首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

变性蛋白质最新研究进展论文

发布时间:

变性蛋白质最新研究进展论文

浅谈蛋白质折叠的有关问题 [关键字]生物 大分子 分子伴侣 蛋白质的折叠 识别 结合 生物大分子的结构与功能的研究是了解分子水平的先象的基础。没有对生物大分子的结构与功能的认识,就没有分子生物学。正如没有DNA双螺旋结构的发现,就没有遗传传达传递的中心法则,也就没有今天的分子生物学。结构分子以由第一分子进入对复和物乃至多亚基,多分子复和体结构研究。同时,过去难以研究的分子水平上的生命运动情况也随着研究的深入和技术手段的发展而逐渐由难点变为热点。蛋白质晶体学研究已从生物大分子静态(时间统计)的结构分析开始进入动态(时间分辨)的结构分析及动力学分析。第十三届国际生物物理大会的25个专题讨论会中有一半以上涉及蛋白质的结构与功能,而“结构与功能”又强调“动力学(Dynamics)”,即动态的结构或结构的运动与蛋白质分子功能的关系,以及对大分子相互作用的贡献。 蛋白质折叠问题被列为“21世纪的生物物理学”的重要课题,它是分子生物学中心法则尚未解决的一个重大生物学问题。从一级序列预测蛋白质分子的三级结构并进一步预测其功能,是极富挑战性的工作。研究蛋白质折叠,尤其是折叠早期过程,即新生肽段的折叠过程是全面的最终阐明中心法则的一个根本问题,在这一领域中,近年来的新发现对新生肽段能够自发进行折叠的传统概念做了根本的修正。这其中,X射线晶体衍射和各种波谱技术以及电子显微镜技术等发挥了极其重要的作用。第十三届国际生物物理大会上,Nobel奖获得者Ernst在报告中强调指出,NMR用于研究蛋白质的一个主要优点在于它能极为详细的研究蛋白质分子的动力学,即动态的结构或结构的运动与蛋白质分子功能的关系。目前的NMR技术已经能够在秒到皮秒的时间域上观察蛋白质结构的运动过程,其中包括主链和侧链的运动,以及在各种不同的温度和压力下蛋白质的折叠和去折叠过程。蛋白质大分子的结构分析也不仅仅只是解出某个具体的结构,而是更加关注结构的涨落和运动。例如,运输小分子的酶和蛋白质通常存在着两种构象,结合配体的和未结合配体的。一种构象内的结构涨落是构象转变所必需的前奏,因此需要把光谱学,波谱学和X射线结构分析结合起来研究结构涨落的平衡,构象改变和改变过程中形成的多种中间态,又如,为了了解蛋白质是如何折叠的,就必须知道折叠时几个基本过程的时间尺度和机制,包括二级结构(螺旋和折叠)的形成,卷曲,长程相互作用以及未折叠肽段的全面崩溃。多种技术用于研究次过程,如快速核磁共振,快速光谱技术(荧光,远紫外和近紫外圆二色)。 一、新生肽段折叠研究中的新观点 长期以来关于蛋白质折叠,形成了自组装(self-assembly)的主导学说,因此,在研究新生肽段的折叠时,就很自然的把在体外蛋白质折叠研究中得到的规律推广到体内,用变性蛋白的复性作为新生肽段折叠的模型,并认为细胞中新合成的多肽链,不需要别的分子的帮助,不需要额外能量的补充,就应该能够自发的折叠而形成它的功能状态。 1988年,邹承鲁明确指出,新生肽段的折叠在合成早期业已开始,而不是合成完后才开始进行,随着肽段的延伸同时折叠,又不断进行构象的调整,先形成的结构会作用于后合成的肽段的折叠,而后合成的结构又会影响前面已形成的结构的调整。因此,在肽段延伸过程中形成的结构往往不一定是最终功能蛋白中的结构。这样,三维结构的形成是一个同时进行着的,协调的动态过程。九十年代一类具有新的生物功能的蛋白,分子伴侣(Molecularchaperone)的发现,以及在更广泛意义上说的帮助蛋白质折叠的辅助蛋白(Accessoryprotein)的提出,说明细胞内新生肽段的折叠一般意义上说是需要帮助的,而不是自发进行的。 二、蛋白质分子的折叠和分子伴侣的作用 蛋白质分子的三维结构,除了共价的肽键和二硫键,还靠大量极其复杂的弱次级键共同作用。因此新生肽段在一边合成一边折叠过程中有可能暂时形成在最终成熟蛋白中不存在不该有的结构,他们常常是一些疏水表面,它们之间很可能发生本不应该有的错误的相互作用而形成的非功能的分子,甚至造成分子的聚集和沉淀。按照自组装学说,每一步折叠都是正确的,充分的,必要的。实际上折叠过程是一个正确途径和错误途径相互竞争的过程,为了提高蛋白质生物合成的效率的,应该有帮助正确途径的竞争机制,分子伴侣就是这样通过进化应运而生的。它们的功能是识别新生肽段折叠过程中暂时暴露的错误结构的,与之结合,生成复和物,从而防止这些表面之间过早的相互作用,阻止不正确的非功能的折叠途径,抑制不可逆聚合物产生,这样必然促进折叠向正确方向进行。(从哲学的观点说,似乎很容易驳斥自组装学说,它违背了矛盾的普遍性原理,试想,如果蛋白质的每一步折叠均是正确的,充分的,必要的,岂不是在无任何矛盾的前提下,完成了复杂的最稳定构象的形成,即完成了由量变到质变的伟大飞跃,从无活性的肽链变成有活性的功能蛋白,这显然是违背哲学基本原理的。换一个角度想,生物进化的过程本来就充满着不定向的变异,这些变异中有适应环境的,也有不适应环境的,“物竞天择”,自然的选择淘汰了那些不适应的,保留了那些适应的。蛋白质分子的折叠不也与此类似吗?我想,蛋白质的一级结构只是肽链折叠并形成功能蛋白的特定三维结构的内因,实际上,多肽链在形成活性蛋白的每一步,都有潜在的可能形成“不正确”的折叠,如果没有象分子伴侣或其它帮助蛋白等外部因素的作用,多肽链也永远不能折叠成为活性蛋百。) 三,分子伴侣的作用机制 分子伴侣的作用机制实际上就是它如何与靶蛋白识别,结合,又解离的机制。有的分子伴侣具高度专一性,如一些分子内分子伴侣,还有细菌Pseudomonascepacia的酯酶,有它自己的“私有分子伴侣”。它是由基因limA编码的,与酯酶的基因LipA只隔3个碱基,可能是进化过程中发生的基因分裂造成的。而一般的分子伴侣识别特异性不高,它是怎样识别需要它帮助的对象的呢?现在只能说分子伴侣识别非天然构象,而不去理会天然的构象。由于在天然分子中,疏水残基多半位于分子的内部而形成疏水核,去折叠后就可能暴露出来,或者在新生肽段的折叠过程中,会暂时形成在天然构象中本应该存在于分子内部的疏水表面,因此认为分子伴侣最有可能是与疏水表面相结合,如硫氰酸酶(Rhodanese)分子α-helix的疏水侧面。但是只有β-sheet结构的蛋白质才可为分子伴侣识别。 最近关于识别机制有较大的进展。Bip是内质网管腔内的分子伴侣,用一种affinitypanning的方法检查Bip与有随机序列的十二肽结合的特异性,结果发现,Hy-(W/X)-Hy-X-Hy-X-Hymotif与Bipj结合最强,Hy最多的是Trp、Leu、Phe,即较大的疏水残基。一般来说,2-4个疏水残基就足够进行结合。还有一种较普遍的说法是分子伴侣识别所谓熔球体结构(moltenglobule)。另一方面,分子伴侣本身与肽结合部位的结构分析最近也有些进展。譬如,PapD的晶体结构表明,多肽结合在它的β-sheet区。GroEL中,约40kD的153-531结构域是核苷酸的结合区。 分子伴侣作用的第二步是与靶蛋白形成复合物。非常盛行的一种模型认为分子伴侣常常以多聚`体形式而形成中心空洞的结构,用电子显微镜已经观察到由二圈层圆面包圈形组成的十四体GroEL分子和一个一层圆面包圈的七体GroES分子协同作用形成中空的非对称笼状结构(cagemodel),推测靶蛋白可以在与周围环境隔离的中间空腔内不受干扰的进一步折叠。但是不久前一个日本实验室发现GroEL的一个亚基,甚至其N端去除78个氨基酸残基的50kD片段,已经不能再组装成十四体结构,都有确定的分子伴侣功能。由此,我想:也许环状分子伴侣并非每个部位都是有效的结合部位,也就是说,该二层圆面包圈组成的十四体GroEL分子只有一个或若干个部位能够与疏水残基或所谓的熔球体结构结合,而其余部位起识别作用,就像一个探测器一样,整个十四体GroEL分子以圈层或笼状结构”包裹”在多肽链的主链上,以旋进方式再多肽链的链体上运动,一旦环状多聚体的某一识别部位发现疏水结构或所谓的熔球体结构等新生肽链折叠过程中暂时暴露的错误结构,经信号转导,多聚体的结合部位便与之结合,生成复合物,抑制不正确的折叠。以上完全是我个人的猜想,是基于上述两个试验现象的矛盾而试图作一番解释。至于为什么假设以旋进方式在多肽链上运动,我并没有相应的根据,只是觉得这应该是一个动态过程,因此作了一番狂妄的假想,另外,我觉得也许可以用X射线衍射来探测一下分子伴侣GroEL和GroES组成的笼状结构,看看它的a×b×c是否足以容纳多肽链的某一段,或者它的内部和外部的疏水性质和其他一些物化性质如何,也许可以找到支持或驳斥上述假设的证据。 以上谈的都是蛋白质的分子伴侣。不久前又出现了一个新名词“DNAchaperones”,DNA分子伴侣,这种分子伴侣是与DNA相结合并帮助DNA折叠的。在这种复合物中,DNA分子包围在蛋白质分子的表面,既是高度有序的,又是在一定程度上结构已有所改变的。DNA与蛋白的这种相互作用对DNA的转录,复制以及重组都十分重要;或如在核小体中,对DNA的包装是必须的。DNA在溶液中的结构有相当的刚性,必须克服一个能障才能转变成它的蛋白复合物中的结构,分子伴侣的作用就是帮助DNA分子进行折叠和扭曲,从而把DNA稳定在一个适合于和蛋白结构的特定构型中。这种结合是协同的,可逆的在形成复合物之后便解离下来。因此,不论是DNA分子伴侣还是蛋白分子伴侣,都与DNA和蛋白的相互作用有关,与基因调控有关,看来,分子伴侣确实与最终阐明中心法则当前主要问题有密切关系。 四、分子伴侣和酶的区别 与分子伴侣不同,以确定为帮助蛋白质折叠的酶目前只有两个,一个是蛋白质二硫键异构酶(proteindisulfideisomerase,PDI);另一个是肽基脯氨酸顺反异构酶(peptidylprolylcis-transisomerase,PPI)。以PDI为例,众所周知,蛋白质分子中的二硫键与新生肽段的折叠密切相关,对维系蛋白质分子的结构稳定性和功能发挥也有重要作用。PDI定位在内质网管腔内,含量丰富,催化蛋白质分子内巯基与二硫键之间的交换反应。同时,它是目前发现的最为突出的多功能蛋白,除了二硫键的异构酶的基本功能外,它还是脯氨酸-4-羟化酶的α亚基;又是微粒体内甘油三酯转移蛋白复合物的小亚基,还是一种糖基化位点结合蛋白(gkycisylationsitebindingprotein)等。其中,最引人注目的还是它有与多肽结合的能力,可以结合具有不同序列,长度和电荷分布的肽,特异性较低,主要是与肽的主链相作用,但对巯基尚有一些偏爱。按照分子伴侣的定义,一般认为PDI和分子伴侣是两类不同的帮助蛋白,但是我国上海生物物理研究所最近提出不同的看法,认为蛋白质二硫键异构酶也具有分子伴侣的功能。 蛋白质分子中天然二硫键的形成要求这些在肽链上往往处于不相邻位置的巯基,首先通过肽链一定程度的折叠,才能相互接近到可以正确形成二硫键的位置。肽链的自身折叠是一个慢过程,而蛋白质二硫键异构酶催化蛋白质天然二硫键的形成却是一个快过程。另一方面,蛋白质二硫键异构酶具有低特异性的与各种不同肽链相结合的能力,在内质网中以极高的浓度存在,又是是一个钙结合蛋白,是一个能被磷酸化的蛋白,这些都已经符合了分子伴侣的条件。因此他们推测蛋白质二硫键异构酶很可能首先通过它与伸展的,或部分折叠的肽段的结合,阻止错误的折叠途径,促进正确的中间物生成,帮助肽链折叠是相应的巯基配对,从而是正确的二硫键得以形成;然后催化巯基的氧化或二硫键的异构而形成天然二硫键。他们认为蛋白质二硫键异构酶的酶活性与它的分子伴侣功能不是相互排斥,而是密切相关,协调统一的。分子伴侣与帮助新生肽链折叠的酶之间,大概不应该,也不能够划一条绝对的分界线。我想:酶的最主要特性就是催化生化反应,分子伴侣的主要作用是与新生肽段的错误构象结合,从而阻止肽链不正确的非功能的折叠途径,促使其向正确的折叠方向反应,这难道不可以理解成间接的催化肽链的折叠吗?从表观上看,抑制不正确的折叠途径等于加快了正确反应的速度。所以,我本人也很赞成他们的观点。最近的试验已经为这一假说提供了很好的证据。PDI明显抑制变性的甘油醛-3-磷酸脱氢酶在复性股过程中的严重聚合,有效的提高它的复性效率,与典型的分子伴侣GroE系统对甘油醛3-磷酸脱氢酶复性的效应极其相似。 五、分子伴侣的结构 目前唯一解出晶体结构的分子伴侣是E.coli的PapD,帮助鞭毛蛋白折叠的分子伴侣。还有HSP70的N端结构域,即ATP结合域也以有晶体结构。用电子显微镜已经清楚的看到了GroEL的十四聚体和GroEL的七聚体的四级结构,象两个圆形中空的面包圈叠在一起,用NMR以及各种溶液构象变化是研究分子伴侣作用机制的有效手段。 六、分子伴侣研究的实际应用 分子伴侣的研究成果必然会大大加深我们对生命现象的认识,同时也一定会增加我们与自然斗争的能力和自身生存的能力。由于分子伴侣在生命活动的各个层次都具有重要作用,它的突变和损伤也必定会引起疾病,因此可以期望运用分子伴侣的知识来治疗所谓的”分子伴侣病”。另一方面,利用对分子伴侣的研究成果从根本上提高基因工程和蛋白工程的成功率,也必将对大幅度提高人类生活水平起重要作用。 [参考书目] 1.李宝健主编,面向21世纪生命科学发展前沿,广东科技出版社,1996年11月第一版:93-104页 2.郝柏林刘寄星主编,理论物理与生命科学,上海科学技术出版社,1997年12月第一版:29-58页 3.中国生物物理代表团,从第十三届国际生物物理大会看生物物理学研究的现状和趋势,生物物理学报,1999年第十五卷第四期:826-827页

