要的话请联系我邮箱(点我可见)。13 【篇名】 偏微分方程组的对称群及其在弹性力学方程组中应用 CAJ原文下载 PDF原文下载 【作者】 张鸿庆. 朝鲁. 唐立民. 【刊名】 大连理工大学学报 1997年03期 编辑部Email 《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊 【机构】 大连理工大学数学科学研究所. 大连理工大学工程力学研究所. 【关键词】 偏微分方程. 弹性力学. 对称群/不变向量场. 符号运算. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 给出了非退化线性偏微分方程组及二次型泛函对称群的不变向量场的一般形式和一类特殊形式非线性偏微分方程组对称群的简化计算条件;利用以上结论及作者以往工作,借助符号运算语言MathematicaTM计算了平面弹性力学方程组一阶Lie-Bactlund对称群的不变向量场,以及应力函数对应的三维弹性力学方程组的Lie代数.为构造弹性力学方程组的一类广泛精确解及守恒律提供了必要的基础,并说明了结论对计算偏微分方程组对称群时的简化作用 【光盘号】 SCTC9706 14 【篇名】 力学中一类变系数微分方程可调参数模型解法 CAJ原文下载 PDF原文下载 【作者】 赵文福. 封营儒. 连星耀. 黎明安. 【刊名】 西安理工大学学报 1995年02期 编辑部Email CJFD收录期刊 【机构】 西安理工大学机械工程系. 【关键词】 可调参数. 变系数微分方程. 非均匀控制参数. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 结合一种非均匀控制参数,提出了一种变系数微分方程的可调整参数模型解法,可以很方便地处理由于物理上、几何上的非均匀、非线性而导致数学上的变系数微分方程,应用这种模型可以用非常少的单元得到较满意的数值结果。 【光盘号】 SCTC9508 31 【篇名】 材料力学弯曲问题中集中量与分布量的统一处理 CAJ原文下载 PDF原文下载 【作者】 周锡勤. 张存道. 【刊名】 现代电力 1995年02期 编辑部Email CJFD收录期刊 【机构】 北京动力经济学院. 【关键词】 集中量. 分布量. 弯曲变形. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 介绍了利用δ函数统一处理集中量与分布量的一般方法。着重讨论了这种方法在建立含集中量的杆件弯曲时的平衡微分方程的应用,从而推广了材料力学中杆件弯曲时的平衡微分方程。该方程更全面更精确地反映了杆件弯曲这一物理现象。作者把它称为梁弯曲时的广义平衡微分方程。 【光盘号】 SCTC95S5 38 【篇名】 双相材料空间中平片界面裂纹问题的超奇异积分-微分方程 CAJ原文下载 PDF原文下载 【作者】 乐金朝. 汤任基. 【刊名】 科学通报 1996年15期 编辑部Email 《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊 【机构】 郑州工学院道路检测与CAE技术研究中心. 上海交通大学工程力学系 郑州 450002 . 上海 200030. 【关键词】 双相材料. 平片界面裂纹. 超奇异积分-微分方程. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 <正> 随着复合材料的广泛应用,界面断裂力学成为国际断裂界的前沿研究课题,该领域的研究工作引起了国内外力学家、金属物理学家及材料科学家的广泛关注,并取得了许多新进展。据作者所知,目前的工作主要是研究二维问题,由于数学和力学等方面的困难,三维界面断裂力学方面的研究工作报道较少。本文利用双相材料空间在集中力作用下的弹性力学基本解,使用边界元法,在有限部积分的意义下将任意形状的平片界面裂纹问题归结为一组以裂纹面上的位移间断为未知函数的超奇异积分-微分方程。此组方程对于进一步开展三维界面断裂力学问题的研究具有重要意义。 【光盘号】 SCTA96S4 39 【篇名】 常微分方程的不变式在量子力学中的应用 CAJ原文下载 PDF原文下载 【作者】 杨进. 【刊名】 大学物理 1998年08期 编辑部Email 《中文核心期刊要目总览》来源期刊 CJFD收录期刊 【机构】 成都气象学院基础科学系. 【关键词】 常微分方程. 不变式. 库仑场. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 利用常微分方程的不变式,非常方便地求解了一些量子力学问题. 【光盘号】 SCTA9809 40 【篇名】 保守力系的变形拉格朗日方程及其应用 CAJ原文下载 PDF原文下载 【作者】 梁志强. 【刊名】 泰安师专学报 2000年06期 编辑部Email CJFD收录期刊 【机构】 泰安师专物理系!山东泰安271000. 【关键词】 Lagrandge方程. 轨道微分方程. 轨道方程. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 从保守力系的拉格朗日方程出发 ,导出一种用于求解保守系统轨道微分方程的变形拉格朗日方程。并将其应用于有心力问题及抛体问题 ,导出了有心力问题的轨道微分方程Binet公式及抛体轨道方程。保守力系的变形拉格朗日方程提供了求解运动物体轨道方程的新方法 ,同时也丰富了分析力学的教学内容。 【光盘号】 SOCI0105
学习常微分就是根据已经知道的原理、公式等自然规律,列出一个一阶或者高阶的式子,求解出通解,,发现新个规律。个人观点,仅供参考!!
