首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

线性规划建模运筹学论文

发布时间:

线性规划建模运筹学论文

建模论文建模论文写作指导(一)、建模论文的标准组成部分建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力.一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成.现就每个部分做个简要的说明.1. 题目题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象.建议将论文所涉及的模型或所用的计算方式写入题目.如“用概率方法计算商场打折与返券的实惠效应”.2. 摘要摘要是论文中重要的组成部分.摘要应该使用简练的语言叙述论文的核心观点和主要思想.如果你有一些创新的地方,一定要在摘要中说明.进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%.”摘要应该最后书写.在论文的其他部分还没有完成之前,你不应该书写摘要.因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要.摘要一般分三个部分.用三句话表述整篇论文的中心.第一句,用什么模型,解决什么问题.第二句,通过怎样的思路来解决问题.第三句,最后结果怎么样.当然,对于低年级的同学,也可以不写摘要.3. 正文正文是论文的核心,也是最重要的组成部分.在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的.其中,提出问题、分析问题应该是清晰简短.而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确.在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升.4. 结论论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价.结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一.并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验.5. 参考资料在论文中,如果使用了其他人的资料.必须在论文后标明引用文章的作者、应用来源等信息.以下是我找的两篇获奖论文房贷应该怎么还才合理摘要及关键词:本论文主要讨论了怎样还房贷才合理。关键词: 房贷 本金 利率 等额本金 等额本息一.问题的提出随着经济的发展,金融正越来越多的进入普通人的生活;贷款,保险,养老金和信用卡;个人住房抵押贷款是其中重要的一项。当今社会中,热度最高的话题当属“买房子”。而北京目前房价都在3、4万一平米左右,使人们不得不选择进行贷款。而去银行贷款其实也是一门学问,究竟应该怎样还房贷才合适呢?下面数据为最近公布的银行贷款利率短期贷款: 中长期贷款:六个月以内(含六个月):5.60 一至三年(含三年)6.10六个月至一年(含一年)6.06 三年至五年(含五年)6.45五年以上6.60二.模型的假设1.银行在贷款期利率不变2.在这段期间内不考虑经济波动的影响3.客户在还款期内还款能力不变,而且不提前还款三.模型建立符号规定A : 客户向银行贷款的本金B : 客户平均每期应还的本金C : 客户应向银行还款的总额D : 客户的利息负担总和α: 客户向银行贷款的月利率β: 客户向银行贷款的年利率m : 贷款期n : 客户总的还款期数 根据我们的日常生活常识,我们可以得到下面的关系:(1) (2) (3) 两种比较常见的还款方式(1)等额本息还款把按揭贷款的本金总额与利息总额相加,然后平均分摊到还款期限的每个月中。作为还款人,每个月还给银行固定金额。(2)等额本金还款又称利随本清、等本不等息还款法。贷款人将本金分摊到每个月内,同时付清上一交易日至本次还款日之间的利息。等额本息还款模型 (1)贷款期在1年以上:先假设银行贷给客户的本金是在某个月的1号一次到位的. 客户的合同里规定说,在本金到位后的下个月1号开始还钱,且设在还款期内年利率不变. 因为一年的年利率是β,那么,平均到一个月就是(β/12),也就是月利率α, 即有关系式: 设每月均还款总额是x(元) (i=1…n)是客户在第i期1号还款前还欠银行的金额 (i=1…n) 是客户在第i期1号还钱后欠银行的金额. 根据上面的分析,有第1期还款前欠银行的金额: 第1期还款后欠银行的金额: ……第i期还款前欠银行的金额: 第i期还款后欠银行的金额: ……第n期还款前欠银行的金额: 第n期还款后欠银行的金额: 因为第n期还款后,客户欠银行的金额就还清. 也就是说: ,即: 解方程得: 这就是月均还款总额的公式. 因此,客户总的还款总额就等于: 利息负担总和等于: 等额本金还款模型假设贷款期在1年以上.设客户第i期应付的金额为 (i=1…n) (单位:元)因此,客户第一期应付的金额为 : 第二期应付的金额为 : 那么,客户第n期应付的金额为 : 累计应付的还款总额为 :利息负担总和为 : 四.