首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

研究可控核聚变的重要性论文

发布时间:

研究可控核聚变的重要性论文

可控核聚变能源项目一直受到全世界的关注,作为能够改变世界的能源项目,可控核聚变具有无可比拟的优势。与普通核电站使用的核裂变技术一样,核聚变技术也属于核反应,但核聚变能源更加清洁、高效,核燃料也更容易获得。

可控核聚变项目在很多国家都取得了进展,中国的核聚变“人造太阳”项目,也一直处于世界领先地位,维持时间也一直保持世界前列。

如果可控核聚变项目取得成功,人类就可以逐渐摆脱对化石燃料的依赖,进入到全新的能源时代,全球碳排放以及地球能源危机,都可以迎刃而解。

目前人类主要使用的能源,依旧偏向于化石能源,煤炭、石油等地球资源,是人类生活最为依赖的资源,在使用这些能源时,不可避免的会带来环境污染,尤其是碳排放问题,人类对化石燃料的依赖,已经开始严重影响了地球环境。

气候学家的研究表明,人类活动是全球变暖的主要因素,并且随着人类工业的发展,化石燃料的依赖反而在不断增加,碳排放也在不断增加,虽然人类意识到全球变暖带来的危害,但依旧很难彻底做出改变。

可控核聚变如果成功,那么人类就可以逐渐摆脱对地球化石燃料的依赖。

可控核聚变利用核反应获得能量,相比核裂变反应需要高放射性物质铀作为核燃料,核聚变反应需要轻元素作为燃料,在大海中,就有取之不尽的核聚变燃料。

核聚变反应所需的燃料随处可见,而且不会产生放射性的副产物,人类实现可控核聚变,仅仅需要到达氢氦核聚变,因此核聚变反应的副产物就是氦元素,完全不会对地球环境造成明显影响。

利用核聚变反应,人类能够获得的能源,也远远大于目前依靠化石燃料所获得的能源,可控核聚变的普及,不仅仅可以摆脱化石燃料的依赖,保护地球环境,还可以帮助人类解决未来数个世纪的能源问题。因此很多国家都在努力攻克可控核聚变难度,希望可以掌握未来能源。

核聚变是原子核的聚合作用,轻元素在聚合形成重元素的过程中,会释放出巨大的能量,我们每天都可以看到的太阳,就在发生着核聚变反应,可控核聚变,就是模拟太阳,创造出为人类服务的“人造太阳”。

核聚变反应的条件非常苛刻,发生核聚变反应,需要超高的温度和压力,由于目前人类科技有限,无法提供类似太阳的压力,因此只能提高温度来弥补压力的不足,在地球上触发的核聚变反应,温度往往高达上亿摄氏度。

如此高温的核聚变反应堆,无法使用容器直接接触,因此核聚变反应堆,需要使用激光约束或磁场约束。

与自发产生的核裂变反应不同,核聚变的发生非常困难,但是核聚变也带来了不可比拟的优势。

相比核裂变反应,核聚变反应可以产生更多能量,大约是核裂变反应的4倍,但是由于可控核聚变所需的条件较高,因此目前实际产生的能源效应,可能和核裂变反应堆相同。

除了能量转换率上的差距,核聚变最大的优势,就是核燃料和副产物都非常清洁,不会产生危害较大的放射性元素。虽然核聚变反应会产生带有放射性的同位素,但这类放射性物质的衰变速度较快,不会产生核裂变所带来的长期、高水平核辐射。

目前人类所使用的核裂变技术核电站,核燃料和产生的核废料,都具有较高的放射性,这也让核电站无法大规模普及,并且核电站如果出现事故,发生核泄漏,将会带来持续数个世纪的影响。

可控核聚变在很多地方都有实验室,目前很多核聚变反应堆的运行时间都突破了100秒,但也有很多核聚变实验室表示,核聚变所需的能量输入,普遍超出输出的能量,因此可控核聚变的技术还处于不成熟的阶段。

未来可控核聚变如果真的实现,那么人类将逐渐抛弃化石燃料发电的方式,开始更加清洁的核聚变能源。

而核聚变能源的普及,也将让人类实现能源革命,能源充足意味着科技的进步,如果核聚变反应成功,人类的时代将发生天翻地覆的电话,人类也可以利用更加强大的能源,走出太阳系,到更深的宇宙进行探索。

能源和环境的意义。

可以了解太阳能的代替物,或者是掌握这方面的技术,还可以了解我国能源在地球灭亡的时间,可以进行实验装置,也可以提升这方面的技术,还可以进行全方位的研究。

不管我们要做什么事,首先要有一个原因,我们人类为什么要发展可控核聚变呢?这要从能量的角度谈起,到目前为止,我们的所需要能量绝大多数来自太阳,比如说石油、天然气、煤以及水力、风力发电等等,甚至我们生命的根本-食物,它们所蕴含的能量都是太阳赋予的。而太阳的能量来自于哪里呢?这一点大家都知道,它源自太阳内部的氢-氦核聚变反应。人类现在已经可以利用核裂变来发电了,但地球上核裂变的资源是非常有限的,根据相关数据,目前地球上已探明的可以用作核裂变的原料仅仅够人类使用几十年的时间。相比之下,地球上核聚变的资源就要多出很多了,地球上的海水中拥有40万亿吨氘(氢的同位素),而如果完全利用的话,一公斤氘的核聚变反应就可以产生差不多1亿度的电能。这还没有算上宇宙中其他的广泛存在的核聚变资源,例如月球上储量惊人的氦-3。 如果人类能够随意控制核聚变的能量,我们就可以实现完全的自给自足,甚至可以不再依靠太阳!这也就意味着人类文明将会前进很大的一步,有了可控核聚变,人类走出太阳系将指日可待。换一个角度来看,核聚变是具有高效率、低成本的清洁能源,这也非常符合人类发展的方向。核聚变的原理就是通过技术手段将氢原子“捏”在一起,使其聚变为氦,在这个过程中会释放大量的能量。以目前的 科技 ,要使氢原子发生核聚变,就必须用高温高压的方式,这个原理很简单,原子核之间有着巨大的排斥力,我们又不可能真的能将原子核“捏”在一起,所以就只有将原子核加速,只要原子核具有足够的速度,它们就可以克服排斥力撞在一起,而高压环境下的原子核会更集中,这将大大增加原子核碰撞的概率。要将原子核加速,科学家们可以简单的用升高温度的方法来实现,由此可见,核聚变最关键的就是高温环境。 人类的末日武器-氢弹就是核聚变反应,它的原理就是利用引爆小型原子弹(核裂变)来达到高温高压的环境,进而引发氢弹的核聚变反应,并在一瞬间释放出强大的能量。但这种反应是破坏性的,不可控制的,如果人类要利用它的能量,这种方式明显是不可行的。人类需要用一种持续的、平稳的方式来获得核聚变的能量。从理论上来讲,可控核聚变实现起来似乎并不难,只需要三步就可以,第一步、将核聚变原料放入一个容器中;第二步、对核聚变原料加温加压使其产生聚变反应;第三步、通过某种方式将容器里的能量平稳的导出来。 事实上,要点燃核聚变对于人类来说并不困难,科学家们可以用多束高能激光,从各个方位对核聚变原料进行加热,从而实现“点火”的目的。但难点就在于这个“容器”上,要知道核聚变会产生至少5000万摄氏度的高温,与此同时还会产生强大的辐射能,以现在的 科技 ,人类根本制造不出能够扛得住这种极端“折磨”的材料。 但是聪明的科学家想出了另外的办法,在高温环境下,原子中的电子与原子核之间的连接会被打破,在这种情况下电子会挣脱原子核的束缚,这种现象被称之为“电离”。失去电子之后,剩下那些原子核就变成了“等离子体”,由于等离子体是带正电的,所以它们可以被磁场约束。基于这种理论,上世纪50年代,前苏联的库尔恰托夫研究所发明了“托卡马克”装置,使人类在可控核聚变的领域迈出了从无到有的第一步。然而用磁场来约束等离子体,在实际操作上难度是极大的。要让核聚变持续、稳定的进行,就必须要保证磁场要长时间的、非常均匀的分布,而事实上这是目前 科技 水平不能做到的。任何不均匀的磁场都会对等离子体造成扰动,这些扰动会在电磁作用下瞬间放大,从而使整个核聚变反应变得不受控制,要么反应太激烈,要么停止反应。 可控核聚变的难度远不止于如何约束等离子体,在很多细节上都有难以突破的瓶颈,比如说要用约束等离子体,就必须要有很强的磁场,而要制造很强的磁场就需要有强大的电流,因此只能用超导体来完成这个磁场的建设。要知道超导体必须在超低温下工作,一般的温度都需要零下200摄氏度,但它们要约束的又是温度至少是5000万摄氏度的高温物质……其中的难度可想而知。在可控核聚变中有一个专业术语叫“第一壁”,它指的是在核聚变中面对等离子体的第一层固体隔离结构,“第一壁”起的是封闭能量的作用,如果没有了它,收集核聚变产生的能量也就无从谈起。“第一壁”也是技术上的一大难题,在几千万甚至上亿摄氏度的高温以及巨大的辐射能面前,目前人类所能制造的任何材料挺不了多长时间。 值得一提的是,在可控核聚变的研究领域,我国在全世界上是处于领先的水平, 2018年11月12日,中科院合肥物质科学研究院宣布,我国的全超导托卡马克核聚变实验装置EAST实现了“1亿摄氏度等离子体运行”等多项重大成就。虽然可控核聚变之路困难重重,但是全世界的科学家对此热情不减,2006年,中国、美国、欧盟、俄罗斯、日本、韩国和印度启动了“国际热核聚变反应堆计划”(简称ITER),该计划参与各方投入了大量的人力物力,致力于攀登这座“人类 科技 的巅峰”。相信随着 科技 的进步,“50年之后,可控核聚变可以得到实现”。

