首页

> 论文发表知识库

首页 论文发表知识库 问题

齿轮的噪声测量与研究论文

发布时间:

齿轮的噪声测量与研究论文

齿轮噪音形成因素:1. 材质。使用的材料,表面硬度,一般材质越软,噪音越小。且塑胶齿轮比金属齿轮噪音更小。2. 齿轮精度。通过减小齿距误差, 径向跳动及齿线方向误差,可以降低噪音。3. 提高齿轮重合系数提高端面重合度可通过减小啮合角或者增加齿高来实现。纵向重合度高, 则重合度也 越高。 所以, 斜齿齿轮比正齿轮, 弧齿伞轮比直齿伞轮的噪音要低。采用斜齿轮,适当的齿形修整、齿顶修缘也对降低噪音有效。4. 装配:调整轴承的间隙,提高装配精度。装配是否有问题,如螺丝有否松动等5. 齿轮磨损,间隙过大/齿轮表面不平/润滑不好。通常都是润滑不好,缺少润滑油,适当的润滑,粘度高的润滑油对降低噪音比较有利。6. 齿轮间隙。齿顶具有脉动性时, 容易产生碰撞, 减小齿隙可得到良好的效果;一般较为均匀负荷的情况下, 齿隙较大对降低噪音有利。间隙太大,一般间隙太大都是磨损造成,这个可以看的出,如果齿磨的很尖了就说明磨损超标7. 高齿面光洁度8. 齿轮磨削, 磨齿及珩齿等可以达到理想的齿面粗糙度。 另外, 适当的磨合运转也可以达到降低噪音的目的。9. 正确的齿接触10. 对齿面施行鼓型加工或削端加工, 以防止轮齿的片面接触, 降低噪音。11. 消除齿面及齿顶的碰伤及打痕。12. 体积小的齿轮,使用小模数及小外径的齿轮。13. 高刚性,增加齿宽。 高刚性形状的齿轮对降低噪音有利,增强轴及齿轮箱的刚性。14. 振动衰减率高的材质15. 轻负荷, 低速旋转时, 塑料齿轮会有很好的效果。 但是, 要注意温度的上升。16. 铸铁齿轮比钢齿轮对降低噪音有效。17. 低速旋转及低负荷,齿轮的转速及负荷越低, 噪音也随之降低。重要的是找可靠的生产厂家,做工细。噪音就不会大。星火生产的齿轮最高精度可达JGMA0级,最低噪音可达38db,星火齿轮可以提供专业的噪音解决方案

为从设计角度出发降低齿轮传动系统的噪声,我们就应首先来分析一下齿轮系统噪声的种类和发生机理。在齿轮系统中,根据机理的不同,可将噪声分成加速度噪声和自鸣噪声两种。一方面,在齿轮轮齿啮合时,由于冲击而使齿轮产生很大的加速度并会引起周围介质扰动,由这种扰动产生的声辐射称为齿轮的加速度噪声。另一方面,在齿轮动态啮合力作用下,系统的各零部件会产生振动,这些振动所产生的声辐射称为自鸣噪声。对于开式齿轮传动,加速度噪声由轮齿冲击处直接辐射出来,自鸣噪声则由轮体、传动轴等处辐射出来。对于闭式齿轮传动,加速度噪声先辐射到齿轮箱内的空气和润滑油中,再通过齿轮箱辐射出来。自鸣噪声则由齿轮体的振动通过传动轴引起支座振动,从而通过齿轮箱箱壁的振动而辐射出来。一般说来,自鸣噪声是闭式齿轮传动的主要声源。因此,齿轮系统的噪声强度不仅与轮齿啮合的动态激励力有关,而且还与轮体、传动轴.轴承及箱体等的结构形式、动态特性以及动态啮合力在它们之间的传递特性有关。 齿轮设计方面。参数选择不当,重合度过小,齿廓修形不当或没有修形,齿轮箱结构不合理等。齿轮加工方面 基节误差和齿形误差过大,齿侧间隙过大,表面粗糙度过大等。齿轮系及齿轮箱方面。装配偏心,接触精度低,轴的平行度差,轴,轴承、支承的刚度不足,轴承的回转精度不高及间隙不当等。其他方面输入扭矩。负载扭矩的波动,轴系的扭振,电动机及其它传动副的平衡情况等。

我的车在70和90之间齿轮音有点大算是毛病吗

齿轮箱是机械传动中广泛应用的重要部件,一对齿轮啮合时,由于不可避免地存在着齿距、齿形等误差,在运转过程中会产生啮合冲击而发生与齿轮啮合频率相对应的噪声,齿面之间由于相对滑动也发生摩擦噪声。由于齿轮是齿轮箱传动中的基础零件,降低齿轮噪声对控制齿轮箱噪声十分必要,本文就齿轮噪声产生原因及应采取改善齿轮噪声方法作一探讨。 一、齿轮传动系统的噪声分析 为从设计角度出发降低齿轮传动系统的噪声,我们就应首先来分析一下齿轮系统噪声的种类和发生机理。 在齿轮系统中,根据机理的不同,可将噪声分成加速度噪声和自鸣噪声两种。一方面,在齿轮轮齿啮合时,由于冲击而使齿轮产生很大的加速度并会引起周围介质扰动,由这种扰动产生的声辐射称为齿轮的加速度噪声。另一方面,在齿轮动态啮合力作用下,系统的各零部件会产生振动,这些振动所产生的声辐射称为自鸣噪声。 对于开式齿轮传动,加速度噪声由轮齿冲击处直接辐射出来,自鸣噪声则由轮体、传动轴等处辐射出来。对于闭式齿轮传动,加速度噪声先辐射到齿轮箱内的空气和润滑油中,再通过齿轮箱辐射出来。自鸣噪声则由齿轮体的振动通过传动轴引起支座振动,从而通过齿轮箱箱壁的振动而辐射出来。一般说来,自鸣噪声是闭式齿轮传动的主要声源。因此,齿轮系统的噪声强度不仅与轮齿啮合的动态激励力有关,而且还与轮体、传动轴.轴承及箱体等的结构形式、动态特性以及动态啮合力在它们之间的传递特性有关。一般来说,齿轮系统噪声发生的原因主要有以下几个方面:1)齿轮设计方面。 参数选择不当,重合度过小,齿廓修形不当或没有修形,齿轮箱结构不合理等。齿轮加工方面 基节误差和齿形误差过大,齿侧间隙过大,表面粗糙度过大等。2)齿轮系及齿轮箱方面。装配偏心,接触精度低,轴的平行度差,轴,轴承、支承的刚度不足,轴承的回转精度不高及间隙不当等。3)其他方面输入扭矩。负载扭矩的波动,轴系的扭振,电动机及其它传动副的平衡情况等。 二、改善齿轮噪声的方案 基于降低能耗和保护环境的理念,美国MICAVA 国际公司作为一个国际性的平台和载体在与世界上众多国家的优秀机构进行着卓有成效的合作同时,经过多年的努力和不断的探索,成功引进了世界先进的麦特雷Blu-Goo超级润滑剂,它是一种极好的齿轮箱添加剂,可以在部件上形成一种惰性材料薄膜,从而降低摩擦、齿轮噪音以及泄露。目前该产品已经成功应用于冶金冶炼、船舶修造、化工化学、造纸工业、钢铁建材、汽车制造、矿业开采、电力、物业等领域,为企业实现连续高负荷运行及节能降耗提供了有力保障,其社会价值和经济价值也得到了有力体现。 麦特雷超级润滑剂是一种有多种用途的特殊惰性材料,主要用于降低金属间接触。作为一种螺纹密封复合物,该产品在外螺纹和内螺纹间形成一个接触面,可以保护接头免受摩擦和磨损影响,同时可以承受1407公斤/厘米2的压力,甚至是磨损,腐蚀或错误机加工的螺纹面。该产品也是一种极好的齿轮箱添加剂,可以在内部件上形成以一层薄膜。从而降低摩擦,齿轮噪音以及泄露。它也明显降低力矩应力,满足动力减压需求。它可以用于垫圈面或作为一种填料补充,通过密封以防止流体泄露。可以在316°C的温度下应用。 该产品可以在不锈钢,铝,铁,钡,玻璃纤维,塑料施工,不会被酸,碱或普通溶剂影响。

楼板噪声检测研究论文

从心理声学的角度来说,噪音又称噪声,一般是指不恰当或者不舒服的听觉刺激。它是一种由为数众多的频率组成的并具有非周期性振动的复合声音。简言之,噪音是非周期性的声音振动。它的音波波形不规则,听起来感到刺耳。从社会和心理意义来说,凡是妨碍人们学习、工作和休息并使人产生不舒适感觉的声音,都叫噪音。如流水声、敲打声、沙沙声,机器轰鸣声等,都是噪音。它的测量单位是分贝。零分贝是可听见音的最低强度。 噪音有高强度和低强度之分。低强度的噪音在一般情况下对人的身心健康没有什么害处,而且在许多情况下还有利于提高工作效率。高强度的噪音主要来自工业机器(如织布机、车床、空气压缩机、风镐、鼓风机等)、现代交通工具(如汽车、火车、摩托车、拖拉机、飞机等)、高音喇叭、建筑工地以及商场、体育和文娱场所的喧闹声等。这些高强度的噪音危害着人们的机体,使人感到疲劳,产生消极情绪,甚至引起疾病。高强度的噪音,不仅损害人的听觉,而且对神经系统、心血管系统、内分泌系统、消化系统以及视觉、智力等都有不同程度的影响。如果人长期在 95 分贝的噪声环境里工作和生活,大约有 29% 的会丧失听力;即使噪声只有 85 分贝人,也有 10% 的人会发生耳聋; 120~130 分贝的噪声,能使人感到耳内疼痛;更强的噪音会使听觉器官受到损害。在神经系统方面,强噪音会使人出现头痛、头晕、倦怠、失眠、情绪不安、记忆力减退等症候群,脑电图慢波增加,植物性神经系统功能紊乱等;在心血管系统方面,强噪音会使人出现脉搏和心率改变,血压升高,心律不齐,传导阻碍滞,外周血流变化等;在内分泌系统方面,强噪音会使人出现甲状腺机能亢进,肾上腺皮质功能增强,基础代谢率升高,性机能紊乱,月经失调等;在消化系统方面,强噪音会使人出现消化机能减退,胃功能紊乱,胃酸减少,食欲不振等。总之,强噪音会导致人体一系列的生理、病理变化。有人曾对在噪音达 95 分贝的环境中工作的 202 人进行过调查,头晕的上中 39% ,失眠的占 32% ,头痛的占 27% ,胃痛的占 27% ,心慌的占 27% ,记忆力衰退的占 27% ,心烦的占 22% ,食欲不佳的占 18% ,高血压的占 12% 。所以,我们不能对强噪音等闲视之,应采取措施加以防止。当然,人们对噪音比较敏感,各个体之间是有很大差异 ,有的人对噪音比较敏感,有的人对噪音有较强的适应性,也与人的需要、情绪等心理因素有关。不管人们之间的差异如何,对强噪音总是需要加以防止的。 为了防止噪音,我国著名声学家马大猷教授曾总结和研究了国内外现有各类噪音的危害和标准,提出了三条建议: ( 1 )为了保护人们的听力和身体健康,噪音的允许值在 75~90 分贝。 ( 2 )保障交谈和通讯联络,环境噪音的允许值在 45~60 分贝。 ( 3 )对于睡眠时间建议在 35~50 分贝。 我国心理学界认为,控制噪音环境,除了考虑人的因素之外,还须兼顾经济和技术上的可行性。充分的噪音控制,必须考虑噪音源、传音途径、受音者所组成的整个系统。控制噪音的措施可以针对上述三个部分或其中任何一个部分。噪音控制的内容包括: ( 1 )降低声源噪音,工业、交通运输业可以选用低噪音的生产设备和改进生产工艺,或者改变噪音源的运动方式(如用阻尼、隔振等措施降低固体发声体的振动)。 ( 2 )在传音途径上降低噪音,控制噪音的传播,改变声源已经发出的噪音传播途径,如采用吸音、隔音、音屏障、隔振等措施,以及合理规划城市和建筑布局等。 ( 3 )受音者或受音器官的噪音防护,在声源和传播途径上无法采取措施,或采取的声学措施仍不能达到预期效果时,就需要对受音者或受音器官采取防护措施,如长期职业性噪音暴露的工人可以戴耳塞 、耳罩或头盔等护耳器。 噪音控制在技术上虽然现在已经成熟,但由于现代工业、交通运输业规模很大,要采取噪音控制的企业和场所为数甚多,因此在防止噪音问题上,必须从技术、经济和效果等方面进行综合权衡。当然,具体问题应当具体分析。在控制室外、设计室、车间或职工长期工作的地方,噪音的强度要低;库房或少有人去车间或空旷地方,噪音稍高一些也是可以的。总之,对待不同时间、不同地点、不同性质与不同持续时间的噪音,应有一定的区别。

