首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

汽轮机转子的特性研究论文

发布时间:

汽轮机转子的特性研究论文

汽轮机是一种利用蒸汽带动的原动机。利用蒸汽的膨胀,使其一部分热能转变为具有高速的气流,推动叶轮旋转而转变为动能。通过喷嘴后,蒸汽焓降很大,此热量转变为流出后蒸汽的动能。

汽轮机是将蒸汽的能量转换成为机械功的旋转式动力机械。又称蒸汽透平。主要用作发电用的原动机,也可直接驱动各种泵、风机、压缩机和船舶螺旋桨等。还可以利用汽轮机的排汽或中间抽汽满足生产和生活上的供热需要 。汽轮机是能将蒸汽热能转化为机械功的外燃回转式机械,来自锅炉的蒸汽进入汽轮机后,依次经过一 系列环形配置的喷嘴和动叶,将蒸汽的热能转化为汽轮机转子旋转的机械能。蒸汽在汽轮机中,以不同方式进行能量转换,便构成了不同工作原理的汽轮机。

汽轮机中所有转动部件的组合叫做转子。转子的作用是承受蒸汽对所有工作叶片的回转力,并带动发电机转子、主油泵和调速器转动。

电气化铁路中SVC负序补偿应用技术研究 摘要:随着电气化铁路的迅速发展,电铁牵引负荷产生的负序分量及高次谐波,除对牵引供电系统造成危害外,还会造成电力系统负序及谐波污染[1],因而,电铁的负序及谐波危害已成为制约我国电气化铁路发展的重要因素。结合电气化铁路给电网带来的影响,着重探讨电铁负序补偿中SVC的使用问题。根据国外一些发达国家如日本、澳大利亚等国成功将SVC技术应用在电气化铁路的无功和负序补偿案例以及国内SVC负序补偿应用实例,对SVC负序补偿原理及运行方式进行了研究分析,对SVC在电铁负序治理中的应用前景做了初步探讨,以期提高电力系统运行的经济效益和社会效益。 关键词:电气化铁路;负序补偿;SVC 0 引言 世界上第一条用电力机车作为牵引动力的电气化铁路于1879年在德国柏林建成。中国于1961年建成第一条电气化铁路———宝成铁路的宝鸡至凤州段。电气化铁路问世后发展很快,法国、日本、德国等国家已形成以电气化铁路为主的铁路运输业,大部分货运量由电气铁路完成。电气化机车上不设原动机,其电力由牵引供电系统提供。该系统由牵引变电所和接触网构成,来自高压输电线路的高压电经牵引变电所降压整流后,送至铁路架空接触网,电气机车通过滑线弓受电,牵引机车行驶。由于电力机车运营可以使铁路运输成本降低30%~40%,因此越来越成为发展的方向。电力机车是波动性很大的大功率单相整流负荷,对于三相对称的电力系统供电来说,电铁牵引负荷具有非线形、不对称和波动性的特点,将产生三相不平衡的负序及高次谐波电流注入电网[1],使得旋转电机转子发热、电力变压器使用寿命缩短、输电线路送电能力降低,继电保护装置误动及安全自动装置不能正常投切等诸多影响电网运行的不利因素。因此,必须对电铁机车对电力系统的影响有足够的重视并采取应对措施[2-3]。目前关于电铁谐波治理的技术已经趋于成熟[4],但对于负序的治理仍存在很多问题,传统上广泛使用的关于减小电铁负序分量的方法大多是合理安排机车及系统机组运行方式,尽量削弱电铁负序分量对电网的影响,此方法虽能在一定程度上控制电铁对电力系统的影响,但仍存在诸如列车运行方式临时变化、电力系统机组检修等问题,影响治理效果。根据电铁负荷给电网带来的负序影响,着重对SVC负序补偿基本原理及运行方式进行了研究分析;将国内外应用SVC治理电铁负序分量的案例做了综述;最后对SVC在电铁负序治理中的应用前景做了初步探讨。 