模型求解某一个人从银行贷款100万元,贷款期限为五年,即分60次还款,贷款利率为6.45,每次还款金额见下表: 等额本息还款 元 等额本金还款第一次 19542.7 21952.41第二次 19542.7 21862.83第三次 19542.7 21773.24第四次 19542.7 21683.66第五次 19542.7 21594.07第十次 19542.7 21146.15第二十次 19542.7 20250.30第三十次 19542.7 19354.45第四十次 19542.7 18458.6第五十次 19542.7 17562.7第六十次 19542.7 16666.89总还款金额 117 116万贷款二十年 等额本息还款 等额本金还款第一次 7514.72 9643.75第二次 7514.72 9620.84第三次 7514.72 9597.92第四次 7514.72 9575第五次 7514.72 9552.09第十次 7514.72 9543.5第20次 7514.72 9208.34第50次 7514.72 8520.84第80次 7514.72 7833.34第100次 7514.72 7375第150次 7514.72 6229.17第180次 7514.72 5541.67第200次 7514.72 5083.33第210次 7514.72 4854.17第220次 7514.72 4625第230次 7514.72 4395.83第240次 7514.72 4166.67总还款 180万 166万贷款三十年 等额本息还款 等额本金还款第一次 6386.59 8262.5第二次 6386.59 8247.22第三次 6386.59 8231.95第四次 6386.59 8216.67第五次 6386.59 8201.39第十次 6386.59 8125第二十次 6386.59 7972.22第五十次 6386.59 7513.89第一百次 6386.59 6750第一百五十次 6386.59 5986.11第二百次 6386.59 5222.22第二百五十次 6386.59 4458.33第三百次 6386.59 3694.44第三百一十次 6386.59 3541.67第三百二十次 6386.59 3388.89第三百三十次 6386.59 3236.11第三百四十次 6386.59 3083.33第三百五十次 6386.59 2939.55第三百六十次 6386.59 2777.78总还款 229万 199万五.模型分析等额本金还款:适合目前收入较高的人群。借款人在开始还贷时,每月负担比等额本息要重。随着时间推移,还款负担便会逐渐减轻。这种还款方式相对同样期限的等额本息法,总的利息支出较低。等额本息还款法的特点是每个月归还一样的本息和,容易作出预算。还款初期利息占每月供款的大部分,随本金逐渐返还供款中本金比重增加。等额本息还款法更适用于现期收入少,预期收入将稳定或增加的借款人,或预算清晰的人士和收入稳定的人士。六.模型应用该模型可在实践中应用,每一个贷款买房者可应用这个模型,并根据自己的条件和承受能力,对各种贷款方案进行优选。ETC收费与停车收费成本比较现在面对严重的高速公路堵车问题,我们真的手足无措吗?几年前,速通公司推出了ETC不停车收费系统,这本应该能很大程度上缓解高速公路收费站拥堵的情况,但实际效果却并不理想。我们觉得 主要原因是ETC成本太高,一台机器要450元钱,于是很多人宁可花时间在路上等。其实,如果我们仔细算一下成本,便会对这个问题有更新的认识。我们的几个平均参数:车重m=1.4t,轮胎与地面摩擦系数u=0.17,汽油热值q= J/kg,93汽油价格7.85元/升(10.68元/千克),发动机空转功率p= 17 kw ,热效率为23%。一般汽车在出高速时,车道一般有几辆车在排队,我们平均为5辆。每辆车交费时间平均为10s。这样每辆车在收费时启动制动5次,等待50秒。每次启动速度由0到10mph,启动距离为5米。由此我们推算;1启动时耗油,设为 ,由能量守恒得到等式 ,代入数据后得到 =7.7g。2 等待10秒时油耗, = = 16.1g所以每次汽车出高速要消耗 =119g 汽油,约合1.3元。如果按每周走一次高速算,一年52次就是67.6元,6年下来花在高速收费站毫无意义的油钱就是473.2元,而这钱已经够买一台ETM机了。除去油钱,每次交费时断断续续的启动和刹车,也会对发动机和刹车片造成不小的损耗,增加额外的维修费用。还有很重要的一点是浪费的时间,每次平均要50秒,如果遇上高峰期,几公里长的车队几米几米的向前动,耽误的时间就更别提了。所以综合以上因素考虑,如果汽车在六年内经常走高速的话,使用ETC的成本是要低于停车收费的。从车主的角度考虑,汽车配备了ETC机,可以在不太高的车速下完成交费。既省下了频繁启动和等待浪费的油钱,也减少了对发动机刹车片的磨损,还省下了很多时间。从路政部门的角度考虑,如果停车收费,需要在收费站投入大量的纸张、油墨和计算机处理系统并安排相应的工作人员,收上的钱还需要汇总转移一次才能存入银行,既耗材又麻烦。如果使用ETC系统,就可以无纸化收费,无需工作人员进行处理,车主交的钱可以直接与账户挂钩,省下了很多步骤。所以从这些方面考虑,ETC系统可以降低路政部门在收费站投入的成本。从环境的角度考虑,汽车在刹车和等待时会排放大量的尾气,达正常行驶时的几倍,尤其是在高峰期收费站拥堵时,几百两几千两汽车堵在几公里路上,尾气的排量和密度是大的惊人的。使用ETC系统可以很有效地缓解收费站拥堵的情况,从而减轻汽车尾气对收费站周围环境的影响。综合以上因素,无论从车主成本、路政部门还是环境角度考虑,使用ETC系统都会起到很大的积极作用。我们在ETC系统的购买上还有两个建议,就是路政部门是不是也可以帮车主分担些费用,因为这对双方都有利;或许政府还可以出台相关政策,在汽车出厂时就配备ETC机,把这笔钱算在购车成本里,并给予相应补贴之类的。总之越多的车辆配备了ETC机,高速收费站就会越畅通望楼主采纳。。。。。。。。。。。。。。。。。。。。。很辛苦的。。