住宅噪声控制措施研究摘要:对噪声传播方式及控制标准进行了阐述,从隔声、吸声等噪声控制原理方面进行了论述,提出了控制住宅噪声切实可行的、有效的技术方法,解决了住宅噪声扰民的问题。关键词:住宅噪声,噪声控制,隔声,吸声过去,我国住宅、公寓等居住建筑噪声问题一直是居民对住宅质量投诉最多的问题之一。噪声指紊乱、断续或统计上随机的声振荡,通常也称“不需要的声音”。生活中,常见的噪声包括空调系统,生活水泵,消防水泵,电梯,厨房油烟机,抽水马桶,家庭娱乐活动,上下楼层搬动物品等所带来的种种“不需要的声音”。噪声控制就是通过隔声、吸声等技术措施对噪声进行治理,从而获得适于人们工作、学习和生活的健康宜人的声环境。1噪声传播及控制标准传播方式在建筑声学中,按照声音的传播规律分析,噪声传播有两种途径,即空气传声和固体传声。空气传声通常包括两个方面:1)经由空气直接传播,即通过建筑物围护结构的缝隙和孔洞传播,如敞开的门窗、通风孔及门窗的缝隙;2)透过围护结构传播,即由空气传播的声音遇到密实的墙壁后,在声波的作用下,墙壁受到激发产生振动,使声音透过墙壁而传至室内。而固体传声,也称“撞击传声”,即由于撞击或机械振动的直接作用,使围护结构或水平结构产生振动而发声。控制标准目前,我国对住宅噪声控制执行的标准主要有:1)GB/T50121-2005建筑隔声评价标准;2)GBJ 118-88民用建筑隔声设计规范;3)GB 50096-1999住宅设计规范(2003版)。隔声减噪设计等级标准见表1,民用建筑房间允许噪声标准见表2。2隔声隔声的定义就是声音传播过程中用不同的构件隔离或隔绝声音,以降低接受者的接受声级。当声波入射到构件上时,因声波的交替作用,使构件像膜片一样产生受迫弯曲振动,此弯曲波沿构件传播,又引起构件另一侧空气振动,从而传透声音。其中的透射损失用隔声量来衡量。围护结构的平均隔声量计算原理Ra=L-L0;其中,Ra为围护结构的平均隔声量;L为室外噪声级,dB;L0为室内允许噪声级,dB。空气传声隔声通常,对由空气直接传播的噪声的控制,主要通过墙体来实现。根据质量定律,墙体材料密度越大、越密实,其隔声量也就越高。因而设计围护结构墙体的措施包括:1)实体结构隔声;2)采用隔声材料隔声;3)采用空气层隔声。对于住宅分户墙等隔声要求较高的墙体,可采用双层墙体或多层复合式墙板等。有关墙体空气声隔声的构造措施,应注意以下要点:1)轻质填充墙用水泥砂浆等抹面,应尽量增加墙体表面的抹灰层厚度;2)墙体有孔洞和缝隙时,声波以绕射方式透过。孔隙越大,墙体隔声量就越小。对存在大量相互贯通孔隙的空心砌块或墙板,墙面必须增加抹灰;3)多层复合式墙板,其相邻层材料应尽量做到软硬结合的形式;4)双层墙。a.空气层厚度取80 mm~100 mm时,隔声效果最好;b.夹层中放置纤维吸声材料,不仅可进一步提高整体隔声量,还可减少因共振时引起的隔声量下降。吸声材料越厚,隔声效果越显著;c.应尽量避免两层墙之间刚性连接所形成的“声桥”;d.每层墙的两侧选用不同厚度或不同材质的板,可避免两层墙同时发生吻合效应。固体传声隔声在民用建筑中,楼板层是隔绝撞击声,即固体传声的重点。对楼板的隔声可以采取以下措施:1)在楼板表面铺设弹性面层,以减少楼板本身的振动。常用的材料有地毯、橡胶板等;2)楼板采用浮筑层,即在结构层与面层之间增设一道弹性垫层,可以满铺或间断设置。垫层材料可选用高科环保的隔声毡,发泡橡胶板和岩棉板等;3)楼板进行吊顶处理。铺上多孔吸声材料,如玻璃棉,矿棉等;增大吊顶单位面积质量和整体性以及减小吊筋与楼板的连接刚度,都能提高隔声效果。3吸声室内有噪声源时,人耳听到的噪声为直达声和房间壁面多次反射形成的混响声的叠加;噪声的声压级大小与分布取决于房间的形状、各界面材料和家具设备的吸声特性以及噪声源的性质和位置等因素。利用吸声装置(如吸声饰面、空间吸声体等)吸收室内的混响声可以降低噪声的方法称为吸声减噪法。吸声减噪法使用原则如下:1)室内平均吸声系数较小时,吸声减噪法收效最大。对于室内原有吸声量较大的房间,该法效果不大;2)吸声减噪法仅能减少反射声,因此吸声处理一般只能取得4 dB~12 dB的降噪效果,试图通过吸声处理得到更大的减噪效果是不现实的;3)在靠近声源、直达声占支配地位的场所,采用吸声减噪法将不会得到理想的降噪效果。吸声减噪法的处理措施通常有以下几种:1)界面吸收,即通过墙面增大摩擦和粘滞阻力,使用弹性多孔吸声材料;2)设施吸收,即墙面放置如挂毯、帘幕等;地面铺置地毯、人造毛制品等;3)共振吸声结构,多孔吸声材料对低频吸收性能较差,因此常采用共振吸声原理来解决低频声的吸收。4结语民用建筑中的噪声控制是一个老课题,又是一个迅速发展的新课题。随着我国经济的高速发展,生活质量的快速提高,人们对住宅要求已由生存型向健康型发展,对住宅的声环境品质也越来越重视。要保证室内良好的声环境,就要进行合理的设计。本文从标准规范要求出发,运用隔声、吸声原理,对墙、楼板等提出了若干噪声控制措施。参考文献:[1]GB/T 50121-2005,建筑隔声评价标准[S].[2]GBJ 118-88,民用建筑隔声设计规范[S].[3]朱颖心.建筑环境学[M].北京:中国建筑工业出版社,2005.[4]王万江,金少蓉,周振伦.房屋建筑学[M].重庆:重庆大学出版社,2003.[5]秦佑国,王炳麟.建筑声环境[M].第2版.北京:清华大学出版社,1999.[6]王庭熙.建筑师简明手册(上)[M].北京:中国建筑工业出版社,1999.[7]陶驷骥.建筑隔声新技术[J].建筑学报,2004(8):74-75.[8]郑红.住宅楼板的隔声研究[J].山东建材,2006,27(3):63-64.[9]马绍波,沈际.环境噪声与建筑隔声[J].建筑工人,2006(8):16-17.[10]吕玉恒,杨捷胜.民用建筑噪声控制设计[J].声学技术,2002,21(1): research about controlling residential noiseWANG HuaBAO An-hongLI Zhi-fangAbstract:The article expounds the transmission of noise and the standards of noise control, discussing the control principle such as sound insu-lation and sound absorption. It proposes some feasible and effective ways to solve the housing problem of noise nuisance to the words:residential noise, noise control, sound insulation, sound absorption

噪声污染 噪声指人们不需要的声音,不论什么声音,只要令人生厌,对人们的生活形成干扰,就都被称为噪声。工厂里机器的轰鸣,道路上汽车的喇叭声,人群的喧闹等,都是令人头痛的噪声。有时节奏强烈的摇滚音、迪斯科等也会成为噪声,影响到人的生活及健康。 强烈的噪声会引起听觉器官的损伤,如果是长期在机器轰鸣的厂房工作的人员,其听力往往不及一般人。噪声还会严重干扰人的中枢神经,使人神经衰弱、消化不良,甚至恶心、头痛。噪声对于人的正常生活工作也有很大影响,它会使人失眠,没有食欲,产生烦恼等不愉快的情绪。科学家还发现,长期受噪声刺激还会削弱人的免疫系统的功能,使恶性肿瘤的发生率不断提高。 噪声污染投诉呈上升趋势 据悉,随着经济发展和群众环保意识的提高,环保投诉案件也随之增多。去年全区共收到环保投诉841宗,是上年投诉总量的3.6倍。其中噪声污染占投诉总数的34%。 噪声污染是指排放的环境噪声超过国家规定的标准,妨碍人们工作、生活和其他正常活动。据介绍,噪声超过50分贝就会影响睡眠和休息;70分贝以上就会干扰谈话,造成心烦意乱、精神不集中、工作效率降低;长期工作或生活在90分贝以上的噪声环境,会严重影响听力,引起听力损伤,并逐步发展成为噪声性耳聋。另外,噪音还可对非听觉器官造成危害或导致其他疾病。 噪音污染多发生在深夜 噪音主要发生在晚上。以前段时间被整治的会城红唇酒吧为例,环保局审批明确规定它只准经营清吧,该酒吧却在没有重新办理环保审批手续的情况下,擅自增设卡拉OK项目并播放的士高音乐,导致边界噪音超标,群众投诉不断。 由于酒吧白天不营业,无法取证,区环监大队工作人员只好一连7天现场伏击至深夜,查到其几乎天天都是经营到凌晨2点多钟。区环境监测站3月3、4两日晚连续监测发现,该酒吧未营业时,周边环境噪音低于50分贝的规定标准,而一到晚上11点营业时噪音却高达59.9分贝。区环保局据此确认红唇酒吧噪音超标,并依法作了处理。 环保局指出,超时营业也是造成噪声污染的主要原因。比如,近年来会城城区开了不少网吧,大部分开设在居民楼下或住宅小区内,顾客发出的嘈杂声和摩托车马达的轰鸣声,对居民造成严重的影响。国务院2002年颁布的《互联网上网服务营业场所管理条例》明确规定,网吧的营业时间是早上8点至晚上12点。而今年3月21日区环保局和区文化局组成联合小组进行调查,却发现所检查的网吧营业时间都超过晚上12点,甚至通宵营业。 另外,饮食娱乐业和五金业的门店、加工场等,分布在城区各街道和商住楼下,环境污染问题和扰民现象也比较突出。

楼主看看:这些年来,城市环境噪声控制的特点正在发生着以下4个方面的变化:一是由单纯的工业噪声控制向民用领域(如建筑施工噪声等)转移,二是由固定噪声源治理向流动噪声源治理转移,三是由大环境的噪声治理向小环境的噪声治理转移,四是城市居民由直接向环保部门投诉转向法院起诉。2国外的行吗?一、美国噪声污染控制的沿革美国的噪声污染控制是从控制飞机噪声污染开始的。1968年,美国发布了《飞机噪声削减法》(TheAircraftNoiseAbatementAct),由联邦航空局实施。为了协调联邦噪声削减活动,1970年,美国环保局成立了噪声削减和控制办公室,主要负责确定噪声源、制订噪声排放标准、推进州和地方噪声控制计划、促进教育和研究等项工作。1972年,美国国会通过了《噪声控制法》(TheNoiseControlAct),宣称此项国家政策将把所有美国人从噪声干扰中解脱出来。1978年,又通过了《宁静社会法》(QuietCommunitiesAct),它修正了1972年《噪声控制法》的部分内容,以增加联邦机构之间的协调,主要是促进联邦航空局在噪声管理上的责任,让其向公众提供噪声影响的详细分析。但1981年美国国会同意了里根政府的提议,取消了噪声削减和控制办公室的政府资金,这样该办公室只是在名义上存在。美国环保局也不得不终止了大部分联邦噪声削减活动,而将首要噪声管理职责转移到州和地方政府。由于美国环保局不再行使噪声控制权,难以协调各地方的噪声污染控制活动,造成美国噪声污染(特别是在机场附近)成为突出的社会问题。自1997年第105次国会开始,有议案提出重建噪声削减和控制办公室,加强联邦对噪声污染的统一管理,历经1999年第106次国会、2001年第107次国会,至今仍未获得批准。二、美国的噪声标准体系1972年《噪声控制法》将“改善环境使所有美国人从危害他们健康和福利的噪声中解脱出来”作为一项国家政策。这项法律在联邦和州、地方政府之间分配权利,联邦的首要职责是噪声源排放控制,州和其他行政部门保留对噪声源的使用和环境允许噪声水平进行控制的权利。根据上述法律授权,联邦政府负责主要噪声源排放标准的制订,区域环境噪声标准则由州或地方政府自行负责。这一点与我国的噪声标准体系有所不同。1.噪声环境质量标准为了联邦噪声控制的需要,确保联邦对州和地方的协助和指导,《噪声控制法》要求美国环保局公布数据,说明在留有适当安全余量前提下,为保护公众健康和福利,针对特定区域和不同条件,可达到并保持的环境噪声水平。为完成此项要求,美国环保局于1974年3月发表了《在留有适当安全余量前提下为保护公众健康和福利所需的环境噪声水平》。这篇文章通过大量的分析,确定了多种情况下保护公众健康和福利的噪声水平(见下表)。但美国环保局明确声明:“本文被批准作为一般性应用,不构成标准、规范或法规”,“州和地方政府应根据各自需要和情况运用这份资料。”以上述美国环保局的研究成果作为依据,美国一些州和地方政府制订了适用于本地区的环境噪声标准,如卡罗拉多州、特拉华州、夏威夷、马里兰州等。2.噪声排放标准美国有关法律要求联邦政府提供统一的噪声控制标准用以减少公众在有害噪声环境中的暴露,但建立和实施这些标准的职责却分配在多个联邦机构中,如美国环保局、联邦航空局以及职业安全和健康管理局等。过去,主要是通过噪声削减和控制办公室来协调各联邦机构之间的噪声控制活动。在噪声削减和控制办公室的大力推动下,建立并实施的噪声控制标准包括:飞机与机场、州际公路运输、铁路、工业生产活动、中重型卡车、摩托车和机动脚踏两用车、可移动空气压缩机。同时,联邦政府还资助在噪声暴露区开展住房计划。虽然美国国会在1981年取消了噪声削减和控制办公室的政府资金,但原来的标准和法规依然有效,其他的联邦机构继续在各自的管理权限内建立和实施噪声源控制标准。除联邦统一噪声标准外,州和地方政府有权决定其他噪声源的控制范围,包括商业、工业和生活活动中产生的噪声水平,例如伊利诺伊、俄勒冈、犹他等州就分别制订了船舶噪声标准。因地点不同,法规对这些噪声源的控制会有很大变化。

齿轮的研究论文总结

一般渐开线的描述,按照齿形的不同,齿轮分为直齿轮、斜齿轮;齿轮的主要特征参数包括模数、压力角、齿数、宽度;材质、热处理方法对齿轮性能影响较大;加工精度影响齿轮传动的噪声大小。

老兄:我帮你在网上找了一点你自己整理一下就行了,祝你成功!

据史料记载,远在公元前400~200年的中国古代就巳开始使用齿轮,在我国山西出土的青铜齿轮是迄今巳发现的最古老齿轮,作为反映古代科学技术成就的指南车就是以齿轮机构为核心的机械装置。17世纪末,人们才开始研究,能正确传递运动的轮齿形状。18世纪,欧洲工业革命以后,齿轮传动的应用日益广泛;先是发展摆线齿轮,而后是渐开线齿轮,一直到20世纪初,渐开线齿轮已在应用中占了优势。

早在1694年,法国学者Philippe De La Hire首先提出渐开线可作为齿形曲线。1733年,法国人提出轮齿接触点的公法线必须通过中心连线上的节点。一条辅助瞬心线分别沿大轮和小轮的瞬心线(节圆)纯滚动时,与辅助瞬心线固联的辅助齿形在大轮和小轮上所包络形成的两齿廓曲线是彼此共轭的,这就是Camus定理。它考虑了两齿面的啮合状态;明确建立了现代关于接触点轨迹的概念。1765年,瑞士的L.Euler提出渐开线齿形解析研究的数学基础,阐明了相啮合的一对齿轮,其齿形曲线的曲率半径和曲率中心位置的关系。后来,Savary进一步完成这一方法,成为现在的Eu-let-Savary方程。对渐开线齿形应用作出贡献的是Roteft WUlls,他提出中心距变化时,渐开线齿轮具有角速比不变的优点。1873年,德国工程师Hoppe提出,对不同齿数的齿轮在压力角改变时的渐开线齿形,从而奠定了现代变位齿轮的思想基础。

19世纪末,展成切齿法的原理及利用此原理切齿的专用机床与刀具的相继出现,使齿轮加工具军较完备的手段后,渐开线齿形更显示出巨大的优走性。切齿时只要将切齿工具从正常的啮合位置稍加移动,就能用标准刀具在机床上切出相应的变位齿轮。1908年,瑞士MAAG研究了变位方法并制造出展成加工插齿机,后来,英国BSS、美国AGMA、德国DIN相继对齿轮变位提出了多种计算方法。