我不知道你们的论文是什么要求,但可以给你些建议:论文应先写摘要,再写正文。从目的、方法、结果、结论这几方面写。具体的可参考范文,以下为蛋白质的结构,希望对你有所帮助。蛋白质一级结构(primary structure) 是指多肽链的氨基酸残基的排列顺序,也是蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的,各种氨基酸按遗传密码的顺序通过肽键连接起来。每一种蛋白质分子都有自己特有的氨基酸的组成和排列顺序即一级结构,由这种氨基酸排列顺序决定它的特定的空间结构,也就是蛋白质的一级结构决定了蛋白质的二级三级等高级结构。胰岛素(Insulin)由51个氨基酸残基组成,分为A、B两条链。A链21个氨基酸残基,B链30个氨基酸残基。A、B两条链之间通过两个二硫键联结在一起,A链另有一个链内二硫键。 蛋白质二级结构(secondary structure)二级结构是指多肽链借助于氢键沿一维方向排列成具有周期性的结构的构象,是多肽链局部的空间结构(构象),主要有α-螺旋、β-折叠、β-转角等几种形式,它们是构成蛋白质高级结构的基本要素。 α-螺旋(α-helix)是蛋白质中最常见最典型含量最丰富的二级结构元件.在α螺旋中,每 个螺旋周期包含 3.6 个氨基酸残基,残基侧链伸向外侧,同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键。这种氢键大致与螺旋轴平行。一条多肽链呈α-螺旋构象的推动力就是所有肽键上的酰胺氢和羰基氧之间形成的链内氢键。在水环境中,肽键上的酰胺氢和羰基氧既能形成内部(α-螺旋内)的氢键,也能与水分子形成氢键。如果后者发生,多肽链呈现类似变性蛋白质那样的伸展构象。疏水环境对于氢键的形成 没有影响,因此,更可能促进α-螺旋结构的形成。β-折叠(β-sheet)也是一种重复性的结构,可分为平行式和反平行式两种类型,它们是通过肽链间或肽段间的氢键维系。可以把它们想象为由折叠的条状纸片侧向并排而成,每条纸片可看成是一条肽链, 称为β折叠股或β股(β-strand),肽主链沿纸条形成锯齿状,处于最伸展的构象,氢键主要在股间而不是股内。α-碳原子位于折叠线上,由于其四面体性质,连续的酰氨平面排列成折叠形式。需要注意的是在折叠片上的侧链都垂直于折叠片的平面,并交替的从平面上下二侧伸出。平行折叠片比反平行折叠片更规则且一般是大结构而反平行折叠片可以少到仅由两个β股组成。β-转角(β-turn)是种简单的非重复性结构。在β-转角中第一个残基的C=O与第四个残基的N-H氢键键合形成一个紧密的环,使β-转角成为比较稳定的结构,多处在蛋白质分子的表面,在这里改变多肽链方向的阻力比较小。β-转角的特定构象在一定程度上取决与他的组成氨基酸,某些氨基酸如脯氨酸和甘氨酸经常存在其中,由于甘氨酸缺少侧链(只有一个H),在β-转角中能很好的调整其他残基的空间阻碍,因此使立体化学上最合适的氨基酸;而脯氨酸具有换装结构和固定的角,因此在一定程度上迫使β-转角形成,促使多台自身回折且这些回折有助于反平行β折叠片的形成。蛋白质三级结构(tertiary structure)三级结构主要针对球状蛋白质而言的是指整条多肽链由二级结构元件构建成的总三维结构,包括一级结构中相距远的肽段之间的几何相互关系,骨架和侧链在内的所有原子的空间排列。在球状蛋白质中,侧链基团的定位是根据它们的极性安排的。蛋白质特定的空间构象是由氢键、离子键、偶极与偶极间的相互作用、疏水作用等作用力维持的,疏水作用是主要的作用力。有些蛋白质还涉及到二硫键。如果蛋白质分子仅由一条多肽链组成,三级结构就是它的最高结构层次。蛋白质四级结构(quaternary structure)四级结构是指在亚基和亚基之间通过疏水作用等次级键结合成为有序排列的特定的空间结构。四级结构的蛋白质中每个球状蛋白质称为亚基,亚基通常由一条多肽链组成,有时含两条以上的多肽链,单独存在时一般没有生物活性。亚基有时也称为单体(monomer),仅由一个亚基组成的并因此无四级结构的蛋白质如核糖核酸酶称为单体蛋白质,由两个或两个以上亚基组成的蛋白质统称为寡聚蛋白质,多聚蛋白质或多亚基蛋白质。多聚蛋白质可以是由单一类型的亚基组成,称为同多聚蛋白质或由几种不同类型的亚基组成称为杂多聚蛋白质。对称的寡居蛋白质分子可视为由两个或多个不对称的相同结构成分组成,这种相同结构成分称为原聚体或原体(protomer)。在同多聚体中原体就是亚基,但在杂聚体中原体是由两种或多种不同的亚基组成。蛋白质的四级结构涉及亚基种类和数目以及各亚基或原聚体在整个分子中的空间排布,包括亚基间的接触位点(结构互补)和作用力(主要是非共价相互作用)。大多数寡聚蛋白质分子中亚基数目为偶数,尤以2和4为多;个别为奇数,如荧光素酶分子含3个亚基。亚基的种类一般是一种或两种,少数的多于两种。稳定四级结构的作用力与稳定三级结构的没有本质区别。亚基的二聚作用伴随着有利的相互作用包括范徳华力,氢键,离子键和疏水作用还有亚基间的二硫键。亚基缔合的驱动力主要是疏水作用,因亚基间紧密接触的界面存在极性相互作用和疏水作用,相互作用的表面具有极性基团和疏水基团的互补排列;而亚基缔合的专一性则由相互作用的表面上的极性基团之间的氢键和离子键提供。