1 电铁负荷负序分量对电网的影响 1.1 负序分量对电网的影响[2] 1.1.1 对旋转电机的影响 1)汽轮发电机转子为敏感部位,因为汽轮发电机转子负序温升比定子大,存在局部高温突出部位,国内曾发生过向电铁供电的汽轮发电机转子部件嵌装面过热受损的事故;另一方面,当负序电流流过发电机时,产生负序旋转磁场、负序同步转矩,使发电机产生附加振动。 2)对邻近牵引变电所而远离电源的异步电动机,其定子绕组为敏感部位。同时还将在电动机中产生一反向旋转磁场,此反向磁场对电动机转子起制动作用,影响其出力。在谐波和负序电流的共同影响下,国内曾发生多起定子绕组过热烧毁事故。 1.1.2 对电力变压器的影响负序电流造成电力系统三相电流不对称,使得变压器的额定出力不足(即变压器容量利用率下降)。 1.1.3 对输电线路的影响流过电力网的负序电流,只是降低了电力线路的输送能力,并不作功。 1.1.4 对继电保护和自动装置的影响对各种以负序滤波器为启动元件的保护及自动装置干扰:由于保护按负序(基波)量整定,整定值小、灵敏度高。滤波器为启动元件时,实际运行中已引起下列保护和自动装置误动。 1)发电机的负序电流保护误动。2)变电站主变压器的复合电压启动过电流保护装置的负序电压启动元件误动。3)母线差动保护的负序电压闭锁元件误动。4)自动故障录波装置的负序启动元件的误启动,导致无故障记录而浪费记录胶卷。在频繁误动时,可能造成未能及时装好新胶卷而导致发生故障时无记录。 1.2 负序分量影响的标准[5] 我国有关同步发电机承受不平衡电流允许值的规定如下:1)在按额定负荷连续运行时,汽轮发电机三相电流之差不超过额定值的10%,水轮发电机和同步调相机三相之差不超过额定值的20%,同时任何一相的电流不得大于额定值。2)在低电压额定负荷连续运行时,各相电流之差可以大于上面的规定值,但应根据实验确定数值。对于100 MW及以下汽轮发电机,当三相负荷不对称时,若每相电流均不超过额定值,且负序分量与额定电流之比不超过8%,应能连续运行,100 MW以上的发电机,一般认为负序分量与额定电流之比不超过5%。 2 SVC负序补偿基本原理及运行方式[6-8] SVC全称为“静止型动态无功补偿器”,主要用于补偿用户母线上的无功功率,其通过连续调节其自身无功功率来实现的,一般SVC由并联电感和电容两个回路组成,其中感性回路为动态回路,其感性无功功率可连续分相调整,使得整个装置无功功率的大小和性质发生变化,分相控制的依据为三相平衡原理。用Qs表示系统总无功功率,QF为用户负荷的无功功率,QL为晶闸管控制电抗器(TCR)的无功功率,QC为电容器无功功率,上述平衡过程可以用公式(1)来表达:Qs=QF+QL-QC=常数=0 (1)如图1所示,A为系统工作点。负荷工作时产生感性无功QF,补偿装置中的电容器组提供固定的容性无功QC,一般情况下后者大于前者,多余的容性无功由TCR平衡。当用户负荷QF变化时,SVC控制系统调节TCR电流从而改变QL值以跟踪,实时抵消负荷无功,动态维持系统的无功平衡。最简单的TCR装置组成和工作原理如图2所示:TCR的基本结构是两个反并联的晶闸管和电抗器串联。晶闸管在电源电压的正负半周轮流工作,当晶闸管的控制角α在90°~180°之间时,晶闸管受控导通(控制角为90°时完全导通,180°时完全截止)。