首页

> 论文发表知识库

首页 论文发表知识库 问题

毕业论文豆粕酶水解

发布时间:

毕业论文豆粕酶水解

大豆中抗营养因子是影响大豆蛋白源在饲料中使用的主要因素,要提高大豆蛋白源在饲料中的使用量,必须采取合适的措施进行处理,使大豆抗营养因子失活、钝化。世界范围内对降低或消除大豆蛋白抗营养因子问题的研究在不断完善,通常采用物理、化学和生物学等方法进行钝化处理。 生物学方法是通过添加适宜酶制剂或用微生物发酵处理以分解大豆中的抗营养因子。1 酶制剂处理法酶制剂有单一酶制剂和复合酶制剂。植酸酶是应用最广泛的单一酶制剂,能水解植酸和植酸盐,释放磷并使植酸抗营养作用消失;复合酶制剂如NSP 酶(非淀粉多糖酶),就能对多种ANF起作用,最大限度发挥饲料作用(赵林果等,2001)。但对酶制剂的耐受性、稳定性、影响酶制剂作用的外在因素等问题还有待进一步的研究与开发。另外,酶制剂处理时,添加酶的量要适量,过量会扰乱消化道的正常消化机能而产生不良作用。2 生物发酵处理微生物在发酵过程中可产生水解酶、发酵酶和呼吸酶,可以消除植物蛋白原料中的抗营养物质,有利于动物的消化吸收。另外,微生物在发酵过程中还将大部分动物不能直接利用的植酸等无机盐转化为细胞中的有机盐,不仅提高了利用率,还可降低饲料中总磷等的含量,减少饲料对养殖环境的污染。发酵法具有以下特点:能对多种抗营养因子产生去毒效果;对营养组分体外降解,大幅提高各营养成分的消化吸收率;发酵处理可明显提高大豆的适口性,有一定的诱食效果。采用独特的菌种和发酵工艺,微生物发酵过程中分泌的蛋白酶使大豆蛋白被分解成小分子蛋白和小肽分子。生物发酵过程中,微生物大量增殖,其结果不仅提高了发酵大豆蛋白基料的蛋白质水平,而且部分大豆蛋白质发酵时转化为菌体蛋白,这本身也改变了大豆蛋白质的营养品质(李绍章等,2004)。微生物发酵处理已有产品问世,但对产品的品质控制、发酵工艺参数控制以及规模化生产方面良莠不齐。陈名洪等(2008)以脱脂豆粕粉为原料,使用具有产蛋白酶能力的菌株CHD21为生产菌种进行发酵。以水解度作为指标,对菌株CHD2发酵降解豆粕的条件进行了优化。3 育种法通过植物育种途径,培育低抗营养因子或无抗营养因子的植物品种以及改善大豆蛋白品质,但这些大豆的产量相对较低,所以推广难度相对较大。另外一方面是通过动物育种,提高家畜对抗营养因子的耐受性;通过转基因培育能分泌消化抗营养因子的品系,达到消除抗营养因子对畜禽的抗营养作用。但存在产量低、抗病害能力降低、周期长、投资大等问题。 物理处理的方法主要包括热处理方法和机械加工方法。1 热处理方法自1917年,Osborne和Mendel报道蒸煮大豆可以改善小鼠的生长性能以来,人们对大豆营养因子的热稳定性进行了大量研究,结果表明:胰蛋白酶抑制因子、糜蛋白酶抑制因子、凝集素、脲酶、致甲状腺肿因子及抗维生素因子具有对热敏感的特性,而皂甙、单宁、异黄酮、寡糖、致过敏反应蛋白及植酸等对热较稳定(李德发,2003)。所以热处理技术对蛋白酶抑制因子、凝集素、脲酶等热敏性抗营养因子有很好的钝化效果,也是目前研究最为深入、应用最为广泛的钝化技术。热处理主要分为湿热法和干热法(郑爱娟等,2002)。进行热处理时,必须保证热处理的强度适宜。加热不足则抗营养因子破坏不够;加热过度则氨基酸利用率下降,会降低蛋白质的生物学效率。实际生产中多以测定脲酶活性判断胰蛋白因子的钝化程度,反应加热不足;采用蛋白溶解度作为判断大豆或豆粕加热过度的指标。2 机械加工处理机械加工包括粉碎、去壳、脱种皮等,很多抗营养因子主要存在于作物种子表皮层,通过机械加工处理使之分离,即可大为减少抗营养作用。此方法简单有效,但废弃种皮的处理是一个大问题。 化学处理的原理为化学物质与抗营养因子分子中的二硫键结合,使其分子结构改变而失去活性。使用的化学物质包括硫酸钠、硫酸铜、硫酸亚铁和其它一些硫酸盐。多年来,人们在用化学方法钝化抗营养因子方面取得了较大的进展。张建云等(1999)研究表明,5%的尿素加20%水处理30 d的效果最好,胰蛋白酶抑制剂活性降低,饲料中加入适量蛋氨酸或胆碱作为甲基供体,可使单宁甲基化,促使其排出体外。化学方法对不同的抗营养因子均有一定的效果,可节省设备与资源,但最大的障碍是化学物质残留和环境污染的问题,因此生产中不应大量使用。总结以上钝化抗营养因子的方法,从钝化的有效性,实用性出发,热处理是应用最广泛的方法,但在工艺上仍需继续精进,且对于热稳定性高或热加工不足以有效地灭活的抗营养因子,人们必须要不断地研究新的方法加以消除。大豆优良品种的选育是消除抗营养因子的根本,培育专门化品种解决大豆及豆制品适口性和品质问题,然而要达到理想的结果,尚需很长时间的努力。至于化学钝化,与生产应用尚有距离,还应特别关注化学钝化试剂的安全性问题。由于豆粕蛋白来源量大,相对于鱼粉来讲价格较低,是饲料配比中主要的蛋白来源,因此能够利用生物酶体例如微生物发酵产生的酶类来大量去除大豆抗营养因子,增加豆制品的适口性及有机体对豆制品的消化率,降低抗营养因子,亦能够为大豆及其制品的生产节省大量费用的比较切实可行的办法就是将豆粕进行发酵。