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
任找一本数学手册查(我是认真的!!!!)
心理学标论文格式:
1、题目。应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字。
2、论文摘要和关键词。
论文摘要应阐述学位论文的主要观点。说明本论文的目的、研究方法、成果和结论。尽可能保留原论文的基本信息,突出论文的创造性成果和新见解。而不应是各章节标题的简单罗列。摘要以300字左右为宜。
关键词是能反映论文主旨最关键的词句,一般3-5个。
3、目录。既是论文的提纲,也是论文组成部分的小标题,应标注相应页码。
4、引言(或序言)。内容应包括本研究领域的国内外现状,本论文所要解决的问题及这项研究工作在经济建设、科技进步和社会发展等方面的理论意义与实用价值。
5、正文。是毕业论文的主体。
6、结论。论文结论要求明确、精炼、完整,应阐明自己的创造性成果或新见解,以及在本领域的意义。
7、参考文献和注释。按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前。图表或数据必须注明来源和出处。
(参考文献是期刊时,书写格式为:
[编号]、作者、文章题目、期刊名(外文可缩写)、年份、卷号、期数、页码。
参考文献是图书时,书写格式为:
[编号]、作者、书名、出版单位、年份、版次、页码。)
8、附录。包括放在正文内过份冗长的公式推导,以备他人阅读方便所需的辅助性数学工具、重复性数据图表、论文使用的符号意义、单位缩写、程序全文及有关说明等。
扩展资料:
论文写作技巧:
技巧—:依据学术方向进行选题。论文写作的价值,关键在于能够解决特定行业的特定问题,特别是在学术方面的论文更是如此。因此,论文选择和提炼标题的技巧之一,就是依据学术价值进行选择提炼。
技巧二:依据兴趣爱好进行选题。论文选择和提炼标题的技巧之二,就是从作者的爱好和兴趣出发,只有选题符合作者兴趣和爱好,作者平日所积累的资料才能得以发挥效用,语言应用等方面也才能熟能生巧。
技巧三:依据掌握的文献资料进行选题。文献资料是支撑、充实论文的基础,同时更能体现论文所研究的方向和观点,因而,作者从现有文献资料出发,进行选题和提炼标题,即成为第三大技巧。
技巧四:从小从专进行选题。所谓从小从专,即是指论文撰稿者在进行选择和提炼标题时,要从专业出发,从小处入手进行突破,切忌全而不专,大而空洞。
参考资料来源:百度百科-论文格式
高数论文什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。 17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。因而,一切变量都是流量。 牛顿指出,“流数术”基本上包括三类问题。 (l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。 (2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。 (3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。 牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。 牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。 莱布尼茨使微积分更加简洁和准确 而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。 莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。 牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。
