首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

耐火材料编辑部论文格式

发布时间:

耐火材料编辑部论文格式

高铝矾土感应炉衬的研究与应用 (XXXXXXX 材料工程系 内蒙古 包头 014030) XX XXX XXX[提要] 阐述了高铝矾土炉衬较高的耐火度、优良的热稳定性、较好的抗渣性、良好的抗蚀性、炉衬的致密化烧结。适用于多种有色金属,普通铸铁、球墨铸铁、及多种合金铸铁,碳钢、合金钢、不锈钢和耐热钢的熔炼。熔炼中金属合金元素烧损低,可超装一倍的金属炉料。炉衬采用低温烘烤、快速升温、高温短时间致密烧结的工艺措施。炉衬的使用寿命多在150炉次左右,最高可达200炉次。关键词:高铝矾土 炉衬 感应炉 致密烧结一、前言本文研究的高铝矾土炉衬从冶金反应上,不仅适用于各种有色金属、普通铸铁、球墨铸铁,及各种合金铸铁,而且还适用于各种碳钢、合金钢、不锈钢和耐热钢的熔炼。用高铝矾土炉衬熔炼金属合金其元素烧损要比石英砂、镁砂炉衬低,不仅提高了合金的利用率,而且大大增强了抵抗合金、溶渣对炉衬的侵蚀能力。高铝矾土炉衬的另一大优点是耐热度高、寿命长、线膨胀系数小、仅是酸性、碱性炉衬的 1/2~1/3, 大大提高了炉衬在间歇生产生条件下的使用寿命。炉衬的热稳定性好,耐急冷急热性强,高温荷重大,抵抗金属冲蚀作用强及合金元素烧损少,是石英砂、镁砂炉衬所不及的。高铝矾土炉衬的壁厚可做得较薄 , 在生产中几乎能超装一倍的金属炉料。此外,炉衬的结烧工艺采用低温烘烤、快速升温、高温短时间烧结的工艺措施。采用这一新工艺所用的时间仅为旧工艺的 2/3~1/2。省时省电炉衬烧结良好。高铝矾土炉衬的使用寿命多在150炉次左右,最高可达200炉次。二、高铝矾土炉衬的性能1、物理性能(1) 较高的耐火度高铝矾土化学成份AL2O3 80~90% ;Si02 7~15% ;Fe203 0.8~1.7% ;Ca0 0.2~0.5% ;MgO 0.15~0.5%; K20 0.180~.5%;Na20 0.1~0.3% ;Ti02 1.5~4.3% 。耐火度 1750℃~1800 ℃,可在 1650 ℃1~750 ℃下稳定工作。能减轻钢水对炉衬的冲涮损耗,延长炉衬寿命。而较纯的石英砂耐火度为 1710 ℃。(2)优良的热稳定性高铝矾土用作炉衬,烧结后的矿物组成相中多为莫来石,其次为刚玉及少量方石英和玻璃相。莫来石的线胀系数 (4.5-5.3 × 10-6mm/mm•℃ ) 大约只有镁砂和石英砂的 1/3,刚玉的线胀系数 (8.O× 10-6mm/mm •℃ ) 也比镁砂和石英砂低。当 属于硅线石组成时 (含AL2O3 62.9%), 其线胀系数可低为 3.2× 10-6mm/mm•℃。因 此,高铝矾土炉衬较镁砂和石英砂炉衬的抗热冲击性能优良得多,有助于减轻热应力,使它的耐急冷急热性较好。在使用中即使产生裂纹也极小,若配料、打结得当,就是采用问歇式熔炼,也不会产生裂纹。石英砂、镁砂炉衬线膨胀系数大,工作时内外温差大,炉衬易产生裂纹和开裂。石英砂炉衬其寿命一般只有几十次 , 而镁砂炉衬的寿命则更低。镁砂、石英砂炉衬在烘炉升温时,体积发生较大膨胀,不得不采取缓慢升温延长烘炉时间的操作,以尽量减少裂纹和防止塌炉。而高铝矾土炉衬就无上述问题,可大大缩短烘炉时间,又不会产生裂纹,从而既保证了炉衬质量又降低了能耗。(3)耐压强度 30-40N/mm2( 经5小时1000℃煅烧 )是普通粘土砖的3-4倍。炉衬的机械强度好、壁厚可以减薄,可超装一倍的金属炉料。在固定的感应器条件下,壁厚薄则增揭容量就相对大些;同时减少了感应器内部不导磁的空间,漏磁减少,能得到较高的电效率。这样,生产率较高且耗电量又低。(4)导热系数 1.7-2W/mK。(5) 松容重 1600kg/m3。(6)显微孔隙率 18-22%。(7)烧结后的容重 1750-1770kg/m3。2.较好的抗渣性能高铝矾土炉衬抗碱性渣的能力优于石英砂炉衬, 高铝矾土炉衬中 AL203比 MgO更稳定,两者反应较弱可生成铝镁尖晶石,其熔点 2135 ℃ ,AL203 与MnO 作用生成锰尖晶石,其熔点1560℃, AL2O3与 FeO 作用生成铁尖晶石,其熔点 1780 ℃ 。AL203与MnO、Fe2O3复合作用生成熔点为 1520 ℃的共晶体,与 Cr203 形成固溶体 , 此固溶体对炉衬有增强作用。直得注意的是若熔炼完高铬合金后最好不要熔炼无铬或低铬合金,否则会造成 Cr203 脱溶使炉衬表面疏松、强度下降。高铝矾土炉衬与 C、Fe203、SiO2基本不反应,而与 ZnO 生成尖晶石与B203、P205、CaO生成难溶的铝酸盐。CaO、AL203、Fe203 复合作用对炉衬的侵蚀作用要比单独作用强一些。与 Na20、K20 作用生成易溶化的共晶体及化合物。故溶渣中 Na20、K20、CaO 对高铝矾土炉衬侵蚀较大,而石英砂炉衬对溶渣中的 MgO、Zn0、PbO、CaO、Na20、K20反应激烈更易造成炉衬的侵蚀,CaO、Si02、FeO复合作用形成易溶化合物,特别是ZnO、PbO对炉衬侵蚀极大。石英砂炉衬中 Fe203 含量要求严格控制、由机械破碎,研磨的石英砂( 碱性炉衬中的镁砂 )应严格磁选 , 否则会造成炉衬漏电,产生炉衬的烧穿事故。3、良好的抗蚀性能高铝矾土炉衬因其矿物组成主要是莫来石其次是刚玉及少量方石英和玻璃相,其化学稳定性高,在高温下呈弱碱性与AL、Mn、Fe、Si、Sn、Go、Cr、Ni基本不发生化学反应。与Zn、Pb、Mg、Ti等反应微弱与Cu反应较明显( 熔炼铜合金时 )。而石英砂炉衬与Al、Mg、Pb、Zn、Mn等均有明显反应。Zn、Pb ( 黄铜 ) 会使炉衬严重侵蚀,甚至常常在短时间内将炉衬烧穿,Al、Mg、Ca等均会使炉衬严重侵蚀。在熔炼低硅铸铁时,碳对炉衬的侵蚀,炉衬裂纹的扩展影响也较大。一般来讲高铝矾土炉衬比石英砂炉衬对合金的收得率高 1.4%, 而总烧损不可回收损失低 1. 4%。其原因是高铝矾土炉衬造渣作用小,液体不易氧化而且从渣中还原金属的反应较强。高铝矾土炉衬在 1500 ℃以上长时间保温对Cr、Ni、Al、Cu几乎没有烧损 ,1350 ℃以下C、Si无变化,1400 ℃-1500 ℃C、Si每小时烧损 0.04-0.06% ;Si每小时烧损 0.013-0.017%;1500 ℃保温 3 小时Mn的相对烧损仅为 2.7%。石英砂炉衬熔炼耐蚀铸铁时其元素烧损为:C 2.9%、Si 5.18%、Mn11.5%、Cr 1.16%、Ni0.12%、Fe0.8% 、S 0.38% 。对可锻铸铁其元素平均烧损为:C 2.9%、Si 8%、Mn 7%。对高强度铸铁元素烧损为:C 2%、Si 5.25%、Mn 5.09%、P 2.8%、Fe0.24% 、S9.2% 。由于高温下高铝矾土比镁砂更稳定,在一般条件下与Cr、C、Mn元素的作用较弱,故炉衬浸蚀轻微。由此可知,高铝矾土炉衬不仅适用于多种有色金属、普通铸铁、球墨铸铁,及各种合金铸铁,而且还适用于各种碳钢、合金钢、不锈钢和耐热钢的熔炼。 三、高铝矾土炉衬的致密化烧结感应炉炉衬烧结的目的是把打结好的靠近 融熔金属一面一定厚度的耐火材料转变为致密体。只有致密化烧结的坩埚才能承受高温钢(铁)水的冲刷和熔渣的侵蚀。坩埚烧结的致密化程度与耐火材料的化学组成、粒度配比、烧结工艺和烧结温度等因素有关。1、粒度配比合理的粒度配比可获得烧结前的最小气孔率。如果粒度配比不合理,打结后炉衬内的气孔率较高。烧结过程是由颗粒重排、气孔充填和晶粒长大等阶段组成。如果气孔率较高,在烧结过程中难以使绝大部分气孔被充填而影响其致密化。另外,合理的粒度配比还可获得最大抗热冲击性。为兼顾低的气孔率和高的抗热冲击性,粒度的配比是:粗(3~5mm):中(0.5~1mm): 细(﹤0.1mm)=60:10:30。2、粘结剂在高温下,少量的添加剂,与主晶相生成少量液相,可加速烧结过程的进行, 并能起到 -定的粘结作用。高铝矾土熟料中含有均匀分布的 Fe203、CaO、MgO、TiO2等微量杂质,在高温下它们与主晶相生成少量液相, 能够满足烧结过程中扩散传质的需要Fe203、CaO 和MgO在烧结过程中还是莫来石化的促进剂。故 -般情况下不需加入任何粘结剂。但对小容量感应炉,因打结完毕后胎具要取出,为防止烘烤过程骨料颗粒散落,故要加入1~1.5%工业硼酸 (H3B03 )。3、烧结温度由烧结机理可知,只有体积扩散才能导致坯体致密化。表面扩散只能改变气孔形状而不 能引起颗粒中心距逼近,因而不发生致密化过程。在高温烧结阶段主要以体积扩散为主,而在低温阶段以表面扩散为主。在坩埚的烧结过程中,如果在低温停留时间较长则不仅不发生致密化反而因表面扩散使气孔封闭,内部气体难以排出遗留在烧结层中。这样将会使坩埚的使用性能降低。通常取 Ts=0.8~O.9Tm (Ts为烧结温度 ,Tm 为熔融温度 )。从烧结理论上讲,在烧结过程中应尽快地从低温升到高温,以便为体积扩散创造条件。因此,采用高温短时间烧结是获得致密坩埚的有效手段。烧结温度一般控制在1450℃~1500℃较为合理,过高的烧结温度将导致晶界迅速移动而使处于晶界上的气孔来不及向外扩散就被包入大 晶粒内,其结果必然产生晶体缺陷。因此,必须控制烧结温度,使晶界缓慢移动,最大限度地消除气孔,从而获得较致密的坩埚烧结体。4、烧结工艺在烧结坩埚过程中的具体做法是:炉衬打结完毕后,自然风干24小时,以5~30% 的功率烘烤。间断送电让炉衬保持初期红色(≤500 ℃), 直至烘干(4~5小时即可)。随之加入 1/3 的炉料并以大功率全负荷运行使炉料快速熔清,在熔化温度保温一小时。接着进入后期的熔炼工序。这就是所谓的低温烘烤、快速升温、高温短时间烧结的工艺措施。采用这一新工艺所用的时间仅为旧工艺的 2/3~1/2。省时省电操作方便且烧结良好。使用中未发现裂纹和其他不良现象。炉衬使用寿命可超过150炉次。最高可达 200 炉次。四、结论1、 适用于多种有色金属 , 普通铸铁、球墨铸铁,及各种合金铸铁,而且还适用于各种碳钢、合金钢、不锈钢和耐热钢的熔炼。2、 用高铝矾土炉衬熔炼金属合金其元素烧损要比酸性、碱性炉衬低,不仅提高了合金的利用率,而且大大增强了抵抗合金、溶渣对炉衬的侵蚀能力。3、 耐热度高 , 寿命长,线膨胀系数小,仅是酸性、碱性炉衬的 1/2-1/3, 大大提高了炉衬在间歇生产生条件下的使用寿命。4、 高铝矾土炉衬的壁厚可做得较薄 , 在生产中几乎能超装一倍的金属炉料。5、炉衬采用低温烘烤、高温短时间快速烧结工艺,时间仅为原工艺的 2/3~I/2, 致密化速率为原工艺 的 2 倍以上。不仅节省了烘干烧结的时间, 而且也节省了电力。6、炉衬烧结良好、致密,使用中未发现裂纹和其他不良现象,高铝矾土炉衬的使用寿命多在150炉次左右,最高可达 200 炉次。参考文献1 李景仁。高铝矾土感应炉坩埚的致密化烧结。铸造 1991。32 詹国祥。熔炼络系铸铁的感应炉炉衬。铸造 1995。53 《熔模精密铸造》编写组。熔模精密铸造 国防工业出版社 19844Research and application of induction furnace lining of high bauxite(Baotou vocation technology college, Department of material engineering, Inner Mongolia Baotou 014030)SunMin WangShuTian ShiJiDongAbstract:Furnace lining of high bauxite have get high refractoriness, fine heat resistance, better resist press residues, and well resist corrosion .By means of Tight agglutination used for smelting of many kinds of non-ferrous metals, ordinary cast iron, cast iron with graphite, cast alloy iron, carbon and alloy steel, stainless steel and heat resisting steel. Alloy element loss by burning is lower in smelting; Furnace material can be loading one multiple. Techniques measures of hypothermia bake, quick lift temperature and short time high temperature tight agglutination are applied in Furnace lining. The life period of furnace lining usually are 150 times and200 times in max.Key words :High bauxite; Furnace lining; Induction furnace; Tight agglutination

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

1.1原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

1.2PANIF的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入1.82 g CTAB,0.63 g 草酸以及0.9 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 1.3GO的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

1.4PANIF/rGO复合材料制备

按照一定比例将含一定量的PANIF液与一定量的6.8 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为0.5 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

1.5仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为-0.2~0.8V.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

2.1形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

2.2FTIR分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

2.4电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为521.2 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为0.5 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为54.3%,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达21.8亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

2.1 研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

2.2 试验与研究

2.2.1 铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含58.66%A12O3和41.34%FeO。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为4.39g/cm3,莫氏硬度为7.5。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

2.2.2 原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

2.2.3 铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

2.3 产品的性能

2.3.1 结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

2.3.2 强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

2.3.3 具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

2.4 产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

化工论文格式范文

导语:化学工程其实就是指一系列的化学生产活动,在现代的环保减排理念之下,化学工程的整个过程应该节能减排和低碳环保。下面是我分享的化工论文格式的范文,欢迎阅读!