在系统电压基本不变的前提下,增大控制角将减小TCR电流,减小装置的感性无功功率;反之减小控制角将增大TCR电流,增大装置的感性无功。就电流的基波分量而言,TCR装置相当于一个可调电纳。其等效电纳为:式中,α为晶闸管导通角;L为电抗器电感值;ω为网压的角频率。对于不对称负荷,应采用分相调节,根据瞬时电压和电流求出所需的补偿电纳。TCR分相调节的理论基础为司坦麦兹(STEINMETZ)理论,在此理论指导下,SVC能够将负荷补偿为纯有功的三相平衡系统。司坦麦兹(STEINMETZ)理论有多种表达形式,本文给出一种常用的补偿电纳公式:r分别为△连接的补偿电抗器电纳值;V为系统电压有效值为系统电压(线电压)瞬时值;ia(I),ib(I),ic(I)为系统电流瞬时值;T为采样周期,一般为10 ms。根据以上补偿理论,将一个理想的补偿网络与负荷相连就可以把任何不平衡的三相负荷变换成一个平衡的三相有功负荷,而不会改变电源和负荷间的有功功率交换,能够取得良好的电能质量治理效果。 3 SVC在电铁负序治理中的应用 3.1 国外电铁SVC应用情况 日本东海道新干线西相模牵引变,根据牵引变接入电网点检出的无功电流和负序电流,由负荷特性计算补偿电路SVC所需无功电流的数值,对TCR中的晶闸管触发信号加以控制,从而对有功功率的不平衡与负序进行补偿。澳大利亚昆士兰铁路将总容量为600 MV·A的套SVC根据需要分别装设在沿途各牵引变的低压侧,将一套340 MV·A的SVC装设在更高一级电压等级的电网。补偿后,负序电压由补偿前的4.5%下降到0.8%。英法海底隧道采用了ABB提供的SVC以解决负荷平衡问题,通过SVC补偿后,不平衡度小于0.1%。 3.2 国内电铁SVC应用情况 2000年10月,神朔电气化铁路(神华集团)开通,单相供电牵引所产生巨大负序电流,引起三相供电系统的不平衡,给邻近神木电厂(属神华集团)发电机组(2×100 MW)稳发、满发以及整个陕北电网的稳定和安全运行带来严峻考验。2000年11月至12月神木发电公司2台发电机组由于负序原因被迫停运,损失发电量超过1×108 kW·h。2001年330 kV神木变投运后,供电质量得到了一定的改善。根据实测,330 kV神木变2台主变并列运行时,神木发电公司单机组运行,发电机中负序电流可达到额定电流的15%(规定值<8%,2 台机组同时运行时发电机中负序电流也可达到8%的临界值)。为保证发电公司能正常发电,330 kV主变只能采用分列运行方式,1台供神木发电公司发电进网,1台供电铁牵引站送电。在该方式下,单机组发电时,发电机中的负序电流仍时有超过8%的现象发生。由于电铁的影响,神木发电公司在运行中还经韩宏飞等:电气化铁路中SVC 负序补偿应用技术研究Vol.25 No.6常出现发电变差动保护误动、循环水泵电机过负荷等故障。2002年,经过多方考虑神华集团公司斥巨资在神朔电铁供电线路上加装静止型动态无功补偿装置(SVC)以治理电铁牵引站对电网所产生的污染,包括抑制谐波、提高功率因数、快速连续无功调节、抑制电压波动和闪变、解决三相不对称等问题。神朔SVC工程与2002年5月底投入运行,并于2002年8月10日完成竣工验收移交。其间西北电力试验研究院受用户委托对该工程进行了实际跟踪测试,证明该设备性能稳定、运行安全可靠、各项指标均为优良、补偿效果良好,完全达到并优于用户要求,方案实施后取得了预期效果。