可控核聚变散热问题研究论文

两篇可以根据你的需要整编哦~下面参考资料里有英文版的~ 位于四川省成都市双流县白家镇,核工业西南物理研究院聚变研究试验基地的"中国环流器2号A装置" 2006年9月28日,中国耗时6年、耗资3亿元人民币自主设计制造的新一代托卡马克磁约束核聚变装置"EAST"首次成功完成放电实验,获得电流200千安、时间接近3秒的高温等离子体放电;使EAST成为世界上第一个建成并真正运行的"全超导非圆截面托卡马克"核聚变实验装置。这是中国可控核聚变研究的里程碑式突破。 在古希腊神话中,普罗米修斯从太阳神阿波罗处盗下的天火,照亮了人类的黑夜。在人类现代科技中,可控核聚变技术将照亮人类能源的未来之路,由于可控核聚变反应堆产生能量的方式和太阳类似,因此它也被俗称为"人造太阳"。 太阳是热核聚变反应的典型代表,1938年,美国科学家贝特(H。Bethe)和德国科学家魏茨泽克(C。F。v。Weizsacker)推测太阳能源可 能来自它的内部氢核聚变成氦核的热核反应,这甚至早于核裂变模型的提出。太阳的核心温度高达1500万摄氏度,表面有6000度,压力相当于2500亿个 大气压。核心区的气体被极度压缩至水密度的150倍。在这里每时每刻都发生着热核聚变,太阳每秒钟把七亿吨的氢变为氦,在这过程中失去400多万吨的质量,这种聚变反应已经持续了几十亿年,它的辐射能量给地球带来无限生机。 世界能源危机 自人类进入工业化以来,世界能源消耗迅速增长。有数据显示,自1973年以来,人类已经开采了5500亿桶石油(约合800亿吨),按照现在的开采速度, 地球上已探明的1770亿吨石油储量仅够开采50年,已探明的173万亿立方米天然气仅够开采63年;已探明的9827亿吨煤炭还可以用300年到400 年。核电站发电需要浓缩铀,世界上已探明的铀储量约490万吨,钍储量约275万吨,全球441座核电站目每年需要消耗6万多吨浓缩铀,地球上的铀储量仅 够使用100年左右。世界各国水能开发也已近饱和,而风能、太阳能尚无法满足人类庞大的需求。 随着石油价格上涨,能源危机再次被提起,各国也加快了新能源研发,核聚变能就是重点之一。与传统的裂变式核电站相比,核聚变发电具有明显的优势。核聚变所 用的重要核燃料是氘,理论上,只需1千克氘和10千克锂(通过锂可得到氘)就可以保证一座百万千瓦聚变核电站运转一天,而传统核电站和火力发电站至少需要 100千克铀或1万吨煤。制取1千克浓缩铀的费用是1。2万美元,而制取1千克氘的费用只有300美元。一座100万千瓦的核聚变电站,每年耗氘量只需304千克;而一座百万千瓦裂变式核电站,需要30-40吨核燃料。 氘的发热量相当于同等煤的2000万倍,是海水中大量存在的元素。据测算,海水中大约每600个氢原子中就有一个氘原子,每1公升海水中含有0。03克的 氘,通过核聚变反应产生的能量,相当于燃烧300公升的汽油。就是说,"1升海水约等于300升汽油"。地球上的海水总量约为138亿亿立方米,其中氘的 储量约40万亿吨,足够人类使用百亿年。锂是核聚变实现纯氘反应的过渡性辅助"燃料",地球上的锂储量有2000多亿吨,海水中的氘再加上锂至少够我们地 球用上千亿年。氚虽然在自然界比氘少得多,但可从核反应中制取,也可用于热核反应。科学家们正在以海水中的氘为主要原料,进行核聚变反应试验,以期建立可 以投入商业运营的热核聚变反应堆,彻底解决人类未来的能源问题。 更为可贵的是核聚变反应是清洁能源,中几乎不存在放射性污染,核裂变的原料本身带有放射性,而核聚变反应过程中,在任何时刻都只有一丁点的氘在聚变, 无需担忧失控的危险,而且也不会产生放射性的物质。即使像切尔诺贝利核电站那样发生损坏,核聚变反应堆也会自动立即中止反应,因此受控核聚变产生的能量名 符其实是一种无限、清洁、成本低廉和安全可靠的新能源。在这一系列的动力下,核聚变的研究已经持续了半个多世纪。核聚变反应堆工作原理与其他能源相比,核聚变反应堆有几项显著的优点,因而一直备受媒体的关注。它们的燃料来源十分充足,辐射泄漏也处于正常范围之内,与目前的核裂变反应堆相比,其放射性废物更少。 然而迄今为止,还没有人将这一技术应用到实践中,但建造这种反应堆实际上已为期不远。目前,核聚变反应堆正处于试验阶段,世界各个国家及地区的多个实验室都开展了这项研究。 氘-氘反应——两个氘原子结合,生成一个氦3原子和一个中子。 氘-氚反应——一个氘原子和一个氚原子结合,生成一个氦4原子和一个中子。其中大部分能量以高能中子的形式释放。 从概念上讲,利用反应堆中的核聚变十分容易。但为了让这一反应以可控、无害的方式进行,科学家们历经周折。为了了解其中的缘由,我们需要先看一下发生核聚变的必要条件。 当氢原子聚合时,它们的原子核必须结合在一起。然而,由于每个原子核中的质子都带有相同的电荷(正电),因而会互相排斥。如果您曾试着将两块磁铁放在一起并感到它们互相推开,则意味着您已亲身体验了这一原理。 若要实现核聚变,需要创造一些特殊的条件来克服这种排斥力。下面是发生核聚变的一些必要条件: 高温——高温可为氢原子提供足够的能量,以克服质子之间的电荷排斥。 核聚变需要的温度约为1亿开(约是太阳核心温度的六倍)。 在这样的高温下,氢的状态为等离子体,而不是气体。等离子体是物质的一种高能状态,其中所有电子都从原子中剥离出来,并可以自由移动。 太阳的高温是由重力压缩核心的巨大质量而产生的。我们要制造出这样的高温,就必须利用微波、激光和离子粒子的能量。 高压——压力可将氢原子挤在一起。氢原子之间的距离必须在1x10-15米以内,才能进行聚合。 太阳利用其质量和重力将核心内的氢原子挤压在一起。 我们要将氢原子挤压在一起,必须使用强大的磁场、激光或离子束。借助目前的技术,我们只能实现发生氘-氚聚变所需的温度和压力。氘-氘聚变需要的温度更高,这种温度有可能在将来实现。基本上,利用氘氘聚变会更加方便,因为从海水中提取氘比从锂中提取氚要更加容易。另外,氘不具有放射性,而且氘氘反应可释放更多的能量。 有两种方法可实现发生氢聚变所需的温度和压力: 磁约束使用磁场和电场来加热并挤压氢等离子体。法国的ITER项目使用的就是这种方法。 核聚变反应堆的原理很简单,只不过对于人类当前的技术水准,实现起来具有相当大的难度。 物质由分子构成,分子由原子构成,原子中的原子核又由质子和中子构成,原子核外包覆与质子数量相等的电子。质子带正电,中子不带电。电子受原子核中正电的 吸引,在"轨道"上围绕原子核旋转。不同元素的电子、质子数量也不同,如氢和氢同位素只有1个质子和1个电子,铀是天然元素中最重的原子,有92个质子和 92个电子。 核聚变是指由质量轻的原子(主要是指氢的同位素氘和氚)在超高温条件下,发生原子核互相聚合作用,生成较重的原子核(氦),并释放出巨大的能量。1千克氘全部聚变释放的能量相当11000吨煤炭。其实,利用轻核聚变原理,人类早已实现了氘氚核聚变---氢弹爆炸,但氢弹是不可控制的爆炸性核聚变,瞬间能量释放只能给人类带来灾难。如果能让核聚变反应按照人们的需要,长期持续释放,才能使核聚变发电,实现核聚变能的和平利用。 如果要实现核聚变发电,那么在核聚变反应堆中,第一步需要将作为反应体的氘-氚混合气体加热到等离子态,也就是温度足够高到使得电子能脱离原子核的束缚,让原子核能自由运动,这时才可能使裸露的原子核发生直接接触,这就需要达到大约10万摄氏度的高温。 第二步,由于所有原子核都带正电,按照"同性相斥"原理,两个原子核要聚到一起,必须克服强大的静电斥力。两个原子核之间靠得越近,静电产生的斥力就越 大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。 质量轻的原子核间静电斥力最小,也最容易发生聚变反应,所以核聚变物质一般选择氢的同位素氘和氚。氢是宇宙中最轻的元素,在自然界中存在的同位素有: 氕、氘 (重氢)、氚 (超重氢)。在氢的同位素中,氘和氚之间的聚变最容易,氘和氘之间的聚变就困难些,氕和氕之间的聚变就更困难了。因此人们在考虑聚变时,先考虑氘、氚之间 的聚变,后考虑氘、氘之间的聚变。重核元素如铁原子也能发生聚变反应,释放的能量也更多;但是以人类目前的科技水平,尚不足满足其聚变条件。 为了克服带正电子原子核之间的斥力,原子核需要以极快的速度运行,要使原子核达到这种运行状态,就需要继续加温,直至上亿摄氏度,使得布朗运动达到一个疯狂的水平,温度越高,原子核运动越快。以至于它们没有时间相互躲避。然后就简单了,氚的原子核和氘的原子核以极大的速度,赤裸裸地发生碰撞,结合成1个氦原子核,并放出1个中子和17。6兆电子伏特能量。 反应堆经过一段时间运行,内部反应体已经不需要外来能源的加热,核聚变的温度足够使得原子核继续发生聚变。这个过程只要将氦原子核和中子及时排除出反应 堆,并及时将新的氚和氘的混合气输入到反应堆内,核聚变就能持续下去;核聚变产生的能量一小部分留在反应体内,维持链式反应,剩余大部分的能量可以通过热 交换装置输出到反应堆外,驱动汽轮机发电。这就和传统核电站类似了。 核聚变消耗的燃料是世界上十分常见的元素--氘(也就是重氢)。氘在海水中的含量还是比较高的,只需要通过精馏法取得重水,然后再电解重水就能得到氘。新 的问题出现了,仅仅有氘还是不够的,尽管氘-氘反应也是氢核聚变的主要形式,但我们人类现有条件下,根本无法控制氘-氘反应,它太猛烈了,所需要的温度要 高得多,除了在实验室条件下做一次性的实验外,很难让它链式反应下去--那是氢弹一样的威力。还好,人们发现了氘-氚反应的烈度要小很多,它的反应速度仅 仅是氘-氘反应的100分之一,而点火温度反倒低得多,很适合人类现有条件下的利用。 而氚不同于氘,氚是地球上最稀有的元素,由于氚的半衰期只有12。26年,所以在地球诞生之初的氚早已衰变地无影无踪了。现在人类的氚都是人工制造而非天然提取的,人们通常用重水反应堆在发电之余人工制造少量的氚-- 它是地球上最贵的东西之一,一克氚价值超过30万美元,仅在美国保存有30公斤左右的氚。这 么贵的原料,用作核聚变发电显然是无法接受的,幸好上帝给人类又提供了一种好东西--锂。锂元素也是世界上最丰富的资源,有2000多亿吨。一方面海水中 就包含足够的氯化锂,分离出来即可。另一方面,中国是世界锂资源最丰富的国家,碳酸锂矿也不是稀有资源,更容易获得。锂的2种同位素--锂-6和锂-7, 在被中子轰击之后,就会裂变,他们的产物都是氚和氦,目前为止人类在重水反应堆中制造氚,用的就是将锂靶件植入反应堆的方法。 在聚变反应堆内,氚和氘反应后,除了形成一个氦原子核之外,还有一个多余的中子,并且能量很高。我们只需要在核聚变的反应体之内保持一定比例的锂原子核浓 度,那么核聚变产生的中子就会轰击锂核,促使锂核裂变,产生一个新的氚,这个氚则继续参与氚-氘反应,继而产生新的中子,链式反应形成了。所以,理论上我 们只需要给反应体提供两种原料--氘和锂,就能实现氘-氚反应,并且维持它的进行。 看起来很简单是吧,只是还有一个问题,能够承载上亿摄氏度超高温反应体的核反应堆用什么材料来制造呢?要知道,太阳表面的温度也才只有6000万度左右。 迄今为止,人类还没有造出任何能经受1万摄氏度高温的材料,更不要说上亿摄氏度了。以上这些因素就是为什么一槌子买卖的氢弹已经爆炸了50年后,人类还是 没能有效地从核聚变中获取能量的重要原因。