食品科学与工程可以写食品生产工艺、卫生安全等方面。开始也不会写,还是寝室哥们给的文方网,帮写的《山药多糖的提取、分离、功能性及其功能食品工艺研究》,很快就通过了萌发对粮食主要营养成份的影响及其断奶食品的工艺研究利用响应面法优化鲜鸡肉挤压食品工艺条件的研究“麻辣菽肉”大豆组织化食品的工艺研究及质量控制复合马铃薯粉油炸及膨化休闲食品工艺研究挤压五谷杂粮营养早餐谷物食品的研究山药功能性食品工艺与储藏稳定性研究非天然脂肪酸链氨基酸的磷酰化合成及性质研究桂花糯米糖藕食品的工艺研究高职高专生物化学教师专业素养研究鱼肉仿真工程食品生产工艺及设备研究时产10t宠物食品厂设计油菜籽工艺水综合利用与处理的研究组织改良技术对平菇方便休闲食品风味及品质的影响微波在绿色食品干燥中的工艺及设备研究改革开放以来福建高等职业教育的改革与发展研究洛阳市旅游食品发展存在问题及其对策分析HACCP在食品安全监管中的应用研究食品超高压保鲜技术理论及实验研究猕猴桃真空加工技术研究高水分蒸煮挤压面类食品及在麻辣食品中的应用食品辐照国内外法规标准现状分析及对策研究变性淀粉与食品胶体协同作用的研究牛肉微波方便食品、速冻方便食品的研究与开发新型紫马铃薯功能性食品工艺研究荞麦早餐食品的工艺优化及质构特性的研究咸鸭蛋清的超滤脱盐及脱盐蛋清功能性质的研究湖南省食品工业产业集群发展研究内蒙古杂粮食品营销策略问题的研究高等教育科类结构与劳动力市场关系的研究——以福建省为例昌乐食品厂经营发展战略研究啤酒小麦品种筛选、制麦工艺优化与啤酒糟的综合利用新疆民族式快餐与西式快餐运营管理对比研究豆制品辐照保鲜技术研究猕猴桃果汁润肠通便和排铅功能研究姬菇与草菇加工产品的研制及其质量控制