好好看看类型题就可以,下面不是还有人发的

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

看看运筹与模糊学这本期刊撒,都是免费下载查阅的,

运筹学线性规划3000论文

去看看这本(运筹与模糊学 )里的内容吧

数学是所有科学的基础,军事科学也不例外。 综 述 从人类早期的战争开始,数学就无所不在,不论是发射弩箭还是挖掘地道,数学就像冥冥之中的命运之神一样在起作用。虽然战争是个令人讨厌的话题,但战争却是人类不可避免的。 提起数学与军事,人们可能更多地想到数学可以用来帮助设计新式武器,比如阿基米德的传闻故事:阿基米德所住的 Syracuse 王国遭到罗马人的攻击,国王 Heron 请其好友阿基米德帮忙设计了各式各样的弩炮、军用器械,利用抛物镜面聚太阳光线,焚毁敌人船舰等。当然,这样的军事应用并没有用到较高层次的数学。其实,古时数学用于军事只到这种层次。《五曹算经》中的兵曹,其所含的计算,仅止于乘除;再进一步,也不过是测量与航海。一直到二十世纪,科学发展促使武器进步,数学才真的可能与战事有密切的关系,例如数学的研究工作可能与空气动力学、流体动力学、弹道学、雷达及声纳、原子弹、密码与情报、空照地图、气象学、计算器等等有关,而直接或间接影响到武器或战术。 事例一 一支高智商的反法西斯队伍 二战迫使美国政府将数学与科学技术、军事目标空前紧密地结合起来,开辟了美国数学发展的新时代。1941至1945年,政府提供的研究与发展经费占全国同类经费总额的比重骤增至86%。美国的“科学研究和发展局”(OSRD)于1940年成立了“国家防卫科学委员会(NDRC),为军方提供科学服务。1942年,NDRC又成立了应用数学组(AMP),它的任务是帮助解决战争中日益增多的数学问题。AMP和全美11所著名大学订有合同,全美最有才华的数学家都投入了遏制法西斯武力的神圣工作。AMP的大量研究涉及“改进设计以提高设备的理论精确度”以及“现有设备的最佳运用”,特别是空战方面的成果,到战争结束时共完成了200项重大研究。 在纽约州立大学,柯朗和弗里德里希领导的小组研究空气动力学、水下爆破和喷气火箭理论。超音速飞机带来的激波和声爆问题,利用“柯朗——弗里德里希——勒维的有限差分法”求出了这些课题的双曲型偏微分方程的解。布朗大学以普拉格为首的应用数学小组集中研究经典动力学和畸变介质力学,以提高军备的使用寿命。哈佛大学的G·伯克霍夫为海军研究水下弹道问题。哥伦比亚大学重点研究空对空射击学。例如,空中发射炮弹弹道学;偏射理论;追踪曲线理论;追踪过程中自己速度的观测和刻画;中心火力系统的基本理论;空中发射装备测试程序的分析;雷达。 普林斯顿大学和新墨西哥大学为空军确定“应用B-29飞机的最佳战术”。冯·诺伊曼和乌拉姆研究原子弹和计算机。维纳和柯尔莫戈洛夫研究火炮自动瞄准仪。由丹泽西为首的运筹学家发明了解线性规划的单纯形算法,使美军在战略部署中直接受益。 事例二 破译密码的解剖刀——数学 英国数学家图灵出生于一个富有家庭,1935年在剑桥大学获博士学位后去了美国的普林斯顿,他为设计理想的通用计算机提供了理论基础。1939年图灵回到英国,立即受聘于外交部通讯处。当时德国法西斯用于绝密通讯的电报机叫“Enigma”(谜),图灵把拍电报的过程看成在一张纸带上穿孔,运用图灵的可计算理论,英国设计了一架破译机“Ultra”(超越)专门对付“Enigma”,破译了大批德军密码。 1941年5月21日,英国情报机关终于截获并破译了希特勒给海军上将雷德尔的一份密电。从而使号称当时世界上最厉害的一艘巨型战列舰,希特勒的“德国海军的骄傲”——“俾斯麦”号在首次出航中即葬身鱼腹。 1943年4月,日本海军最高司令部发出的绝密电波越过太平洋,到达驻南太平洋和日本占领的中国海港的各日本舰队,各舰队司令接到命令:日本联合舰队总司令长官山本五十六大将,将于4月18日上午9时45分,由6架零式战斗机保护,乘两架轰炸机飞抵卡西里湾,山本的全部属员与他同行。 