自此,人类核能的研究和使用正式拉开了序幕,多个国家在军事、航天、能源、工业等多个方面,都采用了核能。

可以应用在电力方面,或者是军事方面,还可以运用在为人类服务方面,可以促进生产,也可以实现科技水平的发展,还可以应用在能源方面。

核聚变燃料可来源于海水和一些轻核,所以核聚变燃料是无穷无尽的。

美国核聚变新方法研究论文

人造太阳——挡不住的诱惑Comments>>科学松鼠会 发表于 2011-06-05 09:05万物生长靠太阳,人类生存自然也离不开太阳。我们生火煮饭的柴草来自太阳,水力发电来自太阳,汽车里燃烧的汽油来自太阳……实际上,迄今为止,除了核能以外,我们使用的所有能源几乎都来自太阳。太阳像所有的恒星一样进行着简单的热核聚变,向外无休止地辐射着能量。我们现今所使用的能源,有些直接来自太阳,有些是太阳能转化的能源,像水能、风能、生物能,有些是早期由太阳能转化来的一直储存在地球上的能源,像煤炭、石油这样的化石燃料。人类社会发展到今天,仅靠太阳给予的可用能源已经不够用了。人类能源消耗快速增加,水能的开发几近到达极限,风能、太阳能无法形成规模。我们今天使用的主要能源是化石燃料,再有100多年即将用尽。人们还抱怨化石燃料对大气造成了污染,增加了温室气体。要知道它们是太阳和地球用了上亿年才形成的,但只够人类使用三四百年,而且它们是不可再生的。另外,煤炭、石油等是人类重要的自然资源,作为燃料烧掉是非常可惜的。人们无不担心,煤和石油烧完了,而其他能源又接替不上该怎么办?能源危机开始困扰着人类,人们一直在寻找各种可能的未来能源,以维持人类社会的持续发展。造一个太阳 细心的人会发现,在元素周期表中,虽然元素是由质子和中子成对增加依次构成的,但是原子的重量却不是按质子和中子的增加而等量增加的。在较轻的原子中,质子和中子的重量偏重,如果两个轻的原子合成一个重原子,两个轻原子的原子量之和往往重于合成的重原子。同样,在较重的原子中,质子和中子的重量也偏重,一个重原子分裂为两个轻原子,重原子的原子量一般重于两个轻原子之和。只是在铁元素附近的原子中,质子和中子的重量偏轻。由此可见,在原子核反应中,质量是不守恒的,即出现了所谓的质量亏损。这些质量到哪里去了呢?按照爱因斯坦的质能关系公式E=mc2,亏损的质量转换为能量,由于c2是个巨大的系数,很小的质量就可释放出巨大的能量。科学家正是基于这一点,利用重金属的核裂变制造出了原子弹,利用轻元素的核聚变制造出了氢弹。原子弹和氢弹的巨大威力令人惧怕,同时也让人们兴奋,因为原子中蕴藏的能量太大了,能否利用这种能源是人们自然想到的问题。原子弹和氢弹中的巨大能量是在瞬间释放出来的,而要作为常规能源使用,就必须实现可控制的核裂变和核聚变。对于核裂变来说,控制起来相对比较容易,裂变核电站早已经实现商业运行。但能用来产生核裂变的铀235等重金属元素在地球上含量稀少,而且常规裂变反应堆会产生长寿命的放射性较强的核废料,这些因素限制了裂变能的发展。对人们来说,最具诱惑力的自然是核聚变,它的单位质量产生的能量比核裂变还要大几倍。实际上,宇宙中最常见的就是氢元素的聚变反应,所有的恒星几乎都在燃烧着氢,因为氢是宇宙中最丰富的元素。氢的聚变反映在太阳上(还有少量其他核聚变)已经持续了近50亿年,至少还可以再燃烧50亿年。氢在地球上也是非常丰富的,每个水分子中都有2个氢原子,但最容易实现的聚变反应是氢的同位素—氘与氚的聚变(氢弹就是这种形式的聚变)。氘和氚发生聚变后,2个原子核结合成1个氦原子核,并放出1个中子和17.6兆电子伏特能量。就氘来说,它是海水中重水(水分子为H2O,重水为D2O,只占海水中的一小部分)的组成元素,海水中大约每6500个氢原子中有1个氘原子。每升水约含30毫克氘(产生的聚变能量相当于300升汽油),其储量就多达40万亿吨。一座1000兆瓦的核聚变电站,每年耗氘量只需304公斤,海水中的氘足够人类使用上百亿年,这就比太阳的寿命还要长了,更不要说再使用氢了。另外,除氚具有放射性危险之外,氘-氚聚变反应不产生长寿命的强放射性核废料,其少量放射性废料也很快失去放射性。氘-氘反应没有任何放射性。可以说氢及其同位素的聚变反应是一种高效清洁的能源,而且真正是用之不绝。既然恒星上都在进行着这样的核聚变,地球上也不缺这种核聚变的原料,只要实现可控的核聚变,就可以造出一个供人们永久使用的“太阳”。实际上,自从人们揭开太阳燃烧的秘密以来,就一直希望模仿太阳在地球上实现核聚变从而为人类提供无尽的能源。尽管50多年过去了,人们只见到了氢弹的爆炸,而没有看到一座核聚变发电站的出现,但它诱人的前景依然是人们心中一个割舍不去的梦。比想象的要难 在太阳上由于引力巨大,氢的聚变可以自然地发生,但在地球上的自然条件下却无法实现自发的持续核聚变。在氢弹中,爆发是在瞬间发生并完成的,可以用一个原子弹提供高温和高压,引发核聚变,但在反应堆里,不宜采用这种方式,否则反应会难以控制。根据核聚变发生的机理,要实现可控制的核聚变实际上比造个太阳要难多了。我们知道,所有原子核都带正电,两个原子核要聚到一起,必须克服静电斥力。两个核之间靠得越近,静电产生的斥力就越大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。要使它们联起手来并不难,难的是既要让它们有拉手的机会又不能让他们过于频繁地拉手。要使它们有机会拉手,就要使粒子间有足够的高速碰撞的机会,这可以增加原子核的密度和运动速度。但增加原子核的密度是有限制的,否则一旦反应加速,自身放出的能量会使反应瞬间爆发。据计算,在维持一定的密度下,粒子的温度要达到1~2亿度才行,这要比太阳上的温度(中心温度1500万度,表面也有6000度)还要高许多。但这样高的温度拿什么容器来装它们呢?这个问题并没有难倒科学家,20世纪50年代初,苏联科学家塔姆和萨哈罗夫提出磁约束的概念。苏联库尔恰托夫原子能研究所的阿奇莫维奇按照这样的思路,不断进行研究和改进,于1954年建成了第一个磁约束装置。他将这一形如面包圈的环形容器命名为托卡马克(tokamak)。托卡马克是“磁线圈圆环室”的俄文缩写,又称环流器。这是一个由封闭磁场组成的“容器”,像一个中空的面包圈,可用来约束电离了的等离子体。我们知道,一般物质到达10万度时,原子中的电子就脱离了原子核的束缚,形成等离子体。等离子体是由带正电的原子核和带负电的电子组成的气体,整体是电中性的。在磁场中,它们的每个粒子都是显电性的,带电粒子会沿磁力线做螺旋式运动,所以等离子体就这样被约束在这种环形的磁场中。这种环形的磁场又叫磁瓶或磁笼,看不见,摸不着,也不接触有形的物体,因而也就不怕什么高温了,它可以把炙热的等离子体托举在空中。 人们本来设想,有了“面包炉”,只需把氘、氚放入炉内加火烤制,把握好火候,能量就应该流出来。其实不然,人们接着遇到的麻烦是,在加热等离子体的过程中能量耗散严重,温度越高,耗散越大。一方面,高温下粒子的碰撞使等离子体的粒子会一步一步地横越磁力线,携带能量逃逸;另一方面,高温下的电磁辐射也要带走能量。这样,要想把氘、氚等离子体加热到所需的温度,不是件容易的事。另外,磁场和等离子体之间的边界会逐渐模糊,等离子体会从磁笼里钻出去,而且当约束等离子体的磁场一旦出现变形,就会变得极不稳定,造成磁笼断开或等离子体碰到聚变反应室的内壁上。 步步逼近托卡马克中等离子体的束缚是靠纵场(环向场)线圈,产生环向磁场,约束等离子体,极向场控制等离子体的位置和形状,中心螺管也产生垂直场,形成环向高电压,激发等离子体,同时加热等离子体,也起到控制等离子体的作用。几十年来,人们一直在研究和改进磁场的形态和性质,以达到长时间的等离子体的稳定约束;还要解决等离子体的加热方法和手段,以达到聚变所要求的温度;在此基础上,还要解决维持运转所耗费的能量大于输出能量的问题。每一次等离子体放电时间的延长,人们都为之兴奋;每一次温度的提高,人们都为之欢呼;每一次输出能量的提高,都意味着我们离聚变能的应用更近了一步。尽管取得了很大进步,但障碍还是没有克服。到目前为止,托卡马克装置都是脉冲式的,等离子体约束时间很短,大多以毫秒计算,个别可达到分钟级,还没有一台托卡马克装置实现长时间的稳态运行,而且在能量输出上也没有做到不赔本运转。为了维持强大的约束磁场,电流的强度非常大,时间长了,线圈就要发热。从这个角度来说,常规托卡马克装置不可能长时间运转。为了解决这个问题,人们把最新的超导技术引入到托卡马克装置中,也许这是解决托卡马克稳态运转的有效手段之一。目前,法国、日本、俄罗斯和中国共有4个超导的托卡马克装置在运行,它们都只有纵向场线圈采用超导技术,属于部分超导。其中法国的超导托卡马克Tore-Supra体积较大,它是世界上第一个真正实现高参数准稳态运行的装置,在放电时间长达120秒的条件下,等离子体温度为2000万度,中心粒子密度每立方米1.5×1019个。中国和韩国正在建造全超导的托卡马克装置,目标是实现托卡马克更长时间的稳态运行。50年来,全世界共建造了上百个托卡马克装置,在改善磁场约束和等离子体加热上下足了功夫。在上世纪70年代,人们对约束磁场研究有了重大进展,通过改变约束磁场的分布和位形,解决了等离子体粒子的侧向漂移问题。世界范围内掀起了托卡马克的研究热潮。美国、欧洲、日本、苏联建造了四个大型托卡马克,即美国1982年在普林斯顿大学建成的托卡马克聚变实验反应堆(TFTR),欧洲1983年6月在英国建成更大装置的欧洲联合环(JET),日本1985年建成的JT-60,苏联1982年建成超导磁体的T-15,它们后来在磁约束聚变研究中做出了决定性的贡献。特别是欧洲的JET已经实现了氘、氚的聚变反应。1991年11月,JET将含有14%的氚和86%的氘混合燃料加热到了摄氏3亿度,聚变能量约束时间达2秒。反应持续1分钟,产生了1018个聚变反应中子,聚变反应输出功率约1.8兆瓦。1997年9月22日创造了核聚变输出功率12.9兆瓦的新记录。这一输出功率已达到当时输入功率的60%。不久输出功率又提高到16.1兆瓦。在托卡马克上最高输出与输入功率比已达1.25。中国的核聚变研究也有较快的发展,西南物理研究院1984年建成中国环流器一号(HL-1),1995年建成中国环流器新一号。中国科学院等离子体物理研究所1995年建成超导装置HT-7。HT-7是前苏联无偿赠送给中国的一套纵向超导的托卡马克实验装置,经等离子体物理研究所的不断改进,它已成为一个宠大的实验系统。它包括HT-7超导托卡马克装置本体、大型超高真空系统、大型计算机控制和数据采集处理系统、大型高功率脉冲电源及其回路系统、全国规模最大的低温氦制冷系统、兆瓦级低杂波电流驱动和射频波加热系统以及数十种复杂的诊断测量系统。在十几次实验中,取得若干具有国际影响的重大科研成果。特别是在2003年3月31日,实验取得了重大突破,获得超过1分钟的等离子体放电,这是继法国之后第二个能产生分钟量级高温等离子体放电的托卡马克装置。在HT-7的基础上,等离子体物理研究所研制和设计了全超导托卡马克装置HT-7U(后来名字更改为EAST,Experimental Advanced Superconducting Tokamak)。 EAST或者称“实验型先进超导托卡马克”,是一台全超导托卡马克装置,受到国际同行的瞩目。国际专家普遍认为,EAST可能将成为世界上第一个可实现稳态运行、具有全超导磁体和主动冷却第一壁结构的托卡马克。该装置有真正意义的全超导和非圆截面特性,更有利于科学家探索等离子体稳态先进运行模式,其工程建设和物理研究将为“国际热核聚变实验堆”(ITER)的建设提供直接经验和基础。为了达到聚变所要求的条件,托卡马克已经变为一个高度复杂的装置,十八般武艺全用上了,其中有超大电流、超强磁场、超高温、超低温等极限环境,对工艺和材料也提出了极高的要求,从堆芯上亿度的高温到线圈中零下269度的低温,就可见一斑。合作之路从上个世纪50年代初,美国和苏联分别开始秘密地研究可控的核聚变,因为核聚变反应堆不仅可以获取用之不绝的能源,还可以用作稳定的中子源,例如可用来生产核裂变原料。但理论研究和实验技术上遇到一个又一个难以逾越的障碍,不久独立进行研究的各国就认识到这件事并不容易,只有开展广泛的国际合作才是加速实现核聚变能利用的可行之路。随后逐渐相互公开研究资料和进展,开始了合作之路。即使在冷战时期,其他核技术都是相互保密的,惟独热核聚变技术是相互公开的。1985年,美国总统里根和苏联总统戈尔巴乔夫,在一次首脑会议上倡议开展一个核聚变研究的国际合作计划,要求“在核聚变能方面进行最广泛的、切实可行的国际合作”。戈尔巴乔夫、里根和法国总统密特朗后来又进行了几次高层会晤,支持在国际原子能机构主持下,进行国际热核实验反应堆,即ITER的概念设计和辅助研究开发方面的合作。 1987年春,国际原子能机构总干事邀请欧共体、日本、美国和加拿大、苏联的代表在维也纳开会,讨论加强核聚变研究的国际合作问题,并达成协议,四方合作设计建造国际热核实验堆,并由此诞生了第一个国际热核实验堆的概念设计计划。计划将于2010年建成一个实验堆,预期产生热功率1500兆瓦、等离子体电流2400万安培,燃烧时间可达16分钟。随后,由于苏联的解体,计划受到很大影响,1999年美国的退出使ITER计划雪上加霜。日本和欧共体国家于是成为支持国际磁约束聚变研究计划的主体力量。经过多年的努力,ITER工程设计修改方案也终于在2001年6月圆满完成。根据计划,首座热核反应堆总造价为约40亿欧元。聚变功率至少达到500兆瓦。等离子体的最大半径6米,最小半径2米,等离子体电流1500万安培,约束时间至少维持400秒。未来发展计划包括一座原型聚变堆在2025年前投入运行,一座示范聚变堆在2040年前投入运行。2003年2月18日,美国宣布重新加入这一大型国际计划,中国也于前一个月正式加入该项计划的前期谈判。19日,国际热核实验反应堆计划参与各方在俄罗斯圣彼得堡决定,将于2013年前在日本、西班牙、法国和加拿大四国中的一个国家中建成世界上第一座热核反应堆。2003年12月20日在华盛顿召开的一次非常热闹的会议上出现了两军对垒的形势:欧盟、中国和俄罗斯主张把反应堆建在法国的卡达拉齐(Cadarache),而美国、南朝鲜和日本则主张建在日本的六所村。因为没有选择加拿大作为反应堆候选国,加拿大政府随后宣布,由于缺乏资金退出该项目。 最终的ITER参与国ITER的相关会议确定,反应堆所在国出资48%,其他国家各出资10%。经过各项细节谈判,2007年反应堆终于在法国南部的卡达拉齐开始动工建造。 尽管ITER计划采用了最先进的设计,综合了以往的经验和成果,比如采用全超导技术,但它的确还面临重重挑战。即使它能如期在2018年如期建成,这个10层楼高的庞大机器能否达到预期目标也还是个未知数。诸如探索新的加热方式与机制为实现聚变点火,改善等离子体的约束性能,反常输运与涨落现象研究等前沿课题,偏滤器的排灰、大破裂的防御、密度极限、长脉冲H-模的维持、中心区杂质积累等工程技术难关还有待于各国科技工作者群力攻关。即使对ITER的科学研究真的成功了,聚变发电站至少还要30~50年以后才能实现。尽管如此,我们还是看到了人造太阳露出的晨曦