学术堂整理了一份心理学论文格式,供大家参考:封面题目:小二号黑体加粗居中.各项内容:四号宋体居中.目录目录:二号黑体加粗居中.章节条目:五号宋体.行距:单倍行距.论文题目小一号黑体加粗居中.中文摘要1、摘要:小二号黑体加粗居中.2、摘要内容字体:小四号宋体.3、字数:300字左右.4、行距:20磅5、关键词:四号宋体,加粗.词3-5个,每个词间空一格.英文摘要1、ABSTRACT:小二号、内容字体:小四号、单倍行距.4、Keywords:四号加粗.词3-5个,小四号TimesNewRoman.词间空一格.绪论小二号黑体加粗居中.内容500字左右,小四号宋体,行距:20磅正文(一)正文用小四号宋体(二)安保、管理类毕业论文各章节按照一、二、三、四、五级标题序号字体格式章:标题小二号黑体,加粗,居中.节:标题小三号黑体,加粗,居中.一级标题序号如:一、二、三、标题四号黑体,加粗,顶格.二级标题序号如:(一)(二)(三)标题小四号宋体,不加粗,顶格.三级标题序号如:.标题小四号宋体,不加粗,缩进二个字.四级标题序号如:(1)(2)(3)标题小四号宋体,不加粗,缩进二个字.五级标题序号如:①②③标题小四号宋体,不加粗,缩进二个字.(三)表格每个表格应有自己的表序和表题,表序和表题应写在表格上方正中.表序后空一格书写表题.表格允许下页接续写,表题可省略,表头应重复写,并在右上方写"续表××".(四)插图每幅图应有图序和图题,图序和图题应放在图位下方居中处.图应在描图纸或在洁白纸上用墨线绘成,也可以用计算机绘图.(五)论文中的图、表、公式、算式等,一律用阿拉伯数字分别依序连编编排序号.序号分章依序编码,其标注形式应便于互相区别,可分别为:图、表、公式()等.文中的阿拉伯数字一律用半角标示.结束语小二号黑体加粗居中.内容300字左右,小四号宋体,行距:20磅.致谢小二号黑体加粗居中.内容小四号宋体,行距:20磅参考文献(一)小二号黑体加粗居中.内容8-10篇,五号宋体,行距:20磅.参考文献以文献在整个论文中出现的次序用[1]、[2]、[3]……形式统一排序、依次列出.(二)参考文献的格式:着作:[序号]作者.译者.书名.版本.出版地.出版社.出版时间.引用部分起止页期刊:[序号]作者.译者.文章题目.期刊名.年份.卷号(期数).引用部分起止页会议论文集:[序号]作者.译者.文章名.文集名.会址.开会年.出版地.出版者.出版时间.引用部分起止页附录(可略去)小二号黑体加粗居中.英文内容小四号TimesNewRoman.单倍行距.翻译成中文字数不少于500字内容五号宋体,行距:20磅.
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。
根据你的要求,
微分方程在力学中的应用是非常广泛的。但是你的问题问得太不着边际了,很难回答。微分方程分为常微分方程和偏微分方程。一般来说,后者应用更为广泛。常系数常微分方程通常用来解一些最简单、最基本的动力学问题,例如速度、加速度、弹簧受力分析等等。例如:F=m*d(ds/dt)/dt就是牛顿第二定律。这些方程一般都可以解出。最常见的非常系数常微分方程有贝赛尔方程、薛定鄂方程以及非线性薛定鄂方程等,这些方程一般应用在边界条件为圆柱或圆球形状的波的振动描述上。偏微分方程是分析波动、二维受力分析等常见的方程了。如果你要写论文,可以考虑以下两方面的应用:1 牛顿定律分析2 波动分析
随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系
幸运的是, ??杭州师范大学的基础上,2001年在原杭州师范学院,数学系,物理系成立。现有的数学系,物理系,的陈建功研究所(筹)科学与技术研究所(筹),遥感和地球科学。并与中国科学院应用数学,凝聚态物理研究所,研究所的科学教育研究机构。 ??学校现有数学与应用数学,信息与计算机科学,物理学,应用物理学和科学教育五个本科专业,并正在加紧设置专业。学院有四个掌握基本的数学,应用数学,凝聚态物理,理论物理点报读课程与教学论硕士学位研究生(数学教育,物理教育),教育硕士在同一时间进行训练。数学与应用数学被列为第一批重点专业,基础数学,凝聚态物理被列为重点建设学科,凝聚态物理,杭州重中之重学科和省级重点学科,首批杭州。 ??学院在校全日制本科生,研究生1000余人。教师和92名博士生导师,教授22名,副教授27,41博士学位。 4人,享受国务院特殊津贴,国家新世纪百千万人才,2名教师的教学,浙江省“151”人??才,省级青年和中年学术带头人,杭州市“131”人才,省优秀教师,省新秀的崇拜。 ?