发酵豆粕的实质是“用发酵技术处理大宗原料----豆粕”,受规模和原料成本所限,小规模,不稳定的生产方式是不合理的,必须以工业化水平进行生产。工业的技术前提,是“检测-分析-反馈体系”的建立和健全。目前发酵豆粕工艺对于检测体系是缺失的。本实验在实验中,首先建立了完整的发酵豆粕的“检测-分析-反馈体系”,然后进行工艺开发,并对所建立的“检测-分析-反馈体系”进行了合理性证明。首先明确液体深层发酵工艺过程参数选取的三个原则:1,精度。2,即时性。3,多重平行。为建立固体发酵工艺的“检测-分析-反馈体系”,进行生理参数的选取和检测,在借鉴液体深层发酵工艺以建立检测体系的过程中,最大的障碍就是物料的物理性质。由于固体发酵物料不是均匀的,这就要求取样不能任意选取,而应该在最能代表大部分或绝大部分物料的点,选取不止一个的点进行检测,然后去掉离群值,平均其余的检测点以尽可能得到散布较小的,有连贯性的数据。按照发酵行业检测的习惯,所有生理参数检测都是在较稀的水溶液中进行。工业化检测的经验显示,在水溶液中进行的定量检测,比固体条件下的检测要精确地多。依照这个惯例,固体发酵工艺过程参数也应该选用与液体深层发酵类似的过程生理参数。按照发酵参数选取的原则,参照液体发酵,已经初步确定固体发酵工艺的生理参数,但是,要建立完整的数据处理方法,也即工业化前提的“检测-分析-反馈体系”,必须要证明曲线的合理性,解决曲线的真实度和连续性,曲线才能认为是可以分析的。本文在理论上论证参数的合理性和方法的正确性的可能性。并且,用实验验证检测方法,进行实证。另外,本文明确提出了发酵风险成本的概念。事实上,发酵风险成本概念的提出,以及本文在全成本核算中,提出发酵工艺的相对合理性指标,就可以建立在成本上量化的评价被开发工艺的合理性和先进性的评价体系,直接在数字上比较工艺优劣,回避开工艺选择过程因为标准模糊而进入两难的境地。本实验在建立的“检测-分析-反馈体系”上,应用对发酵风险成本的计算和对发酵工艺相对合理性指标的比较上,在尊重“发酵豆粕的本质是豆粕原料的微生物处理”的观念下,得到了具有工业级意义的,可以放大的,稳定的成本合理的发酵豆粕工艺。 [1] 赵艳,章亭洲. 发酵豆粕替代75%秘鲁鱼粉对仔猪生长性能的影响[J]. 饲料与畜牧. 2010(06)[2] 严鹤松,夏俊松,梁运祥. 黑曲霉发酵豆粕的研究[J]. 饲料工业. 2009(13)[3] 晓陆. 2009年5月全国饲料生产形势分析[J]. 饲料广角. 2009(12)[4] 曹允. 2007年美国饲料与畜牧市场概况(1)[J]. 饲料广角. 2009(12)[5] 李建. 发酵豆粕研究进展[J]. 粮食与饲料工业. 2009(06)[6] 陈济琛,陈名洪,蔡海松,林新坚. 芽孢菌固态发酵降解豆粕工艺研究[J]. 大豆科学. 2008(05)[7] 蒋国华. 粗饲料降解剂发酵豆粕喂猪技术[J]. 农村新技术. 2008(16)[8] 钟耀华,王晓利,汪天虹. 丝状真菌高效表达异源蛋白研究进展[J]. 生物工程学报. 2008(04)[9] 苏移山,王圣钧,王鹏,祁庆生. N-糖酰胺酶F在大肠杆菌中的高效表达及其脱糖基化作用研究[J]. 生物工程学报. 2005(06)[10] 邵伟,熊泽,何晓文. 发酵大豆多肽及其功能研究[J]. 中国酿造. 2005(06)

酶催化水解毕业论文

哈哈, 我写完了。 很容易的,抄你实习日志北。

A、实验一中,底物的量是一定的,如果继续增加酶浓度,相对反应速率应先增加后基本不变,A错误;B、实验二中,增加底物浓度,其化学反应速率不变,因为酶的数量不足,故增加酶浓度,速率增加,B正确;C、实验二中,底物浓度达20%后,反应速率不再增加,斐林试剂不能检验其速率,C错误;D、根据题干信息“实验条件均设置为最适条件”可知:实验温度为最适温度,此时酶的活性最强,若再提高或降低反应温度条件,相对反应速率均会降低,D错误.故选:B.