为了提高动力传动齿轮的使用寿命并减小其尺寸,除从材料,热处理及结构等方面改进外,圆弧齿形的齿轮获得了发展。1907年,英国人Frank Humphris最早发表了圆弧齿形。1926年,瑞土人Eruest Wildhaber取得法面圆弧齿形斜齿轮的专利权。1955年,苏联的M.L.Novikov完成了圆弧齿形齿轮的实用研究并获得列宁勋章。1970年,英国Rolh—Royce公司工程师R.取得了双圆弧齿轮的美国专利。这种齿轮现已日益为人们所重视,在生产中发挥了显著效益。

齿轮是能互相啮合的有齿的机械零件,它在机械传动及整个机械领域中的应用极其广泛。现代齿轮技术已达到:齿轮模数~100毫米;齿轮直径由1毫米~150米;传递功率可达上十万千瓦;转速可达几十万转/分;最高的圆周速度达300米/秒。

齿轮在传动中的应用很早就出现了。公元前三百多年,古希腊哲学家亚里士多德在《机械问题》中,就阐述了用青铜或铸铁齿轮传递旋转运动的问题。中国古代发明的指南车中已应用了整套的轮系。不过,古代的齿轮是用木料制造或用金 属铸成的,只能传递轴间的回转运动,不能保证传动的平稳性,齿轮的承载能力也很小。

随着生产的发展,齿轮运转的平稳性受到重视。1674年丹麦天文学家罗默首次提出用外摆线作齿廓曲线,以得到运转平稳的齿轮。

18世纪工业革命时期,齿轮技术得到高速发展,人们对齿轮进行了大量的研究。1733年法国数学家卡米发表了齿廓啮合基本定律;1765年瑞士数学家欧拉建议采用渐开线作齿廓曲线。

19世纪出现的滚齿机和插齿机,解决了大量生产高精度齿轮的问题。1900年,普福特为滚齿机装上差动装置,能在滚齿机上加工出斜齿轮,从此滚齿机滚切齿轮得到普及,展成法加工齿轮占了压倒优势,渐开线齿轮成为应用最广的齿轮。

1899年,拉舍最先实施了变位齿轮的方案。变位齿轮不仅能避免轮齿根切,还可以凑配中心距和提高齿轮的承载能力。1923年美国怀尔德哈伯最先提出圆弧齿廓的齿轮,1955年苏诺维科夫对圆弧齿轮进行了深入的研究,圆弧齿轮遂得以应用于生产。这种齿轮的承载能力和效率都较高,但尚不及渐开线齿轮那样易于制造,还有待进一步改进。

齿轮的组成结构一般有轮齿、齿槽、端面、法面、齿顶圆、齿根圆、基圆、分度圆。

轮齿简称齿,是齿轮上 每一个用于啮合的凸起部分,这些凸起部分一般呈辐射状排列,配对齿轮上的轮齿互相接触,可使齿轮持续啮合运转;齿槽是齿轮上两相邻轮齿之间的空间;端面是圆柱齿轮或圆柱蜗杆上 ,垂直于齿轮或蜗杆轴线的平面;法面指的是垂直于轮齿齿线的平面;齿顶圆是指齿顶端所在的圆;齿根圆是指槽底所在的圆;基圆是形成渐开线的发生线作纯滚动的圆;分度圆 是在端面内计算齿轮几何尺寸的基准圆。

齿轮可按齿形、齿轮外形、齿线形状、轮齿所在的表面和制造方法等分类。

齿轮的齿形包括齿廓曲线、压力角、齿高和变位。渐开线齿轮比较容易制造,因此现代使用的齿轮中 ,渐开线齿轮占绝对多数,而摆线齿轮和圆弧齿轮应用较少。

在压力角方面,小压力角齿轮的承载能力较小;而大压力角齿轮,虽然承载能力较高,但在传递转矩相同的情况下轴承的负荷增大,因此仅用于特殊情况。而齿轮的齿高已标准化,一般均采用标准齿高。变位齿轮的优点较多,已遍及各类机械设备中。

另外,齿轮还可按其外形分为圆柱齿轮、锥齿轮、非圆齿轮、齿条、蜗杆蜗轮 ;按齿线形状分为直齿轮、斜齿轮、人字齿轮、曲线齿轮;按轮齿所在的表面分为外齿轮、内齿轮;按制造方法可分为铸造齿轮、切制齿轮、轧制齿轮、烧结齿轮等。

齿轮的制造材料和热处理过程对齿轮的承载能力和尺寸重量有很大的影响。20世纪50年代前,齿轮多用碳钢,60年代改用合金钢,而70年代多用表面硬化钢。按硬度 ,齿面可区分为软齿面和硬齿面两种。

软齿面的齿轮承载能力较低,但制造比较容易,跑合性好, 多用于传动尺寸和重量无严格限制,以及小量生产的一般机械中。因为配对的齿轮中,小轮负担较重,因此为使大小齿轮工作寿命大致相等,小轮齿面硬度一般要比大轮的高 。

硬齿面齿轮的承载能力高,它是在齿轮精切之后 ,再进行淬火、表面淬火或渗碳淬火处理,以提高硬度。但在热处理中,齿轮不可避免地会产生变形,因此在热处理之后须进行磨削、研磨或精切 ,以消除因变形产生的误差,提高齿轮的精度。

制造齿轮常用的钢有调质钢、淬火钢、渗碳淬火钢和渗氮钢。铸钢的强度比锻钢稍低,常用于尺寸较大的齿轮;灰铸铁的机械性能较差,可用于轻载的开式齿轮传动中;球墨铸铁可部分地代替钢制造齿轮 ;塑料齿轮多用于轻载和要求噪声低的地方,与其配对的齿轮一般用导热性好的钢齿轮。

未来齿轮正向重载、高速、高精度和高效率等方向发展,并力求尺寸小、重量轻、寿命长和经济可靠。

而齿轮理论和制造工艺的发展将是进一步研究轮齿损伤的机理,这是建立可靠的强度计算方法的依据,是提高齿轮承载能力,延长齿轮寿命的理论基础;发展以圆弧齿廓为代表的新齿形;研究新型的齿轮材料和制造齿轮的新工艺; 研究齿轮的弹性变形、制造和安装误差以及温度场的分布,进行轮齿修形,以改善齿轮运转的平稳性,并在满载时增大轮齿的接触面积,从而提高齿轮的承载能力。

摩擦、润滑理论和润滑技术是 齿轮研究中的基础性工作,研究弹性流体动压润滑理论,推广采用合成润滑油和在油中适当地加入极压添加剂,不仅可提高齿面的承载能力,而且也能提高传动效率。

齿轮机构的类型:

1、以传动比分类

定传动比 —— 圆形齿轮机构(圆柱、圆锥)

变传动比 —— 非圆齿轮机构(椭圆齿轮)

2、以轮轴相对位置分类

平面齿轮机构

直齿圆柱齿轮传动

外啮合齿轮传动

内啮合齿轮传动

齿轮齿条传动

斜齿圆柱齿轮传动

人字齿轮传动

空间齿轮机构

圆锥齿轮传动

交错轴斜齿轮传动

蜗轮蜗杆传动

齿轮的工艺:

锥形齿轮

毛坯半制品齿轮

螺旋齿轮

内齿轮

直齿轮

蜗轮蜗杆

斜齿圆柱齿轮主要参数

螺旋角:β > 0为左旋,反之为右旋

齿距:pn = ptcosβ,下标n和t分别表示法向和端面

模数:mn = mtcosβ

齿宽:

分度圆直径:d = mtz

中心距:a=1/2*m(z1+z2)

正确啮合条件:m1 = m2,α1 = α2,β1 = − β2

重合度:

当量齿数:

齿轮振动的简易诊断方法

进行简易诊断的目的是迅速判断齿轮是否处于正常工作状态,对处于异常工作状态的齿轮进一步进行精密诊断分析或采取其他措施。当然,在许多情况下,根据对振动的简单分析,也可诊断出一些明显的故障。

齿轮的简易诊断包括噪声诊断法、振平诊断法以及冲击脉冲(SPM)诊断法等,最常用的是振平诊断法。

振平诊断法是利用齿轮的振动强度来判别齿轮是否处于正常工作状态的诊断方法。根据判定指标和标准不同,又可以分为绝对值判定法和相对值判定法。

1.绝对值判定法

绝对值判定法是利用在齿轮箱上同一测点部位测得的振幅值直接作为评价运行状态的指标。

用绝对值判定法进行齿轮状态识别,必须根据不同的齿轮箱,不同的使用要求制定相应的判定标准。

制定齿轮绝对值判定标准的主要依据如下:

1)对异常振动现象的理论研究;

(2)根据实验对振动现象所做的分析;

(3)对测得数据的统计评价;

(4)参考国内外的有关标准。

实际上,并不存在可适用于一切齿轮的绝对值判定标准,当齿轮的大小、类型等不同时,其判定标准自然也就不同。

按一个测定参数对宽带的振动做出判断时,标准值一定要依频率而改变。频率在1kHz以下,振动按速度来判定;频率在1kHz以上,振动按加速度来判定。实际的标准还要根据具体情况而定。

2.相时值判定法

在实际应用中,对于尚未制定出绝对值判定标准的齿轮,可以充分利用现场测量的数据进行统计平均,制定适当的相对判定标准,采用这种标准进行判定称为相对值判定法。

相对判定标准要求将在齿轮箱同一部位测点在不同时刻测得的振幅与正常状态下的振幅相比较,当测量值和正常值相比达到一定程度时,判定为某一状态。比如,相对值判定标准规定实际值达到正常值的倍时要引起注意,达到倍时则表示危险等。至于具体使用时是按照倍进行分级还是按照2倍进行分级,则视齿轮箱的使用要求而定,比较粗糙的设备(例如矿山机械)一般使用倍数较高的分级。

实际中,为了达到最佳效果,可以同时采用上述两种方法,以便对比比较,全面评价。

[编辑本段]齿轮-主要术语

轮齿(齿)——齿轮上的每一个用于啮合的凸起部分。一般说来,这些凸起部分呈辐射状排列。配对齿轮上轮齿互相接触,导致齿轮的持续啮合运转。

齿槽——齿轮上两相邻轮齿之间的空间。

齿轮端面——在圆柱齿轮或圆柱蜗杆上垂直于齿轮或蜗杆轴线的平面。

法面——在齿轮上,法面指的是垂直于轮齿齿线的平面。

齿顶圆——齿顶端所在的圆。

齿根圆——槽底所在的圆。

基圆——形成渐开线的发生线在其上作纯滚动的圆。

分度圆——在端面内计算齿轮几何尺寸的基准圆,对于直齿轮,在分度圆上模数和压力角均为标准值。

齿面——轮齿上位于齿顶圆柱面和齿根圆柱面之间的侧表面。

齿廓——齿面被一指定曲面(对圆柱齿轮是平面)所截的截线。

齿线——齿面与分度圆柱面的交线。

端面齿距pt——相邻两同侧端面齿廓之间的分度圆弧长。

模数m——齿距除以圆周率π所得到的商,以毫米计。

径节p——模数的倒数,以英寸计。

齿厚s ——在端面上一个轮齿两侧齿廓之间的分度圆弧长。

槽宽e ——在端面上一个齿槽的两侧齿廓之间的分度圆弧长。

齿顶高hɑ——齿顶圆与分度圆之间的径向距离。

齿根高hf——分度圆与齿根圆之间的径向距离。

全齿高h——齿顶圆与齿根圆之间的径向距离。

齿宽b——轮齿沿轴向的尺寸。

端面压力角 ɑt—— 过端面齿廓与分度圆的交点的径向线与过该点的齿廓切线所夹的锐角。

基准齿条(Standard Rack):只基圆之尺寸,齿形,全齿高,齿冠高及齿厚等尺寸均合乎标准正齿轮规格之齿条,依其标准齿轮规格所切削出来之齿条称为基准齿条.

基准节圆(Standard Pitch Circle):用来决定齿轮各部尺寸基准圆.为 齿数x模数

基准节线(Standard Pitch Line):齿条上一条特定节线或沿此线测定之齿厚,为节距二分之一.

作用节圆(Action Pitch Circle):一对正齿轮咬合作用时,各有一相切做滚动圆.

基准节距(Standard Pitch):以选定标准节距做基准者,与基准齿条节距相等.

节圆(Pitch Circle):两齿轮连心线上咬合接触点各齿轮上留下轨迹称为节圆.

节径(Pitch Diameter):节圆直径.

有效齿高(Working Depth):一对正齿轮齿冠高和.又称工作齿高.

齿冠高(Addendum):齿顶圆与节圆半径差.

齿隙(Backlash):两齿咬合时,齿面与齿面间隙.

齿顶隙(Clearance):两齿咬合时,一齿轮齿顶圆与另一齿轮底间空隙.

节点(Pitch Point):一对齿轮咬合与节圆相切点.

节距(Pitch):相邻两齿间相对应点弧线距离.

法向节距(Normal Pitch):渐开线齿轮沿特定断面同一垂线所测节距.

塑料齿轮的介绍:

