首页

> 论文发表知识库

首页 论文发表知识库 问题

小学数学化归思想研究论文

发布时间:

小学数学化归思想研究论文

小学数学的数学思想,下面带来小学数学的数学思想相关论文范文,欢迎阅读。

小学数学的数学思想【1】

【摘要】小学数学是一个培养学生的数学意识、数学思维的时期,这一阶段在加强学生基本的计算知识和能力的同时,教师应该注意对学生的数学思维以及数学思想的培养,使学生对数学有一个大致的了解,为学生以后的数学学习做好准备。

【关键词】小学数学 思想

一、方程和函数思想

在已知数与未知数之间建立一个等式,把生活语言“翻译”成代数语言的过程就是方程思想。

笛卡儿曾设想将所有的问题归为数学问题,再把数学问题转化成方程问题,即通过问题中的已知量和未知量之间的数学关系,运用数学的符号语言转化为方程(组),这就是方程思想的由来。

在小学阶段,学生在解应用题时仍停留在小学算术的方法上,一时还不能接受方程思想,因为在算求解题时,只允许具体的已知数参加运算,算术的结果就是要求未知数的解,在算术解题过程中最大的弱点是未知数不允许作为运算对象,这也是算术的致命伤。

而在代数中未知数和已知数一样有权参加运算,用字母表示的未知数不是消极地被动地静止在等式一边,而是和已知数一样,接受和执行各种运算,可以从等式的一边移到另一边,使已知与未知之间的数学关系十分清晰,在小学中高年级数学教学中,若不渗透这种方程思想,学生的数学水平就很难提高。

例如稍复杂的分数、百分数应用题、行程问题、还原问题等,用代数方法即假设未知数来解答比较简便,因为用字母x表示数后,要求的未知数和已知数处于平等的地位,数量关系就更加明显,因而更容易思考,更容易找到解题思路。

在近代数学中,与方程思想密切相关的是函数思想,它利用了运动和变化观点,在集合的基础上,把变量与变量之间的关系,归纳为两集合中元素间的对应。

数学思想是现实世界数量关系深入研究的必然产物,对于变量的重要性,恩格斯在自然辩证法一书有关“数学”的论述中已阐述得非常明确:“数学中的转折点是笛卡儿的变数,有了变数,运动进入了数学;有了变数,辨证法进入了数学;有了变数,微分与积分也立刻成为必要的了。”数学思想本质地辨证地反映了数量关系的变化规律,是近代数学发生和发展的重要基础。

在小学数学教材的练习中有如下形式:

6×3= 20×5= 700×800=

60×3= 20×50= 70×800=

600×3= 20×500= 7×800=

有些老师,让学生计算完毕,答案正确就满足了。

有经验的老师却这样来设计教学:先计算,后核对答案,接着让学生观察所填答案有什么特点(找规律),答案的变化是怎样引起的?然后再出现下面两组题:

45×9= 1800÷200=

15×9= 1800÷20=

5×9= 1800÷2=

通过对比,让学生体会“当一个数变化,另一个数不变时,得数变化是有规律的”,结论可由学生用自己的话讲出来,只求体会,不求死记硬背。

研究和分析具体问题中变量之间关系一般用解析式的形式来表示,这时可以把解析式理解成方程,通过对方程的研究去分析函数问题。

中学阶段这方面的内容较多,有正反比例函数,一次函数,二次函数,幂指对函数,三角函数等等,小学虽不多,但也有,如在分数应用题中十分常见,一个具体的数量对应于一个抽象的分率,找出数量和分率的对应恰是解题之关键;在应用题中也常见,如行程问题,客车的速度与所行时间对应于客车所行的路程,而货车的速度与所行时间对应于货车所行的路程;再如一元方程x+a=b等等。

学好这些函数是继续深造所必需的;构造函数,需要思维的飞跃;利用函数思想,不但能达到解题的要求,而且思路也较清晰,解法巧妙,引人入胜。

二、化归思想

化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。

应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。

它具有不可逆转的单向性。

例: 狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳4 1/2 米,黄鼠狼每次可向前跳2 3/4米。

它们每秒种都只跳一次。

比赛途中,从起点开始,每隔12 3/8米设有一个陷阱, 当它们之中有一个掉进陷阱时,另 一个跳了多少米?

这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每 次所跳距离4 1/2(或2 3/4)米的整倍数,又是陷阱间隔12 3/8米的整倍数,也就是4 1/2和12 3/8的“ 最小公倍数”(或2 3/4和12 3/8的“最小公倍数”)。

针对两种情况,再分别算出各跳了几次,确定谁先掉 入陷阱,问题就基本解决了。

上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。

三、极限的思想方法

极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。

现行小学教材中有许多处注意了极限思想的渗透。

在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1÷3=…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。

当然,在数学教育中,加强数学思想不只是单存的思维活动,它本身就蕴涵了情感素养的熏染。

而这一点在传统的数学教育中往往被忽视了。

我们在强调学习知识和技能的过程和方法的同时,更加应该关注的是伴随这一过程而产生的积极情感体验和正确的价值观。

《标准》把“情感与态度”作为四大目标领域之一,与“知识技能”、“数学思考”、“解决问题”三大领域相提并论,这充分说明新一轮的数学课程标准改革对培养学生良好的情感与态度的高度重视。

它应该包括能积极参与数学学习活动,对数学有好奇心与求知欲。

在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。

初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性,形成实事求是的态度以及进行质疑和独立思考的习惯。

另一方面引导学生在学习知识的过程中,学会合作学习,培养探究与创造精神,形成正确的人格意识。

小学数学中的快乐数学【2】

〔摘要〕在教育目标上,不仅要使学生获得必要的数学基础知识和基本技能,而且要使学生的能力和思维方法得到改善,同时要使学生的道德情感、价值观念、个性品质等得到健康的发展。

面向全体学生就要关注每个学生的成长学习方式,关注学生学习时的内部情感,使每个学生都能健康快乐的成长!

〔关键词〕小学 数学教育 快乐教学

小学教育处于基础教育主导地位,决定了小学课堂教学不仅要让学生掌握知识更应关注学生内在的情意,帮助学生在经历获取知识的过程中获得快乐的体验、成功的信心和再探索的欲望。

基于这一点,我们努力探索着一条如何让学生“快乐学习数学”的教学模式:

1 以营造富有童趣的课堂氛围,让学生快乐地走近数学

“兴趣是最好的老师”,学习兴趣是一种力求认识世界、渴望获得文化科学知识的意识倾向,能推动人们去寻求知识,钻研问题,开阔眼界,它也是一个人走向成才之路的一种高效能的催化剂。

可以说学习兴趣是学习活动的重要动力,根据小学生的年龄及身心特点营造并维系一个富有童趣的教学情境,燃起学生的热情,吸引学生的有意注意,使学生产生“想学”的情感需要。

这样在他们进行学习数学的一开始就产生快乐的情感,久而久之一想起“数学”都能快乐。

2 在活动中体验探索的快乐

活动是认识的基础,智慧是从动作开始。

教育家苏霍姆林斯基也说过:“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者,而在儿童的精神世界中,这种需要特别强烈。”因此在课堂教学中,我力求让每个学生都有动手实践、自主探索的机会,让每个学生都能在活动中体验数学。

自选策略,张扬个性。

自选策略,张扬个性要求彻底改变“教”和“学”的方式,尊重学生的个性,发挥学生的主体作用,使其能按照自己的方式方法建构知识。

关注学“动”的思维。

心理学家皮亚杰说:“活动是认识的基础,智慧是从动作开始的。”根据低年级学生的年龄特点和认识规律,让学生借助学具操作,通过拼、摆、折、画、量等探索活动建立形象,以动促思,将操作与思考有机的结合,让学生在观察、操作、交流中思考,在思考中探索,获取新知,这样的教学,有利于培养学生独立思考的习惯,提高学生自主探索的能力,培养他们的创新意识,体验“做”数学的快乐。

在这些内容的教学中,我们应该对学生的每一次活动都作出精心的.设计和安排,不仅要注意为学生提供丰富的活动材料,给学生留出充分的活动时间,而且要注意激发学生参与活动的积极性和主动性,并在方法上给学生一些适当的指导,引导学生边操作、边观察、边思考,让学生在活动中获得丰富的直观经验。

需要说明的是,每一个学生个体在具体的操作活动中获得的经验常常是有差异的,并且会带有一定的局限性,因此在教学中还要特别注意及时地组织学生进行交流,通过交流实现经验的相互补充,并在教师的引导下把这些经验条理化、系统化、概念化。

3 在交流中分享快乐数学

新课程目标中指出要培养学生“学会与人合作,能与他人交流思维的过程和结果”。

在交流思维的过程中举一反三,由此及彼,从而思维的深度和广度得到进一步开发。

例如,在教学“统计”时学生使用不同的方法记录数据,有人用画“#”等图形作记录;有人用写数字记录;用人用打“”的方法记录;有人用画“、、”等各种符号记录。

于是我就把不同的方法张贴在黑板上,问:“你最喜欢哪种方法?为什么?”组织学生在全班交流各种记录方法的优缺点。

有人先说画图形好,是什么图形就画什么图形,很清楚;马上就有人质疑:“如果统计的不是图形而是别的物体,也画图不是太麻烦了吗?”于是有人提议:“写数字好,什么都能统计。”又有人补充到:“而且最后不用数看看最后的数字是几,就知道一共是几介?很简单!”马上又有人反对:“可是写数字各个数字都不一样,要反复想下一个该写几了?容易出错!”也许受前面的启发,有人说打“、/”好!代表正确好看!而且写起来简单方便等等,就在学生之问的你一言我一语中,学生之间相互启发,相互指正,相互学习,真理往往就在这看似毫无秩序的交流中得出的。