(1)甲模型中的a麦芽糖酶可与b麦芽糖特异性结合,形成酶-底物复合物,从而实现酶对相应底物的催化水解,即每一种酶只能催化一种或一类化学反应,体现了酶的催化具有专一性;麦芽糖是由两分子葡萄糖形成的二糖,所以水解后形成的c和d是同一种物质(均为葡萄糖);酶通过降低化学反应的活化能实现其催化作用. (2)乙图中,g点时麦芽糖酶的催化速率最快,f~g段随着麦芽糖量(浓度)的升高,麦芽糖酶的催化速率不变,说明麦芽糖量(浓度)不是限制麦芽糖酶的催化速率的因素,限制f~g段上升的因素是酶量(酶的浓度);乙图表示在温度和PH等最适条件下,麦芽糖酶的催化速率与麦芽糖量的关系图,如果温度升高5℃,酶的活性会降低,催化速率将变小(低、慢). (3)乙图表示在温度和PH等最适条件下,麦芽糖酶的催化速率与麦芽糖量的关系图,若其他条件不变,将酶的量增加一倍,酶促反应速率会因酶的量的增加而加快,其催化速率随麦芽糖量增加的曲线为右图中虚线所表示的曲线: . (4)图丙中若X表示一定范围的温度,其中A点对应的温度低于最适温度(B)、其活性因温度低受到抑制,而C点对应的温度高于最适温度(B)、其活性因温度高导致空间结构被破坏从而使酶的活性降低,所以即使A与C点的酶活性相同,但这两个点所对应的温度下酶的状态是不同的. 故答案为: (1)一种或一类 是 降低化学反应的活化能 (2)酶量(酶的浓度) 小(低、慢) (3) (4)不同

发酵豆粕论文参考文献

发酵豆粕又名生物肽,生物豆粕,生物活性小肽,大豆肽,目前已成为鱼粉最好的替代品。

豆粕是畜牧养殖业中使用最为广泛的一种优质植物性蛋白源。其粗蛋白含量大约在45%左右,并且富含其他营养物质,如左右的脂肪,左右的碳水化合物,多种矿物质、维生素及动物体内必须的氨基酸,尤其富含其它植物性饲料易缺的赖氨酸,其含量高达左右。但是豆粕中存在胰蛋白酶抑制因子、大豆抗原等多种抗营养因子,由于它们的存在,不仅降低了动物对豆粕中主要营养物质的利用,而且在一定程度上影响动物的健康。因此,通过各种方法的处理以去除豆粕中的抗营养因子,提高豆粕的饲用价值和营养价值,成为目前人们关注的热点。物理化学处理方法对豆粕中抗营养因子有较好的去除作用虽,但传统的理化处理方法操作较为复杂成本较高且对豆粕的营养成分造成一定的破坏。微生物发酵法比理化法综合效果好。不仅可以降低抗营养因子的含量还可以提高豆粕的营养价值。微生物发酵法是豆粕营养价值改良的有效手段,微生物分泌丰富的酶不仅能降解豆粕中几种抗营养因子,而且也在发酵过程中提高了豆粕中活性小肽、氨基酸、有机酸等小分子营养物质的含量。此外,在微生物发酵豆粕过程中,有益的微生物菌种的发酵,不仅能有效的降解豆粕中抗营养因子,而且还在发酵过程中产生更 多的益生菌,进而提高豆粕饲料的饲用产品和饲用安全性。因此,豆粕发酵是提高其饲用安全性和有效性的需要。

酶法提取对绿豆淀粉的毕业论文

药学毕业论文开题报告篇3 题 目 名 称: 番泻叶对小鼠尿量的影响 研究现状: 一、普鲁兰酶 普鲁兰酶(Pullulanase,. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。 在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( , Oligo-l,6-glucosidase ),普鲁兰酶( ),异淀粉酶( , Isoamylose ),支链淀粉一6-葡聚糖酶( ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。 在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。 二、普鲁兰酶的研究现状 1.产普鲁兰酶的微生物 普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。 蜡状芽抱杆菌覃状变种(Bacillus cereus ) 由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。 嗜酸性分解普鲁兰多糖芽抱杆菌() 上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热 (60℃),耐酸()。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于以上不长,在以普鲁兰糖为碳源的培养基(( ~)上生长良好。 枯草芽饱杆菌(Bacillus subtilis) 1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为~,但在时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。 耐热产硫梭菌(Clostridum Themosulfurogenes) 1987年.德国的等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在~有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域. Bacillusnaganoensis,Bacillus deramificans, 上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。 产普鲁兰酶的高温菌菌种 自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, , Thermotoga maritime的最适温度和pH分别是90℃, , Thermurs caldopHilus的最适温度和pH分别是75℃,, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, 2.普鲁兰酶的分子结构 至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~,α~,α~,α~,α~,α~糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。 3.普鲁兰酶的应用 普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用: 单独使用普鲁兰酶,使支链淀粉变为直链淀粉 直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。 普鲁兰酶与β~淀粉酶配合使用生产麦芽搪 饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。 试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量(对碎米计),β~淀粉酶活性2,000单位/克以上,;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加,麦芽糖含量平均增加了,糊精含量平均减少了高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。 用于啤酒外加酶法糖化 啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~和α~糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。 总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。 研究目的和意义: 酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。 其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。 研究内容(内容、结构框架以及重点、难点): 一.普鲁兰酶产生菌的筛选 (1)样品的采集; (2)菌种初筛; (3)菌种复筛; (4)菌种保藏方法; (5)酶活力测定方法的建立。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响; (2)初始PH对发酵产酶的影响; (3)接种量对发酵产酶的影响; (4)发酵温度对产酶的影响; (5)金属离子对产酶的影响。 重点或关键技术: (1)纯菌株的分离; (2)菌株的鉴定方法的选择。 研究方法、手段: 一.普鲁兰酶产生菌的筛选 (1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样 (2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。 (3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。 (4)菌种保藏方法: 采用4℃低温保藏。 (5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。) (2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。) (3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%, 10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。) (4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。 (5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。) 研究进度 :完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。 :完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。 :完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。 2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。 文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等) 自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和,具有一定的耐热和耐酸特性。 陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达,最佳发酵条件下产量可达 .酶的最适作用温度为600C,最适pH值,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。 技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。 主要参考文献: [1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988 [2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998 [3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988 [4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese [5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process [6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus naganoensis sp. J Syst Bacteriol. I 990 Apr; 40(2):123-125 [7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17 [8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43 [9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6) [10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43 猜你喜欢: 1. 关于医学开题报告范文 2. 药学论文开题报告 3. 生物制药毕业论文开题报告范文 4. 药理学开题报告范文 5. 药品市场营销毕业论文开题报告 6. 药学论文题目大全