题目:化学工程中的化工生产工艺

摘要:

化学工程其实就是指一系列的化学生产活动,在现代的环保减排理念之下,化学工程的整个过程应该节能减排和低碳环保。也正是随着这些理念的出现,一系列新型的化学工艺以及加工生产技术逐渐走进化学工程当中。综合生产效益和生产效率的两个点,化工生产应该在环保化的基础之上促进高效化发展。将对化学工程中的化工生产工艺进行全面的分析。希望对相关技术人员有所启发。

关键词:化学工程;化工生产工艺;化工技术

目前,化学生产工艺在化学生产中的发展一直处于开发阶段,而化学工艺的研发在近几年却变得逐渐火热起来,其护腰原因还是因为化工生产在一定程度上对我们的自然环境造成了污染。随着节能环保和低碳生活理念的持续火热,人们对环境的关注度也越来越重,因此,化工生产就应该及时做出改变。在过去,化工生产的污染排放问题一直得不到科学合理的解决,化工废料污染的排放,给我们的生活环境造成了较大的污染。

1我国化工生产的现状

机械工业、煤矿工业和化学工业是我国三大工业主体。之所以化学工业能够成为三大工业中的一部分,其主要原因就是因为化学工业能够生产出大量我们生活所需的物件,能够最大限度的满足人们的生活需求,进而推动了我国农业和工业的进一步发展。肥料是支撑我国农业不断发展的基础要素,在很多程度上维持这我国的经济水平稳定。但是,在化学生产过重,势必会产生一定的化学废料并对周围环境造成一定范围的污染,尤其是化工企业所排放出来的“三废”。

1.1化工生产效率较低

我国三大工业存在一个相同的问题,那就是整体生产效率较低。而在化学工业这方面,其主要的原因就是因为生产环境较为恶劣,再加上化工生产设备存在质量问题。例如,在生产化学肥料时,反应器皿往往不能达到正常化学反应所需的温度,进而导致化学反应不充分,最终导致废气问题出现。另外,如果化学反应不充分,那么最终形成的化学产品合格率就比较低,难以满足人们生活的使用需求。

1.2对自然环境污染较为严重

化工生产可以说是我国目前最为严重的污染源之一,尤其是重金属和化学废料的污染。从化工厂附近的水源当中抽取检测发现,水中的污染物严重超标,进而导致水源受到污染,间接影响到周围的土质,导致范围内的环境出现失衡问题。另外,化工企业为了节约生产成本,违反国家的环保法律,直接将一些化工废料排入到自然环境当中,进而造成大范围严重的化工污染。而在化学反应过程中,化学生产的连续性较低,进而导致整个化学工程反应迟缓,工程的进度受到严重的影响,进而导致整个生产环节出现脱节现象,这就会导致化工生产受到较大的影响。而导致脱节问题出现的主要原因还是应该化工生产工艺不合格所导致的。简单来说,我国的化工生产主要存在生产效率低、企业环境保护意识差“、三废”处理不科学和化工生产技术低下等问题。也正是这些问题的存在,严重阻碍了我国化工生产的发展。

2降低我国化工生产污染的措施

从分析我国化工生产现状发现,我国的化工生产技术和环境还不是很完善,各个工作环节都还存在缺陷。而针对这些问题的特点,我们就应该对化工工艺进行改进,而从化工工艺角度来看,我们又应该从哪几个方面做起呢?笔者经过实践工作总结了解,要想降低化工生产中的污染问题就必须做好以下几点:

2.1优化反应环境,强化反应条件

反应条件是化工生产中最为重要的环节,为了达到最高效的化工反应,提高生产效率,降低废料的出现量,反应条件就必须做到最好。所以,提升化工生产质量的关键点就在于提高化工生产中的反应条件。所使用的催化剂必须在一定反应时间之后才能够使用,进而保障生产过程中的高效性,降低化学废料的产出量。

2.2做好废料环保处理工作

目前,我国法律明文规定,化工生产中产生的`重度污染物不能直接排放到自然环境当中。另外,还有我们常见的废气,这些化工生产废料都应该在经过处理之后才能够进行排放。化工生产废水的排放必须采用化学综合的方式来对其进行处理。其工作原理非常简单,就是通过化学反应的原理,将废水中的重金属物质通过沉淀的方式过滤出来,进而降低废水的污染度。

2.3从化工生产技术入手

只有从化工生产技术入手,才能够从化工生产根本上解决环境污染问题。例如,生产氧气的方式有很多,那么哪一种生产方式才是最有效和最环保的呢?因此,我们应该针对生产环境的不同,选择科学的生产方式,对于原料的选择更是应该灵活应对。

3结论

化工生产中的工艺问题还有待进一步的研究,更多的技术点还有待进一步的强化,自然和化工生产之间的平衡点我们还未找到,因此,则应该更加努力的加强研究,对传统化工工艺进行优化。

参考文献

[1]李积云.化学工程中化工生产的工艺解析[J].中国石油和化工标准与质量,2013(2):22.

[2]王杲,吴晶.关于化学工程中化工生产的工艺的分析[J].化工管理,2015(18):167.

[3]刘伟,李霞.化学工程与工艺专业煤化工特色建设浅谈[J].河南化工,2014(5):61-63.

[4]高改轻.化学工程中化工生产的工艺解析[J].民营科技,2014(7):73.

题目:化学工程技术创新在石化工业装置实践研究

摘要: 化学工程技术是石油工业发展的重要基础,其技术的创新和发展对推动整个石化行业发展有着重要的意义。化学工程技术能有效解决石化工业装置建设中的问题,并且能对其进行改造,让石化工业得到更好的发展。本文主要通过讲述石化工业装置中关于工业炉的改造,以体现化学工程创新在其中的意义。

关键词:化学工程;技术创新;石化工业;装置建设

引言

化学工程是研究化学工业为代表的,是对石化工业的生产过程中有关化学过程与物理过程的原理和规律进行研究,并利用这些规律来解决工业装置的建设。随着石化工业的不断发展,石化工业所涉及的范围也越来越广,因此重视化学工程技术的创新,并在石化工业装置建设中得到实践与发展是非常必要的。而同时,随着石化工业装置建设的发展,化学工程技术创新提供了必要的条件。

一、石化工业装置建设中的主要改造的部分

在石化工业装置中,工业炉是整个生产工艺中的重点设备,无论是炼油、有机原料的炼成和合成树脂的工艺都需要借助不同工业炉完成。比如在炼油中,最为常见的石化工业装置有裂解炉、转化炉和加热炉等。它们能够按照不同的作用,不同的工艺要求,发挥不同的效果。但目前大多数的石化工业装置仍然是根据其外形将工业炉分为五类:

1.管式加热炉:按形状分为圆筒炉、立式炉、箱型炉。管式炉炉体一般由钢架及筒体(或箱体)组成,炉内衬有耐火材料和隔热材料,还有炉管系统、炉配件和烟囱等部分。根据其受热形式有纯辐射式和辐射-对流式。管式加热炉是石油化工行业最常用的炉型,以后各节主要围绕管式加热炉展开介绍。

2.立式反应炉:这类炉的炉体基本上是受压容器,如甲烷化炉、中(低)温变换炉、气化炉、二段转化炉等;另一部分类似平顶(底)或锥形顶(底)的常压容器,如沸腾炉、蓄热炉、煤气发生炉等,炉体多数均有复杂的内件和衬耐火材料,催化剂填料等。

3.卧式旋转反应炉:炉体呈卧式旋转筒体,内部装有螺旋输运器或加热炉管,外部有传动及减速装置,如HF旋转反应炉等。

4.带传动、升降投料装置的反应炉:这类炉设备类似容器,但外部有投料提升装置,炉内有内衬或砌筑耐火和隔热材料,如电热炉等。

5.其他工业炉:焚烧炉:用于废气、废液、废渣的焚烧。将其中有害物质经焚烧转化为无害物质排出。如污泥焚烧炉、硫磺回收装置焚烧炉。干燥炉:用于干燥工艺物料。热载体炉:塑料厂用的较多。当化学工程技术得到创新,石油化工装置也需要做出相应的改变,以发挥化学工程技术的作用,提升自我生产率。所以为了进一步提升我国石油工业事业的发展,并且配合化学工程技术的创新发展,石化工业装置的主体——工业炉也应该进行相应的改造。

二、化学工程技术创新在炼油方面的实践与进展

1.催化裂化技术

在炼油装置中的创新体现催化裂化是石油炼制过程之一,是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等的过程。催化裂化的主要工程需要在裂解炉中完成,裂解炉,主要以石油馏分为原料,进行热裂解生产烯烃,其结构特征为:立管加热裂解炉。裂解炉大多数为立式钢架结构炉体,将几种不同管径组合成一组,炉底有油气联合喷嘴;对流室在顶部,为卧式盘管,预热原料或燃料等。如今催化裂化技术已经成为石化工业装置建设中的核心技术,是石化工业炼油都需要用到的一种方式。在这项技术中就体现了许多化学工程技术的创新之处,如自动开发的高效雾化喷嘴,PV高效旋风分离器、油浆旋液除尘和烟气能量回收等。这些技术的创新与使用,很好的解决了炼油中长期存在的回收烟气压力、取出多余热量等难题。有效的提升了炼油的效率和环保性,让炼油取得了更好的经济效益。

2.炼油装置

炼油装置中的核心部分为常压装置,是处理炼油的重要装置。能有效提升其处理能力,降低能耗,提升拔除率。镇海炼化与SEI对炼油装置大型化开发应用了一系列化学工程创新技术,如在两段闪蒸、三级蒸馏节能型常压蒸馏技术应用其中,并使用真空技术来降低低压降、高减压的拔除率,是其研发出的炼油装置成为目前国内最大的长减压装置。经过实际的投入运用,该常减压设置的处理能力达到了102%,总拔除率达到了79.12%,整个装置的能耗量低至每吨11千克标油。

3.催化重整技术创新

在炼油装置中的体现催化重整是在催化剂的作用下,对油馏分中的烃类分子结构进行重新排列成新的分子结构的过程。石油在炼制的过程中需要在加热、氢压和催化剂发挥作用的共同环境中,让原油中蒸馏所得的轻汽油馏分转变成富含芳烃的高辛烷值汽油,并副产液化石油气和氢气的过程。催化重整中可以用作汽油调合组分,也可以使用芳烃抽提制取苯、甲苯和二甲苯,副产的氢气是炼油厂中重要的氢气来源。需要注意的是,制氢装置转化炉的结果与其他工业炉的结构不同,炉管里都装有催化剂,并在关于制氢反应过程是在炉管内完成的。炉内温度较高,达到1000°C,反应介质出口温度为800°C左右。而催化重整技术的创新主要是在其中应用了新型再生器催化剂分布器,能均匀的分布下料,有效提升反应器的利用率和催化剂的再生治疗。该技术在进气方式及气体分配流动技术也有所创新改进,通过改善气体的轴向及径向分流的均匀性及提升了气体在径向床成内的压力降和气体在轴向的压力分布情况。这些技术方面的创新都有助于提升整个催化重整技术的效果。

4.新型塔板、填料和冷换设备

在改进炼油中相关的化学工程技术中,选择合适的材料能有效保证创新技术的效果发挥,并能帮助炼油厂的合理成本管理。新型规整的填料或乱堆填料已经成为催化裂化中吸收稳定塔和常减压塔的主要材料。高效换热器也已经成为常减压装置的主要构件,其能很好的回收烟气热能,将热炉热效率提升到90%以上。此外,表面蒸发冷凝器、表面多孔管换热器也已经在炼油装置中得到广泛的应用与普及。

三、化学工程技术创新在有机原料方面

1.乙烯成套技术

自“九五”计划以来,我国乙烯事业就开始快速的发展,仅2000年中国石化集团公司的乙烯产量就达到287×104t,并且在乙烯成套技术方面有了很好的创新和发展。石化股份公司对裂解炉和分离工艺技术进行了创新改进,通过在文丘里管流量控制技术对裂解原料在众多的辐射段炉管中的流量实现了精密的均匀分布控制;应用“湿壁”模型解决了废热锅炉结焦的问题。此外,在底部供热和侧壁供热中是由辐射段,建立有效的供热模式系统,让供热更快、更为均匀。乙烯分离技术一直是化学工程技术集中度非常密集的一个范围,并且对于乙烯大型化节能效果与深冷条件都有着非常严苛的要求。通过对该技术的不断研究与创新,在通过多种考虑后,石化公司选择中型乙烯作为乙烯分离技术创新、改进的切入点。如今该项技术已经成功的在石油化工中得到使用。

2.甲苯歧化和烷基转移成套技术

甲苯歧化和烷基转移技术是芳烃技术中的一个重要组成单元,是满足石油化工对二甲苯需求的有效的措施之一。上海石油化工研究将HAT系列作为催化剂,并以此为基础研制出大型轴向固定床反应器和反应器进口气体分布器,以提升甲苯歧化反应的效率,并提升对二甲苯的回收率,满足了石油化工对二甲苯日渐增大的需求。如今一套甲苯歧化和烷基转移成套技术所使用的40×104t/a已经安全、稳定的使用了6年。

3.苯乙烯成套技术

在苯脱氢制成苯乙烯的成套技术中,乙苯脱氢轴径向反应器是该项技术的创新点。对反应器中的原料与反应物料流向进行更合理、更环保、更节约的改进,能降低对催化剂的使用量,并提升乙苯烯的制成率。华东理工大学在6×104t/a和10×4t/a的反应器中进行多次实验后,终于建立了两维气体的数学模型,并计算出反应器入口处轴向催化器的气封高度。另外,也有研究发现使用新型的高效静态混合器,是解决原有反应器入口处乙苯与水蒸气在高温和高速流动状态发生的质量偏离及乙苯脱氢转化率偏低的问题的最好方式。

4.化工型MTBE合成及裂解一体化成套技术

化工型MTBE合成及裂解一体化技术为制出高纯度的聚合级异丁烯,上海石油化工研究院就以下两点进行了创新:(1)使用带有环柱形催化剂装填构件,以实现深液层塔盘的催化蒸馏技术的使用;(2)在预反应器中是由外循环工艺,改变床层抽出的位置。这两点的创新抓住了化工型MTBE合成及裂成一体化技术的关键所在,因此其所发生的效果也是颠覆性的。在MTBE裂解单元中使用固体酸裂解工艺技术,并适当的放大固定床反应器,并对裂解产物分离和精馏塔系进行合理的设计。目前该项技术已经得到很好的使用,以燕化公司为例,其所生产的高纯度异丁烯很好的与丁基橡胶合成。

结论

化学工程技术的创新对石化工业装置建设的发展发挥着重要的促进作用,但也正是因为石化工程装置建设要不断满足市场的需求,不断自我发展,自我突破,才为化学工程技术提供了良好创新环境。二者相辅相成,相互促进。所以只有不断注重化学工程技术的创新,重视合理的引进、吸收国外的经验,并根据本国的国情与条件进行合理的研究,是能有发现好的创新点,大大提升化学工程技术的效率。

耐火材料研究方法论文

This paper presents an experimental studyabout the impact of reflective coatings on building surface temperatures, airtempera- ture, globe temperature, energy consumptionandthermal comfort for buildings located in Shanghai, China. Thislocation is characterized by hot summers and cold winters, and the overalleffects of reflective coatings are complex considering the potential benefitsin the summer and the potential penalties during winter. In parallel, anotherexperiment with four smaller test cells was carried out to investigate theimpact of envelope material thermal properties combined with reflectivecoatings.这篇论文介绍了有关反射涂层的实验研究,分别是对位于中国上海的建筑物的表面温度,空气温度,温度计的温度,能量损耗和热舒适度的影响。本位置的特点是炎热夏季和寒冷冬季的气候,考虑到夏季潜在的收益和冬季潜在的罚款,发射涂层的整体效应比较复杂。同时,有关四个更小实验间的实验已经被执行用来调查包含了反射涂层的外层材料的热力学性质。

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

1.1原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

1.2PANIF的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入1.82 g CTAB,0.63 g 草酸以及0.9 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 1.3GO的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

1.4PANIF/rGO复合材料制备

按照一定比例将含一定量的PANIF液与一定量的6.8 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为0.5 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

1.5仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为-0.2~0.8V.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

2.1形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

2.2FTIR分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

2.4电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为521.2 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为0.5 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为54.3%,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达21.8亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

2.1 研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

2.2 试验与研究

2.2.1 铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含58.66%A12O3和41.34%FeO。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为4.39g/cm3,莫氏硬度为7.5。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