核聚变,又称核融合,是指由质量小的原子,比方说氘和氚,在一定条件下(如超高温和高压),发生原子弹互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量。根据质能方程E=mc^2;,原子核之静质量变化(质量亏损)[1] 造成能量的释放。如果是由重的原子核变化为轻的原子核,称为核裂变,如原子弹爆炸;如果是由较轻的原子核变化为较重的原子核,称为核聚变,如恒星持续发光发热的能量来源。核聚变,又称核融合,是指由质量小的原子,比方说氘和氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量。根据质能方程E=mc^2;,原子核之静质量变化(质量亏损)造成能量的释放。如果是由重的原子核变化为轻的原子核,称为核裂变,如原子弹爆炸;如果是由较轻 核聚变的原子核变化为较重的原子核,称为核聚变,如恒星持续发光发热的能量来源。相比核裂变,核聚变的放射性污染等环境问题少很多。如氘和氚之核聚变反应,其原料可直接取自海水,来源几乎取之不尽,因而是比较理想的能源取得方式。而且产生的能量相对于核裂变要大许多,如我国的五星之光核动力轰炸机采用的就是核聚变反应。 .发展 折叠 编辑本段 .目前人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出;而触发核聚变反应必须消耗能量,因此人工核聚变的能量与触发核聚变的能量要到达一定的比例才能有经济效应。科学家正努力研究如何控制核聚变,但是现在看来还有很长的路要走。目前主要的几种可控制核聚变方式:超声波核聚变、激光约束(惯性约束)核聚变、磁约束核聚变(托卡马克)。2005年,部分科学家相信已经成功做出小型的核聚变,并且得到初步验证。首个实验核聚变发电站将选址法国。.核裂变 折叠 编辑本段 .核聚变就是小质量的两个原子核合成一个比较大的原子核,核裂变就是一个大质量的原子核分裂成两个比较小的原子核,在这个变化过程中都会释放出巨大的能量,前者释放的能量更大。世界上的每一种物质都处于不稳定状态,有时会分裂或合成,变成另 太阳中心核聚变外的物质。物质无论是分裂或合成,都会产生能量。由两个氢原子合为一个氦原子,就叫核聚变,太阳就是依此而释放出巨大的能量。大家熟悉的原子弹则是用裂变原理造成的,目前的核电站也是利用核裂变而发电。核裂变虽然能产生巨大的能量,但远远比不上核聚变,裂变堆的核燃料蕴藏极为有限,不仅产生强大的辐射,伤害人体,而且遗害千年的废料也很难处理,核聚变的辐射则少得多,核聚变的燃料可以说是取之不尽,用之不竭。.运行 折叠 编辑本段 .核聚变要在近亿度高温条件下进行,地球上原子弹爆炸时可以达到这个温度。用核聚变原理造出来的氢弹就是靠先爆发一颗核裂变原子弹而产生的高热,来触发核聚变起燃器,使氢弹得以爆炸。但是,用原子弹引发核聚变只能引发氢弹爆炸,却不适用于核聚变发电,因为电厂不需要一次惊人的爆炸力,而需要缓缓释放的电能。 关于核聚变的“点火”问题,激光技术的发展,使可控核聚变的“点火”难题有了解决的可能。目前,世界上最大激光输出功率达100万亿瓦,足以“点燃”核聚变。除激光外,利用超高额微波加热法,也可达到“点火”温度。世界上不少国家都在积极研究受控热核反应的理论和技术,美国、俄罗斯、日本和西欧国家的研究已经取得了可喜的进展。

核聚变领域再传捷报,中英两国科学家联手,突破核聚变最新技术

据该实验的研究人员称,破纪录的核聚变实验在瞬间释放出10万亿瓦的能量,其背后的秘密已被揭开:燃料舱内的中子重氢等离子体“自热”或“燃烧”。 据《Live Science》当时报道,去年,北加州劳伦斯利弗莫尔国家实验室的科学家宣布,在国家点火装置 (NIF) 释放1.3兆焦耳能量的时间为100万亿分之一秒。 在两篇新的研究论文中,NIF 的科学家们表明,这一成就归功于世界上最强大的激光系统核心的微小空腔和燃料舱的精密工程,聚变发生的地方。 研究人员报告说,虽然燃料舱只有大约一毫米(0.04 英寸)宽,而且聚变反应只持续了最短暂的时间,但它的输出相当于每时每刻撞击地球的太阳光能量的10%左右。 . 研究人员表示,该反应释放出如此多的能量,因为聚变过程本身将剩余的燃料加热成足够热的等离子体,从而能够进行进一步的聚变反应。 劳伦斯利弗莫尔国家实验室 (LLNL) 的物理学家安妮·克里彻 (Annie Kritcher) 说:“燃烧的等离子体是指聚变反应产生的热量成为等离子体中主要的加热源,超过了启动或启动聚变所需的热量。” 克里彻是1月26日发表在《自然物理学》杂志上的一项研究的主要作者,该研究描述了NIF如何优化以实现燃烧等离子体,并且是同一天发表在《自然》杂志上的另一项研究的共同作者,该研究详细介绍了NIF在2020年和2021年初的第一次燃烧等离子体实验。 罐子里的恒星 核聚变是为太阳等恒星提供能量的过程。它与核裂变不同,核裂变用于地球上的发电厂,通过将重原子核(如钚)分裂成更小的原子核来产生能量。 当原子核“融合”——即结合在一起——形成更大的原子核时,核聚变会释放大量能量。 最简单的聚变类型是由氢提供燃料,研究人员希望有朝一日可以利用地球海洋中丰富的氢将核聚变发展为一种相对“清洁”的能源。 因为恒星非常大,它们强大的引力意味着聚变反应发生在非常高的压力下。但是在地球上这样的压力是不可行的——因此聚变反应必须在非常高的温度下进行。 (根据盖-吕萨克定律,在给定体积内,随着气体温度的升高,压力也会升高,反之亦然。) 不同的实验者提出了在高温下维持聚变反应的不同方法,美国国家点火设施专门研究一种称为“惯性约束”的方法。 它通过使用192支高功率激光器在中心撞击一小颗氢气球来产生高温,这些激光器本身会消耗大量能量,并且每天只能发射一次左右。 惯性约束方法是用于测试热核武器的先驱,它距离成为一种可行的动力源还有很长的路要走——这样的动力源必须每秒蒸发几个这样的燃料芯块,才能产生足够大的能量输出来产生有用数量的核燃料。 但是NIF最近在实现非常高的能量输出方面取得了成功,即使只是非常短暂的时刻。2021年8月的实验几乎从燃料颗粒中产生的能量与投入其中的能量一样多,研究人员预计未来的实验会更加强大。 惯性约束 这两项新研究描述了在 10 万亿瓦反应前几个月进行的燃烧等离子体实验;那些早期的实验最终从一个只有 200 微克(0.000007 盎司)的氢燃料颗粒中产生了 170 千焦的能量——大约是早期实验能量输出的三倍。 它是通过仔细塑造燃料舱——一个包围颗粒的聚碳酸酯金刚石的微小球形外壳——以及包含它的空腔——一个内衬金的贫化(不是非常放射性)铀的小圆柱体,被称为空腔来实现的。 新设计使加热弹丸的 NIF 激光器在空腔内更有效地运行,并且胶囊的热壳在燃料弹丸“内爆”时迅速向外膨胀——结果燃料在如此高的温度下熔化它将颗粒的其他部分加热成等离子体。 物理学家亚历克斯·兹尔斯特拉(Alex Zylstra)在一封电子邮件中告诉《 Live Science》:“这很重要,因为它是从聚变中产生大量能量的必要步骤,相对于我们投入的能量而言。” 兹尔斯特拉领导了最初的燃烧等离子体实验,并且是在《自然》 发表相关文章的主要作者。 他说,尽管在将惯性约束聚变用作动力源之前还需要更多的科学里程碑,但实现“燃烧”等离子体的步骤将使科学家能够更多地了解这一过程。 “在 NIF 燃烧等离子体现在处于一个新的制度中,我们可以在其中科学地研究这种条件,”兹尔斯特拉说, 克里彻补充说,这一突破将使人们更好地了解核聚变,该核聚变可用于其他类型的聚变反应——例如在托卡马克中发生的反应——而不仅仅是通过惯性约束聚变实现的反应。 “这项工作很重要,因为它提供了一种新的等离子体物理学机制,这将为整个聚变界提供丰富的理解,”克里彻说。