而且学生们因为有人聆听自己的见解,有人和自己争论,有人认可自己的学习方式,在交流过程中,学生之间增加了相互了解,互相介绍自己的发现,共同分享着自信的快乐。

4 适时且有针对性的评价延伸快乐的情感

通过评价全面关注学生学习数学的历程。

在评价中,学生是被评价者,但是,被评价者不能被动的接受评价,而应主动的参与评价。

指导学生写数学日记,让学生自评学习,是一种方法。

数学日记可记录今天数学课的课题以及涉及的数学知识;记录理解得最好的地方与还不明白的地方;记录所学内容能不能应用于日常生活中,并简单举例;记录自己在学习中的表现以及自己是否满意等。

学生主动参与评价自己的学习表现,允许他们对教师或同学做出评价结果发表不同意见,在评价者与被评价者之间建立平等、民主的关系。

合理恰当的评价能够帮助学生科学的认识自己,促进学生全面、持续、和诣地发展,有效的激励学生的学习信心,在学习活动之余继续体验积极的情感。

在教育目标上,不仅要使学生获得必要的数学基础知识和基本技能,而且要使学生的能力和思维方法得到改善,同时要使学生的道德情感、价值观念、个性品质等得到健康的发展。

面向全体学生就要关注每个学生的成长学习方式,关注学生学习时的内部情感,使每个学生都能健康快乐的成长!

数学思想方法是联系知识和能力的纽带,是数学科学的灵魂。为了提高教学质量,使学生更好地理解数学知识、获取解决问题的有效策略,我们必须重视数学思想方法的教学。化归方法是数学中最基本的思想方法之一。它是指数学家们把待解决的问题通过某种转化过程,归结到一类已经解决或者比较容易解决的问题中,最终获得原问题的解答的一种手段和方法。在小学数学中蕴藏着各种可运用化归的方法进行解答的内容,我们在教学中可逐步渗透这种思想方法,让学生逐步领悟直至到高年级能进行简单的应用。笔者现在担任教学的两个班是从二年级开始带起的,在这几年的教学过程中我进行了化归方法的渗透教学,到五年级时,我发现学生已能自然地想到使用它来解决数学问题了。我在教学中深刻体会到化归方法的是一种行之有效的思想方法,它有着较为广泛的用途,掌握了它将使我的学生们终身受益。以下是笔者的一些探索和心得:一、寻找生长点,化未知为已知。在学习新知时,我总是先启发学生从自己已有的知识中设法去寻找与新知识的相似之处,将新问题中陌生的形式或内容转化为比较熟悉的形式和内容。例如:数的大小比较学生从低年级起就学习了,随着对数的研究的不断深入,学生要进行两位数与三位数、万以内的数、多位数以及小数、百分数、分数的大小比较。刚开始学整数的大小比较时,我就让学生搞清:每个数位上的数字所表示的含义是不同的,因为计数单位不同。接着我再让他们理解整数的大小比较的基本方法:位数多的数比较大(计数单位大);相同位数的数,先从高位比起(计数单位最大的数位上的数比起),依次比较,直到比出大小来。有了这些基础知识的铺垫,学生在学习“万以内数的大小比较”一课时,已能通过老师的启发、同学的讨论和自己的思考来解决例题了。学习“小数的大小比较”一课时,学生能借助于自己的旧知解决整数部分的大小比较,小数部分的大小比较学生又有小数的意义为支点,理解了小数与整数大小比较的方法的相似性以及旧知识的铺垫,学生自然地将“小数的大小比较”化归为类似“整数的大小比较”问题,这一内容很快在学生的思考与讨论中解决了。小学数学教材中经常有类似的内容出现,找出新知识与旧知识的相似之处,找准知识的生长点,就能将未知的内容化归为我们熟悉的内容,学生在化归方法的渗透过程中也渐渐地学会了思考问题的方法。二、掌握规律,化繁为简。随着年级的升高,对数学知识的不断深入,在学习过程中学生们所遇到的问题也越来越复杂。而化归方法却可使比较复杂的形式、关系结构变为比较简单的形式和关系结构,这种方法的有效性在中、高年级时表现的更为突出。在中年级时,学生就开始接触到一些平面图形的面积问题。学生在学习了长方形面积公式之后,通过剪、拼、割、补等方法相继得到了平行四边形、三角形以及梯形的面积公式,这时学生对化归方法已有了朦胧的认识。有了这样的学习经验的,接下去在高年级求组合图形面积或较复杂的图形面积时,学生自然地想到了通过分割或拼接的方式也将它们化归为已学过的图形,然后得到其面积的方法。三、拓展思路,化难为易。高年级学生学过的数学知识逐渐丰富起来,在我的不断鼓励之下,学生们遇到问题总是喜欢做一做、想一想、议一议,然后在自己的独立思考过程之后大胆提出看法。随着化归思想方法的不断渗透,学生们认识到几乎所有的难题经过老师的启发或同学之间的讨论,看清其实质,总能化归为比较简单的问题来解决。这种思想方法也就在他们解题时经常被想到。《新课程标准》要求教师鼓励学生独立思考,引导学生自主探究、合作交流。在实际教学中我正是这么做的。学生对数学的学习越深入,对于问题的理解和思考方法也越来越多样化。在课堂上,许多同学都争先恐后地发表自己的意见,还能对自己的观点进行合理地解释。例如:在学习了相关的内容之后,教材中出现了1/5<( )<1/4,要求填写出合适的分数。我知道这是一道很有挑战性的习题,答案不是唯一的,学生们如果能灵活应用已有的知识就可以轻松得到答案。于是,我就将这道题交给学生,让他们自己想办法来解决。学生们刚开始面对它时紧锁眉头,接着他们或低头沉思,或埋头计算,或小声议论,经过了一段时间的思考、酝酿,他们都自信满满地举起了手。学生们根据自己对题意的理解将它化归为以下题目:①同分母分数的大小比较。8/40<(9/40)<10/40 ②异分母分数的大小比较。2/10<(2/9)<2/8 ③两位小数的大小比较。<(6/25)< ④大数(小数)接近法。1/5<(23/100)<25/100或<5/25<(6/25)<1/4。对于学生们获得的这些答案,我感到非常满意,不仅因为他们都按自己的思路大胆地去尝试获得了成功,而且他们都想到了利用化归的思想方法将难题转化为较简单的问题,然后合理利用旧知来灵活解决。说明几年潜移默化的教学已经深入人心,他们开始自觉地想到和应用它了,这正是我的教学目标之一。波利亚说:“完善的思想方法,犹如北极星,许多人通过它而找到了正确的道路。”化归思想方法在新知识学习、问题解决和知识结构梳理等方面都有重要的应用。它能帮助学生化未知为已知,化难为易,化繁为简,化曲为直。这种思想方法的渗透和简单应用的教学不仅对学生现在的学习具有辅助和促进作用,我想在他们未来的工作和学习将有更加广泛的应用。我在将来的教学过程中将一如既往地进行其他数学思想方法的渗透和简单应用,把它们与数学知识有机结合起来,帮助学生学好知识,进而优化他们的知识结构,提高学生的数学素养。

一、数形结合的思想方法 数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。 例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。 二、集合的思想方法 把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。 如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。 三、对应的思想方法 对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。 如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。 四、函数的思想方法 恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。 函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。 五、极限的思想方法 极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。 现行小学教材中有许多处注意了极限思想的渗透。在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1÷3=…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。 六、化归的思想方法 化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。 如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。 七、归纳的思想方法 在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。 如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。 八、符号化的思想方法 数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。 人教版教材从一年级就开始用“□”或“()”代替变量x,让学生在其中填数。例如:1+2=□,6+()=8,7=□+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□○□=□(个)。 符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。 九、统计的思想方法 在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法