蛋白质提取与制备的原理和方法 蛋白质提取与制备蛋白质种类很多,性质上的差异很大,既或是同类蛋白质,因选用材料不同,使用方法差别也很大,且又处于不同的体系中,因此不可能有一个固定的程序适用各类蛋白质的分离。但多数分离工作中的关键部分基本手段还是共同的,大部分蛋白质均可溶于水、稀盐、稀酸或稀碱溶液中,少数与脂类结合的蛋白质溶于乙醇、丙酮及丁醇等有机溶剂中。因此可采用不同溶剂提取、分离及纯化蛋白质和酶。蛋白质与酶在不同溶剂中溶解度的差异,主要取决于蛋白分子中非极性疏水基团与极性亲水基团的比例,其次取决于这些基团的排列和偶极矩。故分子结构性质是不同蛋白质溶解差异的内因。温度、pH、离子强度等是影响蛋白质溶解度的外界条件。提取蛋白质时常根据这些内外因素综合加以利用。将细胞内蛋白质提取出来。并与其它不需要的物质分开。但动物材料中的蛋白质有些可溶性的形式存在于体液(如血浆、消化硫等)中,可以不必经过提取直接进行分离。蛋白质中的角蛋白、胶原及丝蛋白等不溶性蛋白质,只需要适当的溶剂洗去可溶性的伴随物,如脂类、糖类以及其他可溶性蛋白质,最后剩下的就是不溶性蛋白质。这些蛋白质经细胞破碎后,用水、稀盐酸及缓冲液等适当溶剂,将蛋白质溶解出来,再用离心法除去不溶物,即得粗提取液。水适用于白蛋白类蛋白质的抽提。如果抽提物的pH用适当缓冲液控制时,共稳定性及溶解度均能增加。如球蛋白类能溶于稀盐溶液中,脂蛋白可用稀的去垢剂溶液如十二烷基硫酸钠、洋地黄皂苷(Digitonin)溶液或有机溶剂来抽提。其它不溶于水的蛋白质通常用稀碱溶液抽提。蛋白质类别和溶解性质 白蛋白和球蛋白:溶于水及稀盐、稀酸、稀碱溶液,可被50%饱和度硫酸铵析出。真球蛋白:一般在等电点时不溶于水,但加入少量的盐、酸、碱则可溶解。拟球蛋白:溶于水,可为50%饱和度硫酸铵析出醇溶蛋白:溶于70~80%乙醇中,不溶于水及无水乙醇壳蛋白:在等电点不溶于水,也不溶于稀盐酸,易溶于稀酸、稀碱溶液精蛋白:溶于水和稀酸,易在稀氨水中沉淀组蛋白:溶于水和稀酸,易在稀氨水中沉淀硬蛋白质: 不溶于水、盐、稀酸及稀碱缀合蛋白(包括磷蛋白、粘蛋白、糖蛋白、核蛋白、脂蛋白、血红蛋白、金属蛋白、黄素蛋白和氮苯蛋白等): 此类蛋白质溶解性质随蛋白质与非蛋白质结合部分的不同而异,除脂蛋白外,一般可溶于稀酸、稀碱及盐溶液中,脂蛋白如脂肪部分露于外,则脂溶性占优势,如脂肪部分被包围于分子之中,则水溶性占优势。蛋白质的制备是一项十分细致的工作。涉及物理学、化学和生物学的知识很广。近年来虽然有了不改进,但其主要原理仍不外乎两个方面:一是利用混合物中几个组分分配率的差别,把它们分配于可用机械方法分离的两个或几个物相中,如盐析、有机溶剂提取、层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于不同区域而达到分离的目的,如电泳、超离心、超滤等。由于蛋白质不能溶化,也不能蒸发,所能分配的物相只限于固相和液相,并在这两相间互相交替进行分离纯化。制备方法可按照分子大小、形状、带电性质及溶解度等主要因素进行分类。按分子大小和形态分为差速离心、超滤、分子筛及透析等方法;按溶解度分为盐析、溶剂抽提、分配层析、逆流分配及结晶等方法;按电荷差异分为电泳、电渗析、等电点沉淀、离子交换层析及吸附层析等;按生物功能专一性有亲合层析法等。由于不同生物大分子结构及理化性质不同,分离方法也不一样。即同一类生物大分子由于选用材料不同,使用方法差别也很大。因此很难有一个统一标准的方法对任何蛋白质均可循用。因此实验前应进行充分调查研究,查阅有关文献资料,对欲分离提纯物质的物理、化学及生物学性质先有一定了解,然后再着手进行实验工作。对于一个未知结构及性质的试样进行创造性的分离提纯时,更需要经过各种方法比较和摸索,才能找到一些工作规律和获得预期结果。其次在分离提纯工作前,常须建立相应的分析鉴定方法,以正确指导整个分离纯化工作的顺利进行。高度提纯某一生物大分子,一般要经过多种方法、步骤及不断变换各种外界条件才能达到目的。因此,整个实验过程方法的优劣,选择条件效果的好坏,均须通过分析鉴定来判明。另一方面,蛋白质常以与其他生物体物质结合形式存在,因此也易与这些物质结合,这给分离精制带来了困难。如极微量的金属和糖对巨大蛋白质的稳定性起决定作用,若被除去则不稳定的蛋白质结晶化的难度也随之增加。如高峰淀粉酶A的Ca2+,胰岛素Zn2+等。此外,高分子蛋白质具有一定的立体构象,相当不稳定,如前所述极易变性、变构,因此限制了分离精制的方法。通常是根据具体对象联用各种方法。为得到天然状态的蛋白质,尽量采用温和的手段,如中性、低温、避免起泡等,并还要注意防腐。注意共存成分的影响。如蝮蛇粗毒的蛋白质水解酶活性很高,在分离纯化中需引起重视。纯化蝮蛇神经毒素时,当室温超过20℃时,几乎得不到神经毒素。蝮蛇毒中的蛋白水解酶能被0.1mol/L EDTA完全抑制,因此在进行柱层析前先将粗毒素0.1mol/LEDTA溶液处理,即使在室温高于20℃,仍能很好的得到神经毒素。整个制备过程一般可分为5个阶段:①材料的选择和预处理②细胞的破碎(有时需进行细胞器的分离)③提取④纯化(包括盐析,有机溶剂沉淀,有机溶剂提取、吸附、层析、超离心及结晶等)⑤浓缩、干燥及保存。以上5个阶段不是要求每个方案都完整地具备,也不是每一阶段截然分开。不论是哪一阶段使用哪一种方法,均必须在操作中保存生物大分子结构的完整性。保存活性防止变性及降解现象的发生。因空间结构主要依靠氢键、盐键和范德华力的存在,遇酸、遇碱、高温、剧烈的机械作用及强烈的辐射等均可导致活性丧失。因此选择的条件应为十分温和。同时应注意防止系统中重金属离子、细胞自身酶系及其他有毒物质的污染。蛋白质提取与制备的注意事宜:一、原料的选择早年为了研究的方便,尽量寻找含某种蛋白质丰富的器官从中提取蛋白质。但至目前经常遇到的多是含量低的器官或组织且量也很小,如下丘脑、松果体、细胞膜或内膜等原材料,因而对提取要求更复杂一些。原料的选择主要依据实验目的定。从工业生产角度考虑,注意选含量高、来源丰富及成本低的原料。尽量要新鲜原料。但有时这几方面不同时具备。含量丰富但来源困难,或含量来源均理想,但分离纯化操作繁琐,反而不如含量略低些易于获得纯品者。一般要注意种属的关系,如鲣的心肌细胞色素C较马的易结晶,马的血红蛋白 较牛的易结晶。要事前调查制备的难易情况。若利用蛋白质的活性,对原料的种属应几乎无影响。如利用胰蛋白 酶水解蛋白质的活性,用猪或牛胰脏均可。但若研究蛋白质自身的性质及结构时,原料的来源种属必须一定。研究由于病态引起的特殊蛋白质(本斯.琼斯氏蛋白 、贫血血红蛋白 )时,不但使用种属一定的原料,而且要取自同一个体的原料。可能时尽量用全年均可采到的原料。对动物生理状态间的差异(如饥饿时脂肪和糖类相对减少),采收期及产地等因素也要注意。二、前处理1、细胞的破碎材料选定通常要进行处理。要剔除结缔组织及脂肪组织。如不能立即进行实验,则应冷冻保存。除了提取及胞细外成分,对细胞内及多细胞生物组织中的蛋白质的分离提取均须先将细胞破碎,使其充分释放到溶液中。不同生物体或同一生物体不同的组织,其细胞破坏难易不一,使用方法也不完全相同。如动物胰、肝、脑组织一般较柔软,作普通匀浆器磨研即可,肌肉及心组织较韧,需预先绞碎再制成匀桨。⑴机械方法主要通过机械切力的作用使组织细胞破坏。常用器械有:①高速组织捣碎机(转速可达10000rpm,具高速转动的锋利的刀片),宜用于动物内脏组织的破碎;②玻璃匀浆器(用两个磨砂面相互摩擦,将细胞磨碎),适用于少量材料,也可用不锈钢或硬质塑料等,两面间隔只有十分之几毫米,对细胞破碎程度较高速捣碎机高,机械切力对分子破坏较小。小量的也可用乳钵与适当的缓冲剂磨碎提取,也可加氧化铝、石英砂及玻璃粉磨细。但在磨细时局部往往生热导致变性或pH显著变化,尤其用玻璃粉和氧化铝时。磨细剂的吸附也可导致损失。⑵物理方法主要通过各种物理因素的作用,使组织细胞破碎的方法。Ⅰ反复冻融法于冷藏库或干冰反复于零下15~20℃使之冻固,然后缓慢地融解,如此反复操作,使大部分细胞及细胞内颗粒破坏。由于渗透压的变化,使结合水冻结产生组织的变性,冰片将细胞膜破碎,使蛋白质可溶化,成为粘稠的浓溶液,但脂蛋白 冻结变性。Ⅱ冷热变替法将材料投入沸水中,于90℃左右维持数分钟,立即置于冰浴中使之迅速冷却,绝大部分细胞被破坏。Ⅲ超声波法暴露于9~10千周声波或10~500千周超声波所产生的机械振动,只要有设备该法方便且效果也好,但一次处理量较小。应用超声波处理时应注意避免溶液中气泡的存在。处理一些超声波敏感的蛋白质酶时宜慎重。Ⅳ加压破碎法加一定气压或水压也可使细胞破碎。⑶化学及生物化学方法Ⅰ有机溶媒法粉碎后的新鲜材料在0℃以下加入5~10倍量的丙酮,迅速搅拌均匀,可破碎细胞膜,破坏蛋白质与脂质的结合。蛋白质一般不变性,被脱脂和脱水成为干燥粉末。用少量乙醚洗,经滤纸干燥,如脱氢酶等可保存数月不失去活性。Ⅱ自溶法将待破碎的鲜材料在一定pH和适当的温度下,利用自身的蛋白 酶将细胞破坏,使细胞内含物释放出来。比较稳定,变性较难,蛋白质不被分解而可溶化。利用该法可从胰脏制取羧肽酶。自体融解时需要时间,需加少量甲苯、氯仿等。应防止细菌污染。于温室30℃左右较早溶化。自体融解过程中PH显著变化,随时要调节pH。自溶温度选在0~4℃,因自溶时间较长,不易控制,所以制备活性蛋白质时较少用。Ⅲ酶法与前述的自体融法同理,用胰蛋白酶等蛋白酶除去变性蛋白质。但值得提出的是溶菌酶处理时,它能水解构成枯草菌等菌体膜的多糖类。能溶解菌的酶分布很广。尤其卵白中含量高,而多易结晶化。1g菌体加1~10mg溶菌酶,pH6.2~7.01h内完全溶菌。于生理食盐水或0.2mol蔗糖溶液中溶菌,虽失去细胞膜,但原形质没有脱出。除溶菌酶外,蜗牛酶及纤维素酶也常被选为破坏细菌及植物细胞用。表面活性剂处理较常用的有十二烷基磺酸钠、氯化十二烷基吡淀及去氧胆酸钠等。此外一些细胞膜较脆弱的细胞,可把它们置于水或低渗缓冲剂中透析将细胞胀破。2、细胞器的分离制备某一种生物大分子需要采用细胞中某一部分的材料,或者为了纯化某一特定细胞器上的生物大分子,防止其他细胞组分的干扰,细胞破碎后常将细胞内各组分先行分离,对于制备一些难度较大需求纯度较高的生物大分子是有利的。尤其近年来分子生物学、分子遗传学、遗传工程等学科和技术的发展,对分布在各种细胞器上的核酸和蛋白质的研究工作日益增多,分离各种细胞器上的各类核酸和特异性蛋白质已成为生物大分子制备工作重要内容之一。各类生物大分子在细胞内的分布是不同的。DNA几乎全部集中在细胞核内。RNA则大部分分布于细胞质。各种酶在细胞内分布也有一定位置。因此制备细胞器上的生物大分子时,预先须对整个细胞结构和各类生物大分子在细胞内分布匹有所了解。以肝细胞为例,蛋白质、酶及核酸在肝细胞内分布情况为: 细胞核: 精蛋白、组蛋白、核酸合成酶系 RNA占总量10%左右 DNA几乎全部粒线体: 电子传递、氯化磷酸化、三羧酸循环、脂肪酸氧化、氨基酸氧化、脲合成等酶 系RNA占总量5%左右 DNA微量内质网(微粒体): 蛋白质合成酶系、羟化酶系 RNA占总量50%左右溶酶体:水解酶系(包括核酸酶、磷酸脂酶、组织蛋白酶及糖苷及糖苷酶等) 高尔基氏体: 糖苷转移酶、粘多糖及类固醇合成酶系 细胞膜:载体与受体蛋白、特异抗蛋、ATP酶、环化腺苷酶、5’-核苷酸酶、琥珀酸脱氢酶、葡萄糖-6-磷酸酶等 ,细胞液 嘧啶和嘌呤代谢、氨基酸合成酶系、可溶性蛋白类 RNA(主要为tRNA)占总量30%.细胞器的分离一般采用差速离心法。细胞经过破碎后,在适当介质中进行差速离心。利用细胞各组分质量大小不同,沉降于离心管内不同区域,分离后即得所需组分。