中国核聚变论文素材摘要

聚焦核聚变:直接将核能转化为电能素材:油管翻译:GolevkaTech个人字幕组

核聚变反应堆的原理很简单,只不过对于人类当前的技术水准,实现起来具有相当大的难度。 物质由分子构成,分子由原子构成,原子中的原子核又由质子和中子构成,原子核外包覆与质子数量相等的电子。质子带正电,中子不带电。电子受原子核中正电的 吸引,在"轨道"上围绕原子核旋转。不同元素的电子、质子数量也不同,如氢和氢同位素只有1个质子和1个电子,铀是天然元素中最重的原子,有92个质子和 92个电子。 核聚变是指由质量轻的原子(主要是指氢的同位素氘和氚)在超高温条件下,发生原子核互相聚合作用,生成较重的原子核(氦),并释放出巨大的能量。1千克氘全部聚变释放的能量相当11000吨煤炭。其实,利用轻核聚变原理,人类早已实现了氘氚核聚变---氢弹爆炸,但氢弹是不可控制的爆炸性核聚变,瞬间能量释放只能给人类带来灾难。如果能让核聚变反应按照人们的需要,长期持续释放,才能使核聚变发电,实现核聚变能的和平利用。 如果要实现核聚变发电,那么在核聚变反应堆中,第一步需要将作为反应体的氘-氚混合气体加热到等离子态,也就是温度足够高到使得电子能脱离原子核的束缚,让原子核能自由运动,这时才可能使裸露的原子核发生直接接触,这就需要达到大约10万摄氏度的高温。 第二步,由于所有原子核都带正电,按照"同性相斥"原理,两个原子核要聚到一起,必须克服强大的静电斥力。两个原子核之间靠得越近,静电产生的斥力就越 大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。 质量轻的原子核间静电斥力最小,也最容易发生聚变反应,所以核聚变物质一般选择氢的同位素氘和氚。氢是宇宙中最轻的元素,在自然界中存在的同位素有: 氕、氘 (重氢)、氚 (超重氢)。在氢的同位素中,氘和氚之间的聚变最容易,氘和氘之间的聚变就困难些,氕和氕之间的聚变就更困难了。因此人们在考虑聚变时,先考虑氘、氚之间 的聚变,后考虑氘、氘之间的聚变。重核元素如铁原子也能发生聚变反应,释放的能量也更多;但是以人类目前的科技水平,尚不足满足其聚变条件。 为了克服带正电子原子核之间的斥力,原子核需要以极快的速度运行,要使原子核达到这种运行状态,就需要继续加温,直至上亿摄氏度,使得布朗运动达到一个疯狂的水平,温度越高,原子核运动越快。以至于它们没有时间相互躲避。然后就简单了,氚的原子核和氘的原子核以极大的速度,赤裸裸地发生碰撞,结合成1个氦原子核,并放出1个中子和17。6兆电子伏特能量。 反应堆经过一段时间运行,内部反应体已经不需要外来能源的加热,核聚变的温度足够使得原子核继续发生聚变。这个过程只要将氦原子核和中子及时排除出反应 堆,并及时将新的氚和氘的混合气输入到反应堆内,核聚变就能持续下去;核聚变产生的能量一小部分留在反应体内,维持链式反应,剩余大部分的能量可以通过热 交换装置输出到反应堆外,驱动汽轮机发电。这就和传统核电站类似了。 核聚变消耗的燃料是世界上十分常见的元素--氘(也就是重氢)。氘在海水中的含量还是比较高的,只需要通过精馏法取得重水,然后再电解重水就能得到氘。新 的问题出现了,仅仅有氘还是不够的,尽管氘-氘反应也是氢核聚变的主要形式,但我们人类现有条件下,根本无法控制氘-氘反应,它太猛烈了,所需要的温度要 高得多,除了在实验室条件下做一次性的实验外,很难让它链式反应下去--那是氢弹一样的威力。还好,人们发现了氘-氚反应的烈度要小很多,它的反应速度仅 仅是氘-氘反应的100分之一,而点火温度反倒低得多,很适合人类现有条件下的利用。 而氚不同于氘,氚是地球上最稀有的元素,由于氚的半衰期只有12。26年,所以在地球诞生之初的氚早已衰变地无影无踪了。现在人类的氚都是人工制造而非天然提取的,人们通常用重水反应堆在发电之余人工制造少量的氚-- 它是地球上最贵的东西之一,一克氚价值超过30万美元,仅在美国保存有30公斤左右的氚。这 么贵的原料,用作核聚变发电显然是无法接受的,幸好上帝给人类又提供了一种好东西--锂。锂元素也是世界上最丰富的资源,有2000多亿吨。一方面海水中 就包含足够的氯化锂,分离出来即可。另一方面,中国是世界锂资源最丰富的国家,碳酸锂矿也不是稀有资源,更容易获得。锂的2种同位素--锂-6和锂-7, 在被中子轰击之后,就会裂变,他们的产物都是氚和氦,目前为止人类在重水反应堆中制造氚,用的就是将锂靶件植入反应堆的方法。 在聚变反应堆内,氚和氘反应后,除了形成一个氦原子核之外,还有一个多余的中子,并且能量很高。我们只需要在核聚变的反应体之内保持一定比例的锂原子核浓 度,那么核聚变产生的中子就会轰击锂核,促使锂核裂变,产生一个新的氚,这个氚则继续参与氚-氘反应,继而产生新的中子,链式反应形成了。所以,理论上我 们只需要给反应体提供两种原料--氘和锂,就能实现氘-氚反应,并且维持它的进行。 看起来很简单是吧,只是还有一个问题,能够承载上亿摄氏度超高温反应体的核反应堆用什么材料来制造呢?要知道,太阳表面的温度也才只有6000万度左右。 迄今为止,人类还没有造出任何能经受1万摄氏度高温的材料,更不要说上亿摄氏度了。以上这些因素就是为什么一槌子买卖的氢弹已经爆炸了50年后,人类还是 没能有效地从核聚变中获取能量的重要原因。 帖子附图: 中国核聚变研究巨大突破:耗资惊人的人造“太阳”计划 作者:柏弧紫 于 2009-08-28 08:19:46 发表 只看该作者 位于四川省成都市双流县白家镇,核工业西南物理研究院聚变研究试验基地的"中国环流器2号A装置" 2006年9月28日,中国耗时6年、耗资3亿元人民币自主设计制造的新一代托卡马克磁约束核聚变装置"EAST"首次成功完成放电实验,获得电流200千安、时间接近3秒的高温等离子体放电;使EAST成为世界上第一个建成并真正运行的"全超导非圆截面托卡马克"核聚变实验装置。这是中国可控核聚变研究的里程碑式突破。 在古希腊神话中,普罗米修斯从太阳神阿波罗处盗下的天火,照亮了人类的黑夜。在人类现代科技中,可控核聚变技术将照亮人类能源的未来之路,由于可控核聚变反应堆产生能量的方式和太阳类似,因此它也被俗称为"人造太阳"。 太阳是热核聚变反应的典型代表,1938年,美国科学家贝特(H。Bethe)和德国科学家魏茨泽克(C。F。v。Weizsacker)推测太阳能源可 能来自它的内部氢核聚变成氦核的热核反应,这甚至早于核裂变模型的提出。太阳的核心温度高达1500万摄氏度,表面有6000度,压力相当于2500亿个 大气压。核心区的气体被极度压缩至水密度的150倍。在这里每时每刻都发生着热核聚变,太阳每秒钟把七亿吨的氢变为氦,在这过程中失去400多万吨的质量,这种聚变反应已经持续了几十亿年,它的辐射能量给地球带来无限生机。 世界能源危机 自人类进入工业化以来,世界能源消耗迅速增长。有数据显示,自1973年以来,人类已经开采了5500亿桶石油(约合800亿吨),按照现在的开采速度, 地球上已探明的1770亿吨石油储量仅够开采50年,已探明的173万亿立方米天然气仅够开采63年;已探明的9827亿吨煤炭还可以用300年到400 年。核电站发电需要浓缩铀,世界上已探明的铀储量约490万吨,钍储量约275万吨,全球441座核电站目每年需要消耗6万多吨浓缩铀,地球上的铀储量仅 够使用100年左右。世界各国水能开发也已近饱和,而风能、太阳能尚无法满足人类庞大的需求。 随着石油价格上涨,能源危机再次被提起,各国也加快了新能源研发,核聚变能就是重点之一。与传统的裂变式核电站相比,核聚变发电具有明显的优势。核聚变所 用的重要核燃料是氘,理论上,只需1千克氘和10千克锂(通过锂可得到氘)就可以保证一座百万千瓦聚变核电站运转一天,而传统核电站和火力发电站至少需要 100千克铀或1万吨煤。制取1千克浓缩铀的费用是1。2万美元,而制取1千克氘的费用只有300美元。一座100万千瓦的核聚变电站,每年耗氘量只需304千克;而一座百万千瓦裂变式核电站,需要30-40吨核燃料。 氘的发热量相当于同等煤的2000万倍,是海水中大量存在的元素。据测算,海水中大约每600个氢原子中就有一个氘原子,每1公升海水中含有0。03克的 氘,通过核聚变反应产生的能量,相当于燃烧300公升的汽油。就是说,"1升海水约等于300升汽油"。地球上的海水总量约为138亿亿立方米,其中氘的 储量约40万亿吨,足够人类使用百亿年。锂是核聚变实现纯氘反应的过渡性辅助"燃料",地球上的锂储量有2000多亿吨,海水中的氘再加上锂至少够我们地 球用上千亿年。氚虽然在自然界比氘少得多,但可从核反应中制取,也可用于热核反应。科学家们正在以海水中的氘为主要原料,进行核聚变反应试验,以期建立可 以投入商业运营的热核聚变反应堆,彻底解决人类未来的能源问题。 更为可贵的是核聚变反应是清洁能源,中几乎不存在放射性污染,核裂变的原料本身带有放射性,而核聚变反应过程中,在任何时刻都只有一丁点的氘在聚变, 无需担忧失控的危险,而且也不会产生放射性的物质。即使像切尔诺贝利核电站那样发生损坏,核聚变反应堆也会自动立即中止反应,因此受控核聚变产生的能量名 符其实是一种无限、清洁、成本低廉和安全可靠的新能源。在这一系列的动力下,核聚变的研究已经持续了半个多世纪。核聚变反应堆工作原理与其他能源相比,核聚变反应堆有几项显著的优点,因而一直备受媒体的关注。它们的燃料来源十分充足,辐射泄漏也处于正常范围之内,与目前的核裂变反应堆相比,其放射性废物更少。 然而迄今为止,还没有人将这一技术应用到实践中,但建造这种反应堆实际上已为期不远。目前,核聚变反应堆正处于试验阶段,世界各个国家及地区的多个实验室都开展了这项研究。 氘-氘反应——两个氘原子结合,生成一个氦3原子和一个中子。 氘-氚反应——一个氘原子和一个氚原子结合,生成一个氦4原子和一个中子。其中大部分能量以高能中子的形式释放。从概念上讲,利用反应堆中的核聚变十分容易。但为了让这一反应以可控、无害的方式进行,科学家们历经周折。为了了解其中的缘由,我们需要先看一下发生核聚变的必要条件。 当氢原子聚合时,它们的原子核必须结合在一起。然而,由于每个原子核中的质子都带有相同的电荷(正电),因而会互相排斥。如果您曾试着将两块磁铁放在一起并感到它们互相推开,则意味着您已亲身体验了这一原理。 若要实现核聚变,需要创造一些特殊的条件来克服这种排斥力。下面是发生核聚变的一些必要条件: 高温——高温可为氢原子提供足够的能量,以克服质子之间的电荷排斥。 核聚变需要的温度约为1亿开(约是太阳核心温度的六倍)。 在这样的高温下,氢的状态为等离子体,而不是气体。等离子体是物质的一种高能状态,其中所有电子都从原子中剥离出来,并可以自由移动。 太阳的高温是由重力压缩核心的巨大质量而产生的。我们要制造出这样的高温,就必须利用微波、激光和离子粒子的能量。 高压——压力可将氢原子挤在一起。氢原子之间的距离必须在1x10-15米以内,才能进行聚合。 太阳利用其质量和重力将核心内的氢原子挤压在一起。 我们要将氢原子挤压在一起,必须使用强大的磁场、激光或离子束。借助目前的技术,我们只能实现发生氘-氚聚变所需的温度和压力。氘-氘聚变需要的温度更高,这种温度有可能在将来实现。基本上,利用氘氘聚变会更加方便,因为从海水中提取氘比从锂中提取氚要更加容易。另外,氘不具有放射性,而且氘氘反应可释放更多的能量。 有两种方法可实现发生氢聚变所需的温度和压力: 磁约束使用磁场和电场来加热并挤压氢等离子体。法国的ITER项目使用的就是这种方法。