随着信息化社会的到来,社会实践对数学的需求发生了变化,数学越来越成为人们进行交流的必不可少的一种工具。人们更需要的是收集、分析和处理数据、信息的能力,面对变化的情况迅速做出判断的能力,将获得的资料、数据转换成数学问题并加以解决的能力等。面对这样的社会需求,必须改变数学教学脱离实际的倾向,重视数学与社会实际的联系,较好地满足社会的数学需求。新修订的小学数学教学大纲明确指出:“要重视从学生的生活实践经验和已有的知识中学习数学和理解数学。”这就要求数学教师结合学生的生活经验和已有的知识来设计富有情趣和意义的活动,使学生切实体验到身边有数学,用数学可以解决生活中的实际问题,从而对数学产生亲切感,增强学生学习数学的兴趣和信心,发挥自己的聪明才智,运用已有知识去创造性地解决新问题,提高解决实际问题的能力。 一、结合生活实际,培养学生的数学意识。 所谓数学意识,是指能用数学的观念和态度去观察、解释和表示事物的数量 、空间形式和数据信息,以形成量化意识和良好数感。新修订的《小学数学教学大纲》十分强调数学与现实生活的联系,在教学中增加了“使学生感受数学与现实生活的联系。”我感到作为一名数学教师,要结合生活实际,使学生养成主动地从数量上观察、分析客观事物的习惯,认识到数学符号、公式、图表是表示、交流和传递信息的工具,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到数学就在身边,使学生善于将实际问题转化成数学问题,感受数学的趣味和作用,体验数学的魅力。例如:教学轴对称图形时,引导学生观察实际的事物(树叶、蜻蜓、门窗等),分析它们的共同特征,让学生从熟悉的具体的事物中理解轴对称图形,形成轴对称概念。这样,可以使学生从抽象的概念教学中解脱出来,而且对轴对称图形的特征记得牢。 二、加强动手操作,渗透数学思想和方法 义务教育小学数学教学内容和教材中,已经注意了渗透思想和数学方法。而《新大纲》要求要加强渗透的力度,有些思想和方法完全可以以某种方式让学生较早地体会或初步了解,使小学生能通过数学学习活动积累科学思想、方法的感性经验,逐步形成灵活而缜密、具有创造性的思维品质。例如在三角形面积的计算教学中,通过图示和实际操作,先把两个完全相同的三角形叠在一起,然后以它们重合的一个顶点为中心,把上面的三角形旋转180度,再沿着一条边平移,直到与另一个三角形拼成一个平行四边形。这样不仅使学生清楚地看到三角形的底和高与所拼成的平行四边形的底和高的关系,而且还使 学生直观地了解一些平移和旋转的含义,以及对图形位置变化的作用,有利于发展学生的空间观念。 三、注重实践活动,培养学生发现数学问题的能力。 为了在学生学习数学知识的同时,初步接触和逐渐掌握数学思想,不断增强数学意识,就必须在数学教学进程中加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,认识现实中的问题和数学问题之间的联系与区别。例如,在教学《利息和利率》这一课时,可以利用活动课的时间带学生到银行去参观,并以自己的压岁钱为例,让学生模拟储蓄、取钱,这时学生的问题就出来了,“利率是什么啊?”“为什么银行的利率会不同啊?”、“储蓄哪种方式比较合理呢”……对于学生这些问题我微笑不答,表扬他们观察得很仔细,然后就让他们带着问题去预习新课,到上课的时候学生由于是自己发现的问题,自己来解决问题,兴趣浓厚,气氛活跃,轻轻松松地学习了新的知识,从而找到了符合实际需要的储蓄方式。这样学生培养了养成留心周围事物,有意识地用数学的观点去认识周围事物的习惯,并自觉把所学习的知识与现实中的事物建立联系。 四、创设生活情景,提高学生解决问题的能力。 目前的应用题教学仍未摆脱传统的应用题教学模式,所以仍然是小学数学教学的难点,占用了大量的教学时间,还是导致学生分化的主要内容。存在的主要问题是,就其内容而言,有的部分脱离学生的实际生活;就其能力训练的价值来看,侧重的是解习题的技能,而对运用数学知识解决简单的实际问题的能力的重视仍显不够。为了使学生更好地了解数学的思想方法,提高学生分析问题、解决问题的能力,教师必须善于发现和挖掘生活中的一些具有发展性、趣味性的问题。让学生从生活中学数学,激发学生学习的兴趣,提高解题的技巧,培养学生根据实际情况来解决问题的能力。例如在教学《工程问题》之后,我设计这样一道题:“老师带了一些钱去买跳绳和毽子,所带的钱如果全部买跳绳可以买50根,如果全部买毽子可以买60只,现在先买了30根跳绳,剩下的钱,还能买多少只毽子?”这道题突破了常规“工程问题”的命题方式,由于问题来自于生活,学生表现出了浓厚的兴趣,激起了学生创造性思维的“火花”,从不同角度提出了多种解决问题的方法,提高了解决问题的灵活性。 课程改革对我们数学教师的要求越来越高,教学中我们应该重视应用数学知识解决实际问题能力的培养,通过联系实际的教学内容,练习题,与现实背景相联系的教学过程,培养学生运用数学的观点观察周围事物的兴趣,提高学生运用数学的意识和解决简单实际问题的能力,从而让学生真正体会到数学学习的趣味性和实用性,在生活中发现数学,喜欢数学。

化归思想论文开题报告

本次选题“解构归一化思想”,旨在让我们深入理解“归一化”的概念,以及它在实践中的作用和意义。通过解构“归一化”,我们可以更好地理解它在社会中的作用,以及它如何影响我们的日常生活。此外,解构“归一化”还可以帮助我们更好地理解不同文化和社会群体之间的差异,以及如何消除这些差异,以实现更加和谐的社会。总之,本次选题“解构归一化思想”旨在探索“归一化”的概念,以及它在社会中的重要作用,以期让我们更好地理解归一化的重要性,并在实践中实现它。

鸡兔同笼 问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。下面我给你分享数学广角鸡兔同笼论文,欢迎阅读。

教学目标:1.使学生了解“鸡兔同笼”问题,掌握用尝试法、假设法替换法解决问题,初步形成解决此类问题一般性策略。

2.通过自主探索、合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,在解决问题的过程中,培养学生的思维能力。

3.使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:用假设法解决“鸡兔同笼”问题。

教学具准备:电脑课件

一、问题引入,分配任务。(每人发一个信封,里面装有题卡和学具)

“有五元和二元两种面额的人民币一共10张,总计32元。两种人民币各有几张?”

二、合作探究,展现拔高。(抽一生上台一一替换,老师记录)

1.启发演示:/让学生先假设这10张全是二元的。于是动手拿出10张二元的(一共二十元,显然不合要求)//然后再一一替换,抽出1张二元的,换上1张五元的,就多了3元,变成了20+3=23元,///再抽出1张二元的,换上1张五元的,就又多了3元,变成了23+3=26////再抽出1张二元的,换上1张五元的,就又多了3元,变成了26+3=29/////再抽出1张二元的,换上1张五元的,就又多了3元,变成了29+3=32。

2.方法探究:32-20=12元,少12元正好换了4次,说明五元的有4张。5元换2元一张多了3元,12/3=4。换4张才能把少的12元换回。

同样方法演示全是5元的,再拿二元去替换也可以。

3.抽象算法(形成策略):

(32-2×10)/(5-2)=4张五元或(5×10-32)/(5-2)=6张二元。

三、类化巩固(自主练习)。

①出示问题2。“有五元和二元两种面额的人民币一共100张,总计365元,两种人民币各有几张?”

先由学生小组讨论,在抽生上台展示算法:

假设100张全是五元的,则一共有5×100=500元,多出了500-365=135元,拿多少个2元去换呢?一张2元换5元就少5-2=3元,135/3=45张2元。则5元有100-45=55张。

同样,假设100张全是二元的,则一共有2×100=200元,少了365-200=165元,拿多少个5元去换呢?一张5元换2元就多5-2=3元,165/3=55张5元。则2元有100-55=45张。

②自己出题,交换答案.

展示学生甲出的题:42人去划船,一共租了10只船。每只大船坐5人,每只小船坐3人。租有的大船和小船各有几只?

展示学生乙的分析过程:(提示:假设10条都租小船。10*3=30人,42-30=12人没坐上,则用大船替换,一只大船换一只小船就多5-3=2人,12/2=6只大船刚好换完。小船为:10-6=4只)或(5×10-42=8,8/(5-3)=4只小船)

四、归纳提高:

解决问题的策略:①制定解题计划,假设与替换(同时满足两个条件,假设满足了第一个条件入手) ②猜想与尝试.(在想的基础上去试一试)③反推.(验证假设是否正确).

五、知识拓展。

其实我们刚才研究的这类题,早在古代,就有很多的数学家也做了研究,你瞧。幻灯出示。

“鸡兔同笼问题”是我国古算术《孙子算经》中著名的数学问题,其内容是:“今有鸡兔同笼,上有三十五头,下有九十四足。问鸡兔各几何?”

六、 解决生活问题(达标测试):

1.必作题: ①我班派12名同学植树,男同学每人栽了3棵数,女同学每人载了两棵数,一共栽了32棵树,问男女同学各几人?(学生独立完成,教师巡视指导)指名板演。

②小明买了6角和8角的邮票共花5元,分别买了多少张?

2.选作题:

①有5元和2元的人民币100张,总计290元,各有几张2元,5元的?

②2个大盒,5个小盒装球100个,每个大盒比小盒多装8个,问大盒和小盒各装几个?

反思

《基础教育课程改革纲要(试行)》明确要求:教师在教学过程中应与学生积极互动,共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。

首先,我由问题引入,采用的是独学的方式让学生独立思考,在启发演示中抽一生上台一一替换,其余学生拿出信封里的演示币来换,再让学生小组讨论:在这个过程中什么没变,什么变了?(张数没变,钱多少变了).这一过程体现了小组学习合作探究的学习方式。实践证明:学生学得轻松,学得明白,也体现了高效课堂的途径--核心:自主、合作、探究。

在探究过程中我让学生当小老师,自己出题,交换答案,这样提高了学生的学习兴趣,让学生主动发展,满足不同需要。

在布置作业环节,我采取必作和选作,旨在使每个学生都能得到提高,体现了因材施教的教学原则.同时题的设计紧密结合实际,让学生学会在生活中解决问题,能解决生活中的数学问题,让数学不再孤立,不再陌生。

本堂课我力求做到了三动:身动、心动、神动.