简介绿豆又叫青小豆,是我国人民的传统豆类食物。绿豆蛋白质的含量几乎是粳米的3倍,多种维生素、钙、磷、铁等无机盐都比粳米多。因此,它不但具有良好的食用价值,还具有非常好的药用价值,有“济世之食谷”之说。在炎炎夏日,绿豆汤更是老百姓最喜欢的消暑饮料。 功效:绿豆性味甘凉,有清热解毒之功。夏天在高温环境工作的人出汗多,水液损失很大,体内的电解质平衡遭到破坏,用绿豆煮汤来补充是最理想的方法,能够清暑益气、止渴利尿,不仅能补充水分,而且还能及时补充无机盐,对维持水液电解质平衡有着重要意义。绿豆还有解毒作用。如遇有机磷农药中毒、铅中毒、酒精中毒(醉酒)或吃错药等情况,在医院抢救前都可以先灌下一碗绿豆汤进行紧急处理,经常在有毒环境下工作或接触有毒物质的人,应经常食用绿豆来解毒保健。经常食用绿豆可以补充营养,增强体力。适合人群:老少皆宜,四季均可。适用量:每次40克。温馨提示绿豆不宜煮得过烂,以免使有机酸和维生素遭到破坏,降低清热解毒功效。绿豆性凉,脾胃虚弱的人不宜多吃。服药特别是服温补药时不要吃绿豆食品,以免降低药效。未煮烂的绿豆腥味强烈,食后易恶心、呕吐。盛夏保健佳品绿豆 绿豆,又名青小豆,因其颜色青绿而得名,在我国已有两千余年的栽培史。由于它营养丰富,用途较多,李时珍称其为“菜中佳品”。绿豆是夏令饮食中的上品,更高的价值是它的药用。盛夏酷暑,人们喝些绿豆粥,甘凉可口,防暑消热。小孩因天热起痱子,用绿豆和鲜荷服用,效果更好。若用绿豆、赤小豆、黑豆煎汤,既可治疗暑天小儿消化不良,又可治疗小儿皮肤病及麻疹。常食绿豆,对高血压、动脉硬化、糖尿病、肾炎有较好的治疗辅助作用。此外绿豆还可以作为外用药,嚼烂后外敷治疗疮疖和皮肤湿疹。如果得了痤疮,可以把绿豆研成细末,煮成糊状,在就寝前洗净患部,涂抹在患处。“绿豆衣”能清热解毒,还有消肿、散翳明目等作用。绿豆有止痒作用,绿豆是专门治疗热痒的。由于热痒是因体内发热引起的,而绿豆又有解热的功效,因而适合治疗热痒。只须将绿豆加水,泡煮到微发烂,饮用那绿豆水就行了。此外,一些清凉的蔬菜,比如薄荷,对于风热所导致的皮肤瘙痒则很有疗效。薄荷可用于外敷或泡水饮用。绿豆 ,又名青小豆 ,为豆科草本植物绿豆(Phaseolus radiatus L.)的成熟种子 ,在我国已有两千多年的栽培史 ,作为粮食作物在各地都有种植。因其营养丰富 ,可作豆粥、豆饭、豆酒、*食、麨食 ,或作饵顿糕 ,或发芽作菜 ,故有“食中佳品 ,济世长谷”之称。自《开宝本草》记载 :“绿豆 ,甘 ,寒 ,无毒。入心、胃经。主丹毒烦热 ,风疹 ,热气奔豚 ,生研绞汁服 ,亦煮食 ,消肿下气 ,压热解毒。”以后 ,历代本草对绿豆的药用功效多有阐发。《本草纲目》云 :“绿豆 ,消肿治痘之功虽同于赤豆 ,而压热解毒之力过之。且益气、厚肠胃、通经脉 ,无久服枯人之忌。外科治痈疽 ,有内托护心散 ,极言其效。”并可“解金石、砒霜、草木一切诸毒”。《本草求真》曰 :“绿豆味甘性寒 ,据书备极称善 ,有言能厚肠胃、润皮肤、和五脏及资脾胃 ,按此虽用参、芪、归、术 ,不是过也。第所言能厚、能润、能和、能资者 ,缘因毒邪内炽 ,凡脏腑经络皮肤脾胃 ,无一不受毒扰 ,服此性善解毒 ,故凡一切无不用此奏效。”