2.2.2 原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

2.2.3 铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

2.3 产品的性能

2.3.1 结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

2.3.2 强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

2.3.3 具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

2.4 产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

焚烧炉工况及对衬里耐火材料的要求1、 工况条件:处理稀土,炉本体正常使用温度为800~900℃。2、 对耐材的具体要求:要求耐材有较好的抗酸碱腐蚀性,较好的热震稳定性及良好的高温性能。二、焚烧炉用耐火材料的设计根据焚烧炉工况对耐火材料的要求和各部位工作温度及壳外壁温度等因素。采用耐火材料的方案如下:炉本体采用两层结构,即靠近钢壳砌筑114mm厚的粘土砖,工作衬采用134mm厚的石墨砖。三、工程施工量如下:石墨砖: 170吨粘土砖: 180吨高温胶泥: 30吨四、耐火材料技术指标1、石墨砖理化指标体积密度(g/m3) ≥1.6耐压强度(Mpa) ≥23显气孔率% ≤21灰分% ≤0.5导热系数(W/M.K) 室温 ≥45200℃ ≥43600℃ ≥40800℃ ≥352、N-4粘土砖理化指标耐火度℃ 1690荷重软化开始温度℃ ≥1300重烧线变化%1350℃×2h -0.5~+0.2显气孔率% ≤24耐压强度(Mpa) ≥20五、施工方法:设备经有关人员验收合格后进行耐火材料的施工。炉本体分上下两部分分别进行耐火材料的施工:首先砌筑下半部分耐火砖,靠近钢壳先砌筑耐火粘土砖,从中间最低处向两侧高处砌筑至半圆处,粘土砖全部砌筑完成后开始砌筑石墨砖,也砌筑至半圆处;下半部分砖全部砌筑完成以后,开始砌筑上半圆:首先支设半圆木模,建议木模宽度为1~2 块砖的宽度,先砌筑石墨砖,然后砌筑粘土砖,从两侧向中间砌筑,砌筑一块石墨砖再砌筑一块粘土砖。耐火砖砌筑注意事项:1、砌筑泥浆:对于所砌耐火砖,应采用配套胶泥,胶泥的强度(1000℃)应大于1.5Mpa,粘结时间大于90分钟,且具有较好的和易性和涂抹性,桶装胶泥打开后要连续使用,如发现有结块现象和涂抹性不好应停用。干粉泥浆调制时应采用洁净的工业用水,必须称量准确,搅拌均匀,不应在调制好的泥浆内任意加水或结合剂。不同品种、牌号的泥浆不应混用。当天搅拌的泥浆以当天用完为宜。2、砌筑砖缝应小于1.5mm,且保持砖缝均匀,不允许有大于3mm的砖缝。3、在砌筑耐磨耐火砖时,原则上不需要切砖,实在需要可允许,但不得使用小于半块砖尺寸的砖砌筑,应将砖表面清理干净,严格保证砖缝要求。4、同一层砖的侧缝及不同层的砖缝完全由灰浆填满。5、砖砌过程中,应保证所有砖相错布置。6、若砖的角部发生破碎或砖产生裂缝,则不允许使用。7、砌砖时用皮锤或木锤轻轻敲打。8、其它砌砖注意事项按工业炉砌砖的基本规定进行。供方名称:无锡科隆水处理设备有限公司地址:宜兴市高塍镇高和路52号宁杭高速公路---宜兴西下---高塍镇—高和路52号联系人:姚学林电话传真

耐火材料期刊投稿需要多久

一、项目提出的背景“硅线石精矿粉”属冶金行业不可替代的耐火材料,行业称之为“耐火材料之王”——“硅线石精矿粉”。广泛使用航天、核工业、冶金、建材、玻璃等产业部门。二、目前的技术开发情况目前世界上“硅线石精矿粉”的生产技术,美国处于领先地位,精矿含硅线石95%以上,矿物回收率90%以上。而我国厂家大部分依靠省857研究所(现国土资源厅、地质矿产综合利用研究所)的碱式浮选小试技术和西安冶金建材研究所的酸式浮选小试技术,没有成熟的规模化生产技术。精矿回收率只能达到56%以上,矿物回收率只能达到75%以上,且传统工艺要经过酸处理,才能把Fe2O3降低到1.5%以下。产量低、成本高,制约着我国的矿物综合利用和企业发展。我院致力于“硅线石精矿粉”的生产、研究和应用,综合分析矿物资源物相及伴生物存在状况,利用磁选、化选、重选相结合的方法,大胆地改造原省地矿研究所设计工艺及流程。已投资400万元在一边生产一边研究的同时,通过模拟生产变换各工艺流程的控制指标,改进浮选药剂,使规模化生产技术水平有所提高。目前,某耐火材料有限公司可达到年生产3000吨“硅线石精矿粉”,产品矿物回收率85%以上,产品合格率100%的生产技术水平。但由于该企业一次性投入资金太多,又通过工艺、技术实验这一成熟过程,使企业目前流动资金紧缺,导致企业处于半停产状态,急需解决流动资金问题。三、现有规模和市场形势及国家产业技术政策目前,世界上生产“硅线石”的国家只有美国、南非、澳大利亚和我国。全靠进口使用的国家有原苏联、日本、德、法、英、荷兰、南韩等钢铁工业和航天、核工业大国。据统计,每年世界“硅线石精矿粉”销售市场在逐年猛增。我国现有生产规模为年产15000吨“硅线石精矿粉”,而市场每年需求在60000吨以上,按我国每年生产耐火材料和制品3000万吨的0.02%计算,生产规模远远小于使用规模,销售市场形势为求大于供。我国也相应制定了“硅线石精矿粉”的各项理化指标:硅线石的理化指标:表三:硅线石的理化指标项目 指标硅线石GT——58 GT——54AL2O3﹪不小于 58 54Fe2O3不大于 1.0 1.5F3O2不大于 1.0 1.0K2O+Na2O﹪不大于 0.5 1.0灼碱﹪不大于 1.5 1.5耐火度°C不小于 1790 1750水份﹪不大于 1 1线膨胀率(1500oC)﹪ 必须进行此项检验,将实验数据质量证明书中注明[中国21世纪议程]制订了某非金属矿产〈硅线石〉资源开发与利用的目标和要求。四、项目产品的主要用途、性能:该项目产品——“硅线石精矿粉”,因其耐高温(1790℃),不可逆,稳定性好,可进一步加工成高铝砖、一次性浇注料、不定型耐火材料,经锻烧还可转变为莫来石或直接用硅铝合金生产。广泛用于冶金、航天、核工业、玻璃、陶瓷等支柱产业。在耐火材料行业称之为“耐火之王”。其主要性能为:硅线石的化学组成为AL[ALSiO5],其中SiO237.7%,AL2O362.3%,成分比较稳定,常有少量的类质同象混入物Fe3+代替铝,有时存在微量的钛、钙、镁和碱等混入物。硅线石的晶体结构为斜方晶系,a0=0.743nm,b0=0.758nm,c0=0,Z=主要粉晶谱线:3.385(100),2.537,2.180,1.517,1.271(50)。硅线石矿物有两个阳离子AL3+、Si4+。阳离子的配位数有6和4两种。前者构成铝氧八面体[ALO6],后者构成铝氧四面体[ALO4]。[ALO4]四面体与阳离子Si4+构成的硅氧四面体[SiO4]交替排列,彼此共用一个氧离子形成链状,而[ALO6]八面体之间彼此共用两个氧离子(共棱)联接成另一种形式的链状。在结构中共有五条链,四条分布在角顶,一条在中央。这些八面体联结的链又通过与[ALO4]四面体联接起来。阳离子Si4+的配位数是4,构成硅氧四面体[SiO4]。但在结构中,[SiO4]四面体之间彼此不联接,而是孤立存在的,它与阳离子AL3+形成的[ALO4]四面体彼此共用一角顶相间排列成链状。在结构中共有4条链,填充在5[ALO4]条八面体之间。但其中两条的[SiO4]和[ALO4]排列顺序与另外两条相反。即有两条链的排列是:[ALO4]-[SiO4]-[ALO4]-[SiO4],另有两条链的排列是:[SiO4]-[ALO4]-[SiO4]-[ALO4]……。上述两种链与[ALO4]八面体形成的链,平行排列,并相互衔接。原子间距:AL-O=0.161nm。根据格林伍德的研究,硅线石晶体结构中四次配位的AL和Si在[ALSiO5]链中是无序的。硅线石结构决定了它具有平行C轴延长的针状、纤维状的晶体形态及平行{010}的解理。表四:硅线石的基本性质硅 线 石成分 AL2O3 SiO2 AL2O3 62.92﹪(63.1﹪),SiO237.08﹪(36.9﹪)晶系 斜方品格常数 a=0.744,b=0.759,c=0.575结构 链状晶形 长柱状,针状或纤维状集合体颜色 灰,白褐密度/g.cm-3 3.23~3.27相对硬度 6~7.5解理 沿﹛010﹜解理完全折射率 Ng=1.637~1.638,Nm=1.658~1.662,Np=1.654~1.661光性 (+)比磁化系数 0.29~0.03电泳法零电点(PH) 6.8加热性质 1500oC左右开始转变为莫平石体积变化1% +7.2硅 线 石开始或快速转化温度1oC 约1545转化速度 慢转化所需时间 长转化后体膨胀率1% 7-8莫来石结晶过程 在整个颗粒发生莫来石结晶形态 短柱状。针状莫来石结晶大小/um 3莫来石结晶方向 平行原硅线石晶面表五:硅线石的高温转化性能表六:硅线石的理化指标项 目 指 标硅 线 石GT---58 GJ--54AL2O31%不小于 58 54Fe2O3/%不大于 1.0 1.5TiO2/% 1.0 1.0K2O+Na2o/%不大于 0.5 1.0灼碱/%不大于 1.5 1.5耐火度1oC不大于 1790 1750水份1%不大于 1 1线膨胀率(1500oC)1% 必须进行此项检验,将实测数据质量证明书中注明注:需方对质量有特殊要求时,由供需双方协商五、项目实施的目的意义:该项目的实施可填补某省“规模化生产硅线石精矿粉”空白,开发和利用我省“硅线石”资源,发挥资源优势,补充世界及我国“硅线石精矿粉”的需求市场,年可生产6600吨“硅线石精矿粉”;综合经济效益4042万元;年可减少固体废物排量22800吨;年可减少选矿废液排量40000吨;减少耐火材料锻烧废气排放8万立方米;矿产综合利用率提高50%,资源利用年限可延长150年。间接效益:减少耐火材料和钢铁企业的能源消耗;促进钢铁企业的品种、质量调整,为大型矿山提供无公害“规模化生产硅线石精矿粉”的生产技术。六、项目主要开发内容和技术特点:扩大“硅线石精矿粉”生产规模,主要是为了充分利用当地资源,生产出符合国家规定标准的合格产品——“硅线石精矿粉”,其技术特点主要有以下几点:(1)取消传统的酸洗除铁、除杂工艺;(2)使用PH值不大于或不小于7的矿浆进行生产,使所排放的废物废水不污染环境,不影响人畜吸水。(3)改良和改进浮选使用的添加剂和浮选流程及方法,提回收率至85%以上的同时,降低成本,增加产量。(4)提高产品品位和纯度,利用浮选、磁选、化选、重选相结合的方法降低Fe2O3及其它微量元素的含量。(5)完善“规模化生产硅线石精矿粉”的工艺、技术及流程的各项控制指标。第二章 技术可行性分析一、项目的技术路线、工艺的科学性、合理性关键技术的先进性概述。项目的技术路线为:采矿→破碎→研磨→脱泥→除铁→除杂→粗选→精选→重选→烘干→除铁除杂→包装。工艺的科学性就在于不使用酸洗的工艺除铁除杂,改进或改良浮选使用的添加剂,排放废物不污染环境。其合理性在于充分利用资源,降低生产成本,提高产量。关键技术的先进性就在于:取消了酸洗除铁除杂工艺。一是酸浸效果受原矿组分变化,浮选产品质量、操作等因素影响大,而新工艺受这些影响小,产品质量稳定;二是新工艺不需要漂洗,节约资源和能源,减少废水排放;三是酸浸除铁劳动强度大且难以操作,更重要的是严重损伤设备,污染生产环境对操作人员有害;四是新工艺综合成本低,可降低成本15%以上;五是在生产工艺、流程过程中减轻浮选压力,提高产品回收率。为此该工艺技术的应用,可在我国处领先地位,填补我省空白。二、项目产品性能水平与国内外产品的比较。该项目产品的性能符合国家部令标准要求,满足各用户要求,可生产出“普通”、“一级”、“高纯”三个级别10个等级的产品。该项目产品的制品已出口日本等国家。深受我国“洛阳耐火材料集团公司”、“北京门头沟耐火材料有限公司”、“宝钢”、“首钢”、“湘钢”等单位青睐。与我国同类产品比较:一是色泽优于其它产品(纯银白色);二是K2O+Na2O含量低于0.2%以下;三是粒度-2左右,粒度均匀,含黑云母极少,纯度高;四是耐火度及其稳定性都优于国内同类产品。第三章 立项的成熟程度一、项目发展的前期工作及技术基础:对该项目的发展和实施,某耐火材料有限公司已建安设计了能力年产3000吨“硅线石精矿粉”生产线一条(由省地矿厅地矿研究所设计),及与之相配套的供电、供水、厂房等设施完备。现有完备的化验、检测设备和手段,及与之相适应的统计和管理网略。并从人员素质及管理和专业部门的协作等方面做了大量的工作,为该项目的实施打下了良好的基础。在技术基础条件方面:一是省国土资源厅地质矿产综合利用研究所(原857研究所)的小试报告。二是某耐火材料有限公司针对扩大“硅线精矿粉”生产规模,认真研究和前期准备工作,制订详实可行的实施方案。三是某耐火材料有限公司已取得的研究成果,得到有关专家的认可,所用工艺在《非金属矿》2004年第3期刊出。四是某耐火材料有限公司专业技术人才势力雄厚,有能力完成该项目的实施工作。二、对引进技术的消化、吸收、创新和后续开发能力。某耐火材料有限公司针对已有的某省地质矿产综合利用研究所和西安冶金建材研究所的小试报告,分别在生产车间进行了模拟生产试验,在分别吸收其长处的同时:一是把脱泥的流程提前,增加脱泥效果;二是合理的增加,安装搅拌筒,增加药剂在矿浆中的滞留时间,使药剂有足够的时间,在矿浆中扩散,同时也增加了浮选效果;三是取消了酸洗工艺;四是结合本公司设备的设计能力、工艺流程等特点,制定出扩大生产规模的各控制指标。第四章 市场需求情况和风险分析一、硅线石精矿粉国内市场现状据《中国耐火材料企事业名录》统计,我国每年需耐火材料产品为1500万吨左右,按产品的1%添加和使用“硅线石精矿粉”,每年需“硅线石精矿粉”15万吨,再按需求的80%计划每年只少需12万吨。而我国的年生产能力只有15000吨,市场空间很大。就其“硅线石精矿粉”的特殊性和广泛的用途,不论世界局势如何变化,对“硅线石精矿粉”的需求仍然很大。因其是钢铁航天、建材等行业不可替代的产品,且能促进钢铁企业的品种和优质方面的调整。为此,该产品有着可观的发展前景。目前,我国受资源和技术的限制,我国生产“硅线石精矿粉”的厂家也只有黑龙江的林口市“林信硅线石有限公司”和“某耐火材料有限公司”,黑龙江的鸡西和河北的灵寿亦有厂家,但因原矿制约,其精矿细度特细,而市场上用量极少,因而我国“硅线石”市场可以说不存在竞争局面,只要能生产出合格产品,就可销向市场,而该项目的实施,年也只能生产6000吨,远不能满足市场需要,只占全国需求量的5%。二、硅线石精矿粉国际市场现状因国际上只有美国、澳大利亚、印度、南非等国家生产“硅线石精矿粉”几个钢铁生产及航天、核工业大国如:日本、南韩、荷兰、前苏联、英国、德国、法国、意大利等国,全靠进口。该产品的特点,在钢铁企业使用比较广泛,不论国际形势如何,只要有钢铁企业、航天、核工业、建材业的存在,该项目就可存在并逐年有所发展,产品需求量在逐年增长。因而该项目在国际市场上也有着可持续的发展势头。目前, “硅线石精矿粉”已通过中间商、出口日本等国,因其产品的色泽及纯度都优于国内同类产品,很受国际客商欢迎。三、市场风险因素分析和对策。由于该项目生产的产品,在国际国内市场上供不应求,受销售市场制约的风险极小。该项目的生产技术,亦因在我国尚属领先地位,且随着我公司的进一步研究和应用,将不断完善其技术的完备性和可靠性。在技术市场上其风险亦很小。故而其对风险的对策也是两个方面:一是提高产品质量,降低生产成本,增加产量。提高市场占有率。二是综合利用开发矿产资源,增强对该项目技术研究的可持续发展后劲,确保该项目技术在国内占领先地位。第五章 扩能改造设想、投资估算及资金筹措一、扩能改造设想现在公司现有一台闲置球磨机,一台洗涤机,且现有的破碎系统生产能力大,原来只上一个班,如再增加一条生产线,也最多上两个班,所以在不增加太多设备的情况下,就可以形成两条生产线,可达到日生产20吨“硅线石精矿粉”的生产能力。通过扩能改造既挖掘了原有的设备能力,又能使工艺流程成龙配套,机配合理,实现均衡生产,才能实现少投资、见效快,有利于提高企业经济效益,增强企业的可持续发展潜力。