细胞器的分离制备、介质的选择十分重要。最早使用的介质是生理盐水。因它容易使亚细胞颗粒发生聚集作用结成块状,沉淀分离效果不理想,现一般改用蔗糖、Ficoll(一种蔗糖多聚物)或葡萄糖-聚乙二醇等高分子溶液。1.水溶液提取大部分蛋白质均溶于水、稀盐、稀碱或稀酸溶液中。因此蛋白质的提取一般以水为主。稀盐溶液和缓冲溶液对蛋白质稳定性好、溶度大,也是提取蛋白质的最常用溶剂。以盐溶液及缓冲液提取蛋白质经常注意下面几个因素。盐浓度等渗盐溶液尤以0.02~0.05mol/L磷酸盐缓冲液和碳酸盐缓冲液常用。0.15mol/L氯化钠溶液应用也较多。如6-磷酸葡萄糖脱氢酶用0.1mol/L碳酸氢钠液提取等。有时为了螯合某些金属离子和解离酶分子与其他杂质的静电结合,也常使用枸橼酸钠缓冲液和焦磷酸钠缓冲液。有些蛋白质在低盐浓度下浓度低,如脱氧核糖核蛋白质需用1mol/L以上氯化钠液提取。总之,只要能溶解在水溶液中而与细胞颗粒结合不太紧密的蛋白质和酶,细胞破碎后选择适当的盐浓度及PH,一般是不难提取的。只有某些与细胞颗粒上的脂类物质结合较紧的,需采用有机溶剂或加入表面活性剂处理等方法提取。PH值蛋白质提取液的PH值首先应保证在蛋白质稳定的范围内,即选择在偏离等电点两侧。如碱性蛋白质则选在偏酸一侧,酸性蛋白质选择偏碱一侧,以增大蛋白质的溶解度,提高提取效果。如细胞色素C属碱性蛋白质,常用稀酸提取,肌肉甘油醛-3-磷酸脱氢酶属酸性蛋白质,用稀碱提取。某些蛋白质或酶与其分物质结合常以离子键形式存在,选择pH3~6范围对于分离提取是有利的。温度多数酶的提取温度在5℃以下。少数对温度耐受性较高的蛋白质和酶,可适当提高温度,使杂蛋白变性分离且也有利于提取和进一步纯化。如胃蛋白酶等及许多多肽激素类,选择37~50℃条件下提取,效果比低温提取更好。此外提取酶时加入底物或辅酶,改变酶分子表面电荷分布,也能促进提取效果。2.有机溶剂提取有机溶剂提取用于提取蛋白质的实例至今是不多的。但一些和脂结合较牢或分子中非极性侧链较多的蛋白质,不溶于水、稀盐或稀碱液中,可用不同比例的有机溶剂提取。从一些粒线体(Mitochondria)及微粒体(Microsome)等含多量脂质物质中提取蛋白质时,采用Morton的丁醇法效果较好。因丁醇使蛋白质的变性较少,亲脂性强,易透入细胞内部,与水也能溶解10%,因此具有脂质与水之间的表面活性作用,可占据蛋白质与脂质的结合点,也阻碍蛋白质与脂质的再结合,使蛋白质在水中溶解能力大大增加。丁醇提取法的pH及温度选择范围较广(pH3~10,温度-2℃至40℃)。国内用该法曾成功地提取了琥珀酸脱氢酶。丁醇法对提取碱性磷酸脂酶效果也是十分显著的。胰岛素既能溶于稀酸、稀碱又能溶于酸性乙醇或酸性丙酮中。以60―70%的酸性乙醇提取效果最好,一方面可抑制蛋白质水解酶对胰岛素的破坏,同时也达到大量除去杂蛋白的目的。3.表面活性剂的利用 对于某些与脂质结合的蛋白质和酶,也有采用表面活性剂如胆酸盐及十二烷基磺酸钠等处理。表面活性剂有阴离子型(如脂肪酸盐、烷基苯磺酸盐及胆酸盐等),阳离子型(如氧化苄烷基二甲基铵等)及非离子型(Triton X-100 、Tirton X-114、吐温60及吐温80)等。非离子型表面活性剂比离子型温和,不易引起酶失活,使用较多。对于膜结构上的脂蛋白和结构,己广泛采用胆酸盐处理,两者形成复合物,并带上净电荷,由于电荷再排斥作用使膜破裂。近年来研究膜蛋白使用表面活性剂的稀溶液提取时,较喜欢用非离子型表面活性剂。4.对提取物的保护在各种细胞中普遍存在着蛋白水解酶,提取时要注意防止由它引起的水解。前面所讲的降低提取温度其目的之一也是防止蛋白水解酶的水解。多数蛋白水解酶的最适PH在3~5或更高些,因在较低PH条件下可降低蛋白质水解酶引起的破坏程度。低pH可使许多酶的酶原在提取过程中不致激活而保留在酶原状态,不表现水解活力。加蛋白质水解酶的抑制剂也同样起保护作用,如以丝氨酸为活性中心的酶加二异丙基氟磷酸,以巯基为中心的酶加对氯汞苯甲酸等。提取溶液中加有机溶剂时也能产生相类似的作用。蛋白水解酶的性质变化很大,上述条件均视具体对象而变化。有一些蛋白含巯基,这些巯基可能是活性所必需。在提取这种蛋白不要带入金属离子和氧化剂。前者可往提取液中加金属螯合剂如EDTA,后者可加入还原剂如抗坏血酸。有某些蛋白质带一些非共价键结合的配基。提取时要注意保护,不要使酸基丢失。蛋白质提取与制备的方法:1.分离纯化的原则从破碎材料或细胞器提出的蛋白质是不纯的,需进一步纯化。纯化包括将蛋白质与非蛋白质分开,将各种不同的蛋白质分开。选择提取条件时,就要考虑尽量除去非蛋白质。一般总是有其它物质伴随混入提取液中。但有些杂质(如脂肪)以事先除去为宜。先除去便于以后操作。常用有机溶剂提取除去。对于异类物质,提纯蛋白质和酶时常混有核酸或多糖,一般可用专一性酶水解,有机溶剂抽取及选择性部分沉淀等方法处理。小分子物质常在整个制备过程中通过多次液相与固相转化中被分离或最后用透析法除去。而对同类物质如酶与杂蛋白、RNA、DNA以及不同结构的蛋白质、酶、核酸之间产分离,情况则复杂得多。主要采用的方法有盐析法、有机溶剂沉淀法,等电点沉淀法、吸附法、结晶法、电泳法、超离心法及柱层析法等。其中盐析法、等电点法及结晶法用于蛋白质和酶的提纯较多,有机溶剂抽提和沉淀用于核提纯较多,柱层析法、梯度离心法对蛋白质和核酸的提纯应用十分广泛。如前所述,蛋白质的分离纯化较难,而且其本身的性质又限制了某些方法的使用,因此要研究目的物的微细特征,巧妙的联用各种方法并进行严密的操作,同时有必要了解精制各过程的精制程度和回收率。具有活性的蛋白质可利用吸收光谱等物理性质或以相当于单位氮活性增加为尺度进行追踪。其他蛋白质可用电泳、超离心、层析、扩散及溶解等测定纯度。如结晶核糖核酸酶经层析分为两个成分。可见对确定蛋白质结晶纯度尚无最终的尺度。根据经验即或纯净的标准品,有极微量的不纯物时,也会给实验带来较大的影响。不稳定的蛋白质,如分离SH-酶时使用试剂及缓冲液等,要确认不含重金属离子(特级试剂也需检定)。蛋白质纯化的操作如脱盐、浓缩干燥等均与低分子化合物不同,必须经过独特的繁琐操作。蛋白质和蛋白质相互分离主要利用它们之间的各种性质的微小差别。诸如分子形状、分子量大小、电离性质、溶解度、生物功能专一性等。蛋白质提取液中,除包含所需要的蛋白质(或酶)外,还含有其它蛋白质、多糖、脂类、核酸及肽类等杂质。杂质除去的方法有:A.核酸沉淀法该法可用核酸沉淀剂和氯化锰、硫酸鱼精蛋白或链霉素等。必要时也可用脱氧核糖核酸酶除去核酸。即在粗匀浆中加入少量DNase,于4℃保温30~60min,可使DNA降解为足够小的碎片,以致不影响以后的纯化。B.醋酸铅沉淀法利用醋酸铅沉淀剂除去杂蛋白。因这些沉淀剂也常常使需要的酶(或蛋白质)缓缓变性而失去活性,所以用这类试剂时应迅速进行盐析,使样品与这类试剂脱离接触。C.调pH值或加热沉淀法利用蛋白质酸碱变性性质的差异除去杂蛋白。利用蛋白质的热变性的温度系数差异,可在一定的PH下将蛋白提取液加热到一定的温度,使对热不稳定的杂蛋白性沉淀而除去。D.选择性变性法利用各种蛋白质稳定性的不同,可用选择性变性法来除去杂蛋白 。例如胰蛋白 酶及细胞色素C等少数特别稳定的酶,甚至可用2.5%三氯醋酸处理,此时其它杂蛋白 均变性而沉淀,而胰蛋白 酶和细胞色素C则仍留在溶液中。E.透析法小分子物质常在整个制备过程中多次液相与固相互转化中被分离,或最后用透析法除去。F.利用溶解度不同的纯化方法2.盐析法盐析法对于许多非电解质的分离纯化均适合。对蛋白质和酶的提纯应用也最早。至今还广泛使用,一般粗抽提物经常利用盐析法进行粗分。也有反复用盐析法得到纯的蛋白质的例子。其原理是蛋白质在低盐浓度下的溶解度随盐液浓度升高而增加(盐溶,与离子强度10~1间成比例增加)。球蛋白 当盐浓度不断上升时,蛋白质的溶解度又以不同程度下降并先后析出(盐析)(离子强度I2~10)。这是由于蛋白质分子内和分子间的电荷的极性基团有静电引力。当水中加入少量盐时,盐离子与水分子对蛋白质分子一的极性基团的影响,使蛋白质在水中溶解度增大。但盐浓度增加一定程度时,水的活度降低,蛋白质表面的电荷大量被中和,水化膜被破坏,于是蛋白质相互聚集而沉淀析出。盐析法是根据不同蛋白质在一定浓度盐溶液中溶解度降低程度不同达到彼此分离的方法。盐的选择如上所述,蛋白质在水中溶解度取决于蛋白质分子上离子基团周围的水分子数目,即取决于蛋白质的水合程度。因此,控制水合程度,也就是控制蛋白质的溶解度。控制方法最常用的是加入中性盐。主要有硫酸铵、硫酸镁 、硫酸钠、氯化钠、磷酸钠等。其中应用最广的是硫酸铵,它的优点是温度系数小而溶解度大(25℃时饱满和溶解度为4.1mol,即767g/l;0℃时饱满和溶解度为3.9mol,即676g/l)。在这一溶解度范围内,许多蛋白质均可盐析出来,且硫酸铵价廉易得,分段效果较其它盐好,不易引起蛋白质变性。应用硫酸铵时对蛋白 氮的测定有干扰,另外缓冲能力较差,故有时也应用硫酸钠,如盐析免疫球蛋白 ,用硫酸钠的效果也不错,硫酸钠的缺点是30℃以下溶解度太低。其它的中性盐如磷酸钠的盐析作用比硫酸铵好,但也由于溶解度太低,受温度影响大,故应用不广。氯化钠的溶解度不如硫酸铵,但在不同温度下它的溶解度变化不大,这是方便之处。它也是便宜不易纯化的试剂。硫酸铵浓溶液的PH常在4.5~5.5之间,市售的硫酸铵还常含有少量游离硫酸,PH值往往降至4.5以下,当用其他PH值进行盐析时,需用硫酸或氨水调节.确定沉淀蛋白质所需硫酸铵浓度的方法将少量样品冷却到0~5℃,然后搅拌加入固体硫酸铵粉末,见蛋白质产生沉淀时,离心除去沉淀,分析上清液确定所要蛋白质的浓度,如它仍在溶液中则弃去沉淀,再加更多的硫酸铵于上清液中,直到产生蛋白质沉淀时止。以所要提取的蛋白质在溶液中的浓度对硫酸铵浓度作图,得沉淀曲线,找出蛋白质开始沉淀的浓度。如不考虑收率,饱和度区间可取得窄一些,使纯度高一些。盐析时注意的几个问题:(1)盐的饱和度: 不同蛋白质盐析时要求盐的饱和度不同。分离几个混合组成的蛋白质时,盐的饱和度常由稀到浓渐次增加。每出现一种蛋白质沉淀进行离心或过滤分离后,再继续增加盐的饱和度,使第2种蛋白质沉淀。例如用硫酸铵盐析分离血浆中的蛋白质饱和度达20%时,纤维蛋白原首先析出;饱和增至28~33%时,优球蛋白 析出;饱和度再增至33~50%时,拟球蛋白 析出;饱和度大于50%以上时清蛋白 析出。用硫酸铵不同饱和度分段盐析法,可从牛胰酸性提取液中分离得到9种以上蛋白质及酶。(2)PH值: pH值在等电点时蛋白质溶解度最小易沉淀析出。因此盐析时除个别特殊情况外,pH值常选择在被分离的蛋白质等电点附近。由于硫酸铵有弱酸性,它的饱和溶液的pH值低于7,如所要蛋白质遇酸易变性则应在适当缓冲液中进行。(3)蛋白质浓度: 在相同盐析条件下蛋白质浓度愈高愈易沉淀。使用盐的饱和度的极限也愈低。如血清球蛋白 的浓度从0.5%增至3.0%时,需用中性盐的饱和度的最低极限从29%递减至24%.某一蛋白质欲进行两次盐析时,第1次由于浓度较稀,盐析分段范围较宽,第2次则逐渐变窄.例如胆碱酯酶用硫酸铵盐析进时,第1次硫酸铵饱和度为35%至60%,第2次为40%至60%.蛋白质浓度高些虽然对沉淀有利,但浓度过高也易引起杂蛋白的共沉作用.因此,必须选择适当浓度尽可能避免共沉作用的干扰。(4)温度: 由于浓盐液对蛋白质有一定保护作用,盐析操作一般可在室温下进行。至于某些对热特别敏感的酶,则宜维持低温条件。通常蛋白质盐析时对温度要求不太严格。但在中性盐中结晶纯化时,温度影响则比较明显。================================================