纵观各家本草 ,对绿豆清热祛暑 ,解毒 ,利水等药用功效都极为推崇。近几十年来 ,人们用现代科学技术对绿豆进行了多方面的研究 ,对其的药理研究概述如下:药理作用1 .抗菌抑菌作用绿豆具有抗菌抑菌作用。①绿豆中的某些成分直接有抑菌作用。通过抑菌试验证实 ,绿豆衣提取液对葡萄球菌有抑制作用。根据有关研究 ,绿豆所含的单宁能凝固微生物原生质 ,可产生抗菌活性。绿豆中的黄酮类化合物、植物甾醇等生物活性物质可能也有一定程度的抑菌抗病毒作用。②通过提高免疫功能间接发挥抗菌作用。绿豆所含有的众多生物活性物质如香豆素、生物碱、植物甾醇、皂甙等可以增强机体免疫功能 ,增加吞噬细胞的数量或吞噬功能。有实验用补体致敏酵母血凝法检测绿豆对正常及环磷酰胺所致免疫功能低下小鼠的红细胞免疫粘附功能的影响 ,结果表明绿豆可以抑制环磷酰胺诱发的小鼠红细胞功能低下的作用。2 .降血脂作用有人用 70 %的绿豆粉或发芽绿豆粉混于饲料中喂兔 ,结果发现对实验性高脂血症兔血脂 (总胆固醇及 β-脂蛋白 )的升高有预防及治疗作用 ,进而明显减轻冠状动脉病变;有人将绿豆水醇提取物拌入饲料喂养动物 ,连续 7天 ,证实对正常小鼠 (生药1 0 0g/kg·d- 1 )和正常大鼠 (生药 1 6g/kg·d- 1 )血清胆固醇有明显降低作用。进一步研究发现 ,绿豆中含有的植物甾醇结构与胆固醇相似 ,植物甾醇与胆固醇竞争酯化酶 ,使之不能酯化而减少肠道对胆固醇的吸收、并可通过促进胆固醇异化和 /或在肝脏内阻止胆固醇的生物合成等途径使血清胆固醇含量降低。另外 ,大豆球蛋白被实验证实有降低血清胆固醇的作用 ,绿豆的球蛋白是否有同样的作用值得探讨。3 .抗肿瘤作用有实验发现 ,绿豆对吗啡 +亚硝酸钠诱发小鼠肺癌与肝癌有一定的预防作用。另有实验证实 ,从绿豆中提取的苯丙氨酸氨解酶对小鼠白血病L 1 2 1 0细胞和人白血病K 56 2细胞有明显的抑制作用 ,并随酶剂量增加和作用时间延长 ,抑制效果明显增加 ,同样作用48h, 的酶其抑制率分别为52 %和 % ,当酶增加为,可分别达 %和 ,而以 0 %、 %、 %、 %、 %、 %的酶作用于癌细胞 72h,其抑制率分别为、 %、 %、 %、、。4.解毒作用绿豆中含有丰富的蛋白质 ,生绿豆水浸磨成的生绿豆浆蛋白含量颇高 ,内服可保护胃肠粘膜。绿豆蛋白、鞣质和黄酮类化合物可与有机磷农药、汞、砷、铅化合物结合形成沉淀物 ,使之减少或失去毒性 ,并不易被胃肠道吸收。绿豆中的生物活性物质不少具有抗氧化作用 ,在治疗有机磷农药中毒时是否通过抗氧化作用从而减轻了有机磷农药的细胞毒性和遗传毒性有待于进一步的探讨。5.其他高温出汗可使机体因丢失大量的矿物质和维生素而导致内环境紊乱 ,绿豆含有丰富无机盐、维生素。在高温环境中以绿豆汤为饮料 ,可以及时补充丢失的营养物质 ,以达到清热解暑的治疗效果。绿豆磷脂中的磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰肌醇、磷脂酰甘油、磷脂酰丝氨酸和磷脂酸有增进食欲作用。绿豆淀粉中含有相当数量的低聚糖 (戊聚糖、半乳聚糖等 )。