中钢集团洛阳耐火材料研究院(简称洛耐院)是中国中钢集团公司(简称中钢集团,英文缩写SINOSTEEL)所属的科技企业。中钢集团是国务院国资委管理的中央企业。主要从事冶金矿产资源开发与加工;冶金原料、产品贸易与物流;相关工程技术服务与设备制造,是一家为钢铁工业和钢铁生产企业提供综合配套、系统集成服务的集资源开发、贸易物流、工程科技为一体的大型跨国企业集团。 洛耐院始建于1963年,隶属原冶金工业部,是中国耐火材料专业领域唯一的大型综合性研究机构,也是我国耐火材料行业技术、学术、信息及服务中心。1999年转制为高新技术企业,是国内最具实力的高科技型耐火材料企业。洛耐院占地面积27.1万m2,总资产3亿多元人民币。洛耐院的经营范围包括了耐火材料产品及检测仪器、加工工具的生产,工程设计,技术服务,国内外贸易,产品质量检测,信息服务等多个业务领域。洛耐院投资建设了以耐火材料国家工程研究中心和国家高技术产业化特种耐火材料示范工程两大园区为主体的生产基地。洛耐院拥有包括高级氧化物、复合材料、冶金功能材料、不定形材料、耐火纤维、检测仪器等9大类共13条生产线,年生产高中档耐火材料5万余吨,产品品种达200多个。产品范围涵盖冶金、有色、石化、陶瓷、建材、电力、环保、机械,医疗等多个行业,经济和社会效益显著。洛耐院被授予国家重点高新技术企业、省优秀高新技术企业和出口重点企业、工商免检企业和省级守合同重信用单位,是AAA信用等级企业。2005年实现经营规模4.2亿元,出口创汇近2000万美元。洛耐院共有职工570余人。其中,拥有耐火材料及相关专业高级专业技术人员130余人,获得博士、硕士学位的专业技术人员40余人。洛耐院的研发中心是科技部批准的“国家认定企业技术中心”。汇集了新产品开发与技术创新领域的优秀力量,并配备了国内外最先进的设备100余台套。每年投入2000万元的研发基金用于科研开发及新产品试制工作。40多年来,共取得各种科研成果570余项,荣获国家科技进步奖、发明奖和部、省级科技进步奖210余项,授权专利38项。“耐火材料国家工程研究中心”、“国家耐火材料质量监督检验中心”、“国家进出口商品检验检疫局耐火材料认可实验室”、“全国耐火材料标准化技术委员会”、“中国金属学会耐火材料分会”、“耐火材料行业生产力促进中心”等行业机构均设在洛耐院。洛耐院编辑出版全国中文核心期刊《耐火材料》、英文《中国耐火材料》以及《耐火材料信息》等刊物。洛耐院不断提高管理的水平。继2003年通过ISO9001:2000版国际质量体系认证证书,2005年又通过GB/T24001-2004环境管理体系认证与GB/T28001-2001职业健康安全管理体系认证。洛耐院还是国务院学位委员会批准的第一批耐火材料硕士学位授予单位,并与北京科技大学联合设立了博士学位授予点。洛耐院国际交往广泛,与世界上40余个国家、地区的企业、院校在经贸、学术等方面建立了密切合作关系,在行业内享有较高的国际知名度。

《工业炉》《塑料科技》

发表论文的话一般看期刊类别,按高级等级分为1类,2类到5类。一般发表在3类以上就不错了。像这样的期刊很多,我仅就三类的列出来,当然只是自然科学版的,(社科版的如果需要再说):ISTP收录、国外刊物,自然科学进展,天津大学学报(原名为:天津大学学报.自然科学与工程技术版),华东师范大学学报(自然科学版),东北大学学报(自然科学版),四川大学学报(自然科学版),中南大学学报.自然科学版(原名为:中南工业大学学报. 自然科学版) ,同济大学学报(自然科学版),北京理工大学学报,华南理工大学学报(自然科学版),北京工业大学学报,西北工业大学学报,南京大学学报(自然科学版),武汉大学学报(工学版),重庆大学学报(自然科学版),东南大学学报(自然科学版),北方交通大学学报,内蒙古大学学报(自然科学版),北京师范大学学报(自然科学版),中山大学学报(自然科学版),陕西师范大学学报(自然科学版),南京理工大学学报(自然科学版),太原理工大学学报,厦门大学学报(自然科学版),空军工程大学学报(自然科学版),海军工程大学学报,吉林工业大学学报.工学版,武汉理工大学学报,上海理工大学学报,合肥工业大学学报. 自然科学版,甘肃工业大学学报(改名为:兰州理工大学学报),桂林工学院学报,广西师范大学学报(自然科学版),四川大学学报(工学科学版),郑州大学学报(自然科学版),苏州大学学报(工科版),高技术通讯,云南大学学报(自然科学版),东北师范大学学报(自然科学版),上海大学学报,中国科学基金,兰州大学学报(自然科学版),西北大学学报(自然科学版),南京师范大学学报(自然科学版),中国科学技术大学学报,福建师范大学学报(自然科学版),湖南师范大学学报(自然科学版),江西师范大学学报(自然科学版),复旦学报(自然科学版),福州大学学报(自然科学版),湖南大学学报(自然科学版),山东大学学报(自然科学版),应用科学学报,华侨大学学报(自然科学版),吉林大学学报(理学版),宁夏大学学报(自然科学版),西南师范大学学报(自然科学版),湖北大学学报(自然科学版),河北大学学报(自然科学版),河南大学学报(自然科学版),南昌大学学报(理学版),四川师范大学学报(自然科学版),辽宁师范大学学报(自然科学版),山西大学学报(自然科学版),安徽大学学报(自然科学版),黑龙江大学(自然科学版),暨南大学学报(自然科学与医学版),河北师范大学学报(自然科学版),河南师范大学学报(自然科学版),湘潭大学学报(自然科学版),应用数学和力学,应用概率统计,工程数学学报,运筹学学报,数学的实践与认识,高校应用数学学报A辑,应用数学,数学杂志,生物数学学报,数学研究与评论,高等学校计算数学学报,固体力学学报,力学与实践,应用力学学报,实验力学,力学季刊,模糊系统与数学,系统工程,系统工程理论方法应用,系统科学与数学,量子光学学报,高能物理与核物理,强激光与粒子束,物理,工程热物理学报,核聚变与等离子体物理,量子电子学报,液晶与显示,波谱学杂志,应用声学,计算物理,原子核物理评论,原子与分子物理学报,红外与毫米波学报,高压物理学报,低温与超导,低温物理学报,声学技术,质谱学报,噪声与振动控制,光子学报,光谱学与光谱分析,环境化学,分析试验室,化学通报,色谱,分子催化,功能高分子学报,物理化学学报,催化学报,燃料化学学报,电化学,有机化学,分析测试学报,化学试剂,无机化学学报,煤炭转化,化学研究与应用,结构化学,生物多样性,昆虫学报,中国生物化学与分子生物学报,动物学研究,遗传,水生生物学报,应用与环境生物学报,兽类学报,人类学学报,植物生理学通讯,实验生物学报,植物学通报,植物研究 ,菌物系统(改名为:菌物学报),生物化学与生物物理进展,微生物学通报,武汉植物学研究,西北植物学报,广西植物,生命的化学,植物分类学报,动物学杂志,云南植物研究,昆虫分类学报 ,植物生理学报,四川动物,动物分类学报,新型炭材料,复合材料学报,中国腐蚀与防护学报,玻璃钢/复合材料,稀有金属材料与工程,材料导报,稀土,材料热处理学报,材料工程,材料科学与工艺,稀有金属,腐蚀科学与防护技术,宇航材料工艺,材料保护,兵器材料科学与工程,机械工程材料,耐火材料,功能材料与器件学报,煤炭学报,中国矿业大学学报,湘潭矿业学院学报,中国钨业 ,煤田地质与勘探,金属矿山,矿山机械,煤炭科学技术,铀矿冶,煤矿自动化,矿业研究与开发,理化检验——化学分册,钢铁,粉末冶金工业,北京科技大学学报,钢铁研究学报,矿冶工程,硬质合金,冶金自动化,冶金能源,铁合金,焊接学报,特种铸造及有色金属,机械科学与技术,铸造,机械设计,金属热处理,机械传动,振动与冲击,无损检测,制造技术与机床,真空,机械设计与研究,机械强度,传感技术学报,真空科学与技术学报,光学技术,金刚石与磨料磨具工程,润滑与密封,液压与气动,铸造技术,工具技术,低温工程,继电器,热加工工艺,机床与液压,流体机械,机械设计与制造,锻压技术,模具工业,压力容器,变压器,焊接,起重运输机械,轴承,工程机械,仪表技术与传感器,内燃机学报,电网技术,电池,电力自动化设备,微特电机,华北电力大学学报,中国电力,动力工程,电力电子技术,电气传动,高电压技术,小型内燃机与摩托车,燃烧科学与技术,微电机,水力发电学报,电气自动化,高压电器,电机与控制学报,车用发电机,中小型电机,热能动力工程,低压电器,电工技术杂志,汽轮机技术,水力发电,大电机技术,机器人,制造业自动化,光电子•激光,武汉大学学报(信息科学版),电子科技大学学报,电波科学学报,探测与控制学报,激光杂志,西安电子科技大学学报,信号处理,压电与声光,应用激光,电子技术应用 ,数据采集与处理,系统工程与电子技术,红外技术,光电工程,电子元件与材料,光通信技术,微波学报,弹箭与制导学报,激光技术,现代雷达,红外与激光工程,电力系统及其自动化学报,北京邮电大学学报,自动化学报,半导体技术,半导体光电,通信技术,微电子学,固体电子学研究与进展,武汉理工大学学报(信息管理版),微电子学与计算机,模式识别与人工智能,计算机应用,中文信息学报,计算机与应用化学,计算机集成制造系统(CIMS),计算机工程与应用,计算机应用研究,小型微型计算机系统,计算机工程与设计,计算机工程,微型机与应用,计算机应用与软件,中国塑料,塑料工业,合成树脂及塑料,塑料,现代化工,膜科学与技术,合成纤维,合成纤维工业,化学工程,天然气化工.C1.化学与化工,硅酸盐通报,无机盐工业,合成橡胶工业,日用化学工业,涂料工业,过程工程学报,林产工业,农药,中国医药工业杂志,北京化工大学学报,化学反应工程与工艺,橡胶工业,离子交换与吸附,海湖盐与化工,中国陶瓷,棉纺织技术,中国粮油学报,食品科学,印染,制冷学报,中国造纸,中国乳品工业,中国油脂,纺织学报,中国皮革,粮食与饲料工业,北京服装学院学报(自然科学版),丝绸,东华大学学报(自然科学版),郑州轻工业学院学报(自然科学版),酿酒技术,粮油加工与食品机械,城市规划汇刊,建筑结构,给水排水,暖通空调,工业建筑,工程勘察,建筑科学,西安建筑科技大学学报(自然科学版),建筑机械,施工技术,建筑技术,四川建筑科学研究,筑路机械与施工机械化,水处理技术,应用生态学报,环境污染治理技术与设备,化工环保,环境科学研究,生态学杂志,工业水处理,长江流域资源与环境,资源科学,海洋环境科学,环境科学与技术,农业环境保护,农村生态环境,环境工程,环境与健康杂志,环境污染与防治,中国环境监测,地震工程与工程振动,西北地震学报,地震研究,地球物理学进展,地球科学,地学前缘,地球化学,第四纪研究,地球学报,地球科学进展,古生物学报,中国沙漠,地质科技情报,地质与勘探,现代地质,成都理工学院学报,高校地质学报,地层学杂志,矿物岩石,岩石矿物学杂志,水文地质工程地质,中国岩溶,地理学报,地理研究,地理科学,干旱区地理,冰川冻土,地理学与国土研究,山地学报,地理科学进展,大地构造与成矿学,干旱区研究,中国新药与临床杂志,中国药理学通报,中国药理学与毒理学杂志,中国新药杂志,中国抗生素杂志,中国药房,中国医院药学杂志,中国临床药理学杂志,沈阳药科大学学报,中国药科大学学报,华西药学杂志另外,团IDC网上有许多产品团购,便宜有口碑

文教资料编辑部

这个不太清楚。似乎没听说过这个。

这个刊物是属于省级期刊。要是还是不怎么清楚的,可以直接在国家新闻总署输入期刊的名称的就可以了。或者可以直接到品优刊帮忙发表也可以的。我和同事都是在这家发的。

多了 南京师范大学《文教资料》杂志社/编辑部南京晓庄学院学报杂志社南京苏商杂志社 南京社会科学杂志社 南京医学杂志社 南京社会科学杂志社南京《好家长》杂志社隶属南京出版社主管,为家教类月刊,在南京初高中学生中颇有影响,并且形成一定的市场。 现在正在筹建南京好家长幼教特刊《幼教新天地》主要面对3-8岁幼儿家长和幼儿教师。 联系方式:025-84730670 025 -84730692 冯先生性别:男