该装置在国内首次实现了110 kV电铁供电线上对多座电铁牵引负荷的整体动态实时补偿,首开电铁与电网补偿综合治理的成功先例。 4 结语 SVC装置在电气化铁道中应用的主要问题是资金问题。随着我国电网建设的进一步发展以及电气化铁路大规模的建设,对SVC在电铁中的应用提出了更高要求,迫切需要设计、生产出性能最佳、价格便宜的SVC装置。辽宁某厂家生产的SVC,于1997年通过了辽宁省科委及原国家计委重点工业性试验项目鉴定,实现了国产化;中国电力科学研究院生产的SVC于2004年在鞍山红一变投入运行,也实现了国产化;在我国冶金、煤炭、化工、电铁等行业中使用的SVC,国产的占绝大多数。国产SVC实用化程度进一步提高,国产的SVC装置除具备SVC的常规特点外,还具有无水冷却(热管自冷技术),出厂前进行全载、全压试验,运行中可以进行远程实时监控运行等特征。近10 a来,国产SVC装置的安全运行实践证明了国产SVC装置技术经济指标的优越性和先进性。经辽宁该厂家建议,由全国电压/电流等级和频率标准化技术委员会牵头制定的中华人民共和国国家标准《静止式动态无功功率补偿装置(SVC)功能特性导则》和《静止式动态无功功率补偿装置(SVC)现场试验导则》报批稿已经上报,必将促进SVC的进一步发展。目前,国产SVC的规模化生产能力不仅完全可以满足我国电力系统和各行业的需要,而且还具有出口能力。目前该厂家生产的我国第一套应用于电气化铁路的高压大功率静止无功发生器亦进入最后调试阶段,此套装置将发往上海铁路局用于电气化铁路电能质量治理。首套电铁系统专用静补装置的问世,标志着我国成为世界上少数几个掌握该技术的国家。目前国产SVC已占领了国内电气化铁路系统、冶金行业绝大部分市场份额,成为世界上SVC的主要制造商之一,2006年的装机数量更是首次超过瑞士ABB与德国西门子SIEMENS,跃居全球第一,国内厂家精心研制的高压动态无功补偿装置(SVC)已具有国际同期先进水平。可以预见,随着国产SVC技术水平的进一步成熟、性价比的进一步提高,SVC在我国电气化铁路建设中必将发挥重要作用,为促进我国铁路建设实现跨越式发展提供有力保障。 [参考文献]: [1] 林建钦,杜永宏. 电力系统谐波危害及防止对策[J].电网与清洁能源,2009,25(02):28-31. [2] 卢志海,厉吉文,周剑.电气化铁路对电力系统的影响[J].继电器,2004,32(11):33-36. [3] 任元.信阳和驻马庙地区电气化铁路谐波引起220 kV高频保护动作的分析[J].电网技术,1995,19(2):32-35. [4] 李郑刚. 电石炉无功补偿与谐波抑制.文秘杂烩网 ,2009,25(01):76-78. [5] 电力工业部电力规划设计总院.电力系统设计手册[S].北京:中国电力出版社,2005. [6] 朱永强,刘文华,邱东刚,等.基于单相STATCOM的不平衡负荷平衡化补偿的仿真研究[J]. 电网技术,2003,27(8):42-45. [7] 李旷,刘进军,魏标,等.静止型无功发生器补偿电网电压不平衡的控制及其优化方法[J].中国电机工程学报,2006,26(5):58-63. [8] 辽宁荣信电力电子股份有限公司.SVC控制系统用户手册[K].辽宁: 荣信电力电子股份有限公司,2006采纳哦