核聚变(nuclear fusion),又称核融合、融合反应、聚变反应或热核反应[1] 核是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),只有在极高的温度和压力下才能让核外电子摆脱原子核的束缚,让两个原子核能够互相吸引而碰撞到一起,发生原子核互相聚合作用,生成新的质量更重的原子核(如氦),中子虽然质量比较大,但是由于中子不带电,因此也能够在这个碰撞过程中逃离原子核的束缚而释放出来,大量电子和中子的释放所表现出来的就是巨大的能量释放。这是一种核反应的形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。核聚变是核裂变相反的核反应形式。科学家正在努力研究可控核聚变,核聚变可能成为未来的能量来源。核聚变燃料可来源于海水和一些轻核,所以核聚变燃料是无穷无尽的。 人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变。最简单的核聚变装置如下:先电解水生成氢气和氧气。再把氢气低温压缩成固态氢,置于厚重的水泥封装中。水泥封装内有动力水,冷却水系统。根据四个氢核聚变一个氦核放热原理,需要陶瓷减速棒。可利用核裂变反应在中心点火。最后核聚变会一直进行,根据热胀冷缩原理核燃料体积会减少,加入融化的减速棒即可。动力水要连接蒸汽轮机用来发电。

1、中科院等离子体所今天发布消息,我国大科学装置“人造太阳”日前取得重大突破,实现加热功率超过10兆瓦,等离子体储能增加到300千焦,等离子体中心电子温度首次达到1亿度,获得的多项实验参数接近未来聚变堆稳态运行模式所需要的物理条件,朝着未来聚变堆实验运行迈出了关键一步,也为人类开发利用核聚变清洁能源奠定了重要的技术基础。东方超环(EAST)是等离子体所自主设计、研制并拥有完全知识产权的磁约束核聚变实验装置,是世界上第一个非圆截面全超导托卡马克,也是我国第四代核聚变实验装置,它的科学目标是让海水中大量存在的氘和氚在高温条件下,像太阳一样发生核聚变,为人类提供源源不断的清洁能源,所以也被称为“人造太阳”。人造太阳的研制是解决能源问题的一个巨大的转折点,我们国家大部分用化石能源供能,如果核能聚变可控的话,就会给世界的能源解决巨大问题。可控核聚变技术一旦实现,能源将会取之不竭、用之不尽。可控核聚变技术一旦掌握,人类将从地球文明跨越到恒星际文明,星际大航海时代将随之开启。2、“推力矢量技术”取得重大突破第十二届中国国际航空航天博览会在珠海开幕。由我国自主研制的歼-10B推力矢量验证机在珠海上空成功进行了过失速机动飞行表演。展示的“榔头”机动,“大迎角360度滚转”“落叶飘”“眼镜蛇”“赫伯斯特”等典型过失速机动飞行动作,充分体现了歼-10B推力矢量验证机优异的飞行性能。据歼-10B推力矢量技术验证项目现场总指挥、航空工业副总经理杨伟介绍,实现过失速机动飞行,不仅要拥有带推力矢量技术的发动机,同时,飞机必须具有优良的大迎角气动性能、良好的进发匹配特性、以及独特的飞行控制技术。近几年,在军委装备发展部、空军、科工局等上级领导的亲切关怀和大力支持下,我国推力矢量技术取得重大突破,成为世界上少数几个掌握此项关键技术的国家之一。“歼-10B推力矢量技术验证项目,成功实现了推力矢量这一航空关键领域的创新突破,这是飞发一体综合设计与应用的典型范例,也是航空核心技术自主创新的又一次成功实践,为后续的技术创新和型号发展奠定了坚实的基础。”歼-10B推力矢量技术验证项目总设计师、航空工业成都所总设计师王海峰说王海峰说。3、第41颗北斗卫星成功发射2018年11月1日23时57分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射第四十一颗北斗导航卫星,卫星顺利进入预定轨道。这颗卫星属于地球静止轨道卫星,是我国北斗三号系统第十七颗组网卫星,也是北斗三号系统首颗地球静止轨道卫星。年底之前,长三乙运载火箭还将与“老搭档”远征一号携手发射两颗北斗三号组网卫星。近日,随着北斗三号工程第三、四颗组网卫星成功发射,2018年北斗卫星进入密集发射期。计划到2018年年底我国将发射18颗北斗三号卫星,服务“一带一路”沿线国家,到2020年,35颗北斗三号卫星将为全球提供服务。在研发过程中,北斗系统坚持自主创新,获得了诸多奖项,例如:2016年,荣获国家科技进步特等奖;2017年,入选世界互联网大会领先科技成果。同时,北斗定位的性能也在不断提升,定位误差在不断缩小,计划于2018年底建成的北斗基地增强系统,更是能够实现厘米级高精度服务。5年前,国内没有一片国产北斗芯片。现如今,坚强的“北斗芯”已实现规模化应用。工艺由0.35微米提升到28纳米,最低单片价格仅6元,总体性能达到甚至优于国际同类产品。目前,国产北斗芯片累计销量突破5000万片,高精度OEM板和接收机天线已分别占国内市场份额30%和90%。现如今,世界主流手机芯片大都支持北斗,国内销售的智能手机北斗正成为标配。摩拜单车已全面支持北斗卫星定位;ofo小黄车也已推出北斗智能锁。

中国核聚变论文素材

未来广泛应用的新能源 ---生物质能与核能能源是人类藉以克服困难,维持生存的原动力,譬如太阳给我们光热,风吹动风车可以发电,燃烧汽油可用以推动汽车,使用瓦斯可以烹调、取暖,凡此种种如太阳、风、汽油、瓦斯等都是能源。近年来,无论核分裂、核融合和太阳能的研究发展,均呈现出一片蓬勃景象,但今日能源供应市场燃料其蕴藏量有限且日益枯竭、分布不均,使用时又污染严重,鉴於目前已经投置的生产设备和应用技术,预计主能源维持在能源主流的地位直至本世纪之末,因此人类当务之急便是寻求更好用的燃料,并加紧改良现有能源的利用技术。下面是未来应用较广泛的两种新能源。一、新能源之生物质能 生物质能是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。 而所谓生物质能,就是太阳能以化学能形式贮存在生物质中的能 量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可 转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。目前,很多国家都在积极研究和开发利用生物质能。生物质能蕴藏在植物、动物和微生物等可以生长的有机物中,它是由太阳能转化 而来的。 1、生物质能的特点1) 可再生性生物质属可再生资源,生物质能由于通过植物的光合作用可以再生,资源丰富,可保证能源的永续利用; 2) 低污染性生物质的硫含量、氮含量低; 生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量, 因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应; 3) 广泛分布性 缺乏煤炭的地域,可充分利用生物质能; 4) 生物质燃料总量十分丰富。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的十倍。 2、生物质能的分类依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等。林业生物质资源是指森林生长和林业生产过程提供的生物质能源,包括薪炭林、在森林抚育和间伐作业中的零散木材、残留的树枝、树叶和木屑等。农业生物质能资源是指农业作物;农业生产过程中的 废弃物,如农作物收获时残留在农田内的农作物秸秆。工业有机废水主要是酒精、酿酒、制糖、食品、制药、造纸及屠宰等行业生产过程中排 出的废水等,其中都富含有机物。 城市固体废物主要是由城镇居民生活垃圾,商业、服务业垃圾和 少量建筑业垃圾等固体废物构成。 3、生物质能的利用 生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居 于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。 目前人类对生物质能的利用,包括直接用作燃料的有农作物的秸秆、薪柴等;间接作为燃料的有农林废弃物、动物粪便、垃圾及藻类等,它们通过微生物作用生成沼气,或采用热 解法制造液体和气体燃料,也可制造生物炭。生物质能是世界上最为广泛的可再生能 源,现代生物质能的利用是通过生物质的厌氧发酵制取甲烷,生物油和生物炭,用生物质制造乙醇和甲醇燃料,以及利用生物工程技术培育能源植物,发展能源农场。 4、生物质能对中国的意义中国是一个人口大国,又是一个经济迅速发展的国家,21 世纪将面临着经济增长和环境保护的双重压力。因此改变能源生产和消费方式,开发利用生物质能等可再 生的清洁能源资源对建立可持续的能源系统,促进国民经济发展和环境保护具有重大意义。开发利用生物质能对中国农村更具特殊意义。中国 80%人口生活在农村,秸秆和薪柴等生物质能是农村的主要生活燃料。尽管煤炭等商品能源在农村的使用迅速增加,但生物质能仍占有重要地位。1998 年农村生活用能总量 3.65 亿吨标煤,其中秸秆和薪柴为 2.07 亿吨标煤,占 56.7%。因此发展生物质能技术,为农村地区提供生活和生产用能,是帮助这些地区脱贫致富,实现小康目标的一项重要任务。 二、新能源之核能 核能是核裂变能的简称。多年以前50科学家在的一次试验中发现铀-235 原子核在吸收一个中子以后能分裂,在放出 2—3 个中子的同时伴随着一种 巨大的能量,这种能量比化学反应所释放的能量大的多,这就是我们今天 所说的核能。核能的获得途径主要有两种,即重核裂变与轻核聚变。核聚 变要比核裂变释放出更多的能量。例如相同数量的氘和铀-235 分别进行聚 变和裂变,前者所释放的能量约为后者的三倍多。被人们所熟悉的原子弹、 核电站、核反应堆等等都利用了核裂变的原理。只是实现核聚变的条件要 求的较高,即需要使氢核处于几千万度以上的高温才能使相当的核具有动 能实现聚合反应。1、核能利用— 核电站目前化石燃料在能源消耗中所占的比重仍处于绝对优势,但此种能源 不仅燃烧利用率低,而且污染环境,它燃烧所释放出来的二氧化碳等有害气体容易造成 "温室效应",使地球气温逐年升高,造成气候异常,加速土地沙漠化过程,给社会经济的可持续发展带来严重影响。与火电厂相比, 核电站是非常清洁的能源,不排放这些有害物质也不会造成"温室效应", 因此能大大改善环境质量,保护人类赖以生存的生态环境。 世界上核电国家的多年统计资料表明,虽然核电站的投资高于燃煤电厂,但是,由于核燃料成本远远地低于燃煤成本,相反核燃料反应所释放 的能量却远远高于化石燃料燃烧所释放出来的能量,而且核燃料取之不皆,这就使得目前核电站的总发电成本低于烧煤电厂。 2、核能发电优点 :1)、核能发电不像化石燃料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染。2)、核能发电不会产生加重地球温室效应的二氧化碳。3)、核燃料能量密度比起化石燃料高上几百万倍,故核能电厂所使用的 燃料体积小,运输与储存都很方便,一座 1000 百万瓦的核能电厂一年只需 30 公吨的铀燃料,一航次的飞机就可以完成运送。5)、核能发电的成本中,燃料费用所占的比例较低,核能发电的成本较 不易受到国际经济情势影响,故发电成本较其他发电方法为稳定。 3、核能发电缺点 :核能电厂会产生高低阶放射性废料,或者是使用过之核燃料,虽然 所占体积不大,但因具有放射线,故必须慎重处理,且需面对相当大的政 治困扰。 核能发电厂热效率较低,因而比一般化石燃料电厂排放更多废热到 环境裏,故核能电厂的热污染较严重。核能电厂投资成本太大,电力公司的财务风险较高。核能电厂较不适宜做尖峰、高峰之随载运转。兴建核电厂较易引发政治歧见纷争。核电厂的反应器内有大量的放射性物质,如果在事故中释放到外界 环境,会对生态及民众造成伤害。4、中国核能发展的趋势核电站只需消耗很少的核燃料,就可以产生大量的电能,每千瓦时电能的成本比火电站要低20%以上。核电站还可以大大减少燃料的运输量。例如, 一座 100 万千瓦的火电站每年耗煤三四百万吨,而相同功率的核电站每年 仅需铀燃料三四十吨。核电的另一个优势是干净、无污染,几乎是零排放,中国正在加大能源 结构调整力度。积极发展核电、风电、水电等清洁优质能源已刻不容缓。中国能源结构仍以煤炭为主体,清洁优质能源的比重偏低。 中国目前建成和在建的核电站总装机容量为870万千瓦,预计到2010 年中国核电装机容量约为 2000万千瓦,到 2050 年,根据不同部门的估算,中国核电装机容量可以分为高中低三种方案。中国国家发展改革委员会正在制定中国核电发展民用工业规划,准备到2020年中国电力总装机容量预计为9亿千瓦时,核电的比重将占电力总容量的4%,即是中国核电在2020年时将为3600-4000万千瓦。 从核电发展总趋势来看,中国核电发展的技术路线和战略路线早已明确并正在执行,当前发展压水堆,中期发展快中子堆,远期发展聚变堆。具体地说就是,近期发展热中子反应堆核电站;为了充分利用铀资源,采用铀钚循环的技术路线,中期发展快中子增殖反应堆核电站;远期发展聚变堆核电站,从而基本上“永远”解决能源需求的矛盾。人口增加,每人耗费的能源用量也不断升高,但自然界的能源蕴藏并非无穷,与传统能源逐渐枯竭之际,对各种形式再生能源的开发研究正被各国重视,现今社会人类终於体悟到能源不容我们的任意挥霍,因此除了积极开发新能源、改善能源利用的效率外,也应研究如何在不降低生活水准、不减缓工业发进步及经济成长的前题下,努力节约能源。