随着教学形式的发展,打造高效课堂,教给学生正确的学习方法已势在必行。“授人以鱼不如授人以渔”,我认为应从以下几个方面来培养学生,打造高效课堂: 1.培养好的学习习惯。2.掌握高效学习方法:①预习。采用有效的预习方法。边预习边作好笔记,动笔练一练,做一做。重要的数学概念公式,不懂的作上记号,以便记忆和探讨。在老师讲解的时候认真听。②有效的复习。孔子曰:“学而时习之,不亦乐乎?”及时复习。分步记忆法:学习后的半天,一天,三天,七天,半月后,分步进行。阶段系统复习――从时间上有周复习,期中复习,期习等。可以先回忆再看书,先看题后做题,先复习后笔记。③学习中要举一反三。不要满足于也有答案,数学题,可用分步,就能用综合,用了方程,看算术是否更简单。④学会梳理知识点。

在“鸡兔同笼”问题的教学中,教师通常会将我国古代《孙子算经》的简单介绍附加到教学过程中,意图在于体现数学的历史发展,向学生渗透数学历史中的文化因素。这种想法固然好,但这种“附加”式的介绍对于实现这样的目的很难有实质性的作用。为了变“附加”为“融入”,让数学史中的知识与文化更好地发挥育人功能,教师就需要对数学史的相关内容做较为广泛、深入的了解。

“鸡兔同笼”问题在我国古代可以说源远流长,从问题的叙述到问题的算法都经历了不同形式的变化,了解这些内容对于课程内容的编制和教学设计会有所裨益。

一、 《孙子算经》中的“雉兔同笼”

“鸡兔同笼”问题始见于公元3~4世纪的《孙子算经》,该书作者不详。从清代的《子部集成?科学技术?数理化学?孙子算经?孙子算经(宋刻本)?卷下》中看,“鸡兔同笼”问题的叙述为:“今有雉兔同笼,上有三十五头,下有九十四足。问雉兔各几何。”[1](见图1)

其中的“雉”是“野鸡”的意思,“几何”是“多少”的意思。用现在的语言可以把这个问题叙述为:“鸡和兔在同一个笼子中,总头数为35,总足数为94。问鸡和兔各有多少只?”《孙子算经》中对这个问题的解法分为如下的四个步骤:

第一步:上置三十五头,下置九十四足

我国古代是用算筹进行计算的,所谓“算筹”就是用于计算的小棒,是古人用于计算的一种工具。这里所说的“上置三十五头,下置九十四足”,就是把题目中的头数“35”和足数“94”用小棒分别摆在上面的位置(上位)和下面的位置(下位)。(见图2)

古人用算筹表示数时,摆放方式分纵式和横式两种。通常用纵向小棒摆放个位数字,横向小棒摆放十位数字,以后依次纵横交替摆放。比如“35”就摆放成如图3形式。

如果横向摆放的数大于5,就用纵向小棒代表5,比如图2中的“”就表示5+4=9。

第二步:半其足得四十七

意思是求出下位总足数94的一半等于47。图2就变成了图4的形式。

图4中“”上面的横向小棒表示“5”,下面两条纵向小棒表示“2”,因此“”表示5+2=7。

第三步:上三除下三,上五除下五

这里的“除”是“除去”或“减少”的意思,“上三除下三”就是“从下位四十七中除去与上位相同的三十”,“上五除下五”就是“从下位四十七中除去与上位相同的五”。(见图5)

用现在的语言说,就是从47中减去35为12,得到兔子的只数。这一过程在《孙子算经》的“术”中叫做“以少减多再命之”(见图1),意思是以少减多之后,下位“总足数”的含义发生了改变,需要重新命名,也就是把“总足数”重新命名为“兔头数”。(见图5)

第四步:下有一除上一,下有二除上二即得

与前面类似,这句话的意思是用总只数35减去兔只数12就得到鸡的只数了。上位的“总头数”需要重新命名为“鸡头数”。(见图6)

以上算法的合理性并不难理解。总足数94取半成为47,此时相当于所有鸡都成为了金鸡独立的“独足鸡”,所有兔都站立起来成为了“双足兔”。此时每只鸡的头数和足数都是1,每只兔的头数是1,足数是2,所以用47减去总头数35就得到兔的只数是12。最后用总头数35减去12就得到鸡的只数。《孙子算经》中把这一算法概括为:“上置头,下置足,半其足,以头除足,以足除头即得。”不妨称此方法为“半足法”,右上的表格可以更加清晰地呈现这一过程。

二、 《算法统宗》中的“鸡兔同笼”

“鸡兔同笼”问题后来又收录于明代程大位(1533年~1606年)所著《算法统宗》第八卷的“少广章”。[2](见图7)

其中对问题的叙述把“雉”改为了“鸡”,因此“鸡兔同笼”的说法沿用至今。《算法统宗》中对问题给出了两种算法,这两种算法与《孙子算经》中的算法是不一样的,相当于现在所说的“假设法”。第一种算法的过程为:

第一步:“置总头倍之得七十”,意思是将总头数35加倍,也就是乘2,得到70。

第二步:“与总足内减七十余二四”,也就是从总足数94中减去70得到24。

第三步:“折半得一十二是兔”,将24折半(也就是24除以2),得到12,这就是兔的只数。

第四步:“以四足乘之得四十八足”,用每只兔的足数4乘12,得到兔的总足数48。

第五步:“总足减之余四十六足为鸡足”,用总足数94减去兔的总足数48得到46,就是鸡的总足数。

第六步:“折半得二十三”,将鸡的总足数46折半(46除以2),就得到鸡的只数为23。

另外一个算法是先求鸡的只数,与前面先求兔只数的程序基本相同,这一算法可以用下面表格的形式呈现出来。

《算法统宗》中关于“鸡兔同笼”问题的两个算法,在书中概括为两句话:“倍头减足折半是兔”和“四头减足折半是鸡”(见图7)。第一句话的意思是把求兔只数的过程分为了倍头、减足和折半三个步骤,“倍头”就是把总头数35加倍变成70;“减足”是用总头数94减去70得到24;“减半”就是取24的一半得到兔子的只数为12。这个过程写成如今的算式就是:

(94-35×2)÷2=12(只)

第二句话的意思是把求鸡只数的过程分为了四头、减足和折半三个步骤,“四头”就是用4乘总头数35得到140;“减足”是用140减去总足数94得到46;与求兔只数的过程类似,“折半”就是取46的一半得到鸡的只数23。写成算式就是:

(35×4-94)÷2=23(只)

这样的过程显然与《孙子算经》中的“半足法”不同,半足法首先将总足数减半。这里的第一步是用每只鸡或兔的足数(2或4)去乘总头数,因此不妨把这个方法叫做“倍头法”。不难发现,“倍头法”背后的道理其实就是现在所说的“假设法”。

《算法统宗》中的鸡兔同笼问题出现于该书第八卷中,实际上在之前的第五卷中就已经出现了与“鸡兔同笼”问题数量关系类似的“米麦问题”:“今有米麦五百石,共价银四百零五两七钱,只云米每石价八钱六分,麦每石价七钱二分五厘。问米麦各若干。”

【摘 要】中国传统数学名题是在时间长河里洗练出来的具有经典意义的数学问题,它具有自己的数学思想和背景文化。文章主要研究了中国传统数学名题―鸡兔同笼问题及其中渗透的数学思想,使大家在情感态度、思维能力与价值观等方面得以提升,增强数学文化素养。

【关键词】鸡兔同笼;解题思路;求解方法;数学思想

鸡兔同笼,这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?

解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。

解:假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4-2=2(条) 24÷2=12 (只) ――兔35-12=23(只)――鸡

方程:

解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23

答:兔有12只,鸡有23只。

我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只用假设法来解

对于这个问题,我们给出如下几种求解方法,并给出相应的公式;

解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数 总只数-鸡的只数=兔的只数

解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数 总只数-兔的只数=鸡的只数

解法3:总脚数÷2-总头数=兔的只数 总只数-兔的只数=鸡的只数

解法4:兔的只数=总脚数÷2―总头数 总只数-兔的只数=鸡的只数

解法5(方程):X=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数) 总只数-兔的只数=鸡的只数

解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数) 总只数-鸡的只数=兔的只数

解法7 鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数

解法8 兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数

解法9 总腿数/2-总头数=兔只数 总只数-兔只数=鸡的只数

“鸡兔同笼”中的数学思想方法

一、化归思想

化归是基本而典型的数学思想。化归是指将有待解决的问题,通过转化归结为一类已经解决或较易解决的问题中去,以求得解决。我们常常用到的如化未知为已知、化难为易、化繁为简、化曲为直等都是这一思想方法的运用。“鸡兔同笼”原题中的数据比较大,不利于首次接触该类问题的学生进行探究,根据化繁为简的思想,先安排数据较小的问题,如“笼子里有若干只鸡和兔。从上面数,有7个头,从下面数,有18只脚。鸡和兔各有几只?”(以下均以此题为例)待学生探索出解决此类问题的一般方法后,再应用于解决《孙子算经》中数据较大的原题,学生将易如反掌。“鸡兔同笼”问题在生活中有很多变式,比如“龟鹤问题”、“坐船问题”等,这些问题可以通过化归,归结为“鸡兔同笼”问题,再进一步求解,使学生感受“鸡兔同笼”问题的变式及其在生活中的广泛应用,体会“化归法”在解题中的魅力。