随着科学的发展,齿轮已经慢慢由金属齿轮转变为塑料齿轮。因为塑料齿轮更具有润滑性和耐磨性。 可以减小噪音,降低成本,降低摩擦。

今天真高兴啊!因为妈妈给我买了一只小乌龟。见了它,我竟然有点不相信,欣喜地问妈妈:“是给我买的吗?”妈妈说:“当然是的。”我乐得跳了起来。我把它放到眼前细细地看。它是一只非常漂亮的小龟,只有半只鸡蛋那么大,浅绿的壳上,有黄色的小圈,数一数,一共有8个呢。它很胆小,有点动静就总是把头缩在壳里,好长时间都不敢出来。我把它放在一个小小的鱼缸里,它总是不停地往上爬,可能是对新环境不适应吧。我给它取了个名,叫小西,因为它是一只巴西龟。我希望以后能和它成为“朋友”。 夜空,繁星点点,区政府广场上的音乐喷泉格外迷人. 20点整,表演开始了,音乐响起,水花四溅伴着优美的旋律变幻着:有时像一朵盛开的花儿,向四周伸展着花瓣;有时像一只晶莹,栩栩如生的水蝴蝶,扇动着翅膀围绕着水池飞舞;有时像一堵晶莹剔透的屏障,令人沉醉在朦胧之中......一首乐曲即将结束,伴着七彩的灯光,充满了诗情画意. 最为壮观的景象-----"二龙戏'柱'"展现在我们眼前,只见一股水柱直插云霄,两旁弯曲地喷过两股水柱,似两条龙,这不正是"二龙戏'柱'"吗?围观的人们惊异地叫起来,脸上露出惊讶的神情,都大吃一惊,陶醉在奇丽的景象之中. 奇丽的景象过后一场灾难从"天"而降-----"倾盆大雨"即将来临,它铺天盖地的朝我们袭来,人们四处逃窜,我被困在人群中,无法脱身,亲身体验了"倾盆大雨 "的滋味,弄得全身湿漉漉的.当时,我还看到了些许有趣的情景:一些年龄较小的小朋友们觉得十分有趣,索性跳入池中,嬉戏玩耍起来;一些被淋湿的人们又是拧衣服又是拧头发,"忙得不亦乐乎";一些男孩索性把衣服脱下来拧干,向上一抛,什么都不顾......所有人都沉浸在欢乐的气氛中,欢声笑语回荡在整个广场. 这美好的盛夏之夜,这迷人的音乐喷泉! 今天,我闲着没事做,发现厨房里还有一些青菜还没洗。我灵机一动,心想要是我把这些青菜洗了,妈妈不就不用洗菜了吗? 我说干就干,拿着菜篮子放到水池边,把青菜放到水池里。我卷起袖子,拧开水龙头,学着妈妈的样子开始仔仔细细地洗起菜来。 我先用双手搓青菜,然后一片一片地洗菜叶,连一点脏东西也不放过。洗着洗着,我触到一个软绵绵、毛茸茸的东西。我的手像被电击一样缩了回去。呀!不看不知道,一看吓一跳,原来是一条大青虫趴在菜叶上享受"洗澡"带来的乐趣。吓得我把那片菜叶扔得老远。看着扔掉的菜叶,我心想:妈妈长年累月地洗青菜,不知遇到多少条大青虫,可是妈妈总是不慌不忙地捡起大青虫把它扔掉,继续洗菜。而我活像一个胆小鬼。我壮起胆子,鼓起勇气,拾起扔掉的菜叶,把大青虫扔掉,一脚踩死。这时,我虽然浑身鸡皮疙瘩,但我真像打了胜仗一样高兴。我哼着小曲继续洗菜。 看着水灵灵的青菜躺在篮子里,我高兴得又蹦又跳,终于能帮爸爸妈妈干一点力所能及的事了。 1. 今天开始放暑假了。暑假到了,但是暑假要干什么呢?觉得是想做一些不同的事情,但是不知道从哪里开始,又从哪里结束……或许本来就没有开始,没有结束。暑假是这样,生活也是这样。 在孩子们的眼里,社会总是充满着真善美,生活是甜蜜而多彩的。在大人们的眼中,社会是有两面性的,既有真善美,又有假丑恶,生活具有酸甜苦辣。为何大人与孩子的思想有那么大的差别?结论只有一个:这是成熟与稚嫩最根本的区别。 大千世界中,任何事物都具有双面性。大人们的阅历丰富,决定了他们看东西比较全面。而孩子要走向成熟,就必定需要经历一些事情。有人说:“生活是一个大练兵场,是磨砺人的舞台。”在这个特殊的舞台上,每个人将会遇到开心的事情与悲哀的事情。悲哀的事情会使人承受巨大痛苦,开心的事物会让人拥有美好的心情。如果整日面对悲事,人容易丧失信心进而自暴自弃、颓废沉沦;而整日面对喜事,人又会被眼前的事物所迷惑,缺乏社会经验,容易上当。正如植物不能缺少阳光与雨水一样,人的经历中不能缺少快乐和悲伤。 2. 暑假里面最爱做的一件事情之一当然是看《快乐男生》了。我最喜欢陈楚生了,我想很多人都喜欢他,有人喜欢他的声音,有人喜欢他抱着吉他的神情,有人喜欢他的故事,有人喜欢他的为人……我喜欢他,似乎不需要因为什么,又似乎是因为他的一切。 当再次看到他的时候就已经很是被他吸引了,是因为他的声音,还有他抱着吉他用心歌唱,用音乐讲故事的神情,记得当时听他演唱的时候,整个人就完完全全的陷进去了,似乎是你走进了他的故事,又似乎是他走进了你的内心深处,这种感觉是当时在场的其他所有选手都没有的,别的选手唱歌时就是简单的机械的在听,而对于楚生是聆听。 在后来一场一场的比赛中对他的喜欢一次次加深。决赛在陈楚生和苏醒之间,歌迷分成了两派,评委分成了两派,主持人似乎也分成了两派,最终结果出来后,何老师还口误把陈楚生说成苏醒。陈楚生和苏醒,完全是两个世界的人,一个卖盒饭度日,一个少年留学海外。最后冠军是陈楚生,我兴高采烈地大声疾呼,我赢了,我们楚生赢了。 这个世界上,我相信每个人付出的坚持与努力都是回得到回报的。 3. 炎热的夏季往往是考验人毅力的时候,每个人的毅力不同,但求知的大门永远敞开。就看远处的你我愿不愿走进。走过了炎热,也就代表你走上了一个新的起点。今天我无意中看书,看到童第周这篇课文,童第周学习十分差,但他艰苦努力,早上、晚上都合理利用学习,从最后一名成为第一名。我从中受到很大的启发:无论做什么事要想成功,必须付出辛勤的劳动和汗水,才能获得丰收的喜悦。这又使我想起一句名言:“一分耕耘,一分收获。”多么好的名言,我的精神一下子提上来了,我找到了精神需要的补品。向以往那样,我又好好学习,每天老师带我们去知识的海洋,攻破了一道道难关。得到了一份份美好的战利品。 使我坚定了信念,锻炼了意志和不断学习攀登的精神。等待下一关的挑战...... 4. 呆在家里做作业,不免觉得有些乏味,除了看看书或电视,陪着外公外婆打几副牌,寻开心。妈妈对我非常苛刻,时常在我耳边唠叨,定要让我复习语数英,说什么“马上毕业了,升初中还那么放松!”我只好乖乖认命,仅5天,就做完了作业的一半!惊人啊!我的暑假虽吁了口气,但还是“闭门自习”的,唉,倒霉! 游泳是我在夏日中必不可少的运动,在碧波里狠狠一个猛蹿,便会让那碧湛湛的、清凉的池水,凉便全身,浸透心田。虽说在游泳池里偶尔喝几口水,但在池里感觉还是很棒、很爽的!在炎热的夏,来几个狗爬式,几下蛙泳,有一种休闲时尚的感觉。 暑假,平淡中也有自在,也有快乐。无聊而快乐的生活啊!呵呵。 5. 暑假里,我看见妈妈总是心事重重的,还总是在镜子前照来照去,我知道,妈妈是为自己逐渐变胖的身材而苦恼。暑假以来,妈妈的客户经常请妈妈吃饭,这些东西不知道有多少卡路里呢!唉,可不是嘛,《大长今》过后,妈妈爱上了韩剧,每天晚都要看,而且天天都到10点多钟,早上怎么能早起?妈妈下班晚,根本没有时间去运动,怎样才能让妈妈变瘦呢? 我先让妈妈做健美操,其实就是广播操,妈妈才做了一半,就已经气喘吁吁了,接下来,是转呼啦圈,妈妈接过那个特大号的呼啦圈。只见妈妈踢踢腿,弯弯腰,扭扭脖子,甩甩手,很认真地做着每个动作。一会儿工夫,就见她全身大汗。我赶紧拿来毛巾和水杯,关心地说:“好了好了,今天到此为止。”妈妈擦了擦汗,一下子喝完了整杯水,这才舒了一口气。 一个星期后,妈妈站上台称。她惊喜地喊道:“减了减了,1公斤呢!”“耶!减肥成功!”我欢呼道。 原来只要能坚持,减肥一定也会成功。 6. 今天去吃肯德基了。一进去,我们一家三口立即分了工,爸爸去订餐,我和妈妈去找座位。好不容易找了个座位坐了下来,趁爸爸还没来,我又打量了一下肯得基店堂:大厅很宽敞,桌椅整洁漂亮,设施齐全,四周的墙壁上画满了儿童卡通画和肯得基宣传画,有清凉的饮料、酥焦的薯条、香喷喷的汉堡包、色香味具全的大鸡腿,看着画上的食物,我馋得直流口水。“可以吃了!”随着我的一声欢叫,爸爸端着满满一托盘食物走来了。爸爸给我买了儿童套餐,我往餐盘里一看,哇!儿童套餐原来还送玩具呢!一个小巧玲珑的肯得基小人正在翻油桶,可每次他都运气不好,总是一头栽进桶里去!看着他那滑稽的样子,我不由得“咯咯”地笑出声来!“洋洋,你要是不饿,我们可要全吃了!”妈妈故意逗我,只见她拿起汉堡包大大地咬了一口,我一看急了,左手抓起大鸡腿,右手拿起汉堡包,也啊呜啊呜地吃起来,不一会儿,一套儿童套餐就被我“报销”了! 走出肯德基店门,肯德基的美味还在我嘴里回味。我心中一直在想,其实国外真的有很多好的东西值得我们学习。 7. 今天,因为天气炎热,所以爸爸带我到河边去玩,还带了瓶子装鱼。来到河边,爸爸坐在大树下乘凉,我呢,就在河里玩水呀、捉鱼呀。 忽然,我看见一只虾,还以为是鱼,就迫不急待地正想把它搂了起来,没想到它却跑了。我又去追,好不容易才用手把它围住了,搂到瓶子里,仔细一看,呀,原来是一只虾。这时,我像一个泄了气的皮球,一下子软了。我想:好不容易才把它抓住,还是把它养起来吧!接着,我又捉住几条鱼放在瓶子里,和虾做伴。 我抬着瓶子得意地往前走,不小心踩到石头上的一块青苔。只听“咚”的一声,我像一只落汤鸡,浑身是水。而且瓶子里的鱼和虾也趁此机会跑了,留下一个空瓶子泡在水里。我捡起瓶子闷闷不乐地向岸上走去。真是“偷鸡不成,反失把米”。结果我就这样湿漉漉地回家了。 平时的我,总是在学校,很少和大自然亲密接触,对于大自然的很多东西,我都很陌生,以后有机会我一定多接触接触大自然。 8. 长长的路的尽头是一片满是星星的夜空。 长长的世界的旅程充满太多物质的诱惑。说不清对你承诺的一切还有多少没有实现过。 不愿放开手,不愿让你走,不愿眼睁睁的看你走出我的生活。 ------------CHEER 华丽的冒险 今天早上醒来清晰的记得自己的梦里,有CHEER的脸。整个梦里全是逃命后来LOG站在窗口前拉着我的手,对着我说,没事。跳下去。有我在。你的生命如同我的一样重要。这句话直到我醒来都还在我脑海里挥之不去。我想我肯定是很想念她了。亲爱的,快快回来。 刚刚看完一部短片《寻找黄金时代》是一部王小波先生的记录片吧。其实挺无聊的,整整27分钟不断的在追叙这个作家的过去。我大概感兴趣的内容就是其中有太多的来自于王小波本人的录影和他的作品。说起这个短片的由来有点好玩,今天去了两个书店,在第二家书店的时候,看了一个下午,腰都直掉了。准备走了,工作人员说有碟子可以免费赠送给你。不过是电脑碟,出于贪小便宜的心理,想的反正我家有电脑,就去看了是什么碟。碟到很多最后只淘出来这么一张有兴趣的。说起来也算没有白费我站在那里腰酸背疼的看了一个下午的书。总是有收获的嘛。 9. 暑假已过了一半儿,我的作业早写完了,剩下的日子里,我本想好好玩几天的,可是,家长逼着我学这学那,如果我不情愿,他们就问我是不是骄傲了,然后就莫名其妙的训我一顿,讲一大堆道理,还说是为我好,真不知道他们是怎麽想的。 早上我起床,先洗漱完毕。然后,妈妈连吃早饭的时间都不给我,逼着我写奥数作业,写完就该吃中午饭了,吃完午饭,妈妈也不让我睡午觉,就让我写作文,写完后,我知道该在网上学英语了。学了三四个小时。 吃完饭,出去转一圈,回来就得冲澡,然后爸爸就催我早点睡,迎接新的一天。 哎,一天就这样模模糊糊过去了。晚上,我趴在床前,看着星星自由的眨着眼睛,心想:我今天都干了什麽有意义的事?没有啊!我进入了梦想,我做梦都在写作业。 我期待的暑假不是这样的!是劳逸结合,是很灿烂、很阳光的。并不是像考试前一样,整天挣扎在学海里,在习题中苦苦煎熬,我不要! 也许在家长们的眼里,暑假是学习的黄金时段,而在我们这些小学生眼里,暑假是放松的日子。 爸爸妈妈,请尊重我们,我的暑假,我做主。 10. 暑假的一天,在爸爸、妈妈的陪同下,我走进体育馆的大门,我仿佛置身于一个奇妙无比的世界里:喷水池前,两盆大月季傲然怒放,数百朵小月季环绕簇拥,争气斗艳,真是好一派佳景呵,东边的鲜花白似飘雪,西面的鲜花金黄如金,阳光之下,黄白交映,分外清馨宜人,喷水池傍边,还开满了雅洒脱,多姿华丽的俏月季,枝头低下来,好像一个脸红的少女。还沉静在遐想中我,突然,听见一声“嘟嘟,快过来呀”,我吓了一大跳,原来是妈妈在叫我,我风一样地跑了过去,妈妈给我报了暑假补习班,有奥数、作文和主持人,我开心极了,因为我最喜欢的就是这些,只是报主持人课的老师没有回来,所以没有上,多少有些遗憾。 不管刮风下雨,还是身体有些不舒服,我都坚持上课,说实话,虽然这个暑假比较辛苦,学习任务比较重,但是苦中有乐,在爸爸、妈妈的鼓励和陪同下,在老师们辛勤的培养下,我逐步攀登知识的智慧宝塔,在智慧的世界里散步,饮着智慧仙泉,品尝智慧之果…… 11. 今天我与妈妈去了乡下,我一个人在田间的小路上散步。走着走着,一只正在缓慢爬动的小动物进入了我的眼球。 仔细一瞧,原然是一只小蜗牛。我突发奇想,我想与这只小蜗牛一起散步。于是,我慢慢得走着,生怕这只小蜗牛跟不上。当我走了几步,回头一看,那只小蜗牛竟离我这么远。 我在它后面推了推,可它仍是那样慢慢地爬着。我催它,我唬它,我责备它,蜗牛用抱歉的眼光看着我,彷佛在说:“我已经尽力了!” 蜗牛它虽然爬不快,但是它仍旧爬着。为的就是能到达自己想去的地方,为的就是能完成给自己定下的目标。 我们的目标是什么?我们是怎么样完成这些目标的?蜗牛它靠自己的努力,永不放弃的精神,完成了自己的目标。我们要学习蜗牛的精神,去完成自己的目标! 生活常给人以启示,然而,生活却不会主动把"启示"送上门。生活按照它自己的模样和规律进行着,每个人都有权利从它那里获得启示。它给每个人以机会,而问题在于我们自己能不能从中去发现"启示"。勤于思索的人,在某种意义上,就是在辛勤寻找启示的人------带着悬而未决的问题去找,怀着种种疑团去找。思索生活本身,思索生活中的种种现象,你才会受到生活的馈赠。 12. 在我们的身边,也曾经有一些小事或正在发生:同学们因为作业多而长吁短叹;因为成绩不好而怨天尤人;两名学生为了一个荣誉而争得不可开交;吃饭插队引起众怒…… 这些现象,有的我们曾听说过,有的亲眼见到过,更有的在我们自己身上发生过。面对这些,我可以把它归结于一种原因,即“内心不宁静”。试想,如果我们以宁静的心态去面对每一天,用微笑面对每件事,心中不会再有愤懑与急促,而是坦然与幸福,这正是“不以物喜,不以己悲”的和谐。 售货员收了假币,她吸取了教训;车主们到咖啡厅商议了赔付事宜,佩服对方的理智成了朋友;仇恨的双方相约恳谈,却发现是一场误会…… 我们耐心认真地写了作业,全对;我们努力了,有进步了,便不后悔;大家投了票,虽然只有一个优秀,在我们心中有两个;排好了队,一会子便到了你。 于是,人们见了面都有舒心的微笑,朋友,哪儿都有。一个近乎理想的和谐社会,悄然地建立了起来! 13. 暑假,夏天,红。我喜欢夏天的红,红色象征着火热,阳光下,灿烂的心情仿佛只有红色可以映衬。这个季节,火红、粉红、橘红,不同的颜色,相融在一块布艺上,也为它增添了一份时尚的美感。我喜欢红色,因为我心里总有一团火在燃烧,我热爱生活,热爱身边的每一个人,也总喜欢帮助需要帮助的人。外向且很容易满足的我,经常为自己有了一点点小进步而欣喜万分;会为自己的一个小愿望得到了满足而感激万分;伤心难过也只是几分钟的事。不管在学校还是在家里所有的一切都给我一种暖暖的感觉。对我来说,生活中没有过不去的坎,所以我每天都很快乐,心情像红色的火焰始终在欢乐的跳跃着。 14. 在暑假里,我看了《疯狂的石头》。里面有一段情节深深的映在我的脑海中,至今还记忆犹新。 有一个提着皮箱的人,刚下飞机在路边等车。突然一个人冲过来蒙住他的眼睛,问道:“猜猜我是谁?有三次机会,想好后再回答。”被蒙住眼睛的人说:“先生,我想你大概是认错人了。”“还有两次机会。”被蒙住眼睛的人想:这个声音这么的陌生,他肯定认错人了。被蒙住眼睛的人放下皮箱,与此同时,有一个过来提走皮箱,拦了一辆的士走了。被蒙住眼睛的人说:“先生,你真的认错人了,请你把手拿开。”“好的,我放开,你不能偷看。”放开手的那一瞬间,蒙住他眼睛的人不见了。他正要提皮箱,这时才发现皮箱不见了。 在日常生活中,有时一个很随意的动作,性质居然是大相径庭,一个是为了窃取东西,一个是为了保护幼小的心灵。这使我懂得了:我们的世界并不尽善尽美,正义有时也未必完全理性,邪恶有时也未必不能情有可原。谎言有时会人己,谎言有时也很美丽。 15. 听听新闻,看看报纸,那些耸人听闻的事情并不鲜见。有的贪污官员本来是两袖清风,因为自己的贪念,他们将自己推入了深渊;有的不良少年本来是品学兼优,却也因为经不住花花世界的诱惑,而一步步走向堕落。而他们,本来都不想这样的,只是因为一念之差,因为在一瞬间失去了管束自己的毅力,而断送了自己的前途。 回想我们学过的课文《许仲平义不苟取》,我们也能感觉到,一念之差,对人的影响是巨大的。许仲平“暑中过河阳,渴甚”,面对“道有梨”的诱惑和“众人争取啖(吃)之”的影响,居然能“独危坐树下自若”,仿佛丝毫不为所动。难道他不想在骄阳下吃个梨解解渴吗?难道他不吃也不会难受吗?不,都不是。他可能一次一次的与自己做心理斗争,可能几次想伸手去摘梨却又缩了回来,几次有了这样的“一念”,却没有造成“差错”,只因为“梨无主,吾心独无主乎?” 所以,在错误发生之前,我们就应该管好自己,不让一念之差使自己受伤——多想想“吾心有主”吧! 16. 泰戈尔曾说:“蜜蜂从花中啜蜜,离开时营营道谢。浮夸的蝴蝶却相信花是应该向他道谢的。”当我们与他人是互利关系的时候,双方都应提出感谢。地球无私的为我们提供住所,让我们孤独的心有个家;地球热忱的为我们提供能量,让我们饥饿的胃快乐起来。我们以高速度的发展回报以地球,让那颗付出的心得以收获。 朋友、家人和身后的每一个人都是支持的力量,自信的后盾。他们毫无怨言的用爱温暖着我们成长的心,用行动鼓励着我们稚嫩的心。“谁给我一滴水,我便回报他整个大海。”这是华梅所说的名言。正与中国的老话“滴水之恩,当涌泉相报。”遥相呼应。如果,在你遇到困难的时候,你身后的人伸出援助之手帮你一把,你应该以十倍的感激去帮助他。 你可知道,每一株花每一棵草都是一颗颗稚嫩的心灵。当你残忍的扼杀了这些渴望生存的心灵的时候,你的心难道不在滴血吗?可是如果你拯救了这些心灵,你是否敢到愉悦呢?侵犯他人的生命权,上帝是要惩罚你的! 所以,当你心存感恩的心去拥抱整个世界,当你心存感激的心去报答整个世界的时候,人间真谛就在你的身边。 17. 今天去舅舅家。几年前,我在舅舅家什么都不怕,要吃要玩无拘无束。而现在,他们虽然热情,却少了份纯情,多了份隔阂,客气得把我当成了外人。我也只能正正经经地说话,正正经经地吃饭,正正经经地看电视。突然怀念那没大没小毫无顾忌的大呼小叫,怀念那挑肥拣瘦狼吞虎咽的吃东吃西,更怀念那横七竖八没规没矩地躺在床上不停地更换电视频道……他们让我别拘束,但我儿时的心态却一去不复返了。 我开始感叹童年不再,叹息童年时的天真与单纯不再,叹息拥有时不懂得珍惜……抱着玩具徘徊在儿时曾留下欢笑的地方,呆呆地沉浸在童年的回忆中不愿醒来。 18. 暑假要结束了。有了开始,当然就有结束。开学了,我就又升了一个年级了,初3了,时光飞逝,光阴如梭啊……我们总是要成长,慢慢一步一步地走。又和老师同学在一起了,真好。 开学了,我要学习更多的东西,更多地认识这个世界,更好地认识这个社会,一切既有趣又好玩,但是同时有好多作业,好多看不完的书。但是上学还是很好的,喜欢开学,喜欢在学校和同学们一起学习,一起玩…… 知了也睡了,安静地睡了,忙碌之余,感受这宁静的夏天,这迷人的夏夜,享受快乐而简单的暑假生活,享受着,享受着……回忆着,回忆着……