核聚变反应堆的原理很简单,只不过对于人类当前的技术水准,实现起来具有相当大的难度。 物质由分子构成,分子由原子构成,原子中的原子核又由质子和中子构成,原子核外包覆与质子数量相等的电子。质子带正电,中子不带电。电子受原子核中正电的 吸引,在"轨道"上围绕原子核旋转。不同元素的电子、质子数量也不同,如氢和氢同位素只有1个质子和1个电子,铀是天然元素中最重的原子,有92个质子和 92个电子。 核聚变是指由质量轻的原子(主要是指氢的同位素氘和氚)在超高温条件下,发生原子核互相聚合作用,生成较重的原子核(氦),并释放出巨大的能量。1千克氘全部聚变释放的能量相当11000吨煤炭。其实,利用轻核聚变原理,人类早已实现了氘氚核聚变---氢弹爆炸,但氢弹是不可控制的爆炸性核聚变,瞬间能量释放只能给人类带来灾难。如果能让核聚变反应按照人们的需要,长期持续释放,才能使核聚变发电,实现核聚变能的和平利用。 如果要实现核聚变发电,那么在核聚变反应堆中,第一步需要将作为反应体的氘-氚混合气体加热到等离子态,也就是温度足够高到使得电子能脱离原子核的束缚,让原子核能自由运动,这时才可能使裸露的原子核发生直接接触,这就需要达到大约10万摄氏度的高温。 第二步,由于所有原子核都带正电,按照"同性相斥"原理,两个原子核要聚到一起,必须克服强大的静电斥力。两个原子核之间靠得越近,静电产生的斥力就越 大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。 质量轻的原子核间静电斥力最小,也最容易发生聚变反应,所以核聚变物质一般选择氢的同位素氘和氚。氢是宇宙中最轻的元素,在自然界中存在的同位素有: 氕、氘 (重氢)、氚 (超重氢)。在氢的同位素中,氘和氚之间的聚变最容易,氘和氘之间的聚变就困难些,氕和氕之间的聚变就更困难了。因此人们在考虑聚变时,先考虑氘、氚之间 的聚变,后考虑氘、氘之间的聚变。重核元素如铁原子也能发生聚变反应,释放的能量也更多;但是以人类目前的科技水平,尚不足满足其聚变条件。 为了克服带正电子原子核之间的斥力,原子核需要以极快的速度运行,要使原子核达到这种运行状态,就需要继续加温,直至上亿摄氏度,使得布朗运动达到一个疯狂的水平,温度越高,原子核运动越快。以至于它们没有时间相互躲避。然后就简单了,氚的原子核和氘的原子核以极大的速度,赤裸裸地发生碰撞,结合成1个氦原子核,并放出1个中子和17。6兆电子伏特能量。 反应堆经过一段时间运行,内部反应体已经不需要外来能源的加热,核聚变的温度足够使得原子核继续发生聚变。这个过程只要将氦原子核和中子及时排除出反应 堆,并及时将新的氚和氘的混合气输入到反应堆内,核聚变就能持续下去;核聚变产生的能量一小部分留在反应体内,维持链式反应,剩余大部分的能量可以通过热 交换装置输出到反应堆外,驱动汽轮机发电。这就和传统核电站类似了。 核聚变消耗的燃料是世界上十分常见的元素--氘(也就是重氢)。氘在海水中的含量还是比较高的,只需要通过精馏法取得重水,然后再电解重水就能得到氘。新 的问题出现了,仅仅有氘还是不够的,尽管氘-氘反应也是氢核聚变的主要形式,但我们人类现有条件下,根本无法控制氘-氘反应,它太猛烈了,所需要的温度要 高得多,除了在实验室条件下做一次性的实验外,很难让它链式反应下去--那是氢弹一样的威力。还好,人们发现了氘-氚反应的烈度要小很多,它的反应速度仅 仅是氘-氘反应的100分之一,而点火温度反倒低得多,很适合人类现有条件下的利用。 而氚不同于氘,氚是地球上最稀有的元素,由于氚的半衰期只有12。26年,所以在地球诞生之初的氚早已衰变地无影无踪了。现在人类的氚都是人工制造而非天然提取的,人们通常用重水反应堆在发电之余人工制造少量的氚-- 它是地球上最贵的东西之一,一克氚价值超过30万美元,仅在美国保存有30公斤左右的氚。这 么贵的原料,用作核聚变发电显然是无法接受的,幸好上帝给人类又提供了一种好东西--锂。锂元素也是世界上最丰富的资源,有2000多亿吨。一方面海水中 就包含足够的氯化锂,分离出来即可。另一方面,中国是世界锂资源最丰富的国家,碳酸锂矿也不是稀有资源,更容易获得。锂的2种同位素--锂-6和锂-7, 在被中子轰击之后,就会裂变,他们的产物都是氚和氦,目前为止人类在重水反应堆中制造氚,用的就是将锂靶件植入反应堆的方法。 在聚变反应堆内,氚和氘反应后,除了形成一个氦原子核之外,还有一个多余的中子,并且能量很高。我们只需要在核聚变的反应体之内保持一定比例的锂原子核浓 度,那么核聚变产生的中子就会轰击锂核,促使锂核裂变,产生一个新的氚,这个氚则继续参与氚-氘反应,继而产生新的中子,链式反应形成了。所以,理论上我 们只需要给反应体提供两种原料--氘和锂,就能实现氘-氚反应,并且维持它的进行。 看起来很简单是吧,只是还有一个问题,能够承载上亿摄氏度超高温反应体的核反应堆用什么材料来制造呢?要知道,太阳表面的温度也才只有6000万度左右。 迄今为止,人类还没有造出任何能经受1万摄氏度高温的材料,更不要说上亿摄氏度了。以上这些因素就是为什么一槌子买卖的氢弹已经爆炸了50年后,人类还是 没能有效地从核聚变中获取能量的重要原因。 帖子附图: 中国核聚变研究巨大突破:耗资惊人的人造“太阳”计划 作者:柏弧紫 于 2009-08-28 08:19:46 发表 只看该作者 位于四川省成都市双流县白家镇,核工业西南物理研究院聚变研究试验基地的"中国环流器2号A装置" 2006年9月28日,中国耗时6年、耗资3亿元人民币自主设计制造的新一代托卡马克磁约束核聚变装置"EAST"首次成功完成放电实验,获得电流200千安、时间接近3秒的高温等离子体放电;使EAST成为世界上第一个建成并真正运行的"全超导非圆截面托卡马克"核聚变实验装置。这是中国可控核聚变研究的里程碑式突破。 在古希腊神话中,普罗米修斯从太阳神阿波罗处盗下的天火,照亮了人类的黑夜。在人类现代科技中,可控核聚变技术将照亮人类能源的未来之路,由于可控核聚变反应堆产生能量的方式和太阳类似,因此它也被俗称为"人造太阳"。 太阳是热核聚变反应的典型代表,1938年,美国科学家贝特(H。Bethe)和德国科学家魏茨泽克(C。F。v。Weizsacker)推测太阳能源可 能来自它的内部氢核聚变成氦核的热核反应,这甚至早于核裂变模型的提出。太阳的核心温度高达1500万摄氏度,表面有6000度,压力相当于2500亿个 大气压。核心区的气体被极度压缩至水密度的150倍。在这里每时每刻都发生着热核聚变,太阳每秒钟把七亿吨的氢变为氦,在这过程中失去400多万吨的质量,这种聚变反应已经持续了几十亿年,它的辐射能量给地球带来无限生机。 世界能源危机 自人类进入工业化以来,世界能源消耗迅速增长。有数据显示,自1973年以来,人类已经开采了5500亿桶石油(约合800亿吨),按照现在的开采速度, 地球上已探明的1770亿吨石油储量仅够开采50年,已探明的173万亿立方米天然气仅够开采63年;已探明的9827亿吨煤炭还可以用300年到400 年。核电站发电需要浓缩铀,世界上已探明的铀储量约490万吨,钍储量约275万吨,全球441座核电站目每年需要消耗6万多吨浓缩铀,地球上的铀储量仅 够使用100年左右。世界各国水能开发也已近饱和,而风能、太阳能尚无法满足人类庞大的需求。 随着石油价格上涨,能源危机再次被提起,各国也加快了新能源研发,核聚变能就是重点之一。与传统的裂变式核电站相比,核聚变发电具有明显的优势。核聚变所 用的重要核燃料是氘,理论上,只需1千克氘和10千克锂(通过锂可得到氘)就可以保证一座百万千瓦聚变核电站运转一天,而传统核电站和火力发电站至少需要 100千克铀或1万吨煤。制取1千克浓缩铀的费用是1。2万美元,而制取1千克氘的费用只有300美元。一座100万千瓦的核聚变电站,每年耗氘量只需304千克;而一座百万千瓦裂变式核电站,需要30-40吨核燃料。 氘的发热量相当于同等煤的2000万倍,是海水中大量存在的元素。据测算,海水中大约每600个氢原子中就有一个氘原子,每1公升海水中含有0。03克的 氘,通过核聚变反应产生的能量,相当于燃烧300公升的汽油。就是说,"1升海水约等于300升汽油"。地球上的海水总量约为138亿亿立方米,其中氘的 储量约40万亿吨,足够人类使用百亿年。锂是核聚变实现纯氘反应的过渡性辅助"燃料",地球上的锂储量有2000多亿吨,海水中的氘再加上锂至少够我们地 球用上千亿年。氚虽然在自然界比氘少得多,但可从核反应中制取,也可用于热核反应。科学家们正在以海水中的氘为主要原料,进行核聚变反应试验,以期建立可 以投入商业运营的热核聚变反应堆,彻底解决人类未来的能源问题。 更为可贵的是核聚变反应是清洁能源,中几乎不存在放射性污染,核裂变的原料本身带有放射性,而核聚变反应过程中,在任何时刻都只有一丁点的氘在聚变, 无需担忧失控的危险,而且也不会产生放射性的物质。即使像切尔诺贝利核电站那样发生损坏,核聚变反应堆也会自动立即中止反应,因此受控核聚变产生的能量名 符其实是一种无限、清洁、成本低廉和安全可靠的新能源。在这一系列的动力下,核聚变的研究已经持续了半个多世纪。核聚变反应堆工作原理与其他能源相比,核聚变反应堆有几项显著的优点,因而一直备受媒体的关注。它们的燃料来源十分充足,辐射泄漏也处于正常范围之内,与目前的核裂变反应堆相比,其放射性废物更少。 然而迄今为止,还没有人将这一技术应用到实践中,但建造这种反应堆实际上已为期不远。目前,核聚变反应堆正处于试验阶段,世界各个国家及地区的多个实验室都开展了这项研究。 氘-氘反应——两个氘原子结合,生成一个氦3原子和一个中子。 氘-氚反应——一个氘原子和一个氚原子结合,生成一个氦4原子和一个中子。其中大部分能量以高能中子的形式释放。从概念上讲,利用反应堆中的核聚变十分容易。但为了让这一反应以可控、无害的方式进行,科学家们历经周折。为了了解其中的缘由,我们需要先看一下发生核聚变的必要条件。 当氢原子聚合时,它们的原子核必须结合在一起。然而,由于每个原子核中的质子都带有相同的电荷(正电),因而会互相排斥。如果您曾试着将两块磁铁放在一起并感到它们互相推开,则意味着您已亲身体验了这一原理。 若要实现核聚变,需要创造一些特殊的条件来克服这种排斥力。下面是发生核聚变的一些必要条件: 高温——高温可为氢原子提供足够的能量,以克服质子之间的电荷排斥。 核聚变需要的温度约为1亿开(约是太阳核心温度的六倍)。 在这样的高温下,氢的状态为等离子体,而不是气体。等离子体是物质的一种高能状态,其中所有电子都从原子中剥离出来,并可以自由移动。 太阳的高温是由重力压缩核心的巨大质量而产生的。我们要制造出这样的高温,就必须利用微波、激光和离子粒子的能量。 高压——压力可将氢原子挤在一起。氢原子之间的距离必须在1x10-15米以内,才能进行聚合。 太阳利用其质量和重力将核心内的氢原子挤压在一起。 我们要将氢原子挤压在一起,必须使用强大的磁场、激光或离子束。借助目前的技术,我们只能实现发生氘-氚聚变所需的温度和压力。氘-氘聚变需要的温度更高,这种温度有可能在将来实现。基本上,利用氘氘聚变会更加方便,因为从海水中提取氘比从锂中提取氚要更加容易。另外,氘不具有放射性,而且氘氘反应可释放更多的能量。 有两种方法可实现发生氢聚变所需的温度和压力: 磁约束使用磁场和电场来加热并挤压氢等离子体。法国的ITER项目使用的就是这种方法。