二、假设思想

假设是一种重要的数学思想方法。假设法是先假定一种情况或结果,然后通过推导、验证来解决问题的方法。合理运用假设法,往往可以使问题化难为易,使解题另辟蹊径,有利于培养学生灵活的解题技能,发展学生的逻辑推理能力。

用假设法解答上题有多种思路,可以先假设全部都是鸡或全部都是兔,再计算实际与假设情况下总脚数之差,最后推理出鸡和兔的只数。比如假设7只都是鸡,那么兔有(18-7×2)÷(4-2)=2(只),鸡有7-2=5(只)。运用假设法解题是教学的难点,教师可以先让学生用上述的“画图法”,学生会在直观操作活动中通过数形结合而建立思维的表象,再进一步抽象,这样有助于学生真正理解“假设法”,形成有序地、严密地思考问题的意识。教师也可以向学生介绍古人解决“鸡兔同笼”问题的“抬脚法”,其中也应用了“假设法”。

三、方程思想

方程是刻画现实世界的有效模型,通过把生活语言“翻译”成代数语言,根据问题中的已知数和未知数之间的等量关系,在已知数与未知数之间建立一个等式,这就是方程思想的由来。在“鸡兔同笼”的问题中,可以设鸡或兔中任意一种有X只,然后根据鸡、兔的只数与脚的总只数的关系列方程来解答。例如设兔有X只,则鸡有(7-X)只,可列方程:4X+2(7-X)=18,解得X=2,于是鸡有:7-2=5(只)。方程解法思路比较简单,且具有一般性,教学中要突出方程解法的优越性,不断渗透方程思想。

四、建模思想

弗赖登塔尔认为:学生与其学数学,不如学习数学化。在小学阶段,就是把数学研究对象的某些特征进行抽象,用数学语言、图形或模式表达出来,建立数学模型。在解决了“鸡兔同笼”问题后,可以引导学生观察、思考,概括提炼出解题模型:兔数=(实际的脚数-鸡兔总数×2)÷(4-2),鸡数=(鸡兔总数×4-实际的脚数)÷(4-2)。之后在应用中引导学生巩固、扩展这个模型,把“鸡”与“兔”换成乌龟和仙鹤等,变式为“龟鹤问题”、“坐船问题”、“植树问题”、“答题问题”等问题,沟通这些问题与“鸡兔同笼”问题的联系,使“鸡兔同笼”成为这些问题的模型,并应用模型解决问题,不断促进模型的内化。教学中教师要重视学生建模思想的培养,使数学建模成为学生思考问题与解决问题的一种思想和方法。

以上是“鸡兔同笼”问题的各种解法中蕴含的主要的数学思想方法,从上述讨论中看出一种解法中可以蕴含不同的数学思想,而不同解法中可以蕴含同一种数学思想。

参考文献:

数形结合思想在解题中的应用 1. 数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。 2. 所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。如等式 。 3. 纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4. 数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。 化归思想 化归思想就是化未知为已知,化繁为简,化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系 数法,配方法,整体代人法以及化动为静,由抽象到具体等转化思想 例1 鸡兔同笼,笼中有头50,有足140,问鸡、兔各有几只? 分析 化归的实质是不断变更问题,这里可以先对已知成分进行变形。每只鸡有2只脚,每只兔有4只脚,这是问题中不言而喻的已知成分。现在对问题中的已知成分进行变形:“一声令下”,要求每只鸡悬起一只脚(呈金鸡独立状),又要求每只兔悬起两只前脚(呈玉兔拜月状)。那么,笼中仍有头50,而脚只剩下70只了,并且,这时鸡的头数与足数相等,而兔的足数与兔的头数不等有一头兔,就多出一只脚,现在有头50,有足70,这就说明有兔20头,有鸡30头 整体代换 整体代换是运用整体思想处理问题的一种方法,其基本思想是把问题中的某些对象作为一个整体考虑,从而发现问题的内在联系,找到求解的思路.运用整体思想解题的关键是“整体”的选择与确定.现以近几年来的中考题为例,说明整体代换的应用.

中学数学思想方法研究论文

初中数学概念教学论文

范文一

一、问题的提出

数学概念是反映数学对象的本质属性的思维形式,是数学基础知识的核心,是构建数学理论大厦的基石,是形成数学知识体系的主要元素,是导出数学定理和数学法则的基础,是数学思想与方法的载体。正确理解数学概念既是掌握数学基础知识的前提,也是进行判断、推理、计算和证明的依据,许多数学问题的解决常常离不开数学概念。只有真正掌握了数学中的基本概念,才能把握数学的知识系统,才能有正确,合理,迅速地进行运算,推理和论证。因此,搞好数学概念的教学,帮助学生了解数学概念的发生、发展的过程,把握数学概念的本质特征,体会蕴含在数学概念中的数学思想方法,掌握数学概念在解决数学问题中的应用,从而有效地训练学生的思维,培养学生的创新精神和创造能力,是提高数学教学效益的关键。

二、理论依据

1.《数学课程标准》强调:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。”数学的每一个概念都是一个数学模型。要让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,首先要为学生提供一个具体的问题情境,学生通过感知概念的表象等方式,进而理解概念的本质,初步建立新的知识结构的过程。重点指向的是学生学习概念内核,最后达成运用概念,巩固、拓展的环节。

2.教育心理学理论。布鲁纳认为,获得的知识如果没有完满的结构将它联系在一起,那是一个多半会被遗忘的知识,一串不连贯的论据在记忆中仅有短促的可怜的寿命。因此,概念教学必须返璞归真,揭示数学概念的形成过程,让学生从概念的现实原型,概念的抽象过程,数学思想的指导作用,形象表述和符号化的运用等多方位理解一个数学概念,使之符合学生主动建构的教育原理。

3.数学教育学指出,教学中应加强对基本概念的理解和掌握,对一些核心概念要贯穿于初中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。有效的数学概念教学,决不是以让学生学会概念为终极目标,而是让学生在参与数学活动的过程中生成和建构数学概念,更要让学生在知识和能力上获得全面的发展,从而促进数学素养的有效提升。

三、概念生成教学的案例研究

笔者以浙教版八年级上册《中位数与众数》为课例进行了一次尝试,让学生经历这样一个过程,不但能使学生逐步掌握概念本质,还能使学生感受到探究与合作的无限快乐,感觉到自己精神,智慧力量的增长,使学生的个性得到充分的发展,学习效率提高。

本节教材是八年级下册第四章统计初步第三节,它是上节平均数的延续。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。本节课的重点在于众数与中位数的求法与应用;众数与中位数概念的形成与定义既是重点又是难点。本节教学使学生进一步体会用样本估计总体的统计思想方法,形成运用数学知识解决简单应用问题的能力。学好本节课,也将为本章后继内容的学习打下良好的基础。

数学概念教学的核心是“归纳”:将凝结在数学概念中的数学家的思维活动的线索揭示出来,用一些学生熟悉的典型事例作载体,引导学生分析各事例的.具体属性、抽象概括出本质属性、归纳总结得出数学概念等思维活动而获得数学概念。我追求一种有意义的活动式学习,主动建构,必要变式训练,重过程也重结果。

1.创设问题情境,揭示数学概念来源

学生的思路应该在学生自己的头脑中产生,教师的作用在于系统地给学生发现事物的机会,启动学生在允许的条件下亲自去发现尽可能多的东西。

因此在教学中,教师应创设情境,使学生在情境中像数学家那样去想数学,经历比较,抽象,概括,假设,验证和分化等一系列的概念形成过程,从中学到研究问题和提出概念的思想方法,在获得概念的同时培养学生的探索能力和创新精神。形成数学概念首先要有十分相关的感性材料,让数学知识与学生的现实生活密切结合,使学生感受到数学是有趣的,是有实际意义的,不仅有利于学生对于所研究对象的感性认识,并在此基础上认识其本质,还能促进数学直觉的形成,数学思维的发展,更能促进学生在以后遇到相关问题时自觉地运用有关的数学经验去思考、解决问题。

2.提供探究任务,明晰数学概念内涵

为鼓励全体学生积极参与并提高课堂效率,我们要求学生自主探索和小组合作学习,利用表格呈现出“众数、中位数”意义。学生清晰地认识到了自己的工作目标,就可以形成与获得所希望的成果,利用别的数集验证或纠正猜想,使合作学习取得成功。由此让学生熟悉归纳猜想的数学思想方法,体验克服困难的兴奋与团结协作的价值。概念的形成是一个积累渐进的过程,因此在概念的的教学中要遵循从具体到抽象,从感性认识到理性认识的原则。学生的思维特点是从具体形象思维逐步向抽象思维过渡的,这种过渡在很大程度上还是依靠丰富的感性材料,所以数学概念不是靠教师讲出来的,而是靠学生自己去感悟,体验的。

3.回归问题原型,实施适度变式训练

在教学中可借助富有探究性、挑战性的问题,让学生在尝试中亲自体验数学概念,通过自己的思考建立起对概念的理解,逐渐认识概念本质。为了巩固学习成果和检验迁移水平,我们将情境改造,形成“貌似神非”和“貌非神是”的新问题,加强变式训练。为了激发学生的内驱力,最有效的方法就是“重视教学与现实生活的联系”使学生引起认知冲突,直面数学困惑,置身于渴望解决问题的情境之中。