这些低聚糖因人体胃肠道没有相应的水解酶系统而很难被消化吸收 ,所以绿豆提供的能量值比其他谷物低 ,对于肥胖者和糖尿病患者有辅助治疗的作用。而且低聚糖是人体肠道内有益菌--双歧杆菌的增殖因子 ,经常食用绿豆可改善肠道菌群 ,减少有害物质吸收 ,预防某些癌症。绿豆还是提取植物性SOD的良好原料。由绿豆为原料制备的SOD口服液 ,其中所含的SOD经过化学修饰 ,可不被胃酸和胃蛋白酶破坏 ,延长半衰期 ,适合于人体口服吸收。该口服液除了含有SOD以外 ,还富含氨基酸、β -胡萝卜素和微量元素等营养成分 ,具有很好的抗衰老功能。另外 ,还有实验证明 ,绿豆中的鞣质既有抗菌活性 ,又有局部止血和促进创面修复的作用 ,因而对各种烧伤有一定的治疗作用。李敏“绿豆化学成分及药理作用的研究概况”《上海中医药杂志》 47-49绿豆的化学成分有蛋白质、脂肪、碳水化合物,维生素B1、B2、胡萝卜素、菸碱酸、叶酸,矿物质钙、磷、铁。所含蛋白质主要为球蛋白,其组成中富含赖氨酸、亮氨酸、苏氨酸,但蛋氨酸、色氨酸、酪氨酸比较少。如与小米共煮粥,则可提高营养价值。绿豆皮中含有21种无机元素,磷含量最高。另有牡荆素,β-谷甾醇。 每100克绿豆中含蛋白质克,脂肪克,碳水化合物59克,热值332千卡。绿豆的药理作用为降血脂、降胆固醇、抗过敏、抗菌、抗肿瘤、增强食欲、保肝护肾。绿豆粉有显著降脂作用,绿豆中含有一种球蛋白和多糖,能促进动物体内胆固醇在肝脏分解成胆酸,加速胆汁中胆盐分泌和降低小肠对胆固醇的吸收。绿豆的有效成分具有抗过敏作用,可辅助治疗荨麻疹等过敏反应。绿豆对葡萄球菌有抑制作用。绿豆中所含蛋白质、磷脂均有兴奋神经,增进食欲的功能。绿豆含丰富胰蛋白酉每抑制剂,可以保护肝脏,减少蛋白分解,减少氮质血症,因而保护肾脏。绿豆在发芽过程中,由於酉每的作用,促使植酸降解,有更多的磷、锌等矿物质被释出,能被人体充分利用。绿豆在发芽时,所含的胡萝卜素会增加二至三倍,B2增加二至四倍,菸碱酸增加二倍以上,叶酸成倍增加,B12增加十倍。美国人很欣赏绿豆芽,认为它是肥胖人的最佳食品之一,易饱、不胖。食疗【食疗法】绿豆,煎汤,十五至三十克;研末或生研绞汁。绿豆清凉解毒,热性体质及易患疮毒者尤为适宜。绿豆性寒,脾胃虚弱者不宜多吃。慢性胃肠炎、慢性肝炎、甲状腺机能低下者,忌多食绿豆。【来源】豆科菜豆属植物绿豆Phaseolus radiatus L.,以种子入药。【性味归经】甘,寒。入心、胃经。【功能主治】清热解毒,消暑。用于暑热烦渴,疮毒痈肿等症。可解附子、巴豆毒。【用法用量】 ~1两,大剂量可用4两,煎服。【备注】(1)解附子、巴豆毒,可用绿豆四两、生甘草二两,煎汁候冷,频频饮服。【摘录】《全国中草药汇编》绿豆在铁锅中煮熟后为何会变黑绿豆在铁锅中著了以后会变黑;苹果梨子用铁刀切了以后,表面也会变黑。这是因为绿豆、苹果、梨子与多种水果的细胞里,都含有鞣酸,鞣酸能和铁反应,生成黑色的鞣酸铁。绿豆在铁锅里煮,会生成一些黑色的鞣酸铁,所以会变黑。有时,梨子、柿子即使没有用铁刀去切,皮上也会有一些黑色的斑点,这是因为鞣酸分子中含有许多酚烃基,对光很敏感,极易被空气中的氧气氧化,变成黑色的氧化物。