汽车噪声的检测论文

浅谈市场主流车型的高科技配置 在竞争激烈的中级车市,装载高科技配置似乎已经成了厂家制胜的法宝,车辆的配置清单也变得越来越有看点。但是,这些令人眼花缭乱的高科技配置,是否能够真正满足消费者的需求,驾乘生活带来便利?以下是对目前市场主流中级车的科技配置的点评,希望能给读者一些参考。 即时油耗显示 即时油耗显示是行车电脑提供的附加功能之一,设在仪表板上,多为指针式显示。在行车时,随着油门被踏下、被放松,随时显示车辆每百公里油耗的变化。与剩余行驶里程一样,即时油耗仅是一个参考,并不是实际数据,在行车时关心油耗?那必然会分心去看,也增加了驾车的危险性。即时油耗显示也经常会犯一些低级作用,如下坡时显示为0的错误信息,由此可见其唯一的作用是提醒您,想省油就要轻踩油门。 方向盘换挡拨片 方向盘换挡的实质是手自一体自动变速箱,但将手动换挡的功能集成在方向盘上。在方向盘的左右两侧各设按键或拨片,分别控制加挡和减挡。使用时,需将排挡从“D”模式转为“M”模式。与变速箱的手自一体功能相同,方向盘换挡不过是销售时的噱头。以北京、上海、广州等城市的交通状况,不是夜里回家恐怕难以体验那提速、升挡的爽快,所以其最大作用就是装饰品了。 ECO节油提示 Eco-driving节能系统可以实时监测司机右脚的动作,通过液晶屏显示将驾驶者在节能驾驶方面的信息反馈给驾驶者。这套生态驾驶辅助系统结合了多种功能:可以让连续变速控制系统、引擎动力以及相关的动力配置省油性能得到优化;具有反馈功能的液晶屏,可为司机显示实时路况环境状况,以获得更佳的驾驶操作选择。在国内油价逐年攀升的情况下,Eco-driving可帮助驾驶者不断提高节油驾驶技术,从中体验到更多的省油乐趣。到目前为止,欧洲的车主利用Eco-driving系统已经减少了163,000kg的二氧化碳排放量,这对于环保事业有着莫大的帮助。如今在国内10-15万的车市中,也只有东风悦达起亚福瑞迪采用了这款配置。 ESP电子稳定系统 ESP系统由控制单元及转向传感器、车轮传感器、侧滑传感器、横向加速度传感器等组成。控制单元通过这些传感器的信号对车辆的运行状态进行判断,进而发出控制指令。有ESP与只有ABS及ASR的汽车,它们之间的差别在于ABS及ASR只能被动地作出反应,而ESP则能够探测和分析车况并纠正驾驶的错误,防患于未然。ESP最主要的功能就是通过纵向力适度地调整不平衡,保证汽车能够按照驾驶员的指令进行转向。清华大学汽车工程学院副院长宋健也指出,ESP可以提高汽车极限行驶的性能如转弯、制动、驱动,对防止侧滑、翻车等能够发挥很大的作用。 对于家用中级车的消费者来说,装备实惠实用的配置才是购车的关键。只有像ECO-driving和ESP电子稳定系统能够为驾驶者带来真正的作用的配置,才能在竞争中脱颖而出,赢得消费者的认可。