汽轮机节能降耗研究论文

1. 发电企业减排CO_2的技术经济对策 张近朱 文献来自: 东北电力技术 2002年 第06期 CAJ下载 PDF下载 通过费用和效果(O飞减排量)的比较,分析判断减排措施的优劣。减排技术一般分为专门减排技术。辅助减排技术和替代技术3大类。技术类别不同,COZ减排的数量亦不同。减排技术的费用指标为:以现行COZ排放量为基准,凡形成CQZ排放量下降的 ... 被引用次数: 1 文献引用-相似文献-同类文献 2. 蒸气压缩式集中空调机组能源效率标准的研究 卢苇 文献来自: 天津大学 2004年 博士论文 CAJ下载 在线阅读 分章下载 分页下载 将来必然要履行温室气体减排的义务。“十五”期间我国的能源发展战略就指出要提高能源效率,在坚持合理利用资源的同时,努力提高能源生产、消费效率,以促进经济增长,提高人民生活质量。同时在能源的生产、消费过程中都要注意环境质量的要求,实现能 ... 被引用次数: 4 文献引用-相似文献-同类文献 3. 农村可再生能源建设对减排CO_2的贡献及行动 王革华 文献来自: 江西能源 2002年 第01期 CAJ下载 PDF下载 被引用次数: 5 文献引用-相似文献-同类文献 4. 锅炉与CO_2减排 俞建洪 文献来自: 工业锅炉 2004年 第01期 CAJ下载 PDF下载 不规定具体的减排指标,但要努力减排;对38个发达国家CO2减排量作了明确规定:其中欧共体国家到2012年CO2排放量要比1990年降低8%,美国降低7%,日本降低6%,其他发达国家和东欧降低5 ... 被引用次数: 1 文献引用-相似文献-同类文献 5. 温室气体减排与21世纪我国的能源发展战略 魏东,马一太,吕灿仁 文献来自: 能源技术 2001年 第02期 CAJ下载 PDF下载 通过合理选择低减排成本的项目 ,可以使全球在实现相同减排目标的前提下 ,大大减少总的减排成本。图 3是几组国家工业CO2 减排的供给曲线示意图[5] ,从图中可看出 ,中国和?... 被引用次数: 2 文献引用-相似文献-同类文献 6. 火力发电企业的成本管理 李建飞 文献来自: 华北电力大学(北京) 2006年 硕士论文 CAJ下载 在线阅读 分章下载 分页下载 火 力发电企业的燃料主要是燃煤和燃油,燃料成本在火力发电企业的总成本中占 50%一80%左右。如图2一1所示:2001一2005年国华盘山电厂的燃料成本在总成本中 比率燃料费44%一59%、折旧费占19%一28% ... 被引用次数: 0 文献引用-相似文献-同类文献 7. 试论建筑节能的新观念 龙惟定 文献来自: 暖通空调 1999年 第01期 CAJ下载 PDF下载 议定书确定了各缔约方到2010年所承担的包括CO2在内的6种温室气体的减排量(见表2)。表2京都议定书规定的各国温室气体减排量国家与1990年相比的减排量/%澳大利亚增加8奥地利,比利时,保加利亚,捷克,丹麦,爱沙尼亚,欧盟,芬兰,法国,德国,希腊,爱尔兰,意大利,拉脱维亚,列支 ... 被引用次数: 30 文献引用-相似文献-同类文献 8. 新建火力发电企业市场化运作管理研究 刘胜金 文献来自: 西南交通大学 2004年 硕士论文 CAJ下载 在线阅读 分章下载 分页下载 电力工业是国民经济的基础产业,高效、可靠的电力工业对其它产业的快速发展起着重要的作用。随着中国电力市场化发展和电力体制改革的不断深入,电力企业面临着严峻的挑战。特别是新建火力发电企业,要想在激烈的市场竞争中立于不败之地,就必须适应电力市场化发展要求,实行市... 被引用次数: 0 文献引用-相似文献-同类文献 9. 全球变暖与二氧化碳减排 裴克毅,孙绍增,黄丽坤 文献来自: 节能技术 2005年 第03期 CAJ下载 PDF下载 行动的减排成本普遍低于其他减排方案。3碳税与二氧化碳减排利用税收杠杆保护环境,对破坏、有损环境的生产经营活动课税。是欧洲?... 被引用次数: 0 文献引用-相似文献-同类文献 10. 供电企业电能质量管理与节能降耗问题研究 唐占荣 文献来自: 华北电力大学(北京) 2005年 硕士论文 CAJ下载 在线阅读 分章下载 分页下载 节能降耗 Firstly, this paper commences from the related problems in power quality, which includethe ... 被引用次数: 0 文献引用-相似文献-同类文献 搜火力发电 的学术趋势 搜企业 的学术趋势 搜索相关数字 山东省火力发电 江苏省火力发电量 全国火力发电量 参考资料:中国知网

电厂汽轮机运行节能降耗措施解析

我国是能源消耗大国,随着环境保护压力加大以及不可再生资源的消耗,降耗增效是目前汽机研发的主流方向。下面是我为大家分享电厂汽轮机运行节能降耗措施解析,欢迎大家阅读浏览。