近年来,学院在数论,代数,计算数学函数理论,微分几何,概率与统计,本场凝聚态物理,理论物理研究建立动态研究团队。承担中国国家自然科学基金,教育部,中国博士后科学基金,省自然科学基金及其他国家,40多个省部级重点项目,已出版专着50余部,发表了超过700文章在国内外学术刊物,其中100多篇文章索引SCI,EI,百,浙江省自然科学优秀论文奖,省科学技术进步二等奖和省级教学成果奖80多个。学院在国内外学术交流,并建立了长期,稳定的合作关系与多所高校和研究机构的研究和教学,重点组织了第三次国际数学教育研讨会,聘请院士,知名学者讲学,浙江大学,山东大学联合培养博士研究生。 ??学院坚持以人为本的教学理念,实施文理渗透,理工渗透渗透艺术,复合,应用型人才培养的质量,形成了“人文科学的课程体系互融的课程中国创业项目银奖,国家和课外胡荣能力系统的互操作性和关闭的校园金融体系的实践,教育和基础教育的见解成功的互动式教学的特点。全国大学生数学建模竞赛一,二等奖54红旗团支部国家奖。 ????学院有一个完整的教学和研究设施,充分共享学校的网络系统,书籍和材料,以及其他各种教学资源,数学和物理角也已建成多媒体教室,在物理基础实验室信息安全实验室。 ? 数学与应用数学(教师,本科,四年),省级重点专业,在第一批招生 文化目标德智体美全面发展的创新能力和实践能力,高品质的,能够适应基础教育的改革和发展基础教育教师,教学研究人员在科技,教育和经济部门从事研究或生产在实际应用中的研究开发和管理的高级人才和经营管理部门从事。 主要课程数学分析,高等代数,解析几何,复变函数,实变函数,泛函分析,常微分方程,近世代数,高等几何,概率与统计,ALGOL,数值分析,数论,微分几何,普通物理数学教育学,历史学,数学。 毕业于毕业生的下落,报考研究生应用基础数学,数学课程与教学论(数学),在各相关行业从事科研,教学和管理工作。 ? 信息与计算科学(非师范,本科,四年) 文化目标德智体美全面发展的创新能力和实践能力,高品质,技术,教育,金融和经济部门从事研究,教学,应用开发和管理的高级人才。专业的学习信息科学和计算科学的基本理论,基本知识和基本方法,奠定了基础数学,扎实的计算机培训,最初在信息科学和计算机科学领域从事科学研究,解决实际问题和设计和软件开发的能力。 主要课程的基础和数学基础课(分析,代数,几何),概率统计,数学模型,科学计算,计算机图形学,物流和优化,电子线路,普通物理,计算机应用,C语言程序设计及其他高级编程语言的设计,算法和数据结构,软件系统的基础上离散数学,信息科学基础,计算机网络及应用程序,数据库应用,数据通信,保密性和安全性,信息安全和密码学。 毕业于毕业生可申请数学类信息类专业专业毕业的学生,??研究生和从事研究,教学和应用开发管理课程与教学论(数学,计算机)的下落。 ? 物理学(师范,本科,四年) 人才培养目标与身体的全面发展,创新能力和实践能力,能够跟上发展的步伐,高质量的基础教育体育教师,教学研究人员及教育管理工作者。重点关注的物理基础知识的教学和教师教育,注重对实验的手的能力,利用现代计算机技术。 主要课程高等数学,数学物理,普通物理课程,理论物理课程,计算机编程,电气工程,模拟和数字电路和实验,教师教育课程,普通物理实验近代物理实验门20多个主要课程,开设了另一大学英语,计算机应用基础架构和10个公共技术基础课程和物理竞赛指导前沿讲座的物理,微控制器接口,计算机网络理论与技术等20多个专业选修。 毕业的学生,??毕业后可申请研究生的物理课,材料,和其他专业的研究生课程和教学(物理)的下落。可在各相关行业从事科研,教学和管理工作。 ? 应用物理学(新能源方向,师范,本科,四年) 培养目标德智体美全面发展,具有扎实的物理基础,具有较强的创新能力和应用能力,并在太阳能自动控制的高级复合型人才的方向和该方向的基础研究和技术开发。使用太阳能,毕业后的应用研究,技术开发和管理,自动化控制领域从事物理应用,也可以到学校从事教学,科研和管理。 主要课程高等数学,普通物理课程和实验,太阳能光伏电池及其应用,新能源引进半导体物理与器件,工程制图与CAD,电气工程,电子与实验,自动化控制,微机原理及接口,计算机网络理论和技术,设计实验。 毕业于毕业生的下落,坐了一个物理类,能源类和控制类专业的研究生。从事科研,教学,应用开发和管理的高级人才。 ? 