小麦蛋白研究最新进展的论文

1.杨凤萍,梁荣奇,陈绪清,韩立新、张晓东,利用SDS-PAGE鉴定转基因小麦HMW-GS的表达类型和后代遗传,华北农学报,2005,20(2):1-4。3.陈绪清,张晓东等,玉米C4型pepc基因的分子克隆及其在小麦的转基因研究,科学通报,2004,49(19):1976-1982。4.孟超敏,张晓东等,高赖氨酸含量基因在转基因小麦的表达及其赖氨酸含量分析,科学通报,2004,49(17):1731-1736。6.陈绪清,张晓东等,Betaine Improves LA-PCR Amplification,生物工程学报,20(5):715-718,2004。8.张晓东,梁荣奇,转基因技术在小麦品质改良中的应用,《小麦品质遗传改良的目标和方法》刘广田等编,中国农大出版社,2003,pp.183-200。9.梁荣奇,张晓东等,小麦的淀粉特性、Wx蛋白及其遗传,《小麦品质遗传改良的目标和方法》刘广田等编,中国农大出版,2003,pp.69-106。10.张晓东,优质强筋转基因面包小麦的培育,农业生物技术学报,2003,11(5):505。11.周晓红,陈晓光,张晓东等,弓形虫多表位基因植物表达载体的构建,中国寄生虫学与寄生虫病杂志, 2003,21(2):106-109。12.张晓东,梁荣奇,陈绪清,杨风萍等,优质HMW谷蛋白亚基转基因小麦的获得及其遗传稳定性和品质性状分析,科学通报,2003,48(5):474-479。14.周晓红,陈晓光,张晓东等,弓形虫多表位基因植物表达载体的构建,中国寄生虫学与寄生虫病杂志,2003,21(2):106-109。16.赵秀英,张霆,张晓东,黄德庄,阎惠平,HBV表面抗原基因植物表达载体的构建及其对胡萝卜细胞的转化,中华微生物免疫学杂志,2000,20(5),401-。17.赵秀英,张晓东,张霆,黄德庄,阎惠平,罗朝霞,杨凤平,乙肝病毒表面抗原基因在胡萝卜中的克隆及表达,微生物免疫学进展, 1999,30(1):1-4。18.陈梁鸿,王新望,张文俊,张晓东,胡道芬,刘广田,抗除草剂草甘膦EPSPs基因在小麦中的转化,遗传学报,1999,26(3):239-243。19.陈梁鸿,王新望,张晓东,张文俊,,胡道芬,刘广田,小麦编码高分子量谷蛋白亚基基因的转化,作物学报,1999,25(4):437-440。20.郭殿京,傅荣昭,李文彬,陈颖,张晓东,张利明,孙勇如,小麦中外源基因瞬时表达调控研究及兔防御素(NP-1)基因的转化,遗传学报,1999,26(2):168-173。22.陈梁鸿,王新望,张晓东,胡道芬,刘广田,基因枪转化小麦不同受体的研究,华北农学报,1998,13(1):1-5。23.张晓东等,利用基因枪将HMW谷蛋白亚基基因与除草剂Basta抗性基因导入小麦不同外植体获得转基因植株,遗传(增刊),1998,20:18-23。24.张晓东,李冬梅,徐文英等,用基因枪将除草剂Basta抗性基因与小麦HMW谷蛋白亚基基因导入小麦获得转基因植株,华北农学报,1997,12(1),133-136。25.李宏潮,张晓东等,三个小麦品种的原生质体植株再生,中国农业科学,第二集:农作物原生质体培养专辑,pp.70-75,1995。26.张晓东,外源基因的电击转化法,植物遗传转化技术手册,pp.100-104,1994。27.张晓东,糖料作物的遗传转化,植物遗传转化技术手册,pp.40-42,1994。28.张晓东,林廷安,苜蓿细胞悬浮培养与突变体筛选,核农学报,1994,8(1),25-32。29.张晓东,林廷安,.γ射线对苜蓿离体培养与植株再生的影响,核农学报,1992,6(3),139-146。30.林廷安,张晓东,邓俏冰,苜蓿离体培养中的体细胞胚胎发生,核农学通报,1991,12(2),51-54。

小麦蛋白粉又称活性面筋粉、谷朊粉,是从小麦(面粉)中获取出来的天然蛋白质,由多种氨基酸组成,蛋白质含量高达75%~85%,含有身体必须的十五种氨基酸,是营养丰富的植物蛋白资源.具有粘性、弹性、延展性、薄膜成形性和吸脂性.

谷朊粉是一种优良的面团改良剂,普遍用于面包、面条、方便面的生产中,也可用与肉类产品中做为保水剂,从而是高端水产饲料的基本原料。目前国内还把谷朊粉做为一种高效的绿色面粉增筋剂,将其用于高筋粉、面包专用粉的生产,添加量不受限制.谷朊粉还是提升食品中植物蛋白质含量的有效方法。

这些小麦蛋白被水稀释之后在鱼饵中产生蛋白纤维,使鱼饵入水后可以比较牢固地粘附在钓钩上,这对于在钓鱼中把诱鱼与垂钓相结合,使钓饵在掉入水质的情况下,部分鱼饵随着入水的流动而散落产生鱼饵颗粒的“雾化团”,起到集鱼的诱鱼效果,有很好的作用。

同时在钩体上仍会比较牢固地保留着使鱼类吞食的钓饵。应注意小麦蛋白含量的“多、中、少”;粘性的“强、中、弱”;鱼饵的比例“重、中、轻”,以了解调合好的钓饵入水前的情况、雾化水平、在水质中钓饵的保留时间,尤其是调节采用一种主饵,再添加一种或两种协助钓饵混和使用的灵活性。

要使鱼饵掉入水下的速率缓减和产生较大的“雾化团”,以达到集鱼的效果,这样在采用钓目标鱼的一种鱼饵的同时,再适度调入一些另外一种含小麦蛋白较少、粘性较差和比例较轻的鱼饵。当经过数次抛投,钓饵已经诱鱼开始吞饵时,就应开始在钓饵中提升或全部使用比重大、小麦蛋白含量多、粘性较强的目标鱼饵,以增加和提升钓饵入水落底的速率,维持钓饵不易脱落的坚固性,提升上鱼率。

小麦蛋白对身体胃肠有保护作用,胃炎、慢性肠炎、胃出血、胃穿孔等常见的肠胃病患者能够多食用一些小麦产品,以此补充小麦蛋白。小麦蛋白质在其他行业的发展提高了小麦的使用率,相信随着科学研究的不断深入,小麦蛋白的研究和应用将会更为普遍。

一、GMF发展概况 1994年,第一例进入市场的GMF(转基因番茄)在美国诞生。现在至少有13个国家种植了GMF,其中美国的种植面积最大,达3030万公顷,68%;其次是阿根廷1000万公顷,23%;加拿大300万公顷,7%;我国50万公顷,占1%。 美国食品和药物管理局(FDA)确定的GMF品种达43个,有60%以上的加工食品有转基因成分,GMF的销售额达百亿美圆;有调查显示,美国、加拿大两国的消费者大多接受了GMF,仅有27%的消费者我食用GMF可能对健康造成危害。 我国已批准了6种GMF的商品化,其中食品3种:抗病毒甜椒、抗病毒番茄、延迟成熟番茄。随着我国对GMF的研究和开发,我国的GMF品种会越来越多。目前,研究重点是开发转基因水稻、转基因鱼等食品。 根据GMF的来源可以将GMF分为植物源GMF、动物源GMFH和微生物源GMF。现阶段的主要是植物源GMF,涉及的食品或食品原料包括:转基因大豆、转基因玉米、转基因番茄、转基因油菜、转基因马铃薯等。全球转基因种植中,转基因大豆种植面积最大2580亿公顷,占全球GMF的58%。 二、转基因食品的特点 GMF与传统的食品比较:传统食品是通过自然选择或人为的杂交育种来进行。虽然转基因技术与传统的以及新近发展的亚种间杂交技术相比,在基本原则是并无实质差别,但生产GMF的转基因技术着眼于从分子水平上,进行基因操作(通过重组DNA技术做基因的 修饰或转移),因而更加精致、严密和具有更高的可控制性。人们可以利用现代生物技术改变生物的遗传性状,并且可以创造自然界中不存在的新物种。比如,可以杀死害虫的食品植物,抗除草剂的食品植物,可以产生人体疫苗的食品植物等。其具有如下特点: (1)成本低、产量高。成本是传统产品的40%60%,产量至少增加20%,有的增加几倍甚至几十倍。 (2)具有抗草、抗虫、抗逆境等特征。其一可以降低农业生产成本;其二可以提高农作物的产量。2000年的GMC达4420万公顷,其中抗除草剂的有3280万公顷,占74%;抗虫性状的有830万公顷,占19%;抗虫肩抗除草剂的占7%。 (3)食品的品质和营养价值提高。例如,通过转基因技术可以提高谷物食品赖氨酸含量以增加其营养价值,通过转基因技术改良小麦中谷蛋白的含量比以提高烘焙(bei)性能的研究也取得一定的成果。 (4)保鲜性能增强。例如,利用反义DNA技术抑制酶活力来延迟成熟和软化的反义RAN转基因番茄,延长贮zhu藏和保鲜时间。 三、转基因食品的安全性 1998年,英国苏格兰研究所的Arpad Pusztiai 教授用转基因马铃薯喂老鼠,1998年秋在电视上宣布大鼠食用后,引起器官生长异常,体重和器官重量减轻,免疫系统受损。此事引起国际轰动。这是对转基因食品提出的最早的,有所科学证据的质疑,并在英国及全世界引发了关于转基因食品安全性的大讨论。虽然,英国皇家学会于1999年5月宣布此项研究“充满漏洞”,从中不能得出转基因马铃薯有生物健康的结论。 1998年3月,美国专利和商标局批准了一项由美国农业部和DPL(Delta and Pine Land)公司联合申请的所谓“终结者”技术(terminator technology)专利,“终结者”技术获得专利后引起国际社会的强烈反响。因为该技术不是一般性技术,利用这个技术可以使作物第一年种植获得的种子不育,在第二年种植时,种子会自动死亡。“终结者”技术是将一种终止子基因插入到作物基因组中得到转基因作物种子,种子公司在种子出售前,在种子表面喷上一种诱导剂,农民播种后,种子可以长成正常的植株,结出成熟的种子。但是在诱导剂的作用下,插入的终止子基因会在种子成熟时激活启动,产生毒素杀死种子胚胎,因此收获的种子在第二年再种植不能正常发芽,但这种种子在油脂、蛋白质等方面完全正常。 美国农业部发言人声称,“终结者”技术是为了保护基因工程技术的知识产权。1998年10月,国际农业研究磋商小组(CGIAR)在华盛顿召开会议,明确提出禁止“终结者”技术,理由主要有:外观上不能辨认终结者技术生产的种子,易造成不可弥补的损失;通过花粉非故意传播造成生物安全风险。 1999年5月,康奈尔大学一个研究组报告,一个斑蝶食用了转苏云金杆菌的杀虫蛋白基因(bt)玉米花粉后44%死亡,表明GMF可能存在安全隐患。此事引起科学家对GMF的广泛争论。Bt玉米中的杀虫晶体蛋白CryLA是特异毒杀鳞翘目害虫,斑蝶属于鳞翘目昆虫,自然会受到bt蛋白的影响。事实上,Science、Nature拒绝发斑蝶的文章,审稿人认为,这并不反映田间的情况,最后在Nature上以简讯的形式报道。但该事件却成为《纽约时报》、《华尔街日报》、《今日美国》等报刊的头版消息。最后,该事件被科学界否定。 2001年7月9日联合国开发计划署承认,GMF可能会破坏生态平衡,它们可能把自身的基因传递给相关物种,产生超级杂草,也可能会对其他植物或动物产生意想不到的有害影响。有关GMF和GMC的潜在危险和安全性的许多问题,有待于进一步研究才能下结论。因此,对GMC和GMF的种植于市场化要慎重,否则可能对人体健康和生态环境造成不可估量的损失。 虽然目前没有发现GMF对人类健康有害的案例,并不表明没有危害,因为它进入人类的时间还太短,其潜在危害在短时间内不会表现出来。直到目前为止,人类长期食用是否安全仍然成疑,而科学界对这些食品是否安全也没有共识。世界粮农组织、世界卫生组织及经济合作组织这些国际权威机构都表示,人工移植外来基因可能令生物产生“非预期后果”。即是说我们到现在为止还没有足够的科学手段去评估转基因生物及食品的风险。国际消费者联会(成员包括全球 115个国家的250个消费者组织)表示“现时没有一个政府或联合国组织会声称转基因食品是完全安全的。” 目前大量的转基因技术的应用,给我们带来了巨大的利益,但从上述的分析中我们仍可以看出,转基因食品目前还没有可以评估的安全性,转基因食品是否安全还有待进一步的研究和时间上的验证。 参考文献: [1]徐宗良,刘学礼,翟晓梅.生命伦理学[M].上海人民出版社,2002. [2]沈铭贤.生命伦理学[M]. 高等教育出版社,2003. 公务员之家独家首发2010年转基因食品安全性探讨论文,全国公务员共同的天地-尽在公务员之家。 转载2010年转基因食品安全性探讨论文请务必注明来自公务员之家。 详细参考资料: 麻烦采纳,谢谢!