4.通过自主评价,深化数学概念理解

通过自主评价,促使学生反思他们的体验和获得的知识等,提高反思性学习的能力。计算平均数的时候,所有的数据都参加运算,它能成分利用数据所提供的信息,在现实生活中较为常用;但它容易受到极端值的影响。中位数的优点计算简单,受极端值影响较小,但不能充分利用所有数据的信息。一组数据中某些数据多次重复出现时,众数往往是人们特别关心的一个量,但各个数据的重复次数大致相等时,众数往往没有特别意义。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。

四、几点思考

1.学生自我表述概念时必须准确

语言是思维的物质载体,数学概念是用科学、精练的数学语言概括表达出来的,它所揭示事物的本质属性必须确定,无矛盾,有根有据并合情合理。所以概念形成之后,应及时让学生用语言表述出来以加深对概念的印象,促进学生内化。同时培养学生正确的表述概念,能促进学生思维的深刻性。

2.教师必须做好引导工作

教师在学生的探究活动中应该扮演一个什么样的角色,应对学生提供多大力度的干预,其分寸较难把握。探究活动与巩固操练的时间如何安排,如何将“接受式”与“活动式”有机结合彰显各自的优点,教师必须做好引导员,引导学生去感受概念引入的必要性与合理性;引导学生合理地进行概念的抽象;引导学生进行概念的“数学化”来培养语义转化能力;引导学生学会在概念的定义中进行科学的归纳;引导学生在概念的应用中深化对概念的认识和理解、体会概念的价值,从而让课堂有机、有序、高效地达成目标。

学好概念是学好数学最重要的一环,对概念的理解透彻了,就能认识到数学的价值,获得运用知识的能力。根据新课标对概念教学的具体要求,优化教学设计,真正使学生在参与的过程中产生内心的体验和创造,达到认识数学思想和本质的目的,培养学生运用数学知识解决实际问题的能力,以及培养学生逻辑思维和空间想象的能力。

范文二

初中教学是一门纯基础的自然科学,学生从正负数的引入,数域的拓展开始,接触的是比小学数学更为抽象的内容。由于它的纯基础性逐步凸现,学生感受到的是比小学数学更枯燥无味的内容,如何提高学生学习数学的兴趣,充分发挥45分钟的课堂效益,将枯燥的内容生动化,变乏味为有趣,提高数学课堂教学效果,长期以来,一直是初中数学老师孜孜以求而探索的问题。本文从我教学中的实践,谈及数学教学的艺术与技巧及如何调动学生学习数学的积极性,启动学生的求知欲望,发挥学生的主体作用,搞好数学教学的几点思考与实践。

一 、运用实验方法,利用学生求新心理,上好入门课

对于初中学生,虽然在小学学过数学,但初中数学则从一个全新的角度入手,出现在他们面前的,是过去从来没有接触过的极其抽象的内容,因此,上好入门课,是学生学好初中数学的基础。学生走进校门,教师就要牢牢抓住学生的求新心理,使他们对学习数学产生浓厚的兴趣,通过一些活动、有趣的自然现象有效地激发学生的学习兴趣和求知欲望。例如正负数的引入,除了教材上的温度计、海拔高度之外,我还让学生自己设计了一些相反意义的量,如从岳阳到武汉和株州都是200公里,但一个往北一个向南,数学上怎样记叙?等等,这些仅靠在小学数学学过的记数方法已不能正确地反映,很自然的就引入了负数概念,这些学生生活中司空见惯的问题能得到合适的解决,立即吸引了学生的注意力,把学生带进了一个崭新的数学世界,从而激发他们在抽象的数学世界探索奥秘的兴趣。这样,同学们带着浓厚的学习兴趣和明确的求知目的进入到了数学课的学习中。

二、运用电教手段,利用学生的求趣心理,培养发展学生的学习兴趣。

抽象的数学概念学生感到枯燥而导致厌学,如何将抽象的数学概念融入到新奇有趣的情境中,是课堂教学的一个难题,如果在教学中能结合教材内容,介绍一些能用数学知识解释的自然景观,数学史方面的奇闻轶事,设计一些有趣的演示或学生探索性的小实验就能引发学生的好奇心,激发学生探知奥秘,获取知识的欲望。在教学中,我利用电教手段,创设情景,形象生动,新颖独特地将学生引入到学习中。例如在讲“圆”这一节时,既对学生进行了爱国主义教育,又引发了学生的求知欲望;在讲“求平均数”这一节时,我首先给同学们放了一段我国女排与古巴女排的比赛录象,其中有宋世雄的解说:“平均身高”,“这个平均身高是怎样计算出来的?有没有很简单的计算方法呢?”随着这个问题的提出,我把每个队员的身高都写出来,同学们身临其境,进入了积极的思维状态,但同时也出现思维受阻表情,对出现的问题产生了“迷惑”,于是我抓住时机,导入新课,这就是我们今天要解答的“迷”。这样同学们带着具体问题在积极思维的状态下进入了新知识学习。用这样的方式上课,把学生的学习情绪从一开始就引入最佳状态,大大激发了学生的求知欲和创造欲,寓知识于趣味之中,令学生信心大增,收到了事半功倍的效果。

三、从生活实例引入,结合实验、活动,辅以电教手段,增强学生感性认识。

学生学习数学兴趣的高低,学习成绩的好坏,取决于学生对所学知识的感知、理解和记忆程度。如果学生对所学知识兴趣强,他们的理解和记忆就强,反之则弱。因此,要获得好的教学效果,首先必须让学生有活跃的思维,所授知识通过学生大脑的思考和筛选,达到理解记忆的目的。这就要求教师在讲授新的知识时,注重教学方法的艺术化,充分调动学生的主观能动性,让学生的思想活动围绕着所授新知识而展开。著名教育家杜威说过,“教材对学生永远不是从外面灌进去的,学习是主动的,它包含着心理的积极开展,决定学习质量的是学生而不是教材”。对于这些童心极重的初中学生来说,一个小球在讲台上滚动一下也会觉得有趣。强烈的好奇心使他们对于发生在生活中的自然现象,往往会产生直接的兴趣。因此,从生活实例出发,提出问题引导学生思考,根据教学内容安排一些有趣的实践活动,辅之以电教手段,既能提高其学习兴趣,又能巩固已学知识,培养其观察能力和思维能力。如在讲“圆”这一节时,我从生活实例出发提出问题引导学生思考,“为什么车轮要设计为圆形?设计为多边形是什么结果?”这一问题的提出,引发了同学们的思考,同时唤起了他们探知究竟的欲望,我抓住这一时机,导入新课,给出圆的定义。同时指出,正是因为轮周上每一点到轮轴的距离相等,车轮在运动中才没有震动的感觉,于是同学们带着问题积极主动的进入到新课的学习中。

四、巧妙开导,巧讲、精练,给学生以主动权。

教学活动要通过学生主动的参与,积极的活动,自动的学习才能达到目的。学生主体作用是否充分发挥,关系着教学的成败。在传授新知识的过程中,教师的主导作用就体现在能否充分调动学生的学习积极性,使之最大限度地发挥其主观能动性上。只有教师的主导作用发挥得恰到好处,学生的主体作用才能充分体现出来。如在讲“勾股定理”这一节时,课前我准备了一批教学卡片,引入新课后,我介绍了在一千多年前,我国数学家就证明了这条定理,引发了同学们的自豪感和好奇心,接着利用教学卡片与学生一起拼出各种能证明结论的图形,在不知不觉中就引导学生对定理进行了证明。让学生参与到教学活动中来,他们通过自己动手动脑,对知识的领悟会更透彻,对问题的体会会更深刻而体会到主动学习的乐趣。因此,教师应该精心策划每一堂课,创设一定的条件,使学生的思维经常处于兴奋状态。

总之,提高教育质量是一项复杂的系统工程,受多方面因素的制约,但教学过程中,以学生为主体,充分发挥教师的主导作用,则是一条基本教学原则,教师的教和学生的学都必须抓住让学生形成良好的学习方法,培养学生的学习能力这一中心环节。苏霍姆林斯基指出:“教给学生能借助已有的知识去获取知识,这是最高的教学技巧之所在。”伟大的教育家陶行知也认为:“先生的责任不在教,而在教学生学”。教师的责任不是帮助学生把锁打开,而是交给他开锁的钥匙,这就要求我们在教学过程中注重发挥学生的主体作用,使其能力在教与学的过程中得到完美的发展。

心理学家认为:学习动机中最现实、最活跃的成分是兴趣。如果能让学生对数学科产生比较稳定的兴趣和爱好,那么只要在学习和生活中出现能用所学有关数学知识解决的问题,他们的大脑就立刻处于兴奋状态,进入接收知识,发展思维,锻炼意志的最佳时机。因此,初中数学教学,一开始就要注意培养和发展学生对数学的兴趣,让他们心灵得到科学的熏陶,艺术的振撼,从而不断发展提高他们学习数学的兴趣,变“被动”为“主动”、变“苦学”为“乐学”,就必然能提高数学教学质量,获得最佳的教学效果。

"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。 一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题 2、善于反思与反求

初中数学中的数学思想是我为大家带来的论文范文,欢迎阅读。

摘 要:数学思想及数学方法是数学课程的精华,同时也是将理论知识转变为应用能力的途径。

当前,初中阶段的数学课程所包含的思想及方法主要有:整体思想、归纳思想、类比思想、辩证思想等。

教师想要帮助学生掌握学习方法,提高数学素养,就应重点培养学生的数学思想。

关键词:数学思想 初中数学 方法体系

数学思想是对数学知识和方法本质的认识,是解决数学问题的根本策略,它直接支配着数学的实践活动;数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。