科学教育(教师,本科,四年) 培训的目标和理想道德有文化有纪律,创新精神和实践能力的高质量的基础教育“科学”课程,教师,教学研究人员及教育管理工作者身体的全面发展。 主要课程高等数学,基础化学实验,基本的物理和实验,普通生物学实验,介绍物理地理,天文,计算机应用基础设施和技术基础,电机及电子工程和实验教师教育课程的科学教育,理论,科学历史,科学,传播学等专业课程,提高专业选修的主要科目,如物理,化学,生物,外语和计算机技能发展和培训的重点放在成立,注意学科的综合性和平衡,在为了适应新世纪基础教育和科学课程改革的需要。 毕业于坐的物理类化学类,生物学研究生的课程与教学论(物理,化学,生物,科学教育和方向)研究生毕业生的下落。从事研究,教学和管理工作有关的教育部门。
随着分析学对函数引入微分运算,表示未知函数的导数以及自变量之间的关系的方程进入数学家的视野,这就是微分方程。微分方程的形成与发展与力学、天文学、物理学等科学技术的发展密切相关。因为在现实的世界中,物质的运动及其变化规律在数学上是用函数关系来描述的,这意味着问题的解决就是要去寻求满足某些条件的函数,而这类问题就转换为微分方程的求解问题。微分方程为科学发现提供了有力工具,如:
解微分问题的基本思想类似于解代数方程,要把问题中已知函数和未知函数之间的关系找出来,进而得到包含未知函数的一个或几个方程,然后使用分析的方法去求得未知函数的表达式。
微分方程的发展历程:
如果微分方程中出现的未知函数只含一个自变量,那么该类微分方程就是常微分方程。常微分方程的通解构成一个函数族,主要研究方程或方程组的分类及解法、解的存在性和唯一性、奇解、定性理论等等内容。
常微分方程的发展经历了几个阶段:
现在,常微分方程在自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等学科领域内有着重要的应用。
如果一个微分方程中出现多元未知函数的偏导数,那么这就是偏微分方程。偏微分方程作为一门学科产生于18世纪对振动弦问题的研究。在科学技术飞速发展过程中,更多的问题无法用只含一个自变量的函数来描述,多个变量的函数来描述才更合适。
到19世纪,偏微分方程得到迅速发展,数学物理问题的研究也随之繁荣起来,许多数学家都对数学物理问题的解决做出了贡献。尤其是法国数学家傅立叶,他在自己关于热传导的论文《热的解析理论》中提出了一种偏微分方程,三维空间的热方程。
偏微分方程是什么样的?它包括哪些内容? 偏方程有多种类型,一般包括椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程 。
作为同一类现象的共同规律表示式,偏微分方程的解一般有无穷多个,而具体物理问题的解决,必须依据附加条件从中选取所需要的解。就物理现象来说,各具体问题的特殊性就在于研究对象所处的初始条件和边界条件。
初始条件和边界条件叫做定解条件。偏微分方程本身表达的是同一类物理现象的共性,是作为解决问题的依据;定解条件却反映出具体问题的个性,反映了问题的具体情况;那么方程和定解条件合二为一,就叫定解问题。
求偏微分方程的定解问题可以先求其通解,然后用定解条件找出函数。但一般在实际中来说,通解是不容易求出的,用定解条件确定函数则是更难。偏微分方程的定解常用解法:
偏微分方程的很多定解问题是不能严格解出的,退而求其次,采用近似方法求出满足实际需要的近似解。常用的方法有变分法和有限差分法:变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算。
随着物理科学所研究的广度和深度的扩展,偏微分方程的应用范围也更广泛。而从数学的角度看,偏微分方程的求解促使函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面的发展。从这个角度说,偏微分方程变成了数学的中心。
常微分方程是: y’+p(x)y=q(x)。
常微分方程是:凡含有参数,未知函数和未知函数导数(或微分)的方程,称为微分方程,有时简称为方程,未知函数是一元函数的微分方程称作常微分方程,未知函数是多元函数的微分方程称作偏微分方程。微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶。