这份电报当即被美国海军的由数学家组成的专家破译小组破译,通过海军部长弗兰克·诺克斯之手,马上被送到美国总统罗斯福的案头。于是,美国闪电式战斗机群在卡西里湾上空将山本的座机截住,座机在离山本的目的地卡西里只有几英里的荆棘丛中爆炸。 中途岛海战也是由于美国破译了日本密码,使日本4艘航空母舰,1艘巡洋舰被炸沉,330架飞机被击落;几百名经验丰富的飞行员和机务人员阵亡。而美国只损失了1艘航空母舰,1艘驱逐舰和147架飞机。 从此,日本丧失了在太平洋战场上的制空权和制海权。 事例三 巴顿的战舰与浪高 军事边缘参数是军事信息的一个重要分支,它是以概率论、统计学和模拟试验为基础,通过对地形、气候、波浪、水文等自然情况和作战双方兵力兵器的测试计算,在一般人都认为无法克服、甚至容易处于劣势的险恶环境中,发现实际上可以通过计算运筹,利用各种自然条件的基本战术参数的最高极限或最低极限,如通过计算山地的坡度、河水的深度、雨雪风暴等来驾驭战争险象,提供战争胜利的一种科学依据。 1942年10月,巴顿将军率领4万多美军,乘100艘战舰,直奔距离美国4000公里的摩洛哥,计划在11月8日凌晨登陆。11月4日,海面上突然刮起西北大风,惊涛骇浪使舰艇倾斜达42°。直到11月6日天气仍无好转。华盛顿总部担心舰队会因大风而全军覆没,电令巴顿的舰队改在地中海沿海的任何其他港口登陆。巴顿回电:不管天气如何,我将按原计划行动。 11月7日午夜,海面突然风平浪静,巴顿军团按计划登陆成功。事后人们说这是侥幸取胜,这位“血胆将军”拿将士的生命作赌注

看看运筹与模糊学这本期刊撒,都是免费下载查阅的,

运筹学论文动态规划

真功夫称的能力真不怎么样,这个大的工作就耽误,真的没做过的,这么办的就去打两针,我的狗生了,你觉得这个过程中要的东西就都过度大姑质量带两三人。年龄结果怎么瞒过的?做这个东西技术的工人的生产力的过程怎么不去带,让她过的是南城,那里过的废话都过得大陆成功的。

动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解 决策过程最优化 的过程。20世纪50年代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域,并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了显著的效果。

虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如 线性规划、非线性规划 ),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定, 它依赖于当前面临的状态,又影响以后的发展 。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线.这种把一个问题看作是一个 前后关联具有链状结构的多阶段过程 就称为多阶段决策过程,这种问题称为多阶段决策问题。在多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的, 决策依赖于当前状态,又随即引起状态的转移 ,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化的过程为动态规划方法

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。 动态规划算法与分治法类似 ,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是, 适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的 。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。

以一个例子来说明动态规划的概念(leetcode第5题最长回文子串):

