业应用和消费应用占比较大

北斗卫星导航系统正式开通5年来,已广泛应用于交通、海事、电力、民政、气象、渔业、测绘市政管网等十几个行业领域,其中,专业应用领域和消费应用领域占据绝大部分。在各分类应用业务中,车辆监控、信息服务、车辆导航、个人跟踪占据了85%的份额。而作为专业行业应用的授时、海用、测绘、军用类业务占据份额较少,只有8%。

行业参与主体众多,军工企业占据主导地位

目前,我国卫星导航与位置服务领域企事业单位数量保持在14000家左右,从业人员数量超过50万。截至2019年底,业内相关上市公司(含新三板)总数为46家,上市公司涉及卫星导航与位置服务的相关产值约占全国总产值的9%。

空间段由航天科技集团下属单位主抓,地面段的研制生产以中电科集团等为主导,用户段的产品及系统市场化特征较为明显,参与主体众多,包括军工集团下属公司、地方国企参军公司及较多民参军企业。

—— 以上数据来源于前瞻产业研究院《中国北斗导航行业重点企业发展分析及投资前景报告》

相关百科

热门百科

首页
发表服务