目前,在初中阶段,主要数学思想方法有:转化思想、方程思想、分类讨论的思想、数形结合的思想等。

一、转化思想

所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。

我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。

数学问题的解决过程就是一系列转化的过程。

转化是化繁为简、化难为易、化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析、解决问题的能力有着积极的促进作用。

在学习《平行四边形和梯形的认识》时,对于梯形的认识和学习可引导学生通过作适当的辅助线,比如做梯形的高、平移一条腰或者平移一条对角线把梯形分割或补成三角形和平行四边形来解决问题。

从而把生疏的、新的问题转化为熟悉的、旧的问题,把困难的问题转化为容易的问题。

二、方程思想

所谓方程思想,主要是指建立方程(组)解决实际问题的思想方法。

教材中大量地出现这种思想方法,如列方程解应用题、求函数解析式、利用根的判别式、根与系数关系、求字母系数的值等。

方程建模的思想对人的教育价值体现在两个方面:一个是建模,另一个是化归。

学生学习方程的意义在于:一是学习在生活中从错综复杂的事情中,将最本质的东西抽象出来,这个过程是非常难的,很有训练的价值;二是在运算中遵循最佳的途径,将复杂问题简单化,这种优化思想对于思维习惯的影响是深远的。

教学时,可有意识地引导学生发现等量关系从而建立方程。

如讲“利用待定系数法确定二次函数解析式”时,可启发学生去发现确定解析式的关键是求出各项系数,可把它们看成三个“未知量”,告诉学生利用方程思想来解决,那学生就会自觉地去找三个等量关系建立方程组。

在这里如果单讲解题步骤,就会显得呆板、僵硬,学生只知其然,不知其所以然。

三、分类讨论思想

“分类讨论”是一种逻辑方法,是中学数学中一个极其重要的数学思想方法,同时也是一种重要的解题策略,当被研究的问题包含多种可能的情况不能一概而论时,就要按照可能出现的各种情况进行分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法就是分类讨论思想。

近年来,在各地中考试题中涉及“分类讨论”的问题十分常见,因为这类试题不仅考查我们的数学基本知识与方法,而且考查了我们思维的深刻性.在解决此类问题时,因考虑不周全导致失分的较多,究其原因主要是在平时的学习中,尤其是在中考复习时,对“分类讨论”的数学思想渗透不够.在数学中,当问题所给的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,得到每一类的结论,最后综合各类的结果得到整个问题的解答,这种“化整为零、各个击破、再集零为整”的方法,叫做分类讨论法。

1.分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置。

2.所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的'结论,最后综合各类结果得到整个问题的解答。

实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。

3.分类原则:分类对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。

4.分类方法:明确讨论对象,确定对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论。

由于学生的思维的全面性还不完善,缺乏实际的经验,这样呢,在分类讨论问题时,学生不知道从哪个方面、哪个角度去分析、去讨论,才能有利于问题的解决,这是教学过程中的一个难点,所以在教学过程中,培养学生的分类思想显得特别重要,即结合具体的解题过程,适当向学生介绍一些必要的分类知识,引导他们去发现、去尝试、去总结,这对他们学习知识、研究问题、提高技能是大有帮助的。

四、数形结合的思想

“数缺形,少直观;形缺数,难入微”,数形结合的思想,就是研究数学的一种重要思想方法,它是指把代数的精确刻画与几何的形象直观相统一,将抽象思维与形象思维相结合的一种方法。

数形结合的思想贯穿于初中数学教学的始终。

数形结合思想的主要内容体现在以下几个方面:(1)建立适当的代数模型。

(2)建立几何模型解决有关方程和函数的问题。

(3)与函数有关的代数、几何综合性问题。

(4)以图象形式呈现信息的应用性问题。

采用数形结合思想解决问题的关键是找准数与形的契合点。

如果能将数与形巧妙地结合起来,有效地相互转化,一些看似无法入手的问题就会迎刃而解,产生事半功倍的效果。

数形结合是数学中一种重要的思想方法,它将抽象的数学语言与直观的图形结合起来,使代数问题几何化或使几何问题代数化,为问题的解决提供了简洁明快的途径。

在实践中我们发现,学生在解决问题的过程中经常会面对问题时无从下手,这时如果学生能灵活运用数形结合的方法,往往能很快找到解决问题的窍门。

总之,在初中数学教学中,渗透数学思想方法,可以克服就题论题、死套模式。

数学思想方法可以帮助我们加强思路分析,寻求已知和未知的联系,提高分析、解决问题的能力,从而使思维品质和能力有所提高。

提高学生的数学素质,必须紧紧抓住数学思想方法这一重要环节,因为数学思想方法是提高学生的数学思维能力和数学素养的重要保障。

参考文献:

[1]陈振宣.《中学数学思想方法》.上海科技教育出版社

[2]郑敏信.《数学方法论》.广西教育出版社

小学数学模型思想毕业论文

1、谈谈计算教学的改革2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究(一)5、改进教学方法培养创新技能6、21世纪我国小学数学教育改革展望7、面向21世纪的小学数学课程改革与发展8、不拘一格育“鸣凤”使学生真正成为学习的主人9、改革课堂教学的着力点10、谈素质教育在小学数学教学中的实施11、素质教育与小学数学教育改革12、浅谈学生数学思维能力的培养13、浅议表象积累与培养学生的思维能力14、也谈学生创新意识培养15、实施创新教学策略 培养学生创新意识16、10以内加法整理和复习17、改良“有余数除法计算”教法18、给学生创新的时间和空间和谐愉悦19、主动探索——一年级《统计》教学片断评析20、小学数学教育--教师之家--教师培训

这里搜集了一些小学数学教学论文题目,仅供参考。1、课堂有效提问的初步探究2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究5、改进教学方法培养创新技能6、使学生真正成为学习的主人7、改革课堂教学的着力点8、谈素质教育在小学数学教学中的实施9、素质教育与小学数学教育改革10、浅谈学生数学思维能力的培养11、实施创新教学策略,培养学生创新意识12、10以内加法整理和复习13、改良“有余数除法计算”教法14、给学生创新的时间和空间15、谈谈计算教学的改革16、面向21世纪的数学素质及其培养17、能被3整除的数的特征18、年、月、日19、培养自学能力,推进素质教育20、浅谈小学数学总复习的“步步反馈,逐层提高”法21、入情才能入理 激情方能启思22、实施“生活数学”教育,培养自主创新能力23、数学作业批改中巧用评语24、提高认知水平,培养自学能力25、圆的面积”的教案26、圆柱的认识27、运用多媒体辅助教学,优化数学教学方法28、组织课堂讨论 优化课堂教学29、重视学生获取知识的思维过程30、小论文巧算圆的面积31、联系生活实际提高课堂效率32、数学教学中如何调动学生的学习积极性33、根据心理学的理论进行计算法则教学34、简单应用题教学再探35、创设情境,培养学生创造个性36、学生“四会”能力的培养37、营造探究氛围一例38、实施创新教育 培养创新人格39、《9和几的进位加法》教学设计40、信息技术与小学数学41、合理运用学具 提高数学课堂教学效率42、略谈“问题解决”与小学数学教学43、渗透数学思想方法 提高学生思维素质44、引导学生参与教学过程 发挥学生的主体作用45、培养学生的创新意识要处理好的几个关系46、浅谈“数形结合”在小学低段数学教学中的应用47、借助学具,提高数学课堂效率48、对数学新课程理念下练习课教学的几点思考48、多通道促进数学课堂公平50、上“活”概念课,灵动新课堂51、对学生数学作业订正现状调查分析及对策52、对小学数学动态生成式课堂结构的认识53、对新课程中估算教学的几点想法54、谈小学应用题教学如何为学生自主探索创造条件55、小学数学课堂中的口头评价56、让新理念成为把握教材的支撑点57、立足现实起点,提高课堂效率58、谈课堂教学中有效情境的创设59、提高数学课堂教学效率之我见60、为学生营造一片探究学习的天地