1 电厂汽轮机运行的现状

(1)我国早在20世纪就开始着手研究对汽轮机的改革,经过这么多年的探索,我国电厂已经脱离了老式汽轮机,改革成现在使用的较为先进的。但是当今社会可用能源越来越少,而汽轮机的能源消耗却依旧不是一个小数目,所以我国必须依然致力于汽轮机的节能降耗改革上。

(2)我国是能源消耗大国,随着环境保护压力加大以及不可再生资源的消耗,降耗增效是目前汽机研发的主流方向。同时我国也投入巨资与国外合作或以市场换技术,来引进国外先进的技术。但是目前我国的汽轮机水平与国外技术仍有差距,究其根本就是我们在是在模仿居多,在吸收转化核心技术能力以及在此基础的技术研发创新能力不足。

(3)我国电厂人员整体素质及学历不够,在我国类似于电厂一类的工厂,招收员工的学历水平不高,且普遍不重视研发,造成相关科技研发部门能力水平有限,因此对于汽轮机节能降耗这一问题相对比较难解决,也是导致部分电厂这一问题一直处于瓶颈的原因。

(4)我国大部分电厂是自行安装和维护的,经检测这些设备都存在一定不足之处,和国际上标准的节能降耗设备还有很大的差距,因此需要在各方面加以提高,模仿国际上发达国家节能降耗技术,以提高本国技术。

(5)电厂的管理制度不够严谨,我国工厂的一大弊端就是重经济收益,却缺乏统一高效的管理制度,因此导致电厂中工作人员工作积极性不高,不能全身心投入到改革汽轮机的生产上。这也是我国电厂汽轮机目前为止还不是十分发达的原因。

2 电厂汽轮机耗能原因

(1)汽轮机是电厂中发电的主要设备,整体结构十分复杂,在运行中其效率还比较容易受到其它因素影响,比如排汽背压等,种种原因加在一起导致汽轮机运行中能源消耗增多。

(2)在运行中,汽轮机操作不规范,导致汽轮机中各部分发生变化,这种不适当的运作,会导致超负荷,也就随之加大了汽轮机的能耗。还有在使用中不停的开机关机,也是出现高耗能的原因之一。

3 电厂汽轮机节能降耗措施

(1)在过去的二十几年理,我国一直致力于电厂科技研究,虽然和以前相比已经具有很大的成效,但是仍然达不到最好的效果,因此我国应该借鉴国外的科学技术,取其精华,弃其糟粕,选择他们的长处,应用在我国的电厂中,并且选择几家较大的,发展较快的电厂最先使用,效果很好的话,就可以广泛推广出去,这样就会加快我国电厂汽轮机节能降耗的发展。

(2)我国目前的经济状况不太适合照搬照抄西方国家的发展策略,要按照本国的发展现状,发挥我国电厂汽轮机的优势,把我们的缺点与西方国家相比较,总结出不足之处,最终向他们学习,这样才能以最快的速度发展我国节能降耗事业。

(3)对于电厂的工作人员,要统一提高他们的素质,在职人员定期进行培训,讲解节能降耗对于国家、本厂和个人的好处,潜移默化影响员工对于节能降耗问题加以关心。对于最新招聘的人员考核力度加大,把汽轮机节能降耗问题作为考核问题中较为重要的一类。

(4)国家对于各高校节能降耗人才的培养力度要加大,部分国人并没有意识到节能降耗的好处,因此要在高校中重点培养这方面人才,以便未来能有更多这方面的专业人事投入到电厂的工作中去,对我国电厂的发展做出大力贡献。

(5)国家应该对各个电厂加大管理力度,对于一些厂中自行安装的设备,取消其使用权利,并且向各个电厂宣传自行安装设备的缺点与危害,提倡使用国家统一安装的、相对比较完善的.汽轮机,这样也是一个节能降耗的好途径[5]。