教 育 类 杂 志 征 稿陕西师范大学中学教学参考系列杂志征稿。陕西师范大学是教育部直属师范大学、国家“211工程”重点建设学校,是国家培养高等院校、中等学校师资和教育管理干部的重要基地,被誉为西北地区“教师的摇篮”。陕西师范大学中学教学参考杂志社是国家教育部主管、陕西师大主办、全国最富实力的教育期刊集团之一,其系列中学教学参考杂志经几代人30多年的不懈努力,以其悠久的历史、上乘的质量、强大的阵容、诚信的服务在全国基础教育界享有盛誉,已成为全国中学师生的良师益友。“陕西师大杂志社系列中教参杂志”已成为全国响当当的品牌。文章控制在3000字内。主要杂志:《中学物理教学参考》是国家教育部主管、陕西师范大学主办、由陕西师范大学出版社集团所属杂志社出版,面向国内外公开发行的中等物理教育教学类期刊。自1972年创刊以来,坚持为基础教育服务的办刊宗旨,突出“科学性、知识性、实用性、导向性”特色,发行量一直稳居同类期刊之首。为传播先进的教育理念、教学策略和教学模式,促进中学物理课程改革和教师专业化水平的全面提高,经过调研和论证,本刊于2006年改版为国际大16开,栏目、内容和形式全面创新。国际刊号:ISSN 1002-218X国内刊号CN61-1033/G4国内邮发代号:52-31投稿信箱: QQ:554681849《中学语文教学参考》杂志是由陕西师范大学教育出版集团·杂志社主办的全国中文核心期刊全国优秀语文期刊是专门研究中学语文教学改革和考试的教学辅导类期刊。本刊积极倡导一纲多本的教学改革,推进素质教学理念及教学方法,为优秀的教学实验、教学实录等提供展现教师才智的舞台,探索高考中考命题规律,充分体现教与学、学与考的有机结合。 刊 号: ISSN1002-2155 CN61-1031/G4 邮发代号:52-21投稿信箱: QQ:554681849《中学数学教学参考》:全国初等教育/中等教育类核心期刊中华人民共和国教育部主管,教育部直属高校陕西师范大学主办。自1972年创刊以来,发行范围涉及国内外,而且可以在全国各地邮局订购,中国标准刊号:ISSN1002-2171,国外代号:M4267,邮发代号:52-30。《中学化学教学参考》创刊于1972年10月,至今已有33年历史。该刊由中华人民共和国教育部主管,陕西师范大学主办,由陕西师范大学出版社集团所属杂志社出版发行。《中学化学教学参考》为中等教育类核心期刊,入选2004年版《中文核心期刊要目总览》 。邮发代号:52-31 邮编: 710062 刊号: ISSN 1002-218X CN 61-1033/G4投稿信箱: QQ:554681849《中学政治教学参考》是由国家教育部主管、陕西师范大学主办、为中学基础教育服务、面向国内外公开发行的教学类期刊。它提供中学教改、课改、考改信息;反映初高中政治课各年级教学内容的新动向、新问题、新成果;刊登教研论文和研究资料;开展对思想政治课重大问题和当前时政热点问题的讨论;促进教材改革、教师教学研究工作。本刊自1972年创办以来,以其较高的理论性和指导性、实用性深受广大中学师生的欢迎。邮发代号: 52-20 邮编: 710062 刊号: ISSN1002-2147 CN61-1030/G4投稿信箱: QQ:554681849《中学历史教学参考》杂志是由中华人民共和国教育部主管、陕西师范大学杂志社出版发行的历史教育教学类期刊。 邮发代号: 52-28 刊 号: ISSN1002-2198 CN61-1036/G4 《中学地理教学参考》是全国创办最早、发行量最大的地理教育期刊。创刊至今240多期,坚持积极倡导现代教育理念,努力探索地理教育创新,着力体现最新教研成果,提供最有效、最权威、最持久的交流平台,努力推动地理教育改革。被国家权威部门连续三次认定为全国中等教育类核心期刊、全国优秀地理期刊。邮发代号: 52-29 刊 号: ISSN1002-2163 CN61-1035/G4投稿信箱: QQ:554681849《中学生物教学》杂志是由中华人民共和国教育部主管、陕西师范大学主办的一份中等教育类教学期刊。邮发代号: 52-124 刊 号: ISSN1005-2259 CN61-1256/G4投稿信箱: QQ:554681849《中学化学教学参考》创刊于1972年10月,至今已有33年历史。该刊由中华人民共和国教育部主管,陕西师范大学主办,由陕西师范大学出版社集团所属杂志社出版发行。《中学化学教学参考》为中等教育类核心期刊,入选2004年版《中文核心期刊要目总览》 。邮发代号:52-31 邮编: 710062 刊号: ISSN 1002-218X CN 61-1033/G4投稿信箱: QQ:554681849《中学地理教学参考》是全国创办最早、发行量最大的地理教育期刊。创刊至今240多期,坚持积极倡导现代教育理念,努力探索地理教育创新,着力体现最新教研成果,提供最有效、最权威、最持久的交流平台,努力推动地理教育改革。被国家权威部门连续三次认定为全国中等教育类核心期刊、全国优秀地理期刊。邮发代号: 52-29 刊 号: ISSN1002-2163 CN61-1035/G4投稿信箱: QQ:554681849《投稿请注名“具体参考杂志”》《教育研究与实验》征稿《教育研究与实验》(双月刊)系国家教育部主管、华中师范大学主办的综合性教育理论学术期刊,全国中文教育类核心期刊。自1995年开始,本刊被定为中国教育学会教育实验研究会会刊,被北京师范大学、华东师范大学、南京师范大学、浙江大学等重点院校定为A类期刊,并从1998年起被南京大学中国社会科学研究评价中心选为《中文社会科学引文索引》(CSSCI)来源期刊。 国内刊号: CN 42-1041/G4 国际刊号: ISSN 1003-160X 邮发代号: 38-144 投稿信箱: QQ:554681849《投稿请注名“教育研究与实验”》《中国校外教育》杂志由中央教育科学研究所和中国儿童中心联合主办,是经国家新闻出版总署批准的国家一级纯教育类刊物,是国家期刊奖百种重点期刊及“双效期刊”,教育部“2+1”项目教材的辅导专刊,是具有国际国内双刊号的学术性权威期刊,向国内外公开发行。杂志为正本大16开,168页码。国内统一刊号:CN11--3173/G4 国际标准刊号:ISSN 1004-8502,邮发:80-609中国期刊网查询:栏目设置:特别策划、名家专栏、名校采风、教改前沿、管理纵横、教研探索、德育研究、智力开发、素质培养、技能训练、教学方法、教师成长、科学自然、体育与艺术、特殊教育、职教幼教、学科教育、网络探究等。投稿邮箱: (投稿时请注明《中国校外教育》)QQ:554681849 《职业时空》杂志征稿。北大中文核心期刊《职业时空》(曾用刊名:乡镇企业研究) ,半月刊,正刊。可以发表各类职业的学术论文,包括:职业教育、教育技术、经济管理、行政管理、财会审计、法律法制等各类管理等方面.审稿期短。作者10天内可以内收到用稿通知。有需要发表论文的各类职业人士,请联系我们。投稿信箱: ( “职业时空”) QQ:554681849 。主管部门: 河北省教育厅 主办单位: 河北职业技术学院 农业部乡镇企业管理干部学院、中国乡镇企业研究院、中国乡企协会学术委员会学科分类:职业教育、教育技术、经济管理、行政管理国内统一刊号: cn 13-1349/c ,国际标准刊号: issn 1672-8963 ,国内邮发代号: 18-347/8《科教文汇》杂志 征稿启事《科教文汇》杂志是集学术性、综合性、前瞻性、权威性为一体的理论期刊(半月刊)。国内统一刊号:cn 34-1274/g,国际刊号:issn 1672-7894,邮发代号:26-205。科教文汇杂志社编辑、出版,国内外公开发行.是中国学术期刊光盘版入编期刊,全国优秀科技期刊,中国学术期刊综合评价数据库来源期刊,中文科技数据原文收录期刊,万方数据数学化期刊群入网期刊。★ 栏目开设:名师论坛、教研探索、德育研究、智力开发、素质培养、技能训练、教学方法、热点论坛、教师成长、学校管理、科学自然、体育与艺术、特殊教育、职教幼教、学科教育、网络探究等; 投稿邮箱:《投稿请注名“科教文汇”》qq:554681849 《文教论坛》系省级教育教学类学术期刊,国际刊号:ISSN 1673-8918;国内刊号:CN22-1381/G4。发大中学校教师的教育教学论文,为教师评审职称服务;为高校研究生论文发表提供服务。本刊系加强学术交流,关注中国教育改革的主流期刊。其为中国科学文献计量评价数据库(ASPT)来源期刊、中国期刊网来源期刊。 中国期刊网收录网址: 万方数据库收录网址: 龙源期刊网收录网址: 投稿邮箱:《投稿请注名“文教论坛”》qq:554681849 《中学生阅读》本刊旨在提高教学研究水平,构建教师发展平台,推进语文教育改革进程。主管:河南省教育厅主办:河南教育报刊社国内刊号:CN41-1036/G4国际刊号: ISSN1003-2207 邮发代号:36-72投稿邮箱: QQ:554681849《投稿请注名“中学生阅读”》《向导》杂志征稿《向导》杂志(教育理论版)是经国家新闻出版总署正式批准,内蒙古教育厅主管、内蒙古教育出版社主办的学术期刊。刊号:ISSN 1008-3324 、CN 15-1059/G4,邮发代号:16-87,半月刊。是中国核心期刊(遴选)数据库期刊、中文科技期刊全文数据库收录期刊、中国期刊全文数据库全文收录期刊、科技部万方数据库全文收录期刊。本刊遵循“严谨、唯实、公开、优质”的方针,力求体现“现代”、“实用”、“综合”三大特色。其主要任务是宣传党和国家有关教育事业发展的态势,全面提高教育工作者的素质,从而推动我国科教文化事业的发展。投稿邮箱: QQ:554681849《投稿请注名“《向导》”》《试题与研究》征稿启事《试题与研究》是有着二十年历史的品牌刊物。创刊20年来因其权威性、导向性、针对性和实用性受到历届考生的喜爱。20年来我们秉承的一贯宗旨是:利用我们多年拥有的遍布全国的作者网络和最权威准确的信息渠道,探讨命题的真谛,传递最新信息;介绍解题方法,提高解题能力;提供专项能力训练,指导考试复习。 国内统一刊号:CN41—1368/G4. 国际标准刊号:ISSN1673-1301. 邮发代号:综合版:36-138. 投稿邮箱: QQ:554681849《投稿请注名“《试题与研究》”》《新课程研究》征稿启事《新课程研究》 主 办:长江出版集团大家报刊社 出 版:《新课程研究》杂志社 国际标准刊号:ISSN1671-0568 国内统一刊号:CN42-1624/G0 《新课程研究》为旬刊,分上旬刊、中旬刊、下旬刊分别如下: 《新课程研究(基础教育版)》,上旬刊每月1日出版,邮发代号:38-345,单价:7.5元,年价:90元 《新课程研究(职业教育版)》,中旬刊每月11日出版,邮发代号:38-363,单价:7.5元,年价:90元 《新课程研究(教师教育版)》,下旬刊每月21日出版,邮发代号:38-433,单价:7.5元,年价:90元 发 行:湖北大家书刊发行社 本刊经维普期刊网收录,为国家级优秀学术刊物。投稿邮箱: QQ:554681849《投稿请注名“新课程研究”》《前沿》杂志是内蒙古自治区社科联主管的社科类国家级核心期刊,该教育版是一本面向全国公开发行的教育期刊.ISSN1009—8267,CN15—1142/C。投稿邮箱: QQ:554681849《投稿请注名“《前沿》”》《文教资料》杂志是由江苏省教育厅主管、南京师范大学主办的省级综合性学术刊物,中国期刊全文数据库全文收录期刊、中国学术期刊综合评价数据库来源期刊。国际刊号/ ISSN 1004-8359 国内刊号/ CN32-1032/C 投稿邮箱: QQ:554681849《投稿请注名“《文教资料》”》《中国职教》杂志服务于各级各类职业教育机构、关注职教工作的主要阵地为教师考核、评职、晋级创造机会和条件。“开展学术研究展示学术成果,繁荣职业文化促进职教发展”为本刊办刊宗旨。本刊国内刊号:CN11-4026/G4� 国际刊号为:1008-6870邮发代号82-1001。投稿邮箱: QQ:554681849《投稿请注名“《中国职教》”》《读与写》杂志是由中华人民共和国新闻出版总署批准国内外公开出版发行的教育类期刊(主办:四川南充市文联、协办:四川师范大学、国际标准刊号:ISSN 1672-1578 国内统一刊号:CN51-1650/G4)创刊于1979年,投稿邮箱: QQ:554681849《投稿请注名“《读与写》”》《希望月报》(学术版)是由共青团中央主管,中国青少年发展基金会主办的国家一级期刊(1996年创刊,半月刊)。《希望月报》是中国期刊网全文收录期刊,“中国基础教育知识仓库”来源期刊,“中国基础教育期刊评价数据库”来源期刊。国际标准刊号:issn1007-3442,国内统一刊号:cn11-3825/c,邮发代号:82-321。投稿邮箱: QQ:554681849《投稿请注名“〈希望月报》”》《现代校长》月刊,主管:吉林省教育厅 主 办:吉林省教育杂志社 国际流行大16开本,64页。每月5日出版。邮发代号12-117 国内统一刊号:CN22-1042/G4 国际标准刊号:ISSN0529-0252投稿邮箱: QQ:554681849《投稿请注名〈现代校长》《重庆科技学院学报》征稿。本科院校学报《重庆科技学院学报(社会科学版)》,是由重庆市教育委员会主管、重庆科技学院主办的社科类综合性学术期刊,《中国期刊网》、《中国学术期刊(光盘版)》全文收录期刊,中国学术期刊综合评价数据库来源期刊,国内外公开发行。国内外公开发行。国际标准刊号为ISSN 1673-1999,国内统一刊号为CN50-1175/C 。双月刊,正刊,双月末出版,主要刊登哲学、政治、经济、法制、管理、语言、艺术、文化、教育等方面的理论研究成果,以及专题性或综合性的述评等。《重庆科技学院学报(自然科学版)》,大学本科学报,是由重庆市教育委员会主管、重庆科技学院主办的综合性自然科学类学术,季刊,正刊,季末出版,《中国期刊网》、《中国学术期刊(光盘版)》全文收录期刊,中国学术期刊综合评价数据库来源期刊,国内外公开发行。国际标准刊号为ISSN 1673-1980,国内统一刊号为CN50-1174/N。刊登内容包括石油及天然气勘探与开发、冶金与材料工程、化学与生物工程、机电工程、建筑工程、医学、计算机应用及有关基础学科方面的理论与技术研究成果。需要有标题、单位、摘要、关键词的英文翻译。投稿邮箱:jiaoyulzz@ yahoo.com.cn QQ:554681849《投稿请注名“重庆科技学院学报”》《教育前沿》是中国教育学会教育管理分会指导刊物,由教育部主管、湖南师范大学主办,前沿教育文化信息中心协办,国内外公开发行,《教育前沿》编辑部编辑,湖南中学物理杂志社公开出版。中国期刊网入选期刊,中国学术期刊综合评价数据库来源期刊。刊号为:ISSN1673-1875(国际标准刊号),CN43-1041/03 (国内统一刊号)。投稿邮箱:jiaoyulzz@ yahoo.com.cn QQ:554681849《投稿请注名“教育前沿”》 《教学与管理》杂志 中国期刊方阵双效期刊、全国中文核心期刊。国际标准刊号:ISSN1004-5872;国内标准刊号:CN14-1024/G4。分中学版、小学版和理论版。主要栏目:理论研究、教学管理、师资建设、班级管理、学生管理、德育建设、校园文化、课程改革、教师论坛、课堂管理、教学研究、教发研究、国外教育等。征稿对象为大、中、小学校教师及各级教育行政、教研部门人员。投稿邮箱: QQ:554681849《投稿请注名“《教学与管理》”》 《职业技术》杂志 中国核心期刊 主办:中国职业技术教育学会、黑龙江建筑职业技术学院。为中国核心期刊(遴选)数据库》全文收录期刊、《中国期刊全文数据库》收录期刊、《万方数据库》全文收录期刊、《中国学术期刊(光盘版)》全文收录期刊、《中文科技期刊数据库》全文收录期刊、职业技术网全文收录期刊、《中国期刊网》全文收录期刊。教师所发文章均可在以上“全文收录期刊”上查找。国际标准刊号:ISSN1672-0601;全国统一刊号:CN23-1509/TU。投稿邮箱:jiaoyulzz@ yahoo.com.cn QQ:554681849《投稿请注名“《职业技术》”》 《小学教学参考》杂志(旬刊)全国中文核心期刊 国际标准刊号:ISSN1007—9068;国内统一刊号:CN45-1233/G4。综合版需要有关教育、教学研究方面的稿件,特别是各学科新课标研究及英语、美术、音乐、体育、思品、劳技、自然、科学、社会、心理健康等学科的教学设计、教法研究、问题研究、教学随笔、教学总结等等,也欢迎写教育学理论研究、学校管理、综合实践活动、班主任工作、兴趣班活动、少先队工作、心理健康教育、学前幼儿教育等方面的内容。邮发代号:48-40。投稿邮箱:jiaoyulzz@ yahoo.com.cn QQ:554681849《投稿请注名“小学教学参考”》《中小学教学研究》杂志主管:辽宁省教育厅主办:辽宁省基础教育教研培训中心本刊全国公开发行,其读者是全国广大中小学校教师、省市区教研员及其他教育工作者。本刊全国统一刊号为CN21—1396/G4。邮发代号为8-234。投稿邮箱:jiaoyulzz@ yahoo.com.cn QQ:554681849《投稿请注名“中小学教学研究”》《教育艺术》杂志 是经国家新闻出版署批准的国家级正规刊物。主管单位:教育部 主办单位:首都师范大学,月刊,国内刊号:CN11-2632/G4国际刊号:ISSN 1002-2821。邮发代号: 82-461。投稿邮箱:jiaoyulzz@ yahoo.com.cn QQ:554681849《投稿请注名“教育艺术”》《中学文科》《中学理科》征稿。《中学文科》杂志 主办:广西教育学院,月刊,国际刊号:ISSN 1002-6371国内刊号:CN 45-1280/G4 邮发代号 48-14 《中学理科》杂志 主办:广西教育学院 国际刊号:ISSN 1002-6363 国内刊号:CN 45-1279/G4 邮发代号 48-15投稿邮箱:jiaoyulzz@ yahoo.com.cn QQ:554681849《投稿请注名“中学文科理科”》《现代语文》杂志 教育部所属中国语文现代化学会会刊,山东省教育厅主管、曲阜师范大学主办,同时为《中国核心期刊(遴选)数据库》、中国基础教育知识仓库、中国基础教育期刊评价数据库的来源期刊;国内统一刊号是CN 37-1333/G4,国际标准刊号是ISSN 1008-8024。投稿邮箱:jiaoyulzz@ yahoo.com.cn QQ:554681849《投稿请注名“现代语文”》《新课程》杂志系山西省一级,国家二级期刊.主要围绕教学改革和实践方面的问题,进行探讨和研究。系国家新闻出版署批准,山西省新闻出版局主管,由希望出版社主办的大型教改杂志,8K本,国内统一刊号CN14—1324/G4,国际刊号 ISSN: 1673-2162, 邮发代号:22-197 。投稿邮箱:jiaoyulzz@ yahoo.com.cn QQ:554681849《投稿请注名“新课程”》《今日教育》杂志由重庆出版社主办、重庆市教育科学研究院承办的省级教育类杂志社,面向全国公开发行,是重庆市教育系统内惟一基础教育指导刊物。:国际标准刊号:ISSN 1009—9867国内统一刊号:CN 50—1131/G4邮发代号:78—150投稿邮箱:jiaoyulzz@ yahoo.com.cn QQ:554681849《投稿请注名“今日教育”》《语文教学与研究》征稿,《语文教学与研究》杂志由中华人民共和国教育部主管、华中师范大学主办,中文核心,编辑出版:语文教学与研究杂志社:武汉市华中师范大学校内。主办单位: 华中师范大学 国内统一刊号: CN42-1016/G4 国际标准刊号: ISSN1004-0498 国内邮发代号: 《教研天地》38-53;《综合天地》38-59;《读写天地》38-330 投稿信箱: QQ:554681849《投稿请注名“语文教学与研究”》《新课程改革与实践》杂志(月刊,标准刊号ISSN1738-1559,CN13-5327/G4)是由基础教育课程改革研究会主管主办的国家级教育类专业期刊。本刊坚持理论与实践相结合的指导思想,特别注意针对新课程改革过程中老师们遇到的实际问题进行探讨、交流,欢迎广大教师投稿。 1.1教学类:新教材大家谈、专题研究、改革?探索?尝试、学法指导、教学设计、教学争鸣、教学反思; 1.2教育类:教育随笔、教育论坛、新时期德育、班主任工作、团队活动设计。 2.1紧扣教育教学工作实际,文章主题鲜明、观点明确、语言通顺、图表规范。 2.2来稿一般不超过2000字,并请按规范格式打印或用方格稿纸抄写工整,注明作者姓名、单位及详细通投稿邮箱:jiaoyulzz@ yahoo.com.cn QQ:554681849《投稿请注名“新课程改革与实践”》《高等教育科学》杂志,征稿《高等教育科学》是由中国高等教育研究会主办的大型学术月刊,大16开本,国内刊号CN 63-1208/H 国际刊号: ISSN 1529-4513,主要栏目有研究与探索、高教综论、文史哲研究、高教体制与改革、德育研究、政法天地、课堂与教学改革、经济管理论坛、素质与创新教育外语教研等. 本刊由《高教理论导刊》正式更名为《高等教育科学》投稿邮箱:jiaoyulzz@ yahoo.com.cn QQ:554681849《投稿请注名“高等教育科学”》