蛋白质核酸的研究进展论文

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达99.99%的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。

如果在五年前提到蛋白质组学(Proteomics),恐怕知之者甚少,而在略知一二者中,部分人还抱有怀疑态度。但是,2001年的Science杂志已把蛋白质组学列为六大研究热点之一,其“热度”仅次于干细胞研究,名列第二。蛋白质组学的受关注程度如今已令人刮目相看。1.蛋白质组学研究的研究意义和背景随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serialanalysisofgeneexpression,SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNAmRNA蛋白质,存在三个层次的调控,即转录水平调控(Transcriptionalcontrol),翻译水平调控(Translationalcontrol),翻译后水平调控(Post-translationalcontrol)。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1)生命现象的发生往往是多因素影响的,必然涉及到多个蛋白质。(2)多个蛋白质的参与是交织成网络的,或平行发生,或呈级联因果。(3)在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究。因此在上世纪90年代中期,国际上产生了一门新兴学科-蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。虽然第一次提出蛋白质组概念是在1994年,但相关研究可以追溯到上世纪90年代中期甚至更早,尤其是80年代初,在基因

我不知道你们的论文是什么要求,但可以给你些建议:论文应先写摘要,再写正文。从目的、方法、结果、结论这几方面写。具体的可参考范文,以下为蛋白质的结构,希望对你有所帮助。蛋白质一级结构(primary structure) 是指多肽链的氨基酸残基的排列顺序,也是蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的,各种氨基酸按遗传密码的顺序通过肽键连接起来。每一种蛋白质分子都有自己特有的氨基酸的组成和排列顺序即一级结构,由这种氨基酸排列顺序决定它的特定的空间结构,也就是蛋白质的一级结构决定了蛋白质的二级三级等高级结构。胰岛素(Insulin)由51个氨基酸残基组成,分为A、B两条链。A链21个氨基酸残基,B链30个氨基酸残基。A、B两条链之间通过两个二硫键联结在一起,A链另有一个链内二硫键。 蛋白质二级结构(secondary structure)二级结构是指多肽链借助于氢键沿一维方向排列成具有周期性的结构的构象,是多肽链局部的空间结构(构象),主要有α-螺旋、β-折叠、β-转角等几种形式,它们是构成蛋白质高级结构的基本要素。 α-螺旋(α-helix)是蛋白质中最常见最典型含量最丰富的二级结构元件.在α螺旋中,每 个螺旋周期包含 3.6 个氨基酸残基,残基侧链伸向外侧,同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键。这种氢键大致与螺旋轴平行。一条多肽链呈α-螺旋构象的推动力就是所有肽键上的酰胺氢和羰基氧之间形成的链内氢键。在水环境中,肽键上的酰胺氢和羰基氧既能形成内部(α-螺旋内)的氢键,也能与水分子形成氢键。如果后者发生,多肽链呈现类似变性蛋白质那样的伸展构象。疏水环境对于氢键的形成 没有影响,因此,更可能促进α-螺旋结构的形成。β-折叠(β-sheet)也是一种重复性的结构,可分为平行式和反平行式两种类型,它们是通过肽链间或肽段间的氢键维系。可以把它们想象为由折叠的条状纸片侧向并排而成,每条纸片可看成是一条肽链, 称为β折叠股或β股(β-strand),肽主链沿纸条形成锯齿状,处于最伸展的构象,氢键主要在股间而不是股内。α-碳原子位于折叠线上,由于其四面体性质,连续的酰氨平面排列成折叠形式。需要注意的是在折叠片上的侧链都垂直于折叠片的平面,并交替的从平面上下二侧伸出。平行折叠片比反平行折叠片更规则且一般是大结构而反平行折叠片可以少到仅由两个β股组成。β-转角(β-turn)是种简单的非重复性结构。在β-转角中第一个残基的C=O与第四个残基的N-H氢键键合形成一个紧密的环,使β-转角成为比较稳定的结构,多处在蛋白质分子的表面,在这里改变多肽链方向的阻力比较小。β-转角的特定构象在一定程度上取决与他的组成氨基酸,某些氨基酸如脯氨酸和甘氨酸经常存在其中,由于甘氨酸缺少侧链(只有一个H),在β-转角中能很好的调整其他残基的空间阻碍,因此使立体化学上最合适的氨基酸;而脯氨酸具有换装结构和固定的角,因此在一定程度上迫使β-转角形成,促使多台自身回折且这些回折有助于反平行β折叠片的形成。蛋白质三级结构(tertiary structure)三级结构主要针对球状蛋白质而言的是指整条多肽链由二级结构元件构建成的总三维结构,包括一级结构中相距远的肽段之间的几何相互关系,骨架和侧链在内的所有原子的空间排列。在球状蛋白质中,侧链基团的定位是根据它们的极性安排的。蛋白质特定的空间构象是由氢键、离子键、偶极与偶极间的相互作用、疏水作用等作用力维持的,疏水作用是主要的作用力。有些蛋白质还涉及到二硫键。如果蛋白质分子仅由一条多肽链组成,三级结构就是它的最高结构层次。蛋白质四级结构(quaternary structure)四级结构是指在亚基和亚基之间通过疏水作用等次级键结合成为有序排列的特定的空间结构。四级结构的蛋白质中每个球状蛋白质称为亚基,亚基通常由一条多肽链组成,有时含两条以上的多肽链,单独存在时一般没有生物活性。亚基有时也称为单体(monomer),仅由一个亚基组成的并因此无四级结构的蛋白质如核糖核酸酶称为单体蛋白质,由两个或两个以上亚基组成的蛋白质统称为寡聚蛋白质,多聚蛋白质或多亚基蛋白质。多聚蛋白质可以是由单一类型的亚基组成,称为同多聚蛋白质或由几种不同类型的亚基组成称为杂多聚蛋白质。对称的寡居蛋白质分子可视为由两个或多个不对称的相同结构成分组成,这种相同结构成分称为原聚体或原体(protomer)。在同多聚体中原体就是亚基,但在杂聚体中原体是由两种或多种不同的亚基组成。蛋白质的四级结构涉及亚基种类和数目以及各亚基或原聚体在整个分子中的空间排布,包括亚基间的接触位点(结构互补)和作用力(主要是非共价相互作用)。大多数寡聚蛋白质分子中亚基数目为偶数,尤以2和4为多;个别为奇数,如荧光素酶分子含3个亚基。亚基的种类一般是一种或两种,少数的多于两种。稳定四级结构的作用力与稳定三级结构的没有本质区别。亚基的二聚作用伴随着有利的相互作用包括范徳华力,氢键,离子键和疏水作用还有亚基间的二硫键。亚基缔合的驱动力主要是疏水作用,因亚基间紧密接触的界面存在极性相互作用和疏水作用,相互作用的表面具有极性基团和疏水基团的互补排列;而亚基缔合的专一性则由相互作用的表面上的极性基团之间的氢键和离子键提供。

核酸保健品到底有无功效?前不久新闻媒体议论纷纭。虽然,卫生部对此给予了必要的解答,但人们仍然希望对核酸及其有无保健作用有更多、更科学的了解。有些读者也来信要求对此予以介绍。核酸的营养作用是个科学问题,科学需要公众理解。科学家需要向公众说明科学知识,本报在此选登部分专家的学术文章,仅供读者参考,希望能够让更多的人从 科学的角度,全面地了解核酸,并对其新技术的进展和新兴产业的发展有所了解,同时欢迎本专业内的专家发表见解。 一、什么是核酸 核酸分脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类,与蛋白质等一样是构成人体细胞的生物大分子,由碱基、核糖和磷酸组成。碱基又分嘌呤和嘧啶两种。一个碱基连上一个核糖就是核苷,再连上一个磷酸就是核苷酸,许多核苷酸按一定顺序连接起来就构成核酸。核酸具有编码遗传命令的功能,携带基因;但内源性和外源性的碱基、核苷、核苷酸都没有遗传功能,不带有任何遗传信息,它们有许多生理和营养功能。 二、食物核酸可被消化吸收、发挥营养作用,没有遗传功能 食物中的核酸被肠道中原本就存在的酶降解,变成了没有遗传功能的碱基、核苷、核苷酸,食物中核酸真正被吸收的是这三种物质,而不是具有遗传功能的核酸。人们吃米、面,也不直接吸收碳水化合物,而是吸收它的降解物葡萄糖;吃肉、蛋时不直接吸收蛋白质,而是蛋白质的降解物氨基酸;吃脂肪时吸收的是脂肪的降解物甘油和脂肪酸等。但我们不把吃蛋白质说成吃氨基酸,也不把蛋白质营养称作氨基酸营养。从食物中消化吸收的碱基、核苷、核苷酸,在组成、结构和功能上与内源性同类物质没有区别,同样起生理和营养作用。因此核酸能被消化吸收、转化成生理物质和营养物质;核酸食品不是基因食品。 核酸食品的开发和利用 核酸是生命之源,核酸营养和核酸食品是当前医学界研究的热点,它关系到人类寿命的延长、疾病的预防和治疗以及粮食的生产和计划生育等人类最密切相关的问题。有科学家认为核酸是21世纪的营养素。 一、脱氧核糖核酸(简写为DNA的损伤是人类衰老的首要因素) 二、DNA与抗衰老 三、DNA在人体内能合成,还能通过饮食进入细胞 四、核酸营养风靡全球 近年来人们对核酸的营养性,核酸抗衰老的认识,日益深入,核酸营养风靡全球。据美国科学界预测:到2025年,核酸基因营养制品,将占美国国民生产总值的20%。目前美国把核酸作为防治癌症和艾滋病药物来研究,有些已经投放市场。法国和美国几乎同时研制成功核酸营养制品。80年代初生产了多种核酸药物,并推荐给国际市场。由于核酸能吸紫外线,可预防黑斑、雀班、黄褐班、老年班,并有保湿、抑制皮脂分泌、活化细胞、软化皮肤等功能。近年来,多制成化妆品,倍受欢迎。 日本对核酸的研究和开发至少有30多年。日本分子综合医学营养研究所从酵母中提取二核酸补给食品,从鱼精子、动物脏器中提取多种核酸添加剂,生产核酸调味品、核酸面包、核酸豆腐、核酸健脑素,核酸健美素、核酸健壮素等,畅销国内和东南亚地区。1988年"日本新药株式会社"还把核酸作为抗癌与抗病毒制剂,抢先在中国申请专利。日本的核酸制剂,供不应求,特别是中老年人,很看重核酸营养。 五、核酸的补充 从80年代以来,国际医学界就倡导核酸营养。主张在日常膳食中,尽量摄取一些含核酸丰富的天然食物,如海鱼、海产品、动物肝、豆类及制品,酵母、蘑菇、芦荟、仙人掌、木耳、花粉、花菜、胡萝卜、洋葱、韭菜、葱、菠菜、甘蓝、芥菜、芦笋、萝卜等,充分利用天然富含核酸的食品,是摄核酸的重要来源,此外,还可以通过一些核酸的工业化产品补充。