当前世界经济正处于新一轮经济周期的上升期。今后5年~10年,世界经济发展速度将快于上世纪80年代~90年代。中国、印度、俄罗斯和巴西等发展中大国的先后崛起,将加速国际经济关系调整与格局演进,多极化趋势将日趋明显。美国经济“双赤字”,使世界经济发展失衡。美元贬值、油价飙升,使全球经济风险加大,但世界经济整体趋势依然向好。去年,世界经济增长近5%,为近30年来最好。今年,受欧元区和日本经济疲软的影响,全球产出增幅将放缓。美国经济依然是世界经济的引擎。国际机构和经济学家普遍认为,美国经济将持续稳健扩张。虽然受到高油价冲击,又面临财政和贸易“双赤字”,但美国经济的内生性强,增长势头不会改变。原因是:1。企业投资强劲复苏,居民消费持续增长。2。低利率时代虽然结束,但宏观环境依然宽松。3。“新经济”虽然缺乏新动力,但活力再现。加之奥巴马政府的持续减税、弱势美元和油价适度回落等等,均有利于美国经济持续扩张。日本受福岛核危机,经济衰退复苏步履维艰。去年,国际机构普遍看好日本经济。今年上半年日本经济处于停止状态,下半年可能恢复增长。然而,日本经济复苏依靠的不是内需而是外贸。因为,目前仅靠内需尚难支撑日本经济复苏。可见,当前日本经济基础依然脆弱。一是油价飙升对经济影响开始显现;二是国内需求依然不旺;三是经济发展严重依赖出口。欧元区经济增长缓慢,但复苏势头尚能维持。欧元区经济在连续两年低迷后,去年增长2%,虽低于IMF估计的2.2%但仍是近4年来最好的欧元的被动持续升值。油价居高难下,开始影响欧元区经济复苏亚洲经济增长触顶回落,但仍是全球最快的地区。该地区宏观经济基本稳定,区内合作效应凸显,互利共赢格局正在形成,发展趋势是:东亚地区将持续较快增长,“四小龙”则适度扩张;东南亚经济将稳步复苏,越南成为佼佼者;南亚经济增长势头不弱,印度成为地区领头羊;中亚经济恢复性高增长,但资源型经济风险将增大。在未来数年中,亚洲将在全球经济中保持较高增长,依然是世界经济的增长中心。发展中国家经济将进入稳定增长期。国际机构对发展中国家经济中长期前景普遍乐观。目前,发展中国家具备空前良好的发展机遇:1。宏观经济环境普遍改善。2。国际原材料价格持续上涨。3。南南经贸合作明显加强。亚洲与拉美、亚洲与非洲,亚、非、拉区域合作步伐加快,带动发展中国家间的泛区域、区域和双边合作蓬勃发展。4。中国、印度、俄罗斯、巴西和南非等发展中大国经济加速发展,在区域经济中起着空前的示范效应和领头作用。当前世界经济形势以及对我国的影响1、世界经济保持增长,我国外贸市场空间仍较大2、世界经济发展不平衡对我加工贸易影响显著,一般贸易保持高速增长。。3、主要经济体失业率高企加剧了世界经济摩擦的风险,欧美等国对我发起的贸易摩擦多由失业部门发起。4、油价高企加剧了我国的进口成本,可能导致成本推动型通货膨胀。5、顺应世界FDI大潮,调整引资政策重点。将重点转向有针对性地发展部分服务行业,优先发展为生产服务的服务贸易以及重点发展与货物贸易相关的运输和商业分销服务业等出口导向性服务业。当前经济运行中存在五个突出问题——粮食进一步增产、农民进一步增收的制约因素仍然较多。粮食收购价格继续上升的空间有限。化肥等农资价格居高不下。洪涝灾害偏重发生。——固定资产投资新开工项目仍然较多,投资结构仍不合理。由于产生投资膨胀的体制性原因并没有从根本上消除,一些地方投资增长仍然过快。——工业企业利润增幅有所回落。行业效益出现明显分化,煤炭、石油开采、黑色和有色金属等采掘业利润增长较快,建材、石油加工、交通运输设备、化纤行业利润下降较多。——煤电油运总体形势仍然偏紧。由于增长方式没有根本改变,资源利用率低、浪费严重,能源、资源约束的矛盾仍然突出。——安全生产形势仍比较严峻。顶风违规生产的现象依然存在,重特大事故频繁发生,道路交通、危险化学品等事故多发。节能是解决我国能源问题的根本途径我国人口众多,能源资源相对不足,人均拥有量远低于世界平均水平,煤炭、石油、天然气人均剩余可采储量分别只有世界平均水平的58.6%、7.69%和7.05%。目前,我国又处于工业化、城镇化加快发展的重要阶段,能源资源的消耗强度高,消费规模不断扩大,能源供需矛盾越来越突出。今后,随着经济规模的进一步扩大,能源需求还会持续较快增加。因此,能源是我国当前和今后相当长一个时期内,制约经济社会发展的突出瓶颈,直接关系到全面建设小康社会的目标能否顺利实现。节能是科学发展观的本质要求。我国富煤少油。在替代石油的化石资源中,煤炭在近中期内可以满足与千万吨数量级的油品缺口相匹配的需要,即通过煤液化合成油实现我国油品基本自给,是目前最现实可行的途径之一。煤可经直接或间接液化两种方法转化成汽柴油。煤直接液化的操作条件苛刻,对煤种的依赖性强。煤间接液化是将煤首先经过气化制成合成气,合成气再经催化合成转化成汽柴油。煤间接液化的操作条件温和,几乎不依赖于煤种。核裂变能源的使用越来越广泛,相关技术日臻完善,是未来百年内解决能源紧缺问题可行、且可靠的方案。建设、运行、维护核裂变电站及对核材料的开采和核废料的处理等将在未来百年内形成巨大的产业链。核裂变能源的利用受制于地球上有限的核材料蕴藏量和人类对核废料处理的艰难和危险。利用核聚变能可能是人类最终解决能源问题的一种最重要途径。太阳光即是太阳中的氢核聚变释放出来的能量。核聚变的主要原料是浩淼的海水中所蕴藏的用之不竭的氘,其产物是惰性气体氦,因此,核聚变既无原料短缺问题亦无核废料或核泄漏等污染问题。国际环境复杂多变。当前国际环境复杂多变,和平与发展是主流,但是影响和平发展的因素依然存在,例如:强权政治,霸权主义,恐怖主义,地区冲突,核武器扩散,自然灾害,跨国犯罪,疾病,走私贩毒等。因此要加强国际合作。对当前的国际形势做出判断,应酬好与大国的关系,对我国的外交有重大的意义。当前各国之间综合国力的竞争日趋激烈,各国之间呈现出合作与竞争,依赖与牵制等关系。国际局势的总体稳定为我国的发展提供了机遇,但是霸权主义与强权政治依然存在,我国依然面临着严峻的挑战。我国要处理好与大国的关系,尤其是与美、俄、欧盟、日的关系。美国的单边主义政策受挫,正在积极寻求国际合作,但是美国称霸世界的战略并未改变。我国一方面要扩大合作,增加两国外交中的积极因素;另一方面,要坚持原则,维护我国利益。北约不断东扩,严重影响了俄在欧洲的扩展,俄把目光更多的投向了亚洲。同时俄拥有丰富的自然资源,在能源供应与边境问题上对我国有重要的意义。欧盟在积极加强与美国的战略合作,加强与中国的对话,在大国问题上谋求与中国的协作,同时也看到了我国经济快速发展带来的巨大市场。由于日本不能正确面对历史问题,同时在积极扩展和建立其大国地位,积极配合美国牵制中国。中日抗衡比较明显,处理好中日关系决非一件容易的事,但是中日关系的长期僵硬将不利于我国的发展。与此同时,要处理好与周边国家的关系,为我国的经济发展和社会进步创造更为有利的外部环境。

相关百科

热门百科

首页
发表服务