你好,这里发图片公式数据等比较麻烦。这个希望对你有帮助。 汽车发动机噪声控制技术研究 前言 噪声是工业社会带来的副产品,它与大气污染和水污染一起被认为是当今世界三大公害。与其他两个公害相比,噪声的影响面最广,感觉最直接,人们反映也最多。汽车作为一种主要的交通工具日益普及和增长,因而汽车噪声所造成的环境污染也日益严重。汽车噪声中由于发动机产生的噪声占很大一部分,因此研究发动机噪声产生的机理以及噪声控制的措施在汽车噪声控制中显得尤为重要。 1 发动机噪声控制 直接从发动机机体及其主要附件向空间传出的声音,都属于发动机噪声。发动机噪声随机型、转速、负荷及运行情况等的不同而有差异,如在转速相同的条件下,柴油机的噪声要比汽油机高。按噪声产生的性质,发动机噪声可分为燃烧噪声、机械噪声和空气动力噪声。下面主要介绍各种噪声产生的成因以及一些具体的降噪措施。 燃烧噪音 燃烧噪声产生机理 燃烧噪声是由于气缸内周期变化的气体压力的作用而产生的。它主要取决于燃烧的方式和燃烧的速度。在汽油机中,如果发生爆燃和表面点火等不正常燃烧时,将产生较大的燃烧噪声。柴油机的燃烧噪声是由于燃烧室内气压急剧上升,致使发动机各部件振动而引起的噪声。一般来说,柴油机噪声比汽油机的噪声高得多,因此在这里主要以柴油机为例来说明如何降低燃烧噪声。 燃烧噪声的控制策略 在汽车发动机中,燃烧噪声在总噪声中占有很大比例,研究如何降低其燃烧噪声具有特别重要的意义。目前所研究出的降噪措施主要有: (1)采用隔热活塞以提高燃烧室壁温度,缩短滞燃期,降低空间雾化燃烧系统的直喷式柴油机的燃烧噪声。 (2)提高压缩比和应用废气再循环技术也可降低柴油机的燃烧噪声。但压缩比主要决定了柴油机的机械负荷与热负荷水平。废气再循环技术通过降低气缸最高压力,在抑制NOx产生的同时,也降低了燃烧噪声。 (3)采用双弹簧喷油阀实现预喷。即将原本打算一个循环一次喷完的燃油分两次喷。第一次先喷入其中的小部分,提前在主喷之前就开始进行着火的预反应,这样可减少滞燃期内积聚的可燃混合气数量。这是降低直喷式柴油机燃烧噪声的最有效措施。通过降低双弹簧喷油器初次开启压力和针阀的预升程来抑制空气和燃料混合气的形成,以此对怠速工况的燃烧噪声产生影响。通过设计两段升程装置,采用引燃喷射装置在较大的转速范围及加速情况下来抑制燃烧噪声。 (4)共轨喷油系统是一种很有前途的直喷式轿车柴油机电子控制高压燃油喷射系统,它能减少滞燃期内喷入的燃油量,特别有利于降低燃烧噪声。 (5)采用增压。柴油机增压后进入气缸的空气充量密度、温度和压力增加,从而改善了混合气的着火条件,使着火延迟期缩短。虽然增压柴油机最大爆发压力有所增加,但其压力增长率dp/dφ和压力升高比λ却变小,使柴油机运转平稳,噪声降低。此外,一般来说,涡轮增压柴油机最大额定功率的转速要比同样气缸尺寸的非增压柴油机低,有利于降低燃烧噪声。增压空气中间冷却后,空气温度降低,充气效率得以提高,但同时也削弱了增压对降低燃烧噪声的作用。 (6)燃烧室的选择和设计。对于分开式燃烧室,精确的喷油通道、扩大通道面积、控制喷射方向和预燃室进气涡流半径的优化,均能抑制预混合燃烧,促进扩散燃烧,从而降低由低负荷到高负荷较宽范围的燃烧噪声、燃油消耗和碳烟排放。 对于直喷式燃烧室,可以通过合理设计,使其在保证足够的涡流下具有高紊动能,强化燃料与空气之间的扩散,以此来改善燃烧过程,实现柴油机低油耗、低噪声和低排放。 活塞顶燃烧室结构对燃烧噪声有很大影响。孔口较小、深度较深者,燃烧噪声就小得多,排放也明显较好。再加上缩口形,减噪效果就更趋好转。因此,设计时在变动许可范围内,最好选用缩口并尽可能加深些的ω形燃烧室。 (7)减小供油提前角。供油提前角小,喷油时间延迟,气缸内温度和压力在燃油喷入时较高,燃油一经喷入即雾化,瞬间达到着火点,缩短了滞燃期。最先喷入的燃油爆发燃烧,而后续喷入火焰中的燃油因氧气不足而不会立即燃烧,这样,由于初期燃烧的燃油量少,压力升高率低,可使燃烧噪声减小。大多数柴油机的燃烧噪声随供油提前角的减小而有所降低。 (8)选用十六烷值高的燃料,着火延迟期较短,从而影响在着火延迟期内形成的可燃混合气数量,使压力升高率降低和减小燃烧噪声。 机械噪声 机械噪声是由于运动件之间以及运动件与固定件之间周期性变化的机械运动而产生的,它与激发力的大小、运动件的结构等因素有关。主要有活塞敲击噪声和气门机械噪声。 活塞敲击噪声 发动机运转时,活塞在上、下止点附近受侧向力作用产生一个由一侧向另一侧的横向移动,从而形成活塞对缸壁的强烈敲击,产生了活塞敲击噪声。产生敲击的主要原因是活塞与气缸套之间存在间隙,以及作用在活塞上的气体压力。 降低活塞敲击噪声的措施有: (1)采取活塞销孔偏置,即将活塞销孔适当地朝主推力面偏移1~2mm。 (2)采用在活塞裙部开横向隔热槽,活塞销座镶调节钢件,裙部镶钢筒,采用椭圆锥体裙等方式来减小活塞40℃冷态配缸间隙。 (3)增加缸套的刚度,不仅可以降低活塞的敲击声,也可以降低因活塞与缸壁摩擦而产生的噪声。为了增加缸套的刚度,可采用增加缸套厚度或带加强肋的方法。 (4)改进活塞和气缸壁之间的润滑状况,增加活塞敲击缸壁时的阻尼,也可以减小活塞敲击噪声。例如在D=180mm单缸试验机上,采用专用润滑油喷向气缸壁上供给机油,结果使机体的振动降低6dB(A)。显然,这种措施在实用上是受到限制的。近来,日本丸能源公司研制成功含有陶瓷微粒的新型润滑剂,在气缸金属表面上形成“陶瓷薄膜”,防止金属直接接触。因此在降低摩擦噪声的同时,还可改善润滑性能,节约燃料,提高使用寿命。 传动齿轮噪声 传动齿轮的噪声是齿轮啮合过程中齿与齿之间的撞击和摩擦产生的。在内燃机上,齿轮承载着交变的动负荷,这种动负荷会使轴产生变形,并通过轴在轴承上引起动负荷,轴承的动负荷又传给发动机壳体和齿轮室壳体,使壳体激发出噪声。此外,曲轴的扭转振动也会破坏齿轮的正常啮合而激发出噪声。传动齿轮噪声与齿轮的设计参数和结构型式、加工精度、齿轮材料配对、齿轮室结构以及运转状态有关。 降低传动齿轮噪声的措施有: (1)控制齿轮齿形,提高齿轮加工精度,减小齿轮啮合间隙,即降低齿轮啮合时相互撞击的能量,从而降低齿轮啮合传动噪声。 (2)采用新材料,如高阻尼的工程塑料齿轮,采用工程塑料齿轮代替原钢制齿轮后,整机噪声降低约(A)左右,效果明显。 (3)合理布置齿轮传动系位置,如将正时齿轮布置在飞轮端,可有效减少曲轴系扭振对齿轮振动的影响。 (4)采用正时齿形同步带传动代替正时齿轮转动,可明显降低噪声。 降低配气机构噪声 内燃机大都采用凸轮、气门配气机构,机构中包括凸轮轴、挺柱、推杆、摇臂、气门等零件。配气机构中零件多、刚度差,在运动中易于激起振动和噪声,包括气门和气门座的撞击,由气门间隙引起的传动撞击,挺柱和凸轮工作面之间的摩擦振动,高速时气门不规则运动引起的噪声。配气机构噪声与气门机构的型式、气门间隙、气门落座速度、材料、凸轮型线、凸轮和挺柱的润滑状态、内燃机的转速等因素有关。 降低配气机构噪声的措施主要有: (1)良好的润滑能减少摩擦,降低摩擦噪声。推荐怠速时凸轮与挺柱间的最小油膜厚度2Lm,1000r/min时最小油膜厚度为3Lm。凸轮转速越高,油膜越厚。所以内燃机高速运转时,配气机构的摩擦振动和噪声就不突出了。 (2)减少气门间隙可减少摇臂与气门之间的撞击,但不能使气门间隙太小。采用液力挺柱可以从根本上消除气门间隙,降低噪声。近年来还出现了气门液压驱动系统,其噪声更低。 (3)缩短推杆长度是减轻系统重量、提高刚度的有效措施,顶置式凸轮轴取消了推杆,对减少噪声特别有利。 空气动力噪声 由于气体扰动以及气体和其他物体相互作用而产生的噪声称为空气动力噪声,在发动机中,它包括进气噪声、排气噪声和风扇噪声。 进气噪声 发动机工作时,高速气流经空气滤清器、进气管、气门进入气缸、在此气流流动过程中会产生一种强烈的空气动力噪声,有时比发动机本身噪声高出5 dB(A)左右,成为仅次于排气噪声的主要噪声源。该噪声随着发动机转速的提高而增强,与负荷的变化无关,其成分主要包括:周期性压力脉动噪声、涡流噪声、气缸的玄姆霍兹共振噪声和进气管的气柱共振噪声。 进气噪声的控制策略主要是: (1)合理的设计和选用空气滤清器。合理设计进气管道和气缸盖进气通道,减少进气系统内压力脉动的强度和气门通道处的涡流强度。 (2)引进消声措施。 排气噪声 排气噪声主要在排气开始时,废气以脉冲形式从排气门缝隙排出,并迅速从排气口冲入大气,形成能量很高、频率很复杂的噪声,包括基频及其高次谐波的成分。该噪声是汽车及发动机中能量最大最主要的噪声源,它的噪声往往比发动机整机噪声高10dB(A)~15dB(A)。除基频噪声及其高次谐波噪声外,排气噪声还包括排气总管和排气歧管中存在的气柱共振噪声、气门杆背部的涡流噪声、排气系统管道内壁面的紊流噪声等,此外,排气噪声还包括废气喷射和冲击噪声。排气噪声的控制策略主要是: (1)从排气系统的设计方面入手,如合理设计排气管的长度与形状,以避免气流产生共振和减少涡流。 (2)废气涡轮增压器的应用可降低排气噪声,但最有效的方法还是采用高消声技术,使用低功率损耗和宽消声频率范围的排气消声器。 风扇噪声 风扇噪声是发动机中不可忽视的噪声源,尤其风冷发动机更为突出,在高速全负荷时甚至和进排气噪声不相上下。它主要是空气动力噪声,由旋转噪声和涡流声所组成。旋转噪声是由旋转叶片周期性地打击空气质点,引起空气的压力脉动所产生的。涡流噪声是由于风扇旋转时使周围的空气产生涡流,这些涡流又因粘滞力的作用分裂成一系列独立的小涡流,这些涡流和涡流的分裂会使空气发生扰动,形成压力波动,从而激发出的噪声,涡流噪声一般是宽频带噪声。 发动机的风扇噪声在低速运转时涡流噪声占优势,高速时旋转噪声占优势,风扇的转速越高,直径越大,风扇的扇风量就越大,其噪声也越高;风扇的效率越低,消耗功率越大,风扇噪声越大。 风扇噪声的控制策略主要是: (1)适当控制风扇转速,风扇噪声随转速的增长远比其他噪声大。在冷却要求已定的条件下,为降低转速,可在结构尺寸允许的范围内,适当加大风扇直径或者增加叶片数目;充分运用流体力学理论设计高效率的风扇,就可能在保证冷却风量和风压的前提下降低转速。 (2)采用叶片不均匀分布的风扇,叶片均匀分布往往会产生一些声压级很高的有调节器成分。当叶片不均匀布置后,一般可降低风扇中那些突出的线状频谱成分,使噪声频谱较为平滑。 (3)用塑料风扇代替钢板风扇,能达到降低噪声和减少风扇消耗功率的效果,但目前成本还稍高于钢板风扇。国外中小功率内燃机已普遍采用塑料风扇。还可采用一种安装角可以变化的“柔性风扇”,这种风扇叶片用很薄的钢板或塑料制造,当风扇转速提高后,由于空气动力的作用,叶片扭转变平(安装角变小),于是风扇消耗功率和噪声都减小;转速降低时,由于空气动力作用小,叶片的扭转变小,保证了足够的风量。 (4)在车用内燃机上采用风扇自动离合器,试验表明,在汽车行驶中,需要风扇工作的时间一般不到10%。因此,装用风扇离合器不仅可使内燃机经常处在适宜温度下工作和减少功率消耗,同时还能达到降噪的效果。 (5)风扇和散热器系统的合理设计。诸如发动机和风扇的距离、风扇与散热器的距离、风扇和风扇护罩的位置及护罩的形状、空气通过散热器的阻力等都会对冷却风量的充分利用产生影响。合理布置和设计都有可能达到降低风扇转速的目的。 2 结束语 综上所述,影响汽车发动机噪声的因素多种多样,单靠采用某一种降噪方法很难大幅度地把噪声降低下来,要降低汽车发动机噪声,应从发动机噪声的噪声源、传播途径等方面入手,明确降噪的对象和目标,通过综合考虑,采取各种技术手段,在一定程度上可有效地控制和降低燃烧噪声、机械噪声和空气动力噪声,达到降低汽车发动机噪声的目的。

[1]张军 谌勇 张志谊 华宏星.卫星随机试验的振动响应分析[J].机械强度,2006,28(1):16~[2]陈杰 沈荣瀛 华宏星 罗建平.通风机叶片振动安全性分析[J].核动力工程,2006,27(5):84~[3]金谷 谌勇 华宏星.加筋靶板受到球形弹丸侵彻时的速度经验公式探讨[J].噪声与振动控制,2006,26(4):45~[4]童宗鹏 王俊峰 尚国清 华宏星.舱筏结构动态特性的理论与试验研究[J].噪声与振动控制,2006,26(4):29~[5]梁启明 张军 华宏星 张志谊.整星隔振器动态特性的测试[J].噪声与振动控制,2006,26(2):83~[6]樊江玲 张志谊 华宏星.几种模态参数盲辨识方法的比较研究[J].振动与冲击,2006,25(5):153~[7]张丹才 章艺 童宗鹏 华宏星.舵翼结构对水下航行器尾部振动声辐射的影响[J].振动与冲击,2006,25(5):102~[8]张军 谌勇 华宏星 张志谊.卫星减振的试验研究[J].应用力学学报,2006,23(1):76~[9]章艺 童宗鹏 张志谊 华宏星.充液压电阻尼圆柱壳的有限元建模[J].振动工程学报,2006,19(1):24~[10]江国和 沈荣瀛 华宏星 吴广明.舰船机械设备冲击隔离技术研究进展[J].船舶力学,2006,10(1):135~[11]童宗鹏 章艺 沈荣瀛 华宏星.基于频响函数灵敏度分析的舰艇模型修正[J].上海交通大学学报,2005,39(11):1847~[12]李玩幽 张志谊 华宏星.利用载荷识别技术诊断柴油机熄火故障[J].上海交通大学学报,2005,39(2):186~[13]续秀忠 章艺 童宗鹏 华宏星.子空间辨识方法在主动约束层阻尼筒形结构建模中的应用[J].煤炭学报,2005,30(6):809~[14]张军 谌勇 张志谊 华宏星.整星隔振器的隔振性能分析[J].宇航学报,2005,26(B10):110~[15]续秀忠 张志谊 华宏星.基于时频滤波和自回归建模方法的时变模态参数辨识[J].上海海事大学学报:文理综合版,2005,26(4):1~[16]章艺 张丹才 杨文清 华宏星.基于系统模态的作动器优化配置[J].噪声与振动控制,2005,25(6):8~[17]张军 梁启明 谌勇 张志谊 华宏星.整星隔振防摇装置的研究[J].噪声与振动控制,2005,25(2):29~[18]童宗鹏 王国治 张志谊 华宏星.水下航行器声振特性的统计能量法研究[J].噪声与振动控制,2005,25(1):29~[19]张军 韦凌云 谌勇 华宏星.整星隔振系统优化设计研究[J].机械科学与技术(西安),2005,24(10):1184~[20]童宗鹏 章艺 尚国清 华宏星.舱筏隔振系统水下振动特性的理论分析与试验研究[J].振动与冲击,2005,24(6):71~[21]张军 谌勇 张志谊 华宏星.一种整星隔振器的研制[J].振动与冲击,2005,24(5):35~[22]吴广明 沈荣瀛 韦凌云 华宏星.复杂弹性耦合隔振系统建模及其优化设计[J].振动与冲击,2005,24(4):69~[23]吴广明 沈荣瀛 李俊 华宏星.多层隔振系统的动力学模型[J].振动与冲击,2005,24(2):16~[24]汪玉 周璞 刘东岳 华宏星 沈荣瀛.考虑流固耦合作用的舰船抗冲击仿真计算[J].振动与冲击,2005,24(1):73~[25]吴广明 沈荣瀛 华宏星.复杂弹性耦合隔振系统振动建模研究[J].振动工程学报,2005,18(1):47~[26]李玩幽 蔡振雄 王芝秋 华宏星.柴油机曲轴裂纹的扭振动态诊断技术[J].上海交通大学学报,2004,38(11):1928~[27]徐张明 沈荣瀛 华宏星.基于能量变分形式的频响系统的设计灵敏度分析[J].机械强度,2004,26(5):489~[28]李玩幽 张文平 华宏星 沈铭玉.利用扭振波形参数诊断柴油机单缸熄火故障试验研究[J].噪声与振动控制,2004,24(4):8~[29]林道福 余永丰 华宏星.带限位器的浮筏隔振系统的冲击响应分析[J].噪声与振动控制,2004,24(1):6~[30]樊江玲 张志谊 华宏星.从响应信号辨识斜拉桥模型的模态参数[J].振动与冲击,2004,23(4):91~[31]李俊 沈荣瀛 华宏星.非对称Bernoulli-Euler薄壁梁的弯扭耦合振动[J].工程力学,2004,21(4):91~[32]张志谊 胡芳 樊江玲 华宏星.基于系统输出的时变特征参数辨识[J].振动工程学报,2004,17(2):214~[33]吴广明 沈荣瀛 华宏星.模态机械阻抗综合法及其在柔性隔振系统中的应用[J].船舶力学,2004,8(6):135~[34]邹春平 陈瑞石 华宏星.船舶水下辐射噪声特性研究[J].船舶力学,2004,8(1):113~[35]汪玉 胡刚义 华宏星 沈荣瀛 陈国钧.带限位器的船舶设备非线性冲击响应分析[J].中国造船,2003,44(2):39~[36]邹春平 陈端石 华宏星.船舶结构振动模态综合法[J].上海交通大学学报,2003,37(8):1213~[37]续秀忠 李中付 华宏星 陈兆能.非平稳环境激励下线性结构在线模态参数辨识[J].上海交通大学学报,2003,37(1):118~[38]续秀忠 张志谊 华宏星 陈兆能.结构时变模态参数辨识的时频分析方法[J].上海交通大学学报,2003,37(1):122~[39]李俊 沈荣瀛 华宏星.轴向受载的Bernoulli—Euler薄壁梁的弯扭耦合动力响应[J].强度与环境,2003,30(3):12~[40]刘天雄 华宏星 等.结构动力模型一体化降价技术[J].强度与环境,2003,30(1):31~[41]李俊 沈荣瀛 华宏星.考虑翘曲影响的Bernoulli-Euler薄壁梁的弯扭耦合振动[J].机械强度,2003,25(5):486~[42]严莉 张志谊 蒋伟康 华宏星.汽车电机噪声在线检测技术的研究[J].汽车工程,2003,25(3):269~[43]李玩幽 刘妍 蔡振雄 华宏星.多功能电子式扭振标定器的研制[J].内燃机工程,2003,24(5):82~[44]续秀忠 张志谊 华宏星 陈兆能.应用时变参数建模方法辨识时变模态参数[J].航空学报,2003,24(3):230~[45]周璞 许庆新 华宏星.舰船设备冲击动力响应在不同边界条件下的比较[J].噪声与振动控制,2003,23(4):19~[46]陈兆能 续秀忠 张志谊 华宏星.应用时频分析方法辨识时变系统的模态参数[J].振动工程学报,2003,16(3):358~[47]刘天雄 华宏星 等.主动约束层阻尼板结构动力学建模研究[J].高技术通讯,2003,13(3):42~[48]邹春平 陈端石 华宏星.船舶结构振动特性研究[J].船舶力学,2003,7(2):102~[49]刘天雄 华宏星 等.约束层阻尼板的有限元建模研究[J].机械工程学报,2002,38(4):108~[50]刘天雄 华宏星 等.粘弹材料在粘生板建模中的应用研究[J].航空学报,2002,23(2):143~[51]续秀忠 华宏星 等.结构模态参数辨识的时频分析方法[J].噪声与振动控制,2002,22(5):3~[52]刘天雄 华宏星 等.自回归谱的分形特性在状态监测中的应用研究[J].振动.测试与诊断,2002,22(1):61~[53]续秀忠 华宏星 等.基于环境激励的模态参数辨识方法综述[J].振动与冲击,2002,21(3):1~[54]续秀忠 华宏星 等.应用时频表示进行结构时变模态频率辨识[J].振动与冲击,2002,21(2):36~[55]张志谊 华宏星.高速电梯振动控制的理论及实验研究[J].振动与冲击,2002,21(2):68~[56]刘天雄 华宏星 等.约束层阻尼夹芯板动态特性分析[J].工程力学,2002,19(6):98~[57]石银明 华宏星 等.主动约束层阻尼梁的数值模型[J].计算力学学报,2002,19(1):99~[58]华宏星 刘天雄 等.主动约束层阻尼悬臂梁的有限元分析及实验研究[J].振动工程学报,2002,15(4):383~[59]徐张明 华宏星 等.夹层充液的双层加肋壳体的振动模态分析[J].噪声与振动控制,2001,21(4):4~[60]李中付 华宏星 等.用时域峰值法计算频率和阻尼[J].振动与冲击,2001,20(3):5~[61]石银明 华宏星 等.线性粘弹结构有限元模型的鲁棒降阶方法[J].振动与冲击,2001,20(1):16~[62]李中付 华宏星 等.微振动力学系统模型构造微分方程系数矩阵方法[J].振动与冲击,2001,20(1):48~[63]石银明 华宏星 等.粘弹性材料的微振子模型研究[J].振动工程学报,2001,14(1):100~[64]石银明 华宏星.约束层阻尼梁的有限元分析[J].上海交通大学学报,2000,34(9):1289~[65]石银明 华宏星.主动约束层阻尼悬臂梁的有限元建模[J].压电与声光,2000,22(6):426~[66]华宏星 陈小琳.运用神经网络识别复合材料板刚度[J].复合材料学报,2000,17(1):108~[67]周海亭 华宏星.利用实验获得的加速度计算系统的冲击响应[J].噪声与振动控制,2000,(6):14~[68]韩志毅 华宏星.利用频响函数相关准则修正双层隔振系统模型[J].噪声与振动控制,2000,(3):2~[69]石银明 华宏星.压电智能结构的一种建模方法[J].压电与声光,1999,21(6):498~[70]瞿祖清 华宏星.一种频响函数灵敏度分析方法[J].机械强度,1999,21(2):95~[71]华宏星 瞿祖清.粘性阻尼系统频响函数计算方法[J].工程力学,1999,16(4):126~[72]瞿祖清 华宏星.基于逆迭代法的结构动力缩聚技术[J].计算力学学报,1999,16(2):227~[73]瞿祖清 华宏星.一种有限元模型动力缩聚移频迭代法[J].应用力学学报,1999,16(2):61~[74]华宏星 林莉.浮筏系统频率响应灵敏度分析[J].中国造船,1999,(3):92~[75]华宏星 沈荣瀛.国际著名振动和声软件系列介绍之一LMS声学软件SYSNOISE[J].噪声与振动控制,1999,(1):44~[76]瞿祖清 华宏星.一种有限元模型坐标动力缩聚技术[J].振动与冲击,1998,17(3):15~[77]华宏星 Sol,H.利用振动数据识别极坐标各向异性圆板动刚度[J].复合材料学报,1998,15(2):113~[78]瞿祖清 华宏星.一种粘性阻尼系统频域响应灵敏度计算方法[J].振动工程学报,1998,11(4):457~[79]华宏星 傅志方.有限元模型修正中的BAYES方法的几点讨论[J].振动工程学报,1998,11(1):110~[80]瞿祖清 华宏星.浮筏隔振装置的超单元建模方法[J].中国造船,1998,(4):81~[81]宋汉文 华宏星.钢管锯切噪声声源分析[J].噪声与振动控制,1998,(1):14~[82]华宏星 傅志方.模糊数学在有限元模型修正中的应用[J].振动工程学报,1997,10(4):434~[83]华宏星 Sol,H.模态分析和有限元分析相结合识别材料结构刚度[J].应用力学学报,1996,13(3):45~[84]华宏星 韩祖舜.有限元模型动力修正中的不同优化方法之比较[J].噪声与振动控制,1996,(3):9~