蛋白质研究论文

蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16.3%,即一个60kg重的成年人其体内约有蛋白质9.8kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。被食入的蛋白质在体内经过消化分解成氨基酸,吸收后在体内主要用于重新按一定比例组合成人体蛋白质,同时新的蛋白质又在不断代谢与分解,时刻处于动态平衡中。因此,食物蛋白质的质和量、各种氨基酸的比例,关系到人体蛋白质合成的量,尤其是青少年的生长发育、孕产妇的优生优育、老年人的健康长寿,都与膳食中蛋白质的量有着密切的关系[编辑本段]蛋白质的生理功能1、构造人的身体:蛋白质是一切生命的物质基础,是肌体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、皮肤、肌肉、骨骼、内脏、大脑、血液、神经、内分泌等都是由蛋白质组成,所以说饮食造就人本身。蛋白质对人的生长发育非常重要。比如大脑发育的特点是一次性完成细胞增殖,人的大脑细胞的增长有二个高峰期。第一个是胎儿三个月的时候;第二个是出生后到一岁,特别是0---6个月的婴儿是大脑细胞猛烈增长的时期。到一岁大脑细胞增殖基本完成,其数量已达成人的9/10。所以0到1岁儿童对蛋白质的摄入要求很有特色,对儿童的智力发展尤关重要。2、修补人体组织:人的身体由百兆亿个细胞组成,细胞可以说是生命的最小单位,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。例如年轻人的表皮28天更新一次,而胃黏膜两三天就要全部更新。所以一个人如果蛋白质的摄入、吸收、利用都很好,那么皮肤就是光泽而又有弹性的。反之,人则经常处于亚健康状态。组织受损后,包括外伤,不能得到及时和高质量的修补,便会加速机体衰退。3、维持肌体正常的新陈代谢和各类物质在体内的输送。载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白—输送氧(红血球更新速率250万/秒)、脂蛋白—输送脂肪、细胞膜上的受体还有转运蛋白等。4、白蛋白:维持机体内的渗透压的平衡及体液平衡。5、维持体液的酸碱平衡。6、免疫细胞和免疫蛋白:有白细胞、淋巴细胞、巨噬细胞、抗体(免疫球蛋白)、补体、干扰素等。七天更新一次。当蛋白质充足时,这个部队就很强,在需要时,数小时内可以增加100倍。7、构成人体必需的催化和调节功能的各种酶。我们身体有数千种酶,每一种只能参与一种生化反应。人体细胞里每分钟要进行一百多次生化反应。酶有促进食物的消化、吸收、利用的作用。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。8、激素的主要原料。具有调节体内各器官的生理活性。胰岛素是由51个氨基酸分子合成。生长素是由191个氨基酸分子合成。7、构成神经递质乙酰胆碱、五羟色氨等。维持神经系统的正常功能:味觉、视觉和记忆。8、胶原蛋白:占身体蛋白质的1/3,生成结缔组织,构成身体骨架。如骨骼、血管、韧带等,决定了皮肤的弹性,保护大脑(在大脑脑细胞中,很大一部分是胶原细胞,并且形成血脑屏障保护大脑)9、提供热能。[编辑本段]蛋白质的作用蛋白质在细胞和生物体的生命活动过程中,起着十分重要的作用。生物的结构和性状都与蛋白质有关。蛋白质还参与基因表达的调节,以及细胞中氧化还原、电子传递、神经传递乃至学习和记忆等多种生命活动过程。在细胞和生物体内各种生物化学反应中起催化作用的酶主要也是蛋白质。许多重要的激素,如胰岛素和胸腺激素等也都是蛋白质。此外,多种蛋白质,如植物种子(豆、花生、小麦等)中的蛋白质和动物蛋白、奶酪等都是供生物营养生长之用的蛋白质。有些蛋白质如蛇毒、蜂毒等是动物攻防的武器。蛋白质和健康蛋白质是荷兰科学家格里特在1838年发现的。他观察到有生命的东西离开了蛋白质就不能生存。蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。生命运动需要蛋白质,也离不开蛋白质。球状蛋白质(三级结构)人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。在生物学中,蛋白质被解释为是由氨基酸借肽键联接起来形成的多肽,然后由多肽连接起来形成的物质。通俗易懂些说,它就是构成人体组织器官的支架和主要物质,在人体生命活动中,起着重要作用,可以说没有蛋白质就没有生命活动的存在。每天的饮食中蛋白质主要存在于瘦肉、蛋类、豆类及鱼类中。蛋白质缺乏:成年人:肌肉消瘦、肌体免疫力下降、贫血,严重者将产生水肿。未成年人:生长发育停滞、贫血、智力发育差,视觉差。蛋白质过量:蛋白质在体内不能贮存,多了肌体无法吸收,过量摄入蛋白质,将会因代谢障碍产生蛋白质中毒甚至于死亡。[编辑本段]必需氨基酸和非必需氨基酸纤维状蛋白质(二级结构)食物中的蛋白质必须经过肠胃道消化,分解成氨基酸才能被人体吸收利用,人体对蛋白质的需要实际就是对氨基酸的需要。吸收后的氨基酸只有在数量和种类上都能满足人体需要身体才能利用它们合成自身的蛋白质。营养学上将氨基酸分为必需氨基酸和非必需氨基酸两类。必需氨基酸指的是人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。对成人来说,这类氨基酸有8种,包括赖氨酸、蛋氨酸、亮氨酸、异亮氨酸、苏氨酸、缬氨酸、色氨酸、苯丙氨酸。对婴儿来说,组氨酸和精氨酸也是必需氨基酸。非必需氨基酸并不是说人体不需要这些氨基酸,而是说人体可以自身合成或由其它氨基酸转化而得到,不一定非从食物直接摄取不可。这类氨基酸包括谷氨酸、丙氨酸、甘氨酸、天门冬氨酸、胱氨酸、脯氨酸、丝氨酸和酪氨酸等。有些非必需氨基酸如胱氨酸和酪氨酸如果供给充裕还可以节省必需氨基酸中蛋氨酸和苯丙氨酸的需要量。

生态 的蛋白质我肯定好的

最新慢性疾病研究进展论文

瑞沙在日本获批上市之前,化疗、放疗、手术是治疗肺癌最主要的三大手段。近年来,随着对肿瘤分子分型、生物学行为的深入了解,肺癌治疗诞生了三大新手段--靶向、免疫、抗血管。 肺癌驱动基因的发现开启了 靶向治疗 的大门。顾名思义,这一类药物就像箭一样,射到了带有特定驱动基因肿瘤细胞上的靶,直接抑制肿瘤细胞的生长,比较少累及机体的正常细胞,所以比起传统化疗药物,疗效更好,不良反应更少。 有特定基因突变、融合或者重排的肺癌患者在接受靶向治疗时,有明显的临床获益,和化疗相比可以明显提高无进展生存期(PFS)甚至总生存期(OS)。 目前发现的肺癌驱动基因主要有八个:表皮生长因子(EGFR)、BRAF、MET14、KRAS突变、ALK、ROS1、NTRK融合,RET重排,肺癌患者如果行基因检测到上述的驱动基因突变,那真是不幸中的万幸,因为目前这八大基因已经有了在国内外获得批准用于治疗的药物。我科杜海坚医师为我们梳理了EGFR基因突变及治疗。 01 EGFR基因突变及治疗 EGFR是原癌基因C-erbB-1的表达产物,是一种跨膜蛋白,是表皮生长因子受体家族第1个成员。 EGFR基因位于第7号染色体短臂上,有28个外显子。EGFR酪氨酸激酶区域的突变主要发生在18~21外显子,其中19和21号外显子突变最常见。 1984年EGFR基因被首次克隆, EGFR的信号传导关乎细胞的凋亡、增殖、分化、迁移和细胞周期循环,与肿瘤的形成和恶化息息相关。 在中国,30%-40%的肺腺癌患者存在EGFR敏感突变,对于EGFR突变的晚期肺癌患者来说,一线治疗使用EGFR一代靶向药吉非替尼/厄洛替尼/埃克替尼,不仅治疗有效率高、副作用小,还能获得平均超过十个月的PFS。这样的治疗效果来之不易。 02 一波三折——第一个药物吉非替尼的研发 我们从第一个药物吉非替尼的研发开始谈起。 吉非替尼在美国开展的I期临床试验表明,化疗后疾病进展的NSCLC患者中,接受吉非替尼治疗,有10%的患者出现肺癌肿瘤体积缩小达50%或更多,有36%的患者呼吸急促、纳差、咳嗽及体重减轻等肺癌症状显著改善,且大多数患者症状改善是在服药10天内出现的。患者对药物的反应能持续9个多月。 2002年报道了Ⅱ期临床试验吉非替尼口服治疗,接受含有铂类和(或)多西他赛化疗方案治疗失败的晚期 NSCLC患者,取得和I期临床研究类似的疗效。 基于I期和II期的结果, 吉非替尼于2002年首次获准在日本上市,2003年在美国、澳大利亚等多国上市,2005年2月26日在我国上市。 但是随后开展了卡铂+紫杉醇+吉非替尼或安慰剂和吉西他滨+顺铂+吉非替尼或安慰剂两个III期临床研究,试验结果却出现让人大跌眼镜的阴性结果。 基于两项阴性结果, 2005年6月17日,美国FDA限制吉非替尼仅用于目前或之前正受益于吉菲替尼的患者以及参与2005年 6月17日以前临床研究的患者。 好不容易有一个副作用相对比较小的治疗肺癌药物,这样就夭折了,是肺癌专家难以接受的。 2004年,日本和美国科学家的研究显示,8例(样本量 9例)对吉非替尼敏感的患者出现EGFR基因突变,而7例对吉非替尼不敏感的患者则无1例有EGFR基因突变。基因突变集中在外显子18,19和21。 有EGFR基因突变才有可能对吉非替尼有效首次被提出。 随后,里程碑式的IPASS(Iressa Pan.Asia Study)研究启动。IPASS是由香港中文大学的TONY MOLK教授和广东省人民医院的吴一龙教授牵头的开放性Ⅲ期研究,入组的人群是从不吸烟或轻度吸烟的初治东亚晚期肺腺癌患者,随机接受250 mg/d的吉非替尼(609 例)或卡铂(按AUC=5或6计算剂量) +紫杉醇(200 mg/m2)(608例)。主要终点指标为PFS。吉非替尼组的无进展1年生存率为24.9%。而卡铂/紫杉醇组仅为6.7%,吉非替尼显著降低26%疾病进展风险,而在未选择人群中吉非替尼PFS并没有显著优于化疗(5.7mVS 5.8m)。在所有纳入研究的1217例患者中,437例患者通过基因检测方法(ARMS-PCR,一代测序方法)评估EGFR突变情况,检测结果显示261例患者有EGFR基因突变,其中140例为EGFR19外显子缺失突变,111例为EGFR 21外显子L858R突变,基因突变患者在两组间分布无显著差异;研究结果显示吉非替尼能够显著降低EGFR突变阳性患者52%疾病进展风险,同时显著延长PFS(9.5m VS 6.3m),而在EGFR突变阴性患者或者EGFR突变情况未知的患者,吉非替尼无法实现PFS的获益。 这项研究揭示了肺癌患者肿瘤中存在EGFR基因突变才是吉非替尼取得较好疗效的强烈预测指标。 随后,一代的厄洛替尼、埃克替尼通过III期临床研究,也都纷纷证明了这一点,也在中国获批上市。 03 非经典突变——催生阿法替尼 随着对EGFR基因突变研究的深入,后续的研究发现, EGFR突变的类型非常多 ,一代TKI对19缺失和21号L858R基因突变的效果好,尤其是19缺失效果更好,但对其他位点的非经典突变如G719X、S768I、L861Q突变,效果要差很多,阿法替尼的lux-lung2/3/6系列研究,提示了二代的阿法替尼对非经典突变比第一代更有效。 台湾的一项现实世界研究显示:对51名非经典突变患者,研究者决定使用阿法替尼、吉非替尼或厄洛替尼,结果显示使用阿法替尼治疗的客观有效率(ORR)为 62.5%,而吉非替尼或厄洛替尼为50%。排除5例外显子20插入突变患者,阿法替尼和一代EGFR TKI的中位PFS分别为11.0个月和3.6个月(p=0.03)。在G719X、S7681或L861Q突变的患者中,阿法替尼的mPFS为18.3个月,而第一代EGFR TKIs患者为2.6个月(p=0.012)。基于以上数据,对于非经典突变的患者,阿法替尼更值得推荐。 04 耐药后的治疗—— 双抗新药JNJ-372 但是,无论是口服一代药物还是二代药物,绝大多数患者最终还是会出现耐药,耐药后的治疗曾经困扰很多医师和患者。 随着研究的深入,发现一二代EGFRTKI耐药的患者, 有不少基因再检测出耐药的T790M突变 ,针对T790M这一靶点研发的奥西替尼的面世克服了这一难题,作为三代的EGFRTKI, 奥西替尼除了很好地抑制了耐药位点T790M,对敏感突变的19和21突变位点也有很强的抑制作用,另外一个突出的优势就是更好穿透血脑屏障,药物颅内浓度高,对颅内的转移病灶控制更理想。 奥西替尼的FLAURA研究首次证实奥西替尼一线治疗EGFR敏感突变肺癌患者,PFS可达18.9个月。OS也可达到38.6个月。 另外一个值得一提的三代EGFRTKI是阿美替尼,阿美替尼Ⅲ期AENEAS研究结果提示:一线单药治疗EGFR敏感突变肺癌患者,mPFS达19.3个月,基于这么优越的研究结果, 目前中国药监部门把阿美替尼的一线治疗纳入优先审评审批。 尽管三代药物的表现要优于一代,也克服了不少一代药物的不足,但最终也一样会出现耐药,三代EGFRTKI耐药一个常见原因是 出现C797S位点的突变 ,目前国内外有众多针对这个位点突变的第四代药物在研发中,如:BPI-361175,BBT-176,CH7233163,TQB3804,BLU945,JBJ-04-125-02,EAI045等,也有另辟蹊径,U3-1402就是一款靶向HER3的ADC型药物,一期临床试验(NCT03260491)中57例之前均接受过EGFR TKI治疗耐药的NSCLC患者接受了U3-1402 5.6mg/kg每三周一次的治疗,经确认的ORR 39%,疾病控制率72%,中位缓解持续时间(DOR)6.9个月,PFS 8.2月。 另外一种药物设计就是EGFR 及 cMET 双抗新药JNJ-61186372(JNJ-372),I期CHRYSALIS研究,在后线治疗患者中,ORR 达到了 30% 之高,并且疗效遍及各种 EGFR 耐药亚型。这些患者包括 C797S 突变、MET 扩增、既往对奥希替尼耐药。 JNJ-372 通过双靶点抑制,对 EGFR-TKI 耐药后继发的多种突变类型都展现了疗效,并且耐受性良好(3 级及以上的不良反应发生率只有 9%),有望成为今后攻克 EGFR 耐药的新星。 另外,值得一提的是EGFR基因突变中有一个20外显子插入(ex20ins)是目前一二三代EGFRTKI都无效的突变类型,这个难啃的硬骨头,JNJ-372同样对其有效果,ORR达到40%(3.7% CR+ 36% PR),DOR为11.1个月,63%患者的DOR超过6个月。基于此,美国FDA于2021年5月21日,加速批准了该药物的上市。 结 语   总结一下, 晚期肺腺癌或部分鳞癌患者通过基因检测,了解基因突变状态是制定治疗方案非常重要的一个依据 。目前在我国获批的EGFRTKI第一代的吉非替尼、厄洛替尼、埃克替尼;第二代的阿法替尼、达克替尼;第三代的奥希替尼、阿美替尼、伏美替尼。四代药物研究百花齐放,未来可期。获批药物的价格也越来越亲民。有EGFR基因突变的肺癌,在所有人的努力下正在逐渐成为慢性病! 参考文献 : 1. Ranson H,Hammond L,Ferry D,et a1.ZDl839,a selective oral EGFR-TKI (epidermal growth factor receptor tyrosine kinase inhibitor)is well tolerated and active in patients with solid,malignant tumours:results of a phase I trial [J].J Clin Oncol,2002,20(9):2240—2250. 2. Fukuoka M,Yano S,Giaccone G,et a1.Multi-institutional randomized phaseⅡtrial of gefitinib for previously treated patients with advanced nonsmall cell lung cancer [J].J Clin Oncol,2003,21(12):2237—2246. 3. Miller VA,Johnson DH,Krog LM,et a1.Pilot trial of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib plus carboplatin and paclitaxel in patients with stage III B or IV non-small cell lung cancer[J].J Clin Oncol,2003,21(11):2094—2100.   4. LYNCH T J,BELL D W,SORDELLA R,et a1,Activating mutations in the epidermal growth factor receptor underlying responsiveness of non—small-cell lung cancer to gefitinib[J]..N Engl J Med,2004,350(21):2129—2139.  5. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang JJ, Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009 Sep 3;361(10):947-57.  6. Shen YC, Tseng GC, Tu CY, et al. Comparing the effects of afatinib with gefitinib or Erlotinib in patients with advanced-stage lung adenocarcinoma harboring non-classical epidermal growth factor receptor mutations. Lung Cancer. 2017;110:56–62. 7. Lu S, et al. 2021 ASCO.Abstract No.9013 8. Dong Rui-Fang, Zhu Miao-Lin, Liu Ming-Ming, et al. EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: From molecular mechanisms to clinical research. Pharmacol Res, 2021, 167: 105583. 9. Yonesaka Kimio, Takegawa Naoki, Watanabe Satomi, et al. An HER3-targeting antibody-drug conjugate incorporating a DNA topoisomerase I inhibitor U3-1402 conquers EGFR tyrosine kinase inhibitor-resistant NSCLC. Oncogene, 2019, 38: 1398-1409. 10. Haura EB, Cho BC, Lee JS, et al. JNJ-61186372 (J)