浅析怎样让小学数学教学走向生活化新《课程标准》中指出:“数学是对现实世界的一种思考、描述、刻画、解释、理解,数学是人们生活、劳动和学习必不可少的工具,它来源于生活,又服务于生活……”为此,我经常引导学生提供他们所熟悉的经验,充分利用学生现有的知识经验和他们所熟悉的事物组织教学,使学生能较好地感知和理解所学的内容。 一、例题生活化,体验、感受数学 一提到数学这个词,大家都觉得只是“题”、是“数字”,学生学数学只要做题就行了。而在使用新教材的过程中,我逐步体会到了,数学本身不只是“数字符号”,它有更丰富的内涵,与生活实际密切相关。数学教学中,要从多方面“找”数学素材,多让学生到生活中“找”数学、“想”数学,真切感受“生活中处处有数学”。如,在讲解直角三角形的时候,有这么一道题:一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米。如果梯子的顶端下滑1米,那么底端滑动的距离是1米吗?很多同学的第一反应是下滑了1米,我让学生互相交流,并且动手建立模型、操作,发现答案并不是1米。通过小组合作学习,进行小组内的交流,让每个学生发表自己的观点、倾听同伴的解法,相互学习,让学生感觉到数学就在自己身边,数学就在自己的生活中,从而学会了解决数学问题。 二、导入生活化,创设情境,激发兴趣 “兴趣是最好的老师。”在我们的生活中,到处都充满着数学,教师在教学中要善于从学生的生活中抽象出数学问题。在平时的教学活动中,我十分重视学生的已有生活经验,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,充分利用教材中的情境,把握好新旧知识间的距离,激发学生的求知欲望。如在讲解图形的轴对称问题时,我先拿出自己剪好的“囍”字,问学生:会剪“囍”字吗?如何剪?剪出的“囍”字有什么特点?让学生自己动手操作,发现轴对称的美,发现这些图形的变换原来就在我们的身边,无形中产生了学习的动力。期刊文章分类查询,尽在期刊图书馆 三、教学生活化,产生亲切感 在现实生活中,学生天天与数学打交道,却对生活中的数学熟视无睹,对数学缺乏兴趣,缺乏良好的数感,学与做无法同步发展,解决实际问题的能力得不到锻炼和提高。学和用的分离,把数学学习和生活需要割裂开来。在新课程背景下,我们很有必要让数学回归生活,从而让学生对数学产生亲切感。如在讲一次函数问题时,我先出了这么一道题:学校为了鼓励节约用水,对自来水费按以下方式收取:用水不超过10吨,每吨按元收费;若超过10吨,超出部分每吨按元收费。①王老师六月份用了8吨水,应交水费多少元?②李老师六月份用了12吨水,应交水费多少元?③陈老师六月份平均水费为每吨元,则陈老师六月份用了多少吨水?应交水费多少元?当学生解决了这个问题后,我再让学生拿来当月的水费单子,让学生思考水费的计算公式,当用水量超过多少时,水费的单价会提高,从而让学生得出水费的一般计算形式。这个生活实际问题的提出,既让学生了解了分段函数,也让学生对生活中的数学产生了兴趣,同时对学生进行了节约用水的教育。 四、练习生活化,提高操作实践能力 学生学习数学是“运用所学的数学知识和方法解决一些简单的实际问题,是必要的日常生活的工具”。引导学生把所学知识联系、运用于生活实际,可以促进学生探索意识和创新意识的形成,培养学生初步的实践能力。例如这样一道题目:用一张正方形的纸制作一个无盖的长方体,怎样制作使得体积较大?这是一个综合性的问题,学生可以从以下几个方面进行思考:①无盖长方体展开后是什么样?②用一张正方形的纸怎样才能制作一个无盖长方体?③制作的无盖长方体的体积应当怎样去表达?通过这样题目的实践练习,学术进一步丰富了自己的空间观念,体会了函数思想以及符号表示在实际问题中的应用,进而体验了从实际问题中抽象出数学问题、建立数学模型,加深了对相关知识的理解,发展了自己的思维能力。 课堂教学要生活化,但也要考虑学生实际。例如,以按揭购房、房屋装修、超市购物等充满城市文化气息的素材来创设“生活化”情境,会让城市学生感觉亲切和熟悉,但是对于农村学生来说似乎是“天外来客”。“现行课程中的城市文化气息太浓,乡村文化缺乏体现。新教材中反映农村生活经历和实际问题的材料太少,而与农村生活有较大距离的背景内容又太多。”所以教学中除了注意“生活化”情境的创设外,还必须加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,收集生活素材,积累经验,更好地认识数学和生活的依存关系。 数学课堂通常被认为比

小学数学课题研究最佳题目数学核心素养下农村小学高年级学生运算能力培养的研究小学数学大班额背景下小组合作学习的有效性研究小学数学教学中培养学生动手实践能力及其评价方式的研究以“智慧放手”的教学特色培养小学生合作学习能力的研究基于核心素养下的小学低年级数学评价模式研究小学生空间观念和几何直观的培养与评价研究核心素养背景下小学数学整理和复习课的研究优化小学数学课堂教学方式的实践研究基于读懂学生错误培养学生反思能力的实践研究依托综合与实践活动教学提升小学生数学素养的研究在小学数学“数与代数”领域开展游戏化教学的实践研究小学数学中培养学生几何直观能力的研究小学数学课堂教学与现代教育技术融合实验与研究小学数学教学中建立模型思想的策略与方法研究基于发展学生核心素养的小学数学作业设计有效性的研究小学中年级数学课堂提问有效性的研究小学数学小组合作学习有效性的研究小学数学课堂教学与信息技术整合的研究优化小学数学教学有效性的策略研究

高等数学建模思想研究论文

数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。

数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用

一、高等数学教学的现状

(一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学 方法 传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体 措施

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.

[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.

[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.

数学建模论文范文二:数学建模教学中数学素养和创新意识的培养

前言

创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.

1掌握数学语言独有的特点和表达形式

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.

用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.

2借助数学建模教学使学生学会使用数学语言构建数学模型

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.

而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.

3借助数学实验教学,展示高度抽象

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.

教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.

4突出学生的主体作用,循序渐进培养学生学习、实践到创新

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.

5具体的教学策略和途径

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.

参考文献:

[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.

[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。

[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.

[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.

[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.

[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.

毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。

本科数学毕业论文题目

★浅谈奥数竟赛的利与弊

★浅谈中学数学中数形结合的思想

★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学

★中数教学研究

★XXX课程网上教学系统分析与设计

★数学CAI课件开发研究

★中等职业学校数学教学改革研究与探讨

★中等职业学校数学教学设计研究

★中等职业学校中外数学教学的比较研究

★中等职业学校数学教材研究

★关于数学学科案例教学法的探讨

★中外著名数学家学术思想探讨

★试论数学美

★数学中的研究性学习

★数字危机

★中学数学中的化归方法

★高斯分布的启示

★a二+b二≧二ab的变形推广及应用

★网络优化

★泰勒公式及其应用

★浅谈中学数学中的反证法

★数学选择题的利和弊

★浅谈计算机辅助数学教学

★论研究性学习

★浅谈发展数学思维的学习方法

★关于整系数多项式有理根的几个定理及求解方法

★数学教学中课堂提问的误区与对策

★怎样发掘数学题中的隐含条件

★数学概念探索式教学

★从一个实际问题谈概率统计教学

★教学媒体在数学教学中的作用

★数学问题解决及其教学

★数学概念课的特征及教学原则

★数学美与解题

★创造性思维能力的培养和数学教学

★教材顺序的教学过程设计创新

★排列组合问题的探讨

★浅谈初中数学教材的思考

★整除在数学应用中的探索

★浅谈协作机制在数学教学中的运用

★课堂标准与数学课堂教学的研究与实践

★浅谈研究性学习在数学教学中的渗透与实践

★关于现代中学数学教育的思考

★在中学数学教学中教材的使用

★情境教学的认识与实践

★浅谈初中代数中的二次函数

★略论数学教育创新与数学素质提高

★高中数学“分层教学”的初探与实践

★在中学数学课堂教学中如何培养学生的创新思维

★中小学数学的教学衔接与教法初探

★如何在初中数学教学中进行思想方法的渗透

★培养学生创新思维全面推进课程改革

★数学问题解决活动中的反思

★数学:让我们合理猜想

★如何优化数学课堂教学

★中学数学教学中的创造性思维的培养

★浅谈数学教学中的“问题情境”

★市场经济中的蛛网模型

★中学数学教学设计前期分析的研究

★数学课堂差异教学

★一种函数方程的解法

★浅析数学教学与创新教育

★数学文化的核心—数学思想与数学方法

★漫话探究性问题之解法

★浅论数学教学的策略

★当前初中数学教学存在的问题及其对策

★例谈用“构造法”证明不等式

★数学研究性学习的探索与实践

★数学教学中创新思维的培养

★数学教育中的科学人文精神

★教学媒体在数学教学中的应用

★“三角形的积化和差”课例大家评

★谈谈类比法

★直觉思维在解题中的应用

★数学几种课型的问题设计

★数学教学中的情境创设

★在探索中发展学生的创新思维

★精心设计习题提高教学质量

★对数学教育现状的分析与建议

★创设情景教学生猜想

★反思教学中的一题多解

★在不等式教学中培养学生的探究思维能力

★浅谈数学学法指导

★中学生数学能力的培养

★数学探究性活动的内容形式及教学设计

★浅谈数学学习兴趣的培养

★浅谈课堂教学的师生互动

★新世纪对初中数学的教材的思考

★数学教学的现代研究

★关于学生数学能力培养的几点设想

★在数学教学中培养学生创新能力的尝试

★积分中值定理的再讨论

★二阶变系数齐次微分方程的求解问题

★浅谈培养学生的空间想象能力

★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育

★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计

★培养学生学习数学的兴趣

★课堂教学与素质教育探讨

★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施

★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题

★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣

★数学教学中探究性学习策略

★论数学课堂教学的语言艺术

★数学概念的教与学

★优化课堂教学推进素质教育

★数学教学中的情商因素

★浅谈创新教育

★培养学生的数学兴趣的实施途径

★论数学学法指导

★学生能力在数学教学中的培养

★浅论数学直觉思维及培养

★论数学学法指导

★优化课堂教学焕发课堂活力

★浅谈高初中数学教学衔接

★如何搞好数学教育教学研究

★浅谈线性变换的对角化问题

本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产计划的优化方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。

基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

建立简化模型

模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】

式中x3、x4---C、D工作面的瓦斯体积分数;

e1、e2---A、B工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯绝对涌出量。

系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。

模型的转型及其离散化

因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

参考文献:

[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.

[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.

[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.

相关百科

热门百科

首页
发表服务