齿轮误差检测论文

1)、齿轮单项几何形状误差测量技术 它采用坐标式几何解析测量法,将齿轮作为一个具有复杂形状的几何实体,在所建立的测量坐标系(直角坐标系、极坐标系或圆柱坐标系)上,按照设计几何参数对齿轮齿面的几何形状偏差进行测量。测量方式主要有两种:离散坐标点测量方式和连续几何轨迹点扫描(如展成)测量方式。所测得的齿轮误差是被测齿轮齿面上被测点的实际位置坐标(实际轨迹或形状)和按设计参数所建立的理想齿轮齿面上相应点的理论位置坐标(理论轨迹或形状)之间的差异,通常也就是和几何坐标式齿轮测量仪器对应测量运动所形成的测量轨迹之间的差异。测量的误差项目是齿轮的单项几何偏差,以齿廓、齿向和齿距等三项基本偏差为主。由于坐标测量技术、传感器技术、计算机技术的发展,尤其是数据处理软件功能的增强,三维齿面形貌偏差、分解齿轮单项几何偏差和频谱分析等误差项目的测量得到了推广。单项几何偏差测量的优点是便于对齿轮(尤其是首件)加工质量进行分析和诊断、对机床加工工艺参数进行再调整;仪器可借助于样板进行校正,实现基准的传递。 2)、齿轮综合误差测量技术 它采用啮合滚动式综合测量法,把齿轮作为一个回转运动的传动元件,在理论安装中心距下,和测量齿轮啮合滚动,测量其综合偏差。综合测量又分为齿轮单面啮合测量,用以检测齿轮的切向综合偏差和单齿切向综合偏差;以及齿轮双面啮合测量,用以检测齿轮的径向综合偏差和单齿径向综合偏差。为了更有效地发挥齿轮双面啮合测量技术的质量监控作用,增加了偏差的频谱分析测量项目;还从径向综合偏差中分解出径向综合螺旋角偏差和径向综合齿向锥度偏差。这是齿轮径向综合测量技术中的一个新发展。综合运动偏差测量的优点是测量速度快,适合批量产品的质量终检,便于对齿轮加工工艺过程进行及时监控。仪器可借助于标准元件(如标准齿轮)进行校验,实现基准的传递。上述两项测量技术基于传统的齿轮精度理论,然而随着对齿轮质量检测要求的不断增加和提高,这些传统的齿轮测量技术也在不断细化、丰富、更新、提高。 3)、齿轮整体误差测量技术 它所基于的齿轮整体误差理论,是由我国机床工具行业、尤其是成都工具研究所的科研技术人员共同努力创建和不断完善的一种新型齿轮测量理论。把齿轮作为一个用于实现传动功能的几何实体,或采用坐标式几何解析法对其单项几何精度进行测量,并按齿轮啮合传动顺序和位置,集成为一条“静态”齿轮整体误差曲线;或按单面啮合综合测量方式,使用特殊测量齿轮,采用滚动点扫描测量法对其进行测量,得到齿轮“运动”整体误差曲线。上述两种齿轮整体误差曲线,经过运算和数据处理,都可以得到齿轮综合运动偏差、各单项几何偏差、三维齿面形貌偏差,以及接触区状态,从而能更全面、准确的评定齿轮质量和齿轮加工工艺的分析和诊断。齿轮整体误差测量技术是对传统齿轮测量技术的继承和发展。尤其是采用单面啮合、滚动点扫描测量的齿轮整体误差测量技术更具有测量信息丰富、测量速度快、测量精度更接近使用状态的特点,特别适合批量产品齿轮精度的检测与质量的控制。在汽车齿轮要求100%全部检测的态势下,这种由我国首先开发出来的齿轮整体误差测量技术得到了重视和推广,其中,成都工具研究所开发的锥齿轮整体误差测量技术曾于90年代转让给德国KLINGELNBERG公司。德国FRENCO公司推向市场的齿轮单面啮合滚动点扫描测量仪器,采用了完全类同的技术。 当前齿轮制造业的一个发展趋势,是将齿轮测量技术和齿轮设计、加工制造进行集成,实现齿轮制造信息的融合及CAD/CAM/CAT的集成,从而构建一个先进的齿轮闭环制造系统(由于通常由数字化信息来实现,可称为数字化闭环制造系统)。美国GLEASON和德国KLINGELNBERG开发的锥齿轮闭环制造技术和系统是个典型实例。 此外,在仪器测量形态和检测系统方面,现代齿轮测量技术还有如下的进展。 4)、齿轮在机测量技术 该技术有了较快的发展,是一个重要发展趋势。直接将齿轮测量装置集成于齿轮加工机床,齿轮试切或加工后不用拆卸,立即在机床上进行在机测量,根据测量结果对机床(或滚轮)参数及时调整修正(主要针对磨齿)。这对于成形磨齿加工和大齿轮磨齿加工而言,在提高生产效率、降低成本方面,尤其具有重要意义。德国KAPP厂的数控磨齿机就是一个典型代表。CNC齿轮加工机床的迅速发展,为推动齿轮在机测量技术的应用和发展提供了可靠的工作平台。 由于对大批量生产的汽车轿车齿轮质量要求的提高,齿轮在线测量分选技术的应用已是必不可少。上海汽车齿轮厂首次从美国ITW公司引进了该项技术和相应仪器装备,取得了预期效果,据称还将陆续购进该类检测仪器。 5)、齿轮激光测量技术 通常是指在齿轮的几何尺寸和形状位置精度的测量中,采用了激光技术,包括采用激光测长系统(如采用双频激光干涉仪作为齿轮测量仪器的长度基准或传感器)、激光测量头系统(如采用非接触点反射式激光测量头作为齿轮误差的检测传感器)、以及激光全息式齿轮测量系统(如采用激光全息技术对齿轮的齿面几何形状误差进行测量的系统)等。由于激光是长度溯源基准,不少高精度齿轮计量系统或齿轮测量基准仪器,采用激光测量系统作为其长度坐标测量系统。美国FELLOWS厂70年代开发的MICROLOG60就是一个实例。加拿大温莎精密测量仪器厂在80年代初生产的齿轮测量仪器就采用了非接触点反射式激光测量头,可用于测量塑料制成的软齿面齿轮。齿轮激光测量技术在日本倍受重视,并逐步完善成为产品推向市场。日本AMTEC公司的G3齿轮测量系统,采用的是CONO激光测量头,齿轮回转,测头位置相应变化,测出齿轮的截面形状。大阪精机开发的激光齿轮测量仪,采用激光全息技术,用光干涉法对被测齿轮的全齿面形状进行精度测量。

齿轮是依靠齿的啮合传递扭矩的轮状机械零件,通过与其它齿状机械零件传动,可实现改变转速与扭矩、改变运动方向和改变运动形式等功能。由于传动效率高、传动比准确、功率范围大等优点,齿轮机构在工业中广泛使用,其设计与制造水平直接影响到工业设备的质量。下面简单介绍下高精度齿轮的制造工艺误差的产生原因和解决方案:一、齿轮切削工艺步骤(1)齿坯的制作由于齿轮的传动精度主要决定于齿形精度和齿距分布均匀性,而这与切齿时采用的定位基准(孔和端面)的精度有着直接的关系,所以这个阶段主要是为下一阶段齿形准备精基准,使齿的内孔和端面的精度基本达到规定的技术要求。(2)齿形的切削在这个阶段中切削出能满足齿形的最后精工所要求的齿形精度,所以这个阶段是保证齿轮精度的关键阶段,应予以特别注意。(3)齿轮的热处理阶段在这个阶段中主要对齿面的淬火处理,修正齿轮经过淬火后所引起的齿形变形,进一步提高齿形精度和降低表面粗糙度,使之达到最终的精度要求。二、常见的齿轮误差分析(1)齿圈径向跳动误差齿圈径向跳动是指在齿轮一转范围内,轮齿齿圈相对于轴中心线的偏心,这种偏心是由于在安装零件时,零件的两中心孔与操作台的回转中心安装不重合或偏差太大而引起。或因顶尖和顶尖孔制造不良,使定位面接触不好造成偏心,所以齿圈径跳主要应从以上原因分析解决。(2)公法线长度误差公法线长度变动是反映齿轮牙齿分布不均匀的最大误差,这个误差主要是滚齿机操作台蜗轮副回转精度不均匀造成的,还有滚齿机操作台圆形导轨磨损、分度蜗轮与操作台圆形导轨不同轴造成,再者分齿挂轮齿面有严重磕碰或挂轮时咬合太松或太紧也会影响公法线变动超差。(3)齿形误差分析齿形误差是指在齿形切削部分内,包容实际齿形廓线的两理想齿形(渐开线)廓线间的法向距离。在实际切削过程中不可能获得完全正确的渐开线齿形,总是存在各种误差,从而影响传动的平稳性。齿形误差主要是滚刀齿形误差决定的,滚刀刃磨质量不好很容易出现齿形误差。(4)齿向误差分析齿向误差的主要原因是机床、刀架的垂直进给方向与零件轴线有偏移,或上尾座顶尖中心与操作台回转中心不一致,还有滚切斜齿轮时,差动挂轮计算误差大,差动传动链齿轮制造和调整误差太大。(5)齿面粗糙度分析齿面粗糙度不好一般有几种现象:发纹、啃齿、鱼磷、撕裂。引起齿面粗糙度差的主要原因有以下几方面:机床、刀具、工件系统整体刚性不足、间隙大;滚刀和工件相对位置发生变化;滚刀刃磨不当、零件材质不均匀;切削参数选择不合适等。三、齿轮切削误差工艺改进(1)定位基准的确定定位基准的精度对齿形精度有直接的影响。轴类齿轮的齿形一般选择顶尖孔定位,某些大模数的轴类齿轮多选择齿轮轴颈和一端面定位。(2)齿端的工艺齿轮的齿端有倒圆、倒尖、倒棱和去毛刺等,倒圆、倒尖后的齿轮,沿轴向滑动时容易进入啮合。倒棱可去除齿端的锐边,这些锐边经渗碳淬火后很脆,在齿轮传动中易崩裂。(3)精基准修正齿轮淬火后基准孔产生变形,为保证齿形精加工质量对基准孔必须给予修正。对外径定心的花键孔齿轮,通常用花键推刀修正,采用加长推刀前引导来防止歪斜。四、精密齿轮切削油的选用(1)硅钢是比较容易切削的材料,一般为了工件成品的易清洗性,在防止毛刺产生的前提下会选用低粘度的齿轮切削油。(2)碳钢在选用齿轮切削油时应根据难易及脱脂条件来决定较佳粘度。(3)镀锌钢因为和氯系添加剂会发生化学反应,所以在选用齿轮切削油时应注意可能发生白锈的问题,而使用硫型专用齿轮切削油可以避免生锈问题,但加工后应尽早脱脂。(4)不锈钢一般使用含有硫氯复合型添加剂的齿轮切削油,在保证极压性能的同时,避免工件出现毛刺、破裂等问题。