在这个例子中,一个字符串如果是回文子串,那么去掉头尾也照样是回文子串。而每一个字符都有可能是最长回文子串的一部分。

上面这个例子使用一个二维数组表示各个阶段的状态,这个二维数组的行是子串的起始位置,列是子串的结束位置。由于j>=i,所以只需要考虑二维数组的主对角线的上半部分,对角线上的值永远是true。用true表示这个子串是回文串,false不是回文串。那么对于某个固定位置的数组元素来说,它的值依赖于左下角的元素的值。进行填充的时候只能一列一列地进行填充,同一列的元素从上到下依次填充。

差很多。穷举法是用人工的方法把所有的可能项全部列出,再从中挑选符合约束的最优解,是最笨的一种方法。比如说要找出从A地到D地的最短距离,就要把所有从A到D的各种不同走法的距离都写出来,看哪个最小最优解就是哪个。变量少点还勉强可以,变量一多又麻烦又容易出错。动态规划是用科学的方法按照顺序或逆序,从中间变量开始依次往后或往前迭代推算,每次选出的都是最优解。这样就避免了那些从第一节点就非最优的一系列计算,只挑最优的算。在变量较多的时候使用,可以很快很准确的得到答案。

动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。比较著名的应用实例有:求解最短路径问题,背包问题,项目管理,网络流优化等。

运筹学整数规划论文

mapping algorithm[计] 映射算法,映象算法,变换算法映射算法;匹配算法;映像演算法;映射的方法双语例句1. The hemispherical surface is an important intermediary surface used in two - part texture mapping algorithm. 摘要在两步纹理映射算法中,半球面是使用较多的一种中介面.2. The thesis uses 0 - 1 integer linear programming to construct algorithm - hardware mapping models. 论文运用运筹学中的 0-1 整数规划方法建立算法 - 硬件映射模型.3. The paper introduces a new algorithm of bump mapping. 本文介绍一种新的凹凸贴图方法.4. A theorem of synthetic algorithm is proved by local quasi contraction mapping. 对局部拟压缩映射进行了讨论,并得到了关于综合算法的一个定理.5. A high saturation algorithm for gamut mapping with a minimized color difference is presented.提出了一种高饱和度小色差的色域匹配算法.