高分子材料科学与工程编辑部

洛阳理工学院简介 洛阳理工学院是一所以工学为主,兼有理学、管理学、文学、经济学、法学、教育学等学科的省属普通本科院校,已有54年的办学历史。 学院地处十三朝古都洛阳,占地面积2255亩,分3个校区,总校舍建筑面积83万余平方米,教学仪器设备总值1.5亿元,建有工程训练中心和教学实习工厂等50余个实习基地,图书馆馆藏纸质图书160万册,电子图书55万册,中外文期刊1500余种,拥有中国学术期刊、中国优秀博硕论文等6个全文数据库。 学院现有教职工1900余人,其中正高级职称75人,副高级职称425人,具有博士学位的教师88人、硕士学位的教师394人,享受政府特殊津贴专家8人,河南省优秀专家3人,新世纪百千万人才工程国家级人选1人、省级人选7人,省优秀中青年骨干教师11人,并聘有包括两院院士、博士生导师在内的100余名兼职教授和客座教授。 学院现有全日制普通本、专科在校生2.68万人。在长期的办学实践中,学院重视素质教育,强调综合能力和创新意识的培养,鼓励并引导学生积极参加课外科技创新和社会实践活动,增强学生的自主性、创新性、开拓性和责任感。近5年来,共获得“挑战杯”全国大学生课外学术科技作品大赛、数学建模竞赛等省级以上竞赛奖励170余项,其中国家级奖励37项。毕业生以良好的综合素质和扎实的专业基础知识深受用人单位好评,毕业生就业率保持在90%以上。 学院坚持“以人为本、质量兴院”,注重提高教学质量和科研水平,形成了以建材和人文学科为主的办学特色。学院共设置17个系(部)和继续教育学院、国际教育学院、示范性软件职业技术学院,75个本、专科专业,其中“材料工程技术”、“机电设备维修与管理”、“计算机控制技术”3个专业被评为全国高工专教改示范专业,“无机非金属材料工程”和“机械设计制造及其自动化”专业被评为省级特色专业建设点;“工商管理专业核心课程教学团队”被评为省级教学团队,“建材机械基础教学示范中心”被评为省级实验教学示范中心;《网络营销理论与实训》、《模拟电子技术》被评为国家级精品课程,《建材机械与设备》、《玻璃工艺学》被评为省级精品课程;近5年来,荣获国家教学成果二等奖1项、省级教学成果一等奖4项,二等奖10余项,省科技进步奖二等奖10余项,三等奖20余项。 学院坚持开门办学,与英国、意大利、俄罗斯、澳大利亚、日本、韩国等外国高校建立了友好合作关系;与英国格拉摩根大学、意大利都灵理工大学、俄罗斯科斯特罗马国立工艺大学、日本冈山商科大学、瑞典卡尔斯塔德大学等高校开展教学和科研合作。与俄罗斯和澳大利亚的4个合作办学项目在校生人数已超过1000人,并接受日本、韩国等国家的留学生。 学院管理规范,享有较好的社会声誉,是全国精神文明建设先进单位、全国模范职工之家,教务处两次被教育部授予普通高校优秀教务处称号。并设立有中国建材联合会、中国机冶建材工会培训基地。 洛阳理工学院将秉承50余年的办学传统,发挥优势,突出特色,为建设一所特色鲜明的教学型优质本科院校而努力奋斗。 更新于2010年3月25日 现任领导 职务 姓名 责任分工 党委书记 段治乾 主持党委全面工作。分管党委办公室(机关党委)、组织部(党校)。 院长 杨小林 主持行政全面工作。分管院长办公室。 党委副书记 陈 岩 负责宣传、统战、学生、群团工作。分管宣传部(统战部)、学生工作部(学生工作处)、团委。 副书记 袁静波 挂职锻炼。 副院长 董延寿 负责财务、国有资产、后勤管理、院办工厂工作。分管财务处、国有资产管理处、后勤管理处(动力服务公司)、院办工厂。 副院长 葛 玻 负责教学工作。分管教务处、现代教育技术中心、工程训练中心、高教研究所。 副院长 邱天河 负责科研外事、图书资料、继续教育工作。分管科研处、对外合作处、图书馆、继续教育学院、国际教育学院、学报编辑部。 副院长 韩振英 负责人事、基建、后勤服务工作。分管人事处、基建处、后勤服务集团。 副院长 戴志梅 负责招生就业、审计、综合治理、安全保卫和人民武装工作。分管招生就业处、审计处、保卫处(武装部)。 纪委书记 曹国杰 负责纪检、监察、信访、保密工作。分管纪委、监察处。协助书记做好组织工作。 工会主席 陈富贵 负责工会、离退休、计划生育、扶贫工作。分管工会、离退休工作处。 各院系介绍 - 材料科学与工程系简介 - 团结奋进、积极向上、温馨和谐的材料科学与工程系材料科学与工程系是我院重点学科系之一,成立于建校伊始的1956年,现有2个本科专业:无机非金属材料工程,高分子材料工程。3个专科专业:材料工程技术(含水泥、玻璃、陶瓷、耐火材料四个专业方向)、高分子材料应用技术、复合材料加工与应用技术专业和一个无机非金属材料工程本科专业,其中,无机非金属材料工程本科专业2008年被批准为河南省高等学校特色专业建设点,材料工程技术专业1998年被教育部评定为全国高工专示范专业,高分子材料应用技术专业是河南省省级教改试点专业。全系在编教职工54人,其中:高级职称19人,博士12人、硕士25人,并先后派出教师到美国、加拿大、德国、英国、意大利、新加坡进行学习和科技交流。目前,材料科学与工程系形成了以教授、博士为核心的专业学术科研团队,在新材料开发、工业废渣综合利用等领域取得了丰硕成果。近几年,省市级教学、科研立项50多项,获省部级以上奖励数十项,发表论文300余篇,多篇论文被SCI、EI收录。材料科学与工程系现有6个实验中心—材料基础实验中心、材料研究中心、材料工程测试中心、粉体工程中心、高分子材料实验中心、复合材料实验中心;3个实习基地—水泥生产模拟实习基地、聚合物成型加工实习基地、复合材料成型加工实习基地;1个新材料研究所;并在省内外建设了19个校外实习基地。洛阳市固体废弃物开发利用工程研究中心、洛阳市硅酸盐材料重点实验室落户我系。近年来,材料科学与工程系的教学改革和专业建设取得了丰硕的成果,适逢国家社会经济科学发展的大好机遇,我系毕业生的就业形势出现了十分喜人的大好局面。多个专业的毕业生出现了供不应求的现象(如无机非金属材料专业的毕业生供需比为1:5)。“教书育人,为人师表”;“踏实勤奋、学习刻苦,纪律严明、言行一致,理想远大、良好发展”是材料科学与工程系半个世纪积淀的系风文化,也是师生共同的行为准则。全系2000余名师生员工时刻准备迎接新的挑战,在学院党委的正确领导下,同心同德、敬业务实、努力拼搏、开拓进取、与时俱进,为构建团结、温馨、和谐的材料科学与工程团队、为给国家和社会培养更多合格的建设者和优秀接班人而努力奋斗!机械工程系现有机械设计制造及其自动化专业1个本科专业,机电设备维修与管理、机械设计与制造、汽车检测与维修技术、数控技术、工业设计5个专科专业,其中机电设备维修与管理专业是国家教委高工专教学改革师范专业、河南省首批名牌专业建设试点专业。机械工程系现有机械基础实验中心、机加工实验室、机械CAD实验室、汽车实验室、机械故障诊断实习基地、建材机械实验室、机械制作实习基地、数控技术中心、先进制造技术实习基地、汽车维修实习基地共21个实验室和实习基地。近5年来,机械工程系在科学研究、教学研究、学科建设取得一定的成绩:鉴定省部级科研成果16项,其中获河南省科技进步二等奖3项,河南省科技进步三等奖1项。鉴定厅级以上教学成果12项,其中获省级教学成果二等奖2项,汽车构造多媒体教学课件获全国多媒体课件大赛本科组一等奖。公开发表科学研究论文120余篇(其中EI、SCI收录10篇),教学研究论文20余篇。机械工程系的建材机械学科研究方向、工程机械学科研究方向、先进制造技术学科研究方向、机电技术学科研究方向有较好学科研究队伍和发展前景。机械工程系以提高教学质量为中心,以专业建设、学科建设、师资队伍建设为重点,以教学改革、课程建设、实验室建设为切入点,使机械工程系的教学、科研迈上新台阶。机械工程系长期以来,坚持“以质量求生存,以特色求发展”的指导思想,坚持为地方经济和建材行业培养基础扎实,具有创新精神,实践能力强的高技术人才。在专业建设,人才培养等方面形成逐步形成特色和优势。几十年来的办学实践表明,机械工程系已探索出了一个符合实际的办学之路。1、依托建材行业,打造名牌专业机电设备管理与维修专业是在原有建材机械制造与维修专业的基础上逐渐建设与发展起来的。1993年遴选为国家教委高工专教改试点专业,1999年通过国家教委专家组评估验收,2000年被国家教委命名为全国高工专示范专业。2005年成为河南省首批名牌专业建设点专业。机电设备管理与维修专业的培养方案为:一个宗旨,两个重点,三个体系,四种能力。以推进全面素质教育为宗旨,以强化学生的创新精神和实践能力为重点,建立和实施相互渗透的理论教学、实践教学体系,培养学生的机械制造能力,机械维修能力、管理能力和技术改造能力。该专业的教学改革和专业建设带动了机械工程系其他专业的教学改革和专业建设,其他各专业逐步形成了各自的专业特色和人才培养模式。2、重视人才实践能力、创新能力培养机械工程系为了培养具有创新素质、实践能力,在全国高校率先将机械制作综合训练列入教学计划,在机械系全系所有专业开设机械制作综合训练实践教学课程。部分学生利用业余时间参加大学生科技制作,学生的科技制作作品参加全国大学生“挑战杯”比赛多次获奖。在国家五部委组织的全国数控技术大赛河南赛区高职高专组比赛上获车工组第四名,学校获得“突出贡献组织奖”。3、重视校内外实践基地建设,探索产、学、研结合之路建立稳定的校外实习基地,建立了校内产、学、研多功能工程实践基地:粉体实训中心,建材机械创新实验室、机械制作综合训练基地、数控技术中心、CAD/CAM实训基地。学科建设取得成效,建材机械、工程机械,机电一体化技术等学科研究方向科研工作开展顺利,SP16通用配料装备及微机控制系统、提高圈流水泥磨表面积研究、LX-1A铬盐旋窑微机控制喂料及计量系统、标准直齿外内圆柱齿轮软件CAD/CAM系统等多项科研成果获河南省科学技术进步奖。机械工程系营造了较好的产、学、研氛围,形成了与专业人才培养模式相一致的产、学、研结合教育机制。机电工程系简介机电工程系于2008年由东校区的材料成型教研室、机电教研室、焊接教研室、模具教研室及西校区的机电教研室、计辅教研室和部分专业实验室合并组建而成,所辖专业横跨机械和控制工程二大学科。全系现有教职工44人,其中高级职称教师15人,教授4人,副教授11人,占教师比例34%;有河南省教育厅技术学术带头人3人,洛阳市优秀专家2人,专业带头人4人,优秀中青年骨干教师6人;博士9人,在读博士4人,硕士20人,具有研究生学位的教师比例达75%,已形成了一支结构较为合理的教学、科研队伍。 全系现有材料成型及控制工程一个本科专业和机电一体化技术、焊接技术及自动化、模具设计与制造、机械制造及其自动化(模具方向)、计算机辅助设计与制造五个专科专业。2008年又成功申报了过程装备与控制工程本科专业,明年开始招生。目前,全系共有本科生248人,专科生2024人。电气工程与自动化系组建于2008年3月,其前身是自动化系(原洛阳工业高专)和电子信息学院(原洛阳大学),现有学生2600多人。 现有自动化、电气工程及其自动化2个本科专业;电气自动化技术、生产过程自动化技术、计算机控制技术、电子信息工程技术、应用电子技术和电力系统自动化技术等6个专科专业。其中计算机控制技术专业为国家教育部“全国高等工程专科教育示范专业”。 现有专任教师94人,其中教授5人,具有副高以上职称的31人,中级职称23人,双师教师54人,硕士研究生52人,在读博士硕士15人 ,河南省教育厅学术技术带头人2人,洛阳市优秀青年科技专家1人,省优秀中青年骨干教师1人。先后有多名教师获得教育部、河南省及洛阳市劳动模范和优秀教师称号,多项科研和教研成果通过省科委和省教委鉴定并获奖。近年来,获省级科技进步奖10余项,省教学成果奖4项,国家级教学成果奖1项。系研究所为河南省几十家企业进行微机核子称等项目的技术开发与合作,取得了较好的经济效益和社会效益。 多年来我系努力为学生营造良好学习实践环境,培养学生的动手动脑能力。成立了家电维修小组、电工社团、科技制作协会等学生社团。其中家电维修小组已成立十几年,经常代表我院参加大学生“三下乡”活动、到社区进行义务维修。曾获得大中专学生志愿者暑期“三下乡”社会实践活动先进单位等称号。学生的课外学术科技作品多次在省举行的大学生比赛中获奖,曾获全国大学生电子设计竞赛河南赛区二等奖,第八届全国“挑战杯”竞赛三等奖。计算机与信息工程系是一个团结奋进、充满活力的系,凭着“追求卓越,争创一流”的坚强信念,以其宽广的胸怀和时代赋予的使命,吸引着一批又一批意气风发的有志青年加盟,取得了骄人的成绩,创造了灿烂的过去,现正以昂扬的斗志,开拓更加辉煌的明天! 现有计算机科学与技术、通信工程2个本科专业和计算机应用技术、计算机网络技术、软件技术、通信技术4个专科专业,全日制本专科学生约2300人。 设有计算机应用、计算机网络、软件技术、通信工程、计算机硬件5个教研室和1个能够满足教学与科研需要的实验中心。实验中心下设计算机语言、计算机网络、通信技术、创新设计、计算机组成原理等实验室。 拥有一支治学严谨、师德高尚、年龄结构合理、学科梯队健全的教师队伍。目前共有教职工71人,其中副高以上职称22人、讲师34人;博士学位6人、硕士学位49人;洛阳市优秀专家1人;荣膺省、市级各种先进称号8人;学院名师1人。 近五年发表论文220余篇,其中核心期刊75篇,SCI收录3篇,EI收录24篇;主持或参加的省市科研项目30项,其中省科技厅鉴定12项,获市厅级二等奖8项;主持省级教研3项,获省级教学成果奖一等、二等各一项,国家级和省级精品课程各1门,学院级精品课程5门;出版教材、著作21部,其中国家级规划教材4部。 坚持以人为本的教育理念,以培养学生健全人格为核心,以促进学生成人成才为目标,注重学生创新精神与实践能力的培养,营造了良好的育人氛围。全系学生朝气蓬勃,锐意进取,在省、市和学院的各项活动与竞赛中屡创佳绩,毕业生深受社会和用人单位好评。 土木工程系成立于1994年6月,现有“土木工程”本科专业和“建筑工程技术”、“道路桥梁工程技术”、“供热通风与空调工程技术”、“给排水工程技术”四个专科专业。其中,“建筑工程技术”、“道路桥梁工程技术”是学院重点教改试点专业。土木工程系下设建筑、结构、力学、道路桥梁、供热通风与空调工程、给排水工程6个教研室。实验室建筑总面积为2958平方米。下设土木工程实验中心、力学实验中心暖通综合实验室和给排水专业技术实验室。仪器设备685台件,总值477.1万元。可开设实验教学项目50项。土木工程系现有教职员工80人,其中高级职称16人,占教师总数的20%;教授、博士生导师1人,博士5人,硕士44余人,具有硕士学位以上教师占教职工比例的55%。近年来,土木工程系的教研、科研取得丰硕成果,完成校级科研、教研20余项,省级教研2项,市级教研1项,完成省级鉴定项目6项,河南省信息技术教育优秀成果二等奖1项,河南省科学进步一等奖1项,市级科研成果二等奖5项,市级立项2项、省级立项2项,引入资金100余万元。由我系教师负责主编或参编出版的教材10余本,发表论文200余篇,其中核心期刊50余篇,EI收录10篇、ISTP收录12篇。《钢结构》课程被评选为学院精品课程,我系教师获得“河南省教育系统先进教师”、“河南省师德先进个人”等荣誉称号,青年教师讲课比赛获得一、二等奖等荣誉。土木工程系集体也被授予学院“五好基层工会”,学院“先进党校”。洛阳理工学院环境工程与化学系始建于1980年,是洛阳理工学院唯一一个理工兼容的集环境、化学、生物等学科为一体的教学院系,目前全系设有环境工程、应用化学两个本科专业;环境监测与治理技术、工业分析与检验、生物技术及应用三个专科专业,其中,环境监测与治理技术专业2001年被评为河南省教学改革重点示范专业。 全系现有在校生近1500人,教职工73人,其中教授4人,副教授、高级工程师21人。专任教师中:博士17人、博士后1人,硕士33人,已初步形成了一个老中青结合的较为合理的教学梯队。经过近年来的学科建设和教学改革,环化系取得了很大成绩,学科建设实现了规范化管理,建立起了“基础化学”、“应用化学”、“环境工程”、“生物技术”四支学历层次深厚、结构设置合理、教学科研能力强劲的教学科研团队,并建立了“应用化学”、“环境工程”两个科研所。近十年来,全系教师共在国内外各级专业学术期刊发表论文1200余篇,其中SCI、EI收录100余篇;主、参编各类专业书籍和教材30余部,先后完成地厅级以上教、科研项目80余项,获省、市级鉴定及各种奖励60余项,多次荣获学校先进集体及先进党支部称号。另外,洛阳理工学院环化系还是全国四方环保工程设备集团理事单位、全国环境类教材编写委员会委员单位、中国环境科学学会环境工程分会会员单位、并做为国家教育部环境科学与工程教学指导委员会全国大专环境教育指导组的成员单位受全国大专环境教育指导组的委托负责河南、山东、山西、陕西、宁夏、青海六省区的大专环境教育指导工作。 全系拥有独立的实验教学楼和生物技术实训生产基地,实验教学设施先进,环境优越。实验室总面积约6000余平方米,实验仪器设备2000余台套件,配备有:气相色谱仪(HP5890A)、原子吸收光度计、紫外可见分光光度计(HITACHI2000)、红外光谱仪、CHI660D电化学工作站等一批大型化学化工仪器设备;生物培养箱、无菌工作台、高速离心机、污水处理实验装置、大气污染控制实验装置等生物环保实训装备,可开出实验项目200余个。另外,环境工程与化学系还分别在上海、无锡、西安、郑州、及洛阳市各大厂矿、设计院所建立了13个稳定的教学实习基地,为各专业学生的实习、实践提供了有力的保证。由于环化系注重培养学生扎实的实践能力,理论联系实际,环化系的毕业生历来都受到用人单位的青睐,近年来每届毕业生的就业率都在90%以上。 环境工程与化学系是一个有着优良传统的团体,学生综合素质高,纪律严,班风好,学风浓,发展全面。平时注重学生道德品质、综合素质的培养,注重学生身心的全面发展。学生活动丰富多彩,成效显著,在洛阳理工学院举办的各类学生文体活动竞赛中屡屡获奖。另外,环化系还孕育了两支具有环化特色、在院内外有影响的学生社团,作为学院知名品牌社团“环保协会”被国家环保组织授予“优秀调查团队”;“环保协会”“疯狂学联”被评为“省优秀学生社团”、“学院星级社团”、“学院十佳社团”称号。 环境工程与化学系全体师生,正以崭新的姿态、昂扬的斗志、朝气蓬勃的精神、与日俱进的步伐全力搞好各项学习和工作,沿着“环化”特色的发展道路勇住直前,为学院的振兴,为地方社会经济的发展做出应有的贡献。工程管理系是我院成立后经过系部调整由原经济管理系、建筑工程系和土木工程学院相关专业整合而组建的一个新系,现设有一个本科专业:工程管理,四个专科专业:工程造价、工程监理、房地产经营与估价和经济信息管理。