(6)电厂对其员工的管理制度和力度也要相对改革,对于平时纪律松散,不认真工作的员工加以惩罚,并且指派专门人员对场内的安全和使用机器是否规范加以检查,如有没关机器或者不按正规工作流程胡乱开关机器的员工进行教育,这样才能提高场内员工的自觉性,提高机器使用寿命的同时做到了节能降耗。

(7)在克服了其他客观因素之后,我们也要在技术方面着手,优化电厂内汽轮机的运行过程,降低电厂发电成本,提高发电效率。与此同时还要保证汽轮机运行安全,不能盲目的进行技术革新,要在原有的基础上稳扎稳打,一步一个脚印的进行改革,不能因为我国技术落后,或者能源消耗较大,就为了加快速度而不求质量。这样即使达到了节能减排的效果,也会在其他方面有很大的缺失。同时注重对引进的先进技术的吸收与转化,否则图有其形而未掌握其核心技术,同样无法对我国汽轮机技术发展起到推动作用。要既能保证安全性,又具有先进性,这才是新时期我国电厂汽轮机节能降耗技术的研究方向。

4 结语

综上所述,控制汽轮机能量损耗是电厂非常重要的工作之一,它的运行效率与电厂收益紧密结合,因此在实际中应该选择恰当的方法和手段,要从电厂自身角度出发,对汽轮机的运行方式深刻探索,注重与实际相结合。从多个环节采取不同的措施,充分发现并利用本厂汽轮机的特点进行相关操作,最终达到节能降耗的目的。

种子萌发特性研究的论文

探究种子萌发条件试验 提出质疑:种子萌发的条件是什么。 做出猜测:足够的阳光,土壤,水 试验过程 1. 准备4组未萌发的大豆种子,一个阳光充足的阳台,足够的水,足够的土壤。 2. 将第一组大豆种子埋进足够的土壤中,并给予它足够的阳光,但不给予它适量的水分。 将第二组大豆种子埋进足够的土壤中,并给予它适量的水分,但不给予它足够的阳光。 将第三组大豆种子埋进不足够的土壤中,给予他适量的水分和足够的阳光。 将第四组大豆种子埋进足够的土壤中,并给予它适量的水分以及足够的阳光。 3. 连续数日进行上面的操作,直到有一组种子发芽。 试验结果:第一组、第二组、第三组大豆种子未能发芽,第四组试验种子能够发芽。 得出结论:种子萌发的条件是适量的水分,足够的土壤以及足够的阳光,这三种缺一不可。

种子的萌发过程 一、 做实验 1.材料工具 (1)常见的种子(如:绿豆 黄豆)40粒。 (2)有盖的罐头4个,小勺1个,餐巾纸8张,4张分别标有1、2、3、4的标签,胶水,清水。 2.方法步骤 (1)在第一个罐头里,放入两张餐巾纸,然后用小勺放入10粒绿豆,拧紧瓶盖。置于室温环境。 (2)在第二个罐头里,放入两张餐巾纸,然后用小勺放入10粒绿豆,洒上少量水,使餐巾纸湿润,拧紧瓶盖。置于室温环境。 (3)在第三个罐头里,放入两张餐巾纸,用小勺放入10粒绿豆,倒入较多的清水,使种子淹没在水中,然后拧紧瓶盖。置于室温环境。 (4)在第四个罐头里,放入两张餐巾纸,用小勺放入10粒绿豆,洒入少量清水,使餐巾纸润湿,拧紧瓶盖。置于低温环境里。 通过观察,我发现1、3、4号罐中种子未发芽,而2号罐中种子发芽了。 二、研究 1.为什么同样优质,同样品种的种子有的发芽,有的没有呢? 当一粒种子萌发时,首先要吸收水分。子叶或胚乳中的营养物质转运给胚根、胚芽、胚轴。随后,胚根发育,突破种皮,形成根。胚轴伸长,胚芽发育成茎和叶。 然而,种子的萌发需要适宜的温度,充足的空气和水分。 1号种子未发芽是因为它虽有充足的空气和适宜的温度,但无水分,所以它不可能发芽。 2号种子既拥有适宜的温度和充足的水分,还有水分,所以它发芽了。 3号种子未发芽是因为它被完全浸泡在水中,而水中没有氧气,所以它也不可能发芽。 4号种子也因缺适宜的温度未发芽。 三、讨论结果 通过此次实验,我发现了种子的萌芽需要充足的空气、水分和适宜的温度。仔细地观察,我还看到发芽后的植物上有一些细细的,白白的根毛,其实他们能提高吸水率。 实验给我带来了许多乐趣,也让我从中学到了许多知识。生物学实在是太奇妙了