谈关于运筹学教学的几点思考 [论文关键词]运筹学 教学研究 课程建设[论文摘要]本文对运筹学教学中存在的一些问题进行分析,并就运筹学的教学目的、教学内容、教学形式等方面进行探讨,提出相应的改革思路和措施。 运筹学作为一个学科出现以来,特别是20世纪50年代以来,运筹学的研究与实践在我国得到深入发展,在工程、管理、经济等领域都发挥了重大的作用,并作为一门课程逐渐成为管理科学、系统科学、信息技术、工程管理、物流管理、经济、金融等专业的基础课程之一。然而,由于运筹学知识的综合性及内容上的数学复杂性,使得这一课程的教学表现出强烈的自身特色。结合几年来十几次运筹学教学的体会,对运筹学的教学方法进行一个粗浅的分析,以供探讨。 一、注重其发展背景及现实意义的讲授 运筹学作为一门应用科学,既不同于数学等经典学科,又不同于普通的应用学科,这一点可以从其发展背景中略见一斑。从运筹学的早期的发展来看,它可追溯到1914年提出的军事运筹学中的兰彻斯特(Lanchester)战斗方程、1917年丹麦工程师爱尔朗(Er-lang)在哥本哈根电话公司研究电话通信系统时提出的排队论的先驱者、20世纪20年代初提出的存储论最优批量公式等等。这些发展背景的介绍有助于学生对于这一学科的重要性、学科的特点、以及其中问题的解决思路都会起到非常重要的作用。所以,作为运筹学课程的讲授人员,要把不应在课程绪论的讲授中一带而过,而是要在讲授过程中让学生有所体悟。 二、注重其“学科交叉、多分支”的特点 应该说“学科交叉、多分支”是运筹学作为一门课程的重要特色,也是教学过程中需要认真处理、仔细推敲的一个关键问题。多学科交叉使得运筹学表现出知识结构和思维方式上的复杂性——既具有数学学科的理论特性又具有应用学科的自身特性、既具有理工学科的定量特性、又具有人文学科的分析特性、既追求“完美”又注重“实用”。作为授课教师而言要始终把握运筹学的这一特点,做到对发展现状的较好跟踪,注重对学生启发性引导;做到对授课对象的仔细区分,既包括对学生学历的区分又包括对学生专业的区分,对学生学历的区分主要体现在知识内容、授课学时、授课方式、课程要求等环节,而对学生专业的区分则主要体现在理学、工学和经管专业在知识深度与广度上的差异以及在理论和应用上的差异。而多分支特性则要求授课教师在授课过程中对各个分支有针对性的选择并能够做到对该分支理论及应用的充分把握。 三、注重“案例教学、实验教学”的`综合运用 案例教学与实验教学在运筹学教学中的运用主要在于对学生综合能力的培养。“案例教学”一方面可以在课程讲授过程中起到引导的作用,既可做到由浅入深、又可在较大程度上激发学生的学习兴趣,为接下来的深入做好铺垫;另一方面,又可在知识的运用上起到较好的教学效果,既激发学生的知识运用的兴趣又加深对知识理论的理解。“实验教学”既是对理论教学和案例教学的细化又是对学生动手能力的有效引导手段,特别是对学生脚踏实地的学习态度是一个较好的锤炼,同时也对学生长期以来单纯的“分数为上”的学习方式是一个有效的冲击。正是基于上述考虑,笔者认为在运筹学的讲授过程中要充分重视“案例教学”和“实验教学”的运用,充分考虑二者在运筹学教学过程中比重和搭配问题。 四、注重教学方式的运用 随着教育技术的飞速发展,多媒体教学在课堂教学中运用越来越普遍,它在一定程度上提高了教学的质量和教学率,同时又带来相应的弊端。尤其是多年的高校扩招和运筹学课程的普遍适用性使得多数运筹学课程为大课教学,这就促使教师为了避免后排学生看不清而几乎抹去了板书的运用。所以,在大班化的背景下,板书与多媒体的矛盾始终是运筹学教学中一个难以解决的问题。 五、注重对考核方式的研究 考核作为学习过程中的一个重要环节,其设计的好坏对整个教学质量有着重要影响。在传统的考试方式中,往往过多得强调知识点的掌握情况,而在一定程度上忽视了应用能力的培养。所以,不仅要在教学过程中注重“案例教学”和“实验教学”的运用,又要注重对学生实践能力方面的考核,不仅包括学生对分析能力、动手能力的考核,还要包括对学生探索精神和探索能力的考核。基于此,笔者认为在运筹学考核过程中“专题考核”和“研究论文”都可作为传统考核方式的重要补充。 总之,教学内容、教学方式、教学媒介、考核方式都是运筹学授课教师始终需要认真思考的问题。不仅如此,还要综合考虑自身高校的教学特点,特别是该课程在专业体系中作用的考虑以及该校教学管理部门的课程管理特点。该文仅仅是笔者一点粗浅体会,不足深论,仅供参考。 [参考文献] [1]杨茂盛,孔凡楼,张炜.对运筹学课程教学改革的看法和建议[J].西安建筑科技大学学报(社会科学版),2006(12),108-110 [2]张润红.从整体角度对工程管理专业《运筹学》教学的探索[J].理工高教研究,2005(2),94-95 [3]胡发胜,刘桂真.国家精品课程运筹学的教学改革与实践[J].中国大学教学,2006(7),9-10 论文相关查阅: 毕业论文范文 、 计算机毕业论文 、 毕业论文格式 、 行政管理论文 、 毕业论文 ;

数学建模论文线性规划最优问题

线性规划问题,是优化问题的一种。按照一般的方式,画出示意图,再列出目标函数和约束条件,然后用lingo求解就

模型?一般用圆柱图,俗话称为饼型图。说起这个饼型图和数学建模的关系,那是相当的密切啊!他们的关系要追溯到中华五千年其中三千年中的一年的有一个孩子,他老爸要出门干活,就给他做了个饼,让他做数学题要画圆的时候有工具,饿的时候有粮食,但是他把那个饼挂在脖子上画不了图。这就是古代饼型图的由来。再说到极限,就需要说一说这个孩子的悲惨结局,就是因为他把饼挂在了脖子上,由于脖子忒短,下巴忒大,他就没能吃到饼的最外边一圈,也就是饼的极限,所以他就饿死了!相信你可以体悟数学建模的精髓,成功夺取“成功参赛奖”!!!!!!!加油!!!

相关百科

热门百科

首页
发表服务