任何代入微分方程后使其成为恒等式的函数,都叫做该方程的解.若微分方程的解中含有任意常数的个数与方程的阶数相同,且任意常数之间不能合并,则称此解为该方程的通解(或一般解),当通解中的各任意常数都取特定值时所得到的解,称为方程的特解。
常微分方程的特点是:求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。
常微分方程的应用:常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。
常微分方程的发展:20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、半导体物理学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组)。70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程。
古代方程发展史中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。 (一)属于算术方面的材料 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。 古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。 小数的记法,元朝(公元十三世纪)是用低一格来表示,如作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。 宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。 (二)属于代数方面的材料 从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。 “九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。 我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。 十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。 在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。 级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。 历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。 内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。 十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。 就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。
有个未知数u怎么用数值来做啊
这里, 为常微分方程的右端函数,而 为所求未知函数的初始值。求解常微分方程初值问题用指令ode23 或ode45。使用这两条命令中的任何一条都必须事先编写好函数文件并保存在工作目录下(如取文件名为)。命令的具体使用格式为 [x,y] = ode23('yprime', x0, xn, y0)其中,yprime 为描述常微分方程右端函数的函数文件名,而x0 和 xn分别为自变量的初始点和终值点,y0为未知函数的初值。 例如求一阶常微分方程 在(0,1)区间内的数值解,并与该初值问题的解析解 进行比较。 首先编缉两个函数文件,第一个用于描述微分方程右端函数(文件名:): function z=ff1(x,y)z=x-y+1;另一个用于描述微分方程的解析解(文件名:): function y=ff2(x)y=x+exp(-x);将这两个函数文件保存在工作目录下,然后求出初值问题的数值解以及微分方程解析解在对应自变量的离散点处的函数值,最后同时绘出两个函数的图形加以比较。