浅谈齿轮强度设计几个问题的探讨论文

0 引言

齿轮传动是机械传动中最重要的传动之一。公元前300 多年,古希腊哲学家亚里士多德在《机械问题》中,就阐述了用青铜或铸铁齿轮传递旋转运动的问题。17 世纪末到18 世纪初,人们开始对齿轮的强度问题进行研究。欧洲工业革命以后,齿轮技术得到高速发展,齿轮传动在机械传动及整个机械领域中的应用极其广泛。齿轮设计成为机械设计中重要的设计内容之一。目前国际上比较常见的有关齿轮强度设计公式,除了我国的国家标准( GB) 有关齿轮强度的计算方法以外主要有: 国际标准化组织( ISO) 计算方法; 美国齿轮制造商协会( AGMA) 标准计算方法;德国工业标准( DIN) 计算方法; 日本齿轮工业会( JGMA)计算方法; 英国BS 计算方法等。作者在从事机械设计特别对齿轮设计的教学中,发现不少地方的知识点描述比较简单,不容易理解,为此,在文中对齿轮设计的几个问题如齿轮的失效方式、齿轮强度设计的历史、现状进行了深入分析,探讨我国齿轮强度设计的历史来源以及在齿轮设计中的一些困惑。通过深入的分析,有助于大家更好地理解齿轮设计公式的意义和来龙去脉。

1 齿轮失效方式的探讨

齿轮在传动过程中会出现各种形式的失效,甚至丧失传动能力。齿轮传动的失效方式与齿轮的材料、热处理方式、润滑条件、载荷大小、载荷变化规律以及转动速度等有关。人们对齿轮失效的认识是一个发展的过程。18 世纪中叶人们就开始对齿轮的失效进行研究。对齿轮摩擦磨损、点蚀形成和齿面胶合有了初步的认识。1928 年,白金汉发表了有关齿轮磨损的论文,并将齿面失效分为点蚀、磨粒磨损、胶合、剥落、擦伤和咬死等6 种失效形式。1939 年,Rideout 将齿轮损伤分为正常磨损、点蚀、剥落、胶合、擦伤、切伤、滚轧和锤击等8 种形式。1953 年Borsoff 和Sorem 将齿轮损伤分为6 类。1967 年尼曼根据大量试验,对渐开线齿轮的4 种失效形式画出了承载能力的限制关系图,并指出当齿轮转速较低时,影响软齿面齿轮承载能力的主要因素是点蚀,影响硬齿面齿轮承载能力的是断齿; 而对于高速重载传动齿轮,影响因素往往是胶合。自上世纪50 年代以来,一些国家以标准的形式对齿轮损伤形式进行分类,对名词术语、表现特征、引发原因等都有规定。如1951 年美国将齿轮损伤分为两大类,一类是齿面损坏,包括磨损、塑性变形、胶合、表面疲劳等,另一类是轮齿的折断。前一大类齿面损坏是齿轮作为高副由于摩擦学原因而引起的表面损伤; 后一大类轮齿的折断是轮齿作为受力构件由于体积强度不够而发生的破坏。1968 年奥地利国家标准规定了齿轮损伤的名词术语。

1983 年,我国颁布了齿轮轮齿损伤的术语、特征和原因国家标准( GB /T3481 - 83) ,将齿轮损伤形式分为5 大类,即磨损、齿面疲劳( 包括点蚀和剥落) 、塑性变形、轮齿折断和其他损伤,共26 种失效形式。1997 年,我国颁布了对GB/T3481 - 1983 修订的GB/T3481 -1997 国家标准。目前我国在大多数的机械设计教材和机械设计手册中齿轮失效方式都进行了简化,一般分为5 大类,即轮齿折断、齿面疲劳点蚀、齿面胶合、齿面磨损和塑性变形。

2 齿轮强度设计的探讨

2. 1 轮齿弯曲强度计算

1785 年,英国瓦特提出了齿根弯曲强度的计算方法,把轮齿看成为矩形截面的板状悬臂梁,随后出现多种弯曲强度计算公式。1893年,路易斯发表了轮齿弯曲强度计算式,而且用内切抛物线法找齿轮的危险截面,这一方法称为“抛物线法”[12],如图1 所示。路易斯以载荷作用于齿顶推导出齿根弯曲应力公式,但是对于重合度大于1 小于2 的齿轮传动,理论上只有当单对齿啮合时,载荷才全部由一个齿承受。对于重合度大于2 小于3 的足够精密的齿轮,因为同时有2 对以上的齿轮在啮合,其最大弯曲应力的作用点要低。

在此之后,又出现30°切线法、尼曼法、白金汉法等。1980 年, ISO 提出“渐开线圆柱齿轮承载能力的基本原理”( ISO 6336 - 1980) ,公布了轮齿弯曲强度、齿面接触强度的计算方法。

过去,我国的齿轮强度计算方法一直比较混乱,没有统一的标准,对生产、科研以及教学带来诸多问题。于是, 1981 年我国成立了“渐开线圆柱齿轮承载能力计算方法”国家标准课题组,以ISO6336—1980为根据,开展全面的研究工作。1983 年颁布了渐开线圆柱齿轮承载能力计算方法的国家标准( GB /T3480—1983) 。

目前,我国有关齿轮弯曲强度的设计公式基本上采用30° 切线法,即作与轮齿对称中心线成30°夹角并与齿根圆角相切的斜线,两切点的连线是齿根危险截面位置。而且以单对齿啮合区的最高点作为最不利载荷作用点,这时产生的弯曲应力最大,如图2 所示。另外,弯曲疲劳强度计算公式中,齿形系数在许多机械设计中只是说明与齿数有关,与模数无关,并未做详细说明,不容易理解。下面对相关问题进行详细分析。如图2 所示,齿根弯曲应力为σF =MW= FnhFcosαFbS2F /6 = 6KFthFcosαFbS2Fcosα= KFtbm6( hFm) cosαF( SFm)2cosα( 1)式中,αF为齿顶圆压力角。令式( 1) 中的YF =6( hFm) cos αF( SFm)2cos α式中,YF称为齿形系数,由路易斯在其轮齿弯曲强度计算式中首次引用。可以看出,YF是与齿轮形状的几何参数有关的一个系数。因为,根据齿轮形成原理,齿数的变化将引起轮齿上hF、SF、aF等参数的变化,由于hF、SF、aF均与齿轮模数成正比,致使齿形系数中的模数可以约去。因此,齿形系数不受模数的影响,而只与齿数有关,齿数越多YF越小,反之YF越大。这就是在机械设计的教材中经常会看到“标准齿轮的齿形系数只与齿数有关而与模数无关”的原因。

2. 2 齿轮压应力对弯曲应力的影响

根据30°切线法及齿轮受力分析。将法向力Fn移至轮齿中线并分解成相互垂直的两个分力,即圆周力Ft和径向力Fr。根据力学理论,Ft使齿根产生弯曲应力为σF,Fr则产生压应力σy。因此齿根危险截面上受到的应力为弯曲和压缩组成的组合应力,并导致齿根两边的应力大小不相等。然而,在相关的机械设计资料中都没有将由于径向力产生的压应力计算在齿轮的弯曲强度计算公式中,而且在大多数的相关教材中都认为: 压应力相对于齿根最大弯曲应力比较小,可以忽略不计。但是压应力到底多少,为什么可以忽略不计,很少有人进行计算,下面对压应力与弯曲应力进行探讨。如图2 中,Ft产生其弯曲应力σF如式( 1) 所示。由Fr产生压应力σy为σy = Fnsin αFbSF( 2)由式( 1) 及式( 2) 可得σyσF= SF6hFtan αF设OD = h',则SF = 2h' tan30°,因此σyσF= tan 30tan αF3h'hF假设标准齿轮模数为m,齿数z。则齿顶圆压力角为cos αF = rbra= zz + 2cos α,由于h'hF< 1,因此,当不考虑h'hF的影响时,σyσF的大小取决于齿轮的齿数。为了便于讨论,取ξ = σyσF称为压应力对弯曲应力的影响系数。则根据计算可以得到ξ 与齿数的对应关系,如图3 所示。可见,压应力对弯曲应力的影响与齿数有关,而模数无关,而且随着齿数的变化而变化,齿数越少其影响越大,反之影响就越小,最终趋于一水平线。最小约为最大弯曲应力的8%,特别当h'hF< 1 时,压应力更小,可以忽略不计。这就是为了简化计算,在计算轮齿弯曲强度时一般只考虑弯曲应力的原因。从图2 可知,弯曲应力分为拉伸侧的拉应力和压缩侧的压应力。实际证明,拉伸侧是危险侧,因拉伸侧的`裂纹扩展速度较大。压缩侧有时虽裂纹出现较早,但发展速度较慢。所以大多数的公式以拉伸侧的应力作为设计时的计算应力。而且根据齿轮弯曲疲劳实验分析证明,考虑弯曲应力、压应力与只考虑弯曲应力的结果,实际上没有多大差别。因此,在齿轮弯曲疲劳强度计算中只考虑弯曲应力。

2. 3 齿面接触疲劳强度计算

图4 赫兹接触应力模型齿面接触疲劳强度计算是针对齿轮齿面疲劳点蚀失效进行计算的强度计算。1881 年,赫兹提出两个圆柱体接触时接触面上载荷分布公式,该式作为齿面强度计算的理论基础,如图4 所示。根据赫兹接触应力理论,在载荷作用下接触区产生的最大接触应力为σH = Fnπb·1ρ1± 1ρ21 - μ21E1+ 1 - μ22槡 E2( 3)式中,Fn为作用在圆柱体上的载荷; b 为接触长度;μ1、μ2分别为两圆柱体材料的泊松比; E1、E2为两圆柱体材料的弹性模量。ρ1、ρ2为两圆柱体接触处的半径,式中“+”号用于外接触,“-”号用于内接触。1898 年,拉塞根据法向力应用“压强”原理研究齿面的接触疲劳强度问题。1908 年,奥地利的维德基将赫兹的两个圆柱体的接触应力理论应用于计算轮齿齿面应力,并绘出了沿啮合线最大接触应力变化图。1932 年,英国BS 根据实验数据提出基础表面应力作为齿面强度计算方法。1940 年,美国AGMA 采用齿面强度最重负荷点的接触应力最大值计算方法。

1949 年,白金汉提出节圆上齿面接触应力不超过许用值的计算方法,后来该方法被许多计算方法所采用。1954 年,尼曼采用最大负荷点上滚动压力。至今,我国皆以赫兹公式作为计算齿面接触疲劳强度的理论基础,即以赫兹应力作为点蚀的判断指标。通常令1ρΣ= 1ρ1± 1ρ2,ρΣ称为综合曲率,对于标准齿轮,1ρΣ= 2d1 sin αi ± 1i 。并令式( 3 ) 中的ZE =1π 1 - μ21E1+ 1 - μ22E 槡为弹性影响系数。从而,获得渐开线直齿圆柱齿轮接触疲劳强度的基本公式为σH = ZEZH2KT1bd21i ± 1槡 i #[ σ ] H( 4) 式中,ZH = 2槡sin αcos α,称为区域系数,对于压力角α= 20°的标准齿轮,ZH≈2. 5。在机械设计手册或机械设计教材中,有关齿轮接触疲劳强度公式有很多版本,其中最常见的是将一对钢制标准齿轮齿面接触强度校核公式进行简化,取钢制齿轮的E1 = E2 =2. 06 ×105MPa,μ1 =μ2 =0. 3,便获得机械设计中常用的校核公式。σH = 671 KT1bd21i ± 1槡 i ≤[ σ ] H( 5)

2. 4 齿面胶合强度计算

齿轮另外一个常见的失效是齿面胶合。有关齿轮胶合比较统一的说法是: 相互啮合的两金属齿面,在一定的压力下直接接触发生黏着,同时又随着齿面运动而使金属从齿面上撕落而引起的黏着磨损现象。胶合分为冷胶合和热胶合。对于高速重载的齿轮传动,齿面瞬时温度较高,相对滑动速度较大,则容易发生热胶合。对于低速重载的重型齿轮传动,由于齿面间压力过大,导致齿面油膜被破坏,尽管齿面温度不高,但也容易产生胶合,称为冷胶合。

对于齿轮齿面胶合强度计算的研究,目前主要基于两种理论,一是基于Pv 值( 压力与速度的乘积) 或PTv ( T 为啮合点到节点的距离) 值作为计算胶合的指标。另一种是以齿面温度作为判定胶合的准则的布洛克算法。1975 年,温特提出积分温度法。现在ISO 的标准中主要以这两种方法为主。2003年,我国颁布“圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法”国家标准( GB - Z 6413. 1 - 2003和GB - Z 6413. 2 - 2003)。该标准等同采用了ISO/TR 13989 - 2000“圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法”。曾经有人试图以按弹性流体动力润滑理论计算齿面间的油膜厚度作为胶合的评判依据。

我国多数的机械设计教材中齿轮强度设计一般只提供齿面接触疲劳强度和齿根弯曲疲劳强度两种计算方法,并未提供有关齿面胶合的强度计算公式。

3 结束语

文中分别对机械设计教学中有关齿轮的强度设计问题进行了分析和探讨,详细解读我国齿轮强度设计的历史沿革及现状,以及齿轮强度设计计算过程中让人困惑的问题及解决方法。研究指出,在齿轮弯曲疲劳强度的计算中,压应力对弯曲应力的影响是有限的,一般可忽略不计,只有当需要精确计算时,应当考虑其影响。论文的研究可以帮助齿轮设计人员和学生更好地理解齿轮设计中的相关内容,为将来从事机械设计工作打下良好的基础。

相关百科

热门百科

首页
发表服务