中国塑协专家库 Top Experts Database of China Plastics Processing Industry Association 姓名 单位 职务、职称 陈士能 中国轻产业结合会 会长 徐 僖 四川大学 院士/传授 廖正品 中国塑料加工工业协会 会长/教学级高工 李国俊 中国塑料加工工业协会 常务副会长/高工 王德禧 中科院化学所 研讨员 包建成 姑苏工业园区富士达塑业有限责任公司 董事长/高级经济师 包燕敏 上海国民塑料印刷厂 副厂长/高工 蔡明池 中国包协塑料包装委员会 副主任/高工 曹常在 天津市塑料研究所 所长/高工 曹建芳 山东道恩集团 总工程师/高工 曹剑奇 中国塑料加工工业协会 高级工程师 陈 宇 北京市化学工业研究院 副院长/研究员级高工 陈成泗 宁波大成新材料股份有限公司 董事长/总经理 陈家琪 全国塑料制品尺度化技术委员会 主任/高工 陈杰? 西安交通大学 教授/博导 陈晋南 北京理工大学 教授 陈静波 郑州大学材料科学与工程学院 副院长/教授/博导 陈明辉 金鹏集团 副总工程师/高工 陈庆华 福建师范大学化学与材料学院 副院长/高工 陈学军 宁波天安生物材料有限公司 副总经理 陈学思 中国科学院长春应用化学研究所 研究员/博导 陈耀庭 北京化工大学 教授 陈一东 贝尔斯托夫橡塑机械 销售经理 崔 平 中科院宁波材料技术与工程研究所 所长/研究员 崔福斋 清华大学材料物理与化学材料院生物材料室 教授/博导 冯嫡君 中国塑协人造革合成革专委会 常务副理事长/高经 符 岸 广东省塑料工业协会 理事长 傅 旭 中蓝晨曦化工研究院 院长/教授级高工 傅志权 浙江枫叶集团 董事长 高春荣 北京塑料工业协会 高级工程师 高坤光 中国塑协工程专委会 秘书长/工程师 高破新 建设部科技发展增进中心 处长/高工 耿传智 同济大学 付教授 耿孝正 北京化工大学 教授 顾红庆 无锡国泰彩印有限公司 副总经理/高工 顾刘谦 南京橡塑机械厂有限公司 副总工程师 郭宝华 清华大学化学工程系高分子研究所 副所长/教授 国殿才 山东省塑料工业有限公司技术开发服务公司 经理/高工 何春雷 舟山市金海机械有限公司 董事长 何海潮 上海金纬机械制作有限公司 董事长、总经理 侯树亭 泡沫塑料专业委员会 会长/教授 胡建信 北京大学环境学院环境进程教研室 主任/教授 胡正华 一汽民众有限公司洽购部 经理/高工 黄 锐 四川大学 教授 黄步明 广东泓利 机器有限公司 总经理/研究员级高工 黄汉雄 华南理工大学 教授 黄 虹 广东金明塑胶设备有限公司 总工程师/高工 黄 萍 北京市塑料研究所 总工程师/高工 黄险波 广州金发科技股份有限公司 副总经理/博士 黄学祥 江苏联冠科技发展有限公司 董事长/总经理/高经 黄志杰 浙江俊尔新材料有限公司 总经理/高工 季君辉 中科院理化技术研究所 研究员/博导 贾润礼 华北工学院塑料研究所 所长/教授 蹇锡高 大连理工大学高分子材料研究所 所长/教授/博导 江 波 北京化工大学 教授 江 梅 长春一汽汽研所 高工 姜振华 吉林大学化学学院 教授 金洪波 中国塑协农膜专委会 秘书长 金日光 北京化工大学性命科学研究中央 主任/教授/博导 靳树伟 玉溪市朝阳塑料有限义务公司 董事长 瞿金平 华南理工大学 副校长/教授 蒯一希 成都金石东方工业有限公司 董事长/总经理 雷湘军 巴顿菲尔震雄塑料装备有限公司 经理/高工 李 杰 北京市加成助剂研究所 所长/高工 李毕忠 中科院理化技术研究所工程塑料国家工程研究中央 副主任/研究员 李滨耀 (中科院长春应用化学所)浙江衫衫集团公司 付总/研究员 李晨光 东莞德科摩华大机械有限公司 首席经理/工程师 李汉鹏 《国外塑料》杂志 主编/高工 李建军 广州金发科技股份有限公司 总经理/博士 李林楷 广东榕泰实业股份有限公司 总经理/ 高工 李树材 天津科技大学 教授/博导 李元珍 中航一集团北京航空材料研究院 高工 廖启忠 广州市冠誉铝箔包装材料有限公司 副总经理 林少全 广东联塑科技实业有限公司 主任/博士 刘 鹏 兰州石化分公司石油化工研究院橡塑加工运用研究所 副所长 刘 萍 北京东方石油化工有限公司助剂二厂 总工/高工 刘 姝 中国塑料加工工业协会 统计师 刘春太 郑州大学材料科学与工程学院 教授 刘丰田 山东省塑料协会 会长/研究员 刘光知 科倍隆科亚(南京)机械有限公司 首席履行官 刘均科 全国塑料加工工业信息中心 副主任 刘秋凝 轻工业塑料加工应用研究所 高工 刘万蝉 轻工业塑料加工应用研究所 所长/教授 刘俊秀 中国塑协改性塑料专委会 秘书长/教授 龙云正 南京橡塑机械厂有限公司 董事长/高工 娄晓鸣 兰州兰泰塑料机械有限公司 总经理 卢灿辉 四川大学高分子研究所 教授/博导 卢秀萍 天津科技大学材料科学与化学工程学院 教授 吕宗尹 《国外塑料》杂志 记者 罗意自 南海东兴制罐有限公司 董事长 罗运军 北京理工大学材料与工程学院 教授 马永梅 中国科学院化学所 博士 马占峰 中国塑料加工工业协会 工程师 马镇鑫 广东金明塑胶设备有限公司 总经理 马之清 山东清源集团有限公司 董事长 孟 杨 济南太亚聚氨酯有限公司 总经理/高工 孟月东 中科院等离子体物理研究所 研究员/博导 米永存 山东道恩团体有限公司 常务副总经理/高工 倪众勤 北京华盾雪花塑料集团有限责任公司 高工 欧阳荣 香港联塑集团有限公司 常务副总裁 欧育湘 北京理工大学 教授 潘庆功 山东省塑料协会 秘书长/高工 钱洪祥 圣诺盟控股集团有限公司 副总经理 钱耀恩 中国塑料机械工业协会 秘书长 秦立洁 北京华盾雪花塑料集团公司 高级工程师 邵佳敏 华东理工大学材料科学与工程学院 教授 申长雨 郑州大学材料科学与工程学院 教授/副校长 孙安垣 《工程塑料应用》杂志社 所长/研究员 孙福荣 温州市合成革商会 会长 孙天智 淄博天鹤塑胶有限公司 董事长/总经理 孙卫东 北京市塑料研究所 部长/研究员级高工 汤 俊 天津市塑料集团有限公司 处长/高工 唐 辉 合肥紫江包装有限公司 总工程师 田兴友 中科院固体物理研究所 博士 王存吉 异型材及门窗制品专业委员 秘书长/高工 王东川 上海汽车工业公司工程研究院 副总工程师 王贵宾 吉林大学化学学院 教授 王宏安 河北宝硕股份有限公司创业塑料分公司 副总经理 王 珏 浙江申达塑料机械有限公司 总经理 王克智 山西省化工研究院 总工程师 王 琪 四川大学 教授/主任 王清国 长春一汽汽研所 主任/高工 王文广 深圳市塑胶行业协会 秘书长/教授级高工 王新宇 美国加州大学洛杉叽分校 博士 王彦明 北京隆达轻工控股有限公司 部长 王玉忠 四川大学降解与阻燃高分子资料研究核心 教授/博导 王仲文 浙江七色鹿色母粒有限公司 董事长/总经理 魏若奇 建设部国家化学建材检测中心 主任/教授级高工 翁云宣 中国塑协降解塑料专委会秘书长 秘书长/高工 吴 芬 南京聚隆工程塑料有限公司 总经理 吴驰飞 华东理工大学材料学院 教授 吴大鸣 北京化工大学机电工程学院 教授 吴宏武 华南理工大学工业设备与把持学院 教授 吴 念 北京塑料集团公司 高级工程师 吴卫平 青岛天星高材科技有限公司 总经理 吴耀根 佛山塑料集团东方包装材料有限公司 副总经理/高工 吴忠文 吉林大学化学学院 教授 谢鸽成 汽巴精化(中国)有限公司 经理 辞世雄 广东顾地塑胶股份有限公司 副董/总经理/高工 徐蓓蕾 中国轻工业联合会北京来斯特科贸有限公司 董事长/教授级高工 徐同考 河北邢台东泰塑胶有限公司 董事长 徐卫兵 合肥工业大学化工学院 主任/教授/博导 徐迎宾 广州市花都科苑企业有限公司 总经理/博士 许 琳 中国塑料加工工业协会 高级工程师 许国志 轻工业塑料加工应用研究所 教授/博导 薛木庆 德士威塑料机械有限公司 高工 严 庆 中科院宁波材料技巧与工程研究所 副所长/博士 杨桂生 上海杰事杰杰新材料股份有限公司 董事长 杨洪献 管道专委会 秘书长 杨鸣波 四川大学高分子迷信与材料学院 教授 杨宇明 中国科学院长春应用化学研究所 室主任 杨忠久 深圳市顺嘉高新建材有限公司 总工程师 杨 力 全军包装工作办公室 教授 杨惠娣 《中国塑料》编辑部 主编/高工 杨明锦 北京塑料研究所《塑料》编辑部 主编/研究员级高工 杨 升 佛山高明亿龙塑胶工业有限公司 董事长 杨卫民 北京化工大学 教授 杨小玲 《助剂》杂志编纂部 高工 于 建 清华大学 教授 于文祥 烟台万华合成革集团 常务副总裁 俞建模 大连三垒机器有限公司 董事长/总工程师 喻建明 烟台万华聚氨酯股份有限公司 院长 苑会林 北京化工大学材料科学与工程学院 教授 严为群 江苏联冠科技发展有限公司 高级工程师 曾铁球 高超骏胜塑胶有限公司 董事长 詹旺盛 北京航天航空大学 教授 张春华 广东仕诚塑料机械有限公司 总经理 张红兵 北京三佳挤出技术有限公司 总经理 张华集 福建师范大学化学与材料学院 教授级高工 张其智 潍坊中云集团公司 董事长 张胜国 南京瑞亚高聚物装备有限公司 副总经理 张学仁 甘肃省皮革塑料研究所(公司)/甘肃省塑料协会 副所长 /高工/秘书长 张玉爱 甘肃省皮革塑料研究所 高级工程师 张玉川 北京塑料工业协会 理事长/研究员级高工 张志平 中蓝晨光化研究院 高级工程师 章林伟 国家建设部 处长/教授级高工 庄 ? 北京市塑料研究所 所长 赵安赤 清华大学 教授/理事长 赵春风 旺中催化剂有限公司 总经理 赵红玉 中国轻工业出版社 副编审 赵 洪 哈尔滨理工大学 副校长 赵建华 南京橡塑机械厂有限公司 副总经理/高工 郑 恺 国度通用工程塑料工程技术研究中心/中国工程塑料协会 副主任/秘书长/高工 郑 德 广东炜林纳功效材料有限公司 总经理 郑天录 天津市塑料工业协会;天津市塑料集团公司 高工/秘书长 钟少锋 中科院等离子体物理研究所 博士 钟晓萍 《塑料工业》杂志社 副主编 周 山 保硕集团股份有限公司 董事长/正高工 周南桥 华南理工大学工业装备与节制学院 教授 周一兵 中国汽车工业协会汽车相干工业分会 常务副理事长/教授级高工 朱复华 北京化工大学塑料工程研究所 所长/教授 朱康建 广州博创机械有限公司 总裁/工程师 中国塑协专家委员会第二批专家名单(2006年) 姓名 单 位 专业专长 陈海涛 宁波信高塑化有限公司 塑料改性 陈 生 中国塑协氟塑料加工专业委员会 氟塑料加工与应用 陈小明 奇乐丝网实业有限公司 行业管理 丁长楷 富事达塑业有限责任公司 塑料改性 丁国荣 杭州万里塑胶有限公司 企业管理 丁良玉 浙江省中财集团公司 塑料管材 范杵兰 太原市塑料研究所 塑料粘合剂与涂料 高 明 常州改性塑料厂有限公司 塑料色母粒 郭铭蕊 无锡市巨龙塑化有限公司 企业管理 郭庆人 新疆天业股份有限公司 塑料微灌 何嘉松 中国科学院化学研究所 聚合物杂化材料 韩连贵 中国塑协农用薄膜专业委员会 农膜材料 胡振庭 上海胜柏包装工业有限公司 塑料包装 黄增源 兰州塑料工业总公司 行业管理 黄绍钧 广东省塑料皮革工业研究所 聚合物材料合成与改性 孔德海 新疆塑料行业协会 行业管理 李 革 烟台万华超纤股份有限公司 合成革 李双全 中国塑协节水器材专业委员会 塑料节水器材 李玉根 浙江省中财集团公司 塑料管材 李云新 新疆塔农塑业有限公司 农用塑料 梁 斌 精诚模具机械有限公司 塑料模具 李文东 海尔科化工程塑料国家工程研究中心股份有限公司 塑料改性及企业管理 刘志民 天津市塑料研究所 医用塑料 陆惠琴 无锡市巨龙塑化有限公司 塑料改性 罗崇远 广东盛恒昌化学有限公司 行业管理 钱洪祥 圣诺盟有限公司聚氨酯研究所 聚氨酯发泡材料 沈国海 安徽国风集团有限公司 塑料改性 王笃金 中国科学院化学研究所 高分子状态与加工 王 毅 乌鲁木齐石油化工总厂塑料厂 塑料改性 王永人 中国塑协塑料编织专委会 塑料编织 魏丙光 河北沧州东塑集团股份有限公司 塑料加工 吴大陆 无锡市巨龙塑化有限公司 塑料加工及企业管理 吴国章 华东理工大学 功能高分子材料及其应用 吴晓芬 重庆顾地塑胶电器有限公司 塑料加工与应用 向欣芳 天津市塑料研究所 医用塑料 项爱民 北京工商大学 可降解膜材料 徐文清 中国石油股份公司独山子石化分公司研究院 化学工程 严一丰 深圳市志海实业有限公司 塑料加工与应用 阳明书 中国科学院化学研究所 聚合物纳米复合材料 俞立群 Harrison Yu 塑料工程师协会营销跟治理分部参议员 SPE Marketing and Management Division Councilor 塑料加工与利用 Plastics Processing & Application 余卫平 福建省塑料工业协会 行业管理 喻建明 烟台万华聚氨酯股份公司北京研究院 聚氨酯泡沫塑料 应明康 上海古代建造设计(集团)有限公司技术中心 塑料管道工程技术 詹家驹 云南省塑料行业协会 行业管理 张风梧 上海美善塑胶有限公司 塑料加工与应用 张 晶 乌鲁木齐德美隆塑化有限公司 塑料改性与应用 张 军 新疆屯河型材有限公司 塑料异型材 张玉英 山西省塑料行业协会会长 塑料改性与行业管理 张胜军 新疆产品德量监督测验研究院 橡塑材料 张世民 中国科学院化学研究所 聚合物纳米复合材料 郑 重 新疆屯河节水科技限公司 塑料节水器材 周 豪 独山子石化研究院 聚丙烯改性及应用 周理水 浙江省塑料行业协会 行业管理 卓仁禧 中国科学院院士 生物医学高分子材料 赵东日 山东日科化学有限公司 塑料改性及塑料助剂 祝月良 昆山协孚人造皮有限公司 合成革 何 征 沃特集团有限公司 塑料改性 沈千新 长青塑胶(深圳)有限公司 挤出异型材 刘 武 深圳技术品质监视研究所 塑料加工与应用 孙立清 深圳市建设控股公司 塑料加工与应用 中国塑协专家委员会第三批专家名单(2007年) 姓 名 单 位 职 务 陈科 新疆独山子石化总厂研究院 高等工程师 寿晓冬 精诚时期控股有限公司、浙江精诚模具机械有限公司 副董事长、副总经理 吴正元 南京聚隆工程塑料有限公司 高级工程师 杨秉正 中塑协人造革合成革专委会 分会理事长 张建均 公元塑业集团有限公司 董事长兼总经理 赵锂 中国修建设计研究院机电设计研究院、给水排水设计研究所 副院长、所长 草野隆 积水(青岛)塑胶有限公司、日本积水化学工业株式会社积水管材技术株式会社 技术参谋、总经理 胡平 清华大学化工系高分子所 教授 陈更新 上海市塑料制品工业研究所 总工程师、高级工程师 黄艳 南京协和化学有限公司 总经理、高级工程师 欧玉春 中科院化学所 研究员 申纪国 潍坊塑料建材有限公司 总经理,高级工程师 项素云 大连理工大学化工学院高分子系 教授 谢冬梅 广西煤炭科学研究所 副主任、高级工程师 张金柱 广州市花都科苑企业有限公司 总工程师、博士 周一萍 营口市朝阳化工总厂 高级工程师 张建富 山东淄博寿山集团有限公司 总工程师、董事长助理、高级工程师 孙立荣 烟台海湾塑料制品有限公司 总经理 王滨 烟台市双华塑料机械有限公司 董事长、总经理 李瑞东 吉林亚泰三川塑料有限责任公司 总工程师 郑仪修 烟台六塑工业有限公司 技术科科长 刘安友 北京深顺灵通塑料制品有限公司 执行总裁 焦瑞芳 江苏常编塑业有限公司 总经理助理 刘厚义 烟台永太机械有限公司 董事长、总经理 何 斌 湖南省塑料研究所 总工程师、副研究员 刘义成 株洲塑料有限公司 副总经理、总工程师 潘小梅 湖南省塑料研究所 副所长/秘书长 王小红 湖南省塑料研究所、湖南科天新材料有限公司 总经理、总工程师 肖加余 中国人民解放军国防科学技术大学航天与材料工程学院 副院长、教授 李诗春 长春高祥特种管道有限公司 董事长、总经理 王占杰 中国塑协塑料管道专委会 秘书长 段予忠 山东青岛科技大学高分子学院 教授 谷金河 河南洋浦科贸有限公司 高级工程师 廖明义 大连海事大学高分子材料研究所 教授 陆晓中 北京石油化工学院材料科学与工程系 教授 唐伟家 南京聚隆工程塑料公司 技术总监、高级工程师 张玉霞 《中国塑料》杂志社 副所长、副研究员 郑水林 中国矿业大学化学与环境工程学院 教授 雍跃 安徽国通高新管业股份有限公司 常务副总经理、经济硕士 黄解 厦门武峰塑料有限公司 副总经理, 高级工程师 于计俊 亚大集团 副总裁、高级工程师 赵文聘 鞍山市隆兴工程塑料有限公司 总工程师 何? 国家塑料制品质量监督检修中心(福州) 常务副主任、高级工程师 范佳忠 沈阳久利化学建材(集团)股份有限公司 总工程师 李白千 佛山市日丰企业有限公司 总工程师,理工监测 世联地产 烽火通信 中材科技 华东科技 天宝股份 ...,博士 徐红越 上海清川管业总公司 总工程师 高长全 河北宝硕管材有限公司 总工程师 赵启辉 全国塑料制品标准化技术委员会 管道塑料管材管件及阀门分技术委员会秘书长 邱夷平 上海东华大学 教授 邹立谦 大连立本塑胶有限公司 高级工程师 周宝茂 上海宝洋塑业有限公司 高级工程师 王德全 南通合成材料试验厂 高级工程师 段祥根 山东华尔新材料科学研究院 研究员 汪艳华 山东华尔新材料科学研究院 高级工程师 苏雅? 天津塑料研究所 高级工程师 郑玉婴 福州大学高分子科学与技术研究所 教授 黄少慧 中山大学化学与化学工程学院高分子研究所 教授 房 琳 中国石油化工股份有限公司 处长 吴海君 中国石油化工股份有限公司 化工事业部主任 郑峰 福建亚通新材料科技股份公司 高级工程师 汪萍 《塑料制造》杂志 副主编 滕谋勇 山东聊城大学材料科学与工程学院 副教授 季建仁 惠东美新塑木型材制品有限公司 总工程师、高级工程师 陈欣杰 汕头市塑胶商会 秘书长 林泽平 汕头经济特区金达塑胶有限公司 董事长、总经理 郑钟南 广东南洋电缆集团股份有限公司、汕头市塑胶行业商会 董事长兼总经理、会长 林东亮 惠东美新塑木型材制品有限公司 董事长 王兴为 衡水精信塑料助剂有限公司 总工程师 陈友标 广东华业包装材料有限公司公司 董事长 陈鹊 福建亚通新材料科技股份有限公司 常务副总经理 冯金茂 伟星集团伟星新型建材有限公司 总工程师 高荣宝 瑞士布斯公司 上海代表处首席代表 孟庆君 中国塑料加工工业协会 高级工程师 翦建政 湖南省塑料行业协会、湖南省塑料研究所 会长、所长 刘伯元 安徽科技开发公司新材料适用技术研究所 所长 孙成伦 大连塑料研究所有限公司 董事长、总经理 肖顺秋 湖南省塑料研究所 副所长 王登勇 伟星集团伟星新型建材有限公司 经理 白杰 杭州科利化工有限公司 总工程师 宋云鹤 中国塑协塑料编织制品专委会 秘书长 王士彪 湖南科汛环保塑料有限公司 总经理 王佛松 中国科学院 院士 郭虎 浙江通球环保存业有限公司 高级工程师 杭新华 无锡新龙科技有限公司 董事长 黄全春 上海春旭模具工业有限公司 高级工程师 刘圣军 中国人民解放军军事医学科学院卫生装备研究所 副主任、副研究员 孙绍灿 宁波江南塑胶有限公司 高级工程师 田丰 中国人民解放军军事医学科学院卫生装备研究所 研究员 王红 远东(宁波)塑胶金属工业有限公司 副总经理 徐国庆 江苏省东台国威滚塑研究所 高级工程师 张岳林 湖南阿立得公司 高级工程师 房华江 宁波江南塑胶容器有限公司 总经理兼翻新中心主任 陈剑林 无锡市德氟隆化工防腐设备有限公司 总工程师 陈开国 浙江慈溪市菲富利旋塑工程有限公司 总经理 黄新生 安徽宁国天迈塑胶有限公司 高级工程师 柴柏苍 浙江慈溪市德顺容器有限公司 副总经理、总工程师 张明治 中国塑协滚塑专业委员会 理事长、高级工程师 白鸿儒 上海三维塑料制品有限公司 高级工程师