在MATLAB环境中键入下列指令: [x,y]=ode23('ff1',0,1,1);y=ff2(x);plot(x,y,’o’,x,y)计算机屏将显示出数值解(用小圆o表示)和解析解的图形常微分方程是研究许多自然科学问题和技术问题的有力工具,因而具有重要的实用价值;它们在力学、天文学、物理学中,在许多化学和生物学问题中,有着广泛的应用.这是因为大量现象、过程所服从的客观规律往往能够写成常微分方程的形式,因此这些方程本身就是相应客观规律的定量表示. 定义 1 如果在一个(或者一组 m(有限个))方程中,未知的 (unknown) 量是一个(或一组 m 有限个))函数,并且在方程中含有未知函数只关于某一个自变量 (independent variable) 的导数或微分,则称这方程为常微分方程 (ordinary differential equation) (或者常微分方程组( ODE's)), 简称常微分方程(组)为微分方程(DE)(组(DE's))或方程(组). (提示 ) 定义 2 微分方程中实质上含有的未知函数 x 的最高阶导数的阶数称为这微分方程关于 x 的阶.微分方程组中各个未知函数 的最高阶导数的阶数 之和称为微分方程组的阶 (计算阶数时把未知函数本身认为是未知函数的零阶导数).(提示) n 阶微分方程的一般形式为:,其中函数 F 在其变量的某一区域 (domain) 中有定义,并且一定含有未知函数 x 对自变量 t 的 n 阶导数. 定义 3 假设有在区间 I 上有直到 n 阶的连续导数的函数:(可以是由隐式或参数形式决定的)在区间 I 上满足恒等式,我们就说该函数是在区间 I 上方程 的解 (solution).称区间 I 是解的定义区间.微分方程的解根据函数的形式可分为显式 (explicit) 解,隐式 (implicit) 解和参数形式解. (提示) 定义 4 微分方程的解 ,或隐式解 在 t - x 平面上的几何图形是一条曲线,称为微分方程的积分曲线 (integral curve). 如果在积分曲线上函数 等于常数,则 也称为微分方程的一个 积分 (integral) 定义 5 已就最高阶导数解出的微分方程称为微分方程的正规形式 (normal form).(提示) 定义 6 若微分方程 中的函数关于未知函数及其导数 是一次有理整式,则称方程是线性的 (linear),称它是 n 阶线性 (微分)方程.一般形式为:,若其中 ,则称它是 n 阶线性齐次 (homogeneous) 方程;否则称为线性非齐次 (inhomogeneous) 方程.这时称 为线性方程的非齐次项. (提示) 定义 7 不是线性的微分方程称为非线性 (nonlinear) 方程.(提示) 定义 8 满足 n 阶微分方程(组)的一个(一组)依赖于 n 个 任意(arbitrary)独立常数 的解 ,,(其中矢量 x 和 的维数为未知函数的个数 m 不一定与阶数 n 相同)称为 n 阶微分方程(组)的通解 (general solution). (提示) 定义 9 不含任意常数的确定的微分方程(组)的解称为特解. 定义 10 为了确定微分方程的一个特解所给出这个解必须满足的条件称为微分方程的定解条件:常见的有:初始条件 (initial condition)、边界条件 (boundary condition). 定义 11 n 阶常微分方程的初始条件:指定方程 的解在时刻 以及 x 及其直到 阶导数应取的初始值 (initial value). . 定义 12 定解问题:求微分方程满足定解条件的解.当定解条件为初始条件时,相应的问题称为初值问题 (initial value problem),或称为 Cauchy 问题.本教程只讨论初值问题. 方向场: 对于一阶正规型微分方程 ,,它的解是 t-x 平面上的一条曲线,在其每一点上都具有切线,切线的斜率为 . 如果通过 中每一点 (t,x) 都画一微小线段,使其斜率等于 ,则得方程的方向场 (field of directions). 这样,求方程在区域 内求一经过初始点 的积分曲线,就是在区域 内求一条经过点 的曲线,使其上每一点处切线的斜率都与方向场在该点的方向相同. 等倾线: (isocline) 是方向场中,方向相同的点的几何轨迹.微分方程 的等倾线方程为 ,其中 k 为参数.在画方向场时,可以先画等倾线,再在等倾线上画方向相同的微小线段.通过等倾线法这种图示法可以近似地画出积分曲线.