我认为这个的话还是非常的简单的,提取淀粉的话只要咱们用碘液就能够检测出来。

应该把这个绿豆磨碎了以后,加水然后沉淀了以后,过滤得到的就应该是绿豆淀粉

酶学水平筛药的论文题目

关键不晓得你在什么方向做专题。不好说的。楼上属于生药或者药分。柴胡中有效成分的分析,属于天然药化柴胡的GAP研究,也是生药柴胡提取液对大鼠心肌梗塞模型的研究,属于药理柴胡注射液的药代动力学研究柴胡注射液和片剂生物利用度的研究 生物药剂柴胡酊剂的制备 药剂柴胡中药效成分柴胡酚的合成 药化浅论药监部门对柴胡等常用药材的规范化管理 药事管理反正一个东西就看你看什么方向了。

柴胡的质量控制与分析

药学毕业论文开题报告篇3 题 目 名 称: 番泻叶对小鼠尿量的影响 研究现状: 一、普鲁兰酶 普鲁兰酶(Pullulanase,. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。 在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( , Oligo-l,6-glucosidase ),普鲁兰酶( ),异淀粉酶( , Isoamylose ),支链淀粉一6-葡聚糖酶( ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。 在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。 二、普鲁兰酶的研究现状 1.产普鲁兰酶的微生物 普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。 蜡状芽抱杆菌覃状变种(Bacillus cereus ) 由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。 嗜酸性分解普鲁兰多糖芽抱杆菌() 上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热 (60℃),耐酸()。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于以上不长,在以普鲁兰糖为碳源的培养基(( ~)上生长良好。 枯草芽饱杆菌(Bacillus subtilis) 1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为~,但在时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。 耐热产硫梭菌(Clostridum Themosulfurogenes) 1987年.德国的等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在~有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域. Bacillusnaganoensis,Bacillus deramificans, 上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。 产普鲁兰酶的高温菌菌种 自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, , Thermotoga maritime的最适温度和pH分别是90℃, , Thermurs caldopHilus的最适温度和pH分别是75℃,, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, 2.普鲁兰酶的分子结构 至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~,α~,α~,α~,α~,α~糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。 3.普鲁兰酶的应用 普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用: 单独使用普鲁兰酶,使支链淀粉变为直链淀粉 直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。 普鲁兰酶与β~淀粉酶配合使用生产麦芽搪 饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。 试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量(对碎米计),β~淀粉酶活性2,000单位/克以上,;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加,麦芽糖含量平均增加了,糊精含量平均减少了高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。 用于啤酒外加酶法糖化 啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~和α~糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。 总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。 研究目的和意义: 酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。 其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。 研究内容(内容、结构框架以及重点、难点): 一.普鲁兰酶产生菌的筛选 (1)样品的采集; (2)菌种初筛; (3)菌种复筛; (4)菌种保藏方法; (5)酶活力测定方法的建立。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响; (2)初始PH对发酵产酶的影响; (3)接种量对发酵产酶的影响; (4)发酵温度对产酶的影响; (5)金属离子对产酶的影响。 重点或关键技术: (1)纯菌株的分离; (2)菌株的鉴定方法的选择。 研究方法、手段: 一.普鲁兰酶产生菌的筛选 (1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样 (2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。 (3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。 (4)菌种保藏方法: 采用4℃低温保藏。 (5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。) (2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。) (3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%, 10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。) (4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。 (5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。) 研究进度 :完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。 :完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。 :完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。 2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。 文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等) 自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和,具有一定的耐热和耐酸特性。 陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达,最佳发酵条件下产量可达 .酶的最适作用温度为600C,最适pH值,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。 技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。 主要参考文献: [1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988 [2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998 [3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988 [4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese [5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process [6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus naganoensis sp. J Syst Bacteriol. I 990 Apr; 40(2):123-125 [7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17 [8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43 [9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6) [10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43 猜你喜欢: 1. 关于医学开题报告范文 2. 药学论文开题报告 3. 生物制药毕业论文开题报告范文 4. 药理学开题报告范文 5. 药品市场营销毕业论文开题报告 6. 药学论文题目大全

相关百科

热门百科

首页
发表服务