华南理工大学的专业有:

安全工程专业;材料成型及控制工程专业;材料化学专业;材料科学与工程专业;车辆工程专业;城乡规划专业;传播学专业;船舶与海洋工程专业;电气工程及其自动化专业;电子科学与技术专业;电子商务专业;法学专业;风景园林专业;高分子材料与工程专业;给排水科学与工程专业;工程管理专业;工程力学(创新班)专业;

工商管理类专业;工业设计专业;光电信息科学与工程(光电信息)专业;广告学专业; 国际经济与贸易专业;过程装备与控制工程专业;行政管理专业;核工程与核技术专业;化学工程与工艺专业;环境工程专业;会计学专业;会展经济与管理专业;机械电子工程专业;机械工程专业;

计算机科学与技术建筑学专业;交通工程专业;金融学专业;经济学专业;旅游管理专业;能源化学工程专业;日语专业;软件工程专业;商务英语专业;生物工程专业;食品科学与工程专业;数学与应用数学专业;土木工程专业;网络工程专业;信息工程专业;应用化学专业; 制药工程专业;自动化专业。

华南理工大学,英文名称为:South China University of Technology,简称华南理工,位于广东省广州市。创建于1934年,是中国教育部直属的全国重点大学、首批国家“双一流”、“211工程”、“985工程”重点建设院校之一,入选“111计划”、“卓越工程师教育培养计划”、“卓越法律人才教育培养计划”和“国家双创示范基地”。

华南理工大学的办学历史十分悠久,可以追溯至20世纪30年代乃至清末时期。作为组建基础的中山大学工学院源于1931年成立的中山大学理工学院,1934年8月建立,9月随中山大学整体迁入广州石牌现华南理工大学校址办学;华南联合大学理工学院由1930年成立的广东国民大学工学院和1940年成立的广州大学理工学院合并而成。广东工业专科学校(简称“工专”)前身是1918年成立的广东省立第一甲种工业学校(史称“甲工”),最早可追溯至1910年清政府创办的教育机构:广东工艺局,“工专”几经变迁,历经勷勤工学院(1933年)、勷勤大学工学院(1934年)、并入中山大学工学院(1938年),于1943年夏复办。

华南理工大学现有科学院院士16人,工程院院士17人,外籍院士1人;“千人计划”入选者42人 ;长江学者奖励计划入选者26人;国家杰出青年科学基金获得者33人;百千万人才工程国家级人选13人;珠江学者岗位计划入选者34人;青年拔尖人才支持计划入选者6人;教育部新世纪优秀人才支持计划入选者123人;973计划首席科学家8人。

首先,登录中国期刊全文数据库、万方数据库或者 维普数据库(此为中国三大专业文献数据库)或国外Pubmed/Medline等国外专业数据库,然后搜索相关的文献,写出您的文章。其次,再去以上数据库中搜索相关专业期刊编辑部信息(国家级或是非国家级,核心或者非核心,统计源或者非统计源期刊等等),找到投稿联系方式,这样的方法避免网上很多钓鱼网站,确保您投稿的期刊是合法的。最后,祝好运。欢迎交流。静石医疗,竭诚为您服务。

相关百科

热门百科

首页
发表服务