俺这边完全可以实现你的要求,
要:常微分方程作为微分方程的基本类型之一,在自然界与工程界有很广泛的应用。很多问题的数学表述都可以归结为常微分方程的定解问题,实际生活中很多问题的数学模型都是微分方程。但在许多情况下,首先找到问题的解析解,然后再进行相关的计算往往非常困难,有时甚至是行不通的,基于此理由,我们可以避免求解析解而直接求相应的数值解。本论文就是对目前已有的常微分方程的数值方法进行研究,并大胆地提出一种新的数值方法——欧拉-牛顿法。 关键词:常微分方程 解析解 数值解 研究 新的数值方法 欧拉-牛顿法 0 引言 在生产实践和科学研究过程中,我们经常会遇到求解常微分方程的定解问题,虽然我们已经知道不少类型的常微分方程的解法。但工程技术人员在工程和科学研究中所关心的往往只是常微分方程的近似数值解,而非从事数学研究的技术人员所注重的“过程”。采用常规的人工推导、求解无疑是效率非常低下的,而且工程上的常微分方程往往结构非常复杂,要给出一般方程解的表达式也是非常困难的。实际上到目前为止,我们只能对有限的几种特殊类型的方程求精确解,这远不能满足工程需要,对那些不能用初等函数来表达的方程就只能去求其近似的数值解,而且这样还可以借助于运算速度快的计算机来进行辅助求解,大大提高求解的速度和精度。我们考虑一阶常微分方程初值问题在区间[a,b]上的解,其中f(x,y)为x,y的已知函数,y0为给定的初始值,将上述问题的精确解记为y(x)。数值方法的基本思想是:在解的存在区间上取n+1个节点,这里差hi=xi+1-xi,i=0,1,…,n称为由xi到xi+1的步长。这些hi可以不相等,但一般取成相等的,这时,在这些节点上采用离散化方法,(通常用数值积分、微分,泰勒展开等)将上述初值问题化成关于离散变量的相应问题。把这个相应问题的解yn作为y(xn)的近似值。这样求得的yn就是上述初值问题在节点xn上的数值解。一般说来,不同的离散化导致不同的方法。本文在对目前已有的常微分方程的数值方法进行深入研究的基础上,对改进的欧拉方法进行再次改进并提出一种新的数值方法(本文命名为欧拉-牛顿法),并能够以具体实例来验证方法的有效性和实用性。 1 欧拉—牛顿法 改进的欧拉方法的公式是 先研究求的近似值,其中是步长。对于递推格式 由此所确定的可以看成是下面关于的(非线性)函数 在y=yk-1附近的零点。虽然上面(2)式定义的F(y)还与k以及xk-1,xk,yk-1有关,但这个问题还可以在求数值解时予以考虑,对于理论分析来说则无需顾及。如果我们直接利用牛顿法求F(y)在y=yk-1附近的零点,当然可以利用yk-1作为z的初值z0,利用 由于zi-1到zi的区间很小,所以在每一个小区间内设已知方程F(z)=0有近似根zi-1,将函数F(z)在点zi-1展开,有 于是方程F(z)=0可近似地表示为: 这是个线性方程,记其根为zi,则有 从而得到欧拉—牛顿法的递推格式为: f(x,y)关于y的偏导数的绝对值通常特别大,由此可以得出 的值也特别大,再加之初始解yk-1已经很靠近F(y)的零点,所以采用牛顿法求F(y)在y=yk-1附近的零点实现了问题与方法之间的完美结合。事实上,在一般情况下利用(4)式迭代一次即可得到满意的结果。考虑到f(x,y)的凸凹性可能会对迭代格式(4)产生一定的影响,所以保险起见,也可以利用(4)式迭代两次,至少可以增强算法的稳定性。 例1.求解下述初值问题 上面(5)式的理论解为 表中符号说明:X[k]是x的值;Y[k]是对应每一个x的y精确值(理论值);YX[k]是利用欧拉-牛顿法计算出的y近似值;E[k]是y精确值和近似值之间的误差。利用欧拉—牛顿法求解的计算结果的精度至少达到了小数点后13位,甚至有的达到了小数点后15位,表1中y精确值和计算值之间的误差E[k]的值非常的小,几乎达到了零值,即用欧拉—牛顿法得到的结果几乎达到了人们所企盼的结果,它很明显地优越于改进的欧拉方法,所以实例证明欧拉—牛顿法还是值得推广的。 2 总结 对于求一般的常微分方程初值问题的数值解来说,已经有很多的方法。在实际应用中,我们当然希望能够结合具体问题的特点,充分利用不同方法的差异,选择一种更为合适的方法,力争得到尽可能好的结果。对于求解实际问题来说,我们通常并不能立即得出所得到的结果到底有几位有效数字。虽然可以通过理论分析来估计误差,但这样做一是劳神费力,二是所得到的结果也未必靠的住,这中间不确定的因素太多。在现代计算机条件下,采用基于试验的方法一般比理论分析的结果更为直观,更为具体。在这个基础上再辅之以理论分析,结论当然更可靠一些。求解一阶常微分方程的新的数值求解方法(欧拉—牛顿法)是改进的欧拉方法和牛顿法的完美结合,从而为求解一阶常微分方程的数值解提供了方便,并且结果的精度也比较高。