当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,下面是关于慢性肾衰竭护理论文范例的内容,欢迎阅读!

摘要 :目的:探讨慢性肾衰竭的临床护理。方法:对 2013 年 5 月~ 2014年12月收治的20例慢性肾衰竭患者的临床护理资料进行分析。结果:临床显效9例,有效8例,无效3例,总有效率85%。结论:通过临床精心的护理为患者提供优质的护理,提高患者的生活质量。

关键词: 慢性肾衰竭 ;临床治疗 ;护理

慢性肾功能衰竭(CRF)是指由于肾功能缓慢进行性减退,最终出现以代谢产物潴留、水电解质、酸碱平衡失调和全身各系统症状为主要表现的临床综合征。慢性肾功能不全虽然是肾脏病变的晚期表现,但经过适当治疗,特别是近年开展透析疗法与肾移植以来,预后大为改观,使患者的生命得以延长。对 2013 年5月~2014年12月收治的慢性肾衰竭患者20例的临床护理方法分析如下。

1 资料与方法

1.1 一般资料

本组收治的慢性肾衰竭患者20例,其中男12例,女8例,年龄18~73岁,平均42岁。氮质血症6例,尿毒症14例;原发病:慢性肾小球肾炎14例,肾小动脉硬化3例,糖尿病肾病2例,狼疮性肾炎 1 例。

1.2 治疗

积极治疗原发疾病和纠正加重肾衰竭的因素是防止肾功能进一步恶化和促使其有不同程度恢复的关键。可采用饮食疗法,应用必须氨基酸,控制全身性和(或)肾小球内高压力,治疗高脂血症或痛风所致高尿酸血症。临床显效9例,有效8例,无效3例,总有效率 85%。

2 护理

2.1 休息和活动

一般卧床休息,但应根据病情和活动耐力,进行适当的活动,以增强机体的抵抗力。如对于严重贫血、出血倾向、心力衰竭及骨质疏松者,要卧床休息。长期卧床患者应指导或帮助其进行适当的床上运动,避免发生静脉血栓或肌肉萎缩。对能起床活动的患者鼓励其进行适当活动。但应避免劳累和受凉。活动时以不出现心慌、气喘、疲乏为宜,要有护理人员或家属陪伴、协助活动,一旦出现不适、应暂停活动并卧床休息。

2.2 饮食护理

合理的饮食是改善生命质量和预后的关键因素之一,对慢性肾衰竭的'饮食护理应越早越好。合理摄入蛋白质。既要限制蛋白质的摄入,又要防止低蛋白血症和营养不良。因减少饮食中蛋白质的含量能使血BUN降低,尿毒症状减轻,还有利于降低血磷和减轻酸中毒。少摄入植物蛋白,如花生、豆类及其制品。因植物蛋白含非必需氨基酸多。设法去除米、面中所含的植物蛋白质,如可采用麦淀粉做主食。如感觉饥饿,可食用芋头、马铃薯、苹果、马蹄粉、萝卜等。保证充足的热量为减少体内蛋白质的消耗,应供应125.5 kJ(30 kcal)/(kgd)的热量,以糖类和脂肪为主,可食用植物油和食糖。伴有高分解代谢或长期超量摄入不足的患者,可经胃肠外补充热量。多食富含维生素C、维生素B、叶酸和钙质的食物,以满足机体的需要。多食磷的摄入。氮质血症期,应采取低磷饮食,即≤600毫克/天。多食钠的摄入。通常根据体重、血压、尿量、血清钠等指标,并结合病情调整钠的摄入。有水肿、高血压和少尿者应限制钠的摄入,≤3 g/d。又因慢性肾衰患者钠贮存功能减退,可有钠缺乏倾向,加之长期应用利尿剂以及呕吐、腹泻致脱水时,常伴有低钠血症,因此饮食中不宜过严限制钠盐,每天可给食盐4~6 g。钾的摄入,如尿量>1 L,不需限制饮食中的钾。多尿或排钾利尿剂的使用导致低血钾时,可增加含钾量高的食品或谨慎补充钾盐。

2.3 病情观察

每日定时测生命体征和体重,准确记录24小时出入量。尤应注意监测患者的神志、血压、心率、心律、心功能、水肿、尿量、体液平衡情况及相关系统表现。

2.4 对症护理

少量多餐,特别是少进食油腻食物以减少恶心、呕吐,呕吐者用甲氧普安(胃复安)。协助患者早晚及餐后漱口以保持口腔清洁。晚间睡前饮水以避免夜间脱水导致血尿素氮相对增高。注意呕吐物及粪便的颜色观察以及早发现消化道出血征象。如有头痛、失眠、躁动,将患者安置于光线较暗的病室,保持安静,注意安全及观察有无颅内压增高的表现。严重贫血者应协助其缓慢坐起或下床,以免发生直立性低血压。有出血倾向者,活动时应选择适当的活动方式以防止皮肤黏膜受损,同时尽量不使用纤溶药。患者因瘙痒不适,常易抓破皮肤,导致感染.且影响睡眠和休息,所以应勤用温水擦洗,勤换衣裤被单,保持皮肤清洁,注意忌用肥皂和乙醇擦身。严重水肿者应按水肿的护理要求进行皮肤护理。

2.5 预防感染

以呼吸道和尿路感染为多见,其次是皮肤和消化道感染。应注意观察体温变化、咳嗽、咳痰、尿路刺激征和尿液改变及白细胞增高等感染征象。但因患者反应差,发生感染后常无高热等表现,应加强预防,注意保暖和室内清洁消毒,减少探视,避免与呼吸道感染者接触以防交叉感染。因接受血液透析,患者乙型肝炎和丙型肝炎的发生率要明显高于正常人,故对血透者要进行乙肝疫苗接种,尽量减少血液制品的输入等,一旦发现感染,应选择对肾脏的毒性小的抗生素,并及时控制病情。

2.6 心理护理

向患者解释慢性肾衰竭的病因、病理、发病过程和加重原因、治疗及护理中应注意的问题,使其明确本病虽然预后较差,但只要树立信心,坚持治疗,消除或避免加重病情的各种因素,可以延缓病情进展,提高生命质量。

3 讨论

护士能掌握高钾血症、低钙血症等的表现,并能及时发现,紧急处理。患者学会正确护理皮肤,掌握预防感染的重要性。患者知道正确判断内瘘的通畅,并能做好内瘘的保护工作。患者居家会行腹膜透析,并能及时发现并发症。提供优质的护理,提高患者的生活质量。

参考文献

[1] 曾鸣. 综合性肾保护的最新概念[J]. 国外医学:泌尿系统分册,2003,23(3):333-336.

[2] 张文红,徐秀花,张秀云,等. 健康教育提高高血压病人医从行为的研究 [J]. 护理学杂志,2003,18(2):89-90.

[3] 马莉冰,张洁,王晶 . 高龄慢性肾衰竭病人抑郁情绪的综合护理 [J]. 护理研究,2007,21(4C):1064-1066.

[4] 张莉萍,戴晓冬,杨宁P,等. 1例合并肾衰竭糖尿病减重手术患者的护理 [J]. 护理实践与研究,2013(18):157-158.

相关百科

热门百科

首页
发表服务