你好。应该是余跃辉、田孟良,《小豆种子的萌发特性研究种子》,2003(2)21-22

火电厂汽轮机性能检测论文

汽轮机汽缸变形量测量技术分析论文

摘要:大型火力发电厂汽轮机组的热效率(尤其是各个缸的热效率)高低,对机组的安全生产、经济运行和安全文明生产所起的作用是决定性的,直接关系到发电厂的经济效益和机组的安全运行。对此,各个电厂对机组的大修尤为重视,对汽轮机检修的质量控制要求很高,尤其是在汽轮机检修中对通汽部分间隙的调整要更加谨慎,通流间隙调整的好坏决定了检修质量,提高了运行效率。

关键词:汽轮机;变形量测量技术;洼窝变形

由于结构原因、制造原因、热应力原因,机组运行后汽缸存在很大的变形,机组大修时,首先要对变形量进行测量和分析,根据分析结果来判断汽封碰摩的原因,在检修时缩小并修正间隙。洼窝变形量技术是通过积累大量整机改造工作的经验,我们注意到国内机组普遍存在汽缸变形以及隔板变形,由此导致机组全缸与半缸状态隔板洼窝中心不同,这不但影响了机组检修时汽封间隙调整工作的效率,而且影响了运行时隔板静叶栅与转子动叶栅的同心度,影响蒸汽流动,降低了机组热效率。针对这一现状,我们开发了隔板洼窝变形测量仪,现已成功运用到上百家电厂中,取得了显著的效果。测量出半缸状态相对于全实缸的洼窝变化量,是我们真实调整汽封间隙最关键的环节,真实地掌握变形量,才能优化调整汽封间隙。测量高压进汽平衡环套体的解体洼窝、套体椭圆度,再测量安装汽封后的汽封椭圆度,结合上次大修的间隙标准,确定转子在运行后最大的椭圆轨迹,是我们判断最大挠度处到底按照多大的间隙安装和优化汽封间隙的依据。

1洼窝变形量的测量

该工作一般在扣空缸测结合面间隙后进行,若结合面存在较大张口,需要进行修理时,则需要在修理之后再测量洼窝变形量。在大修机组中,全实缸中心合格后,应进行静止部分的中心静态找正。包含持环、隔板套、隔板、轴封套等部件的中心静态找正。一般情况下是以下半实缸动静中心为准。实际上,运行过的机组高中压、低压外缸变形量很大,在一般情况下,下半实缸的动静洼窝中心与全实缸下的动静洼窝中心差距很大,不考虑全实缸下的动静同心度,往往大修后的机组开机有动静摩擦声,开机到满速不顺利,等摩擦音小了,机组也到了满速,带负荷效率(热耗、汽耗、煤耗)没有提高。为了提高效率,认为:

1)假轴以转子中心合格后的油挡洼窝为准,找中下半实缸动静中心并记录,包含持环、隔板套、隔板、轴封套等。然后开始测量出下半实缸(持环、隔板套、隔板、轴封套等)动静中心并记录。全实缸下的动静洼窝中心与半实缸下的动静洼窝中心有差距。在大修过程中,要把全实缸下的实际动静洼窝中心修正到半实缸动静洼窝中心中。再在全实缸上调整汽封间隙,汽封间隙调整合格后,开机就一定顺利,没有动静摩擦声,带负荷效率会大大提高(汽轮机安装、大修),实际上就是调整全实缸下动静中心的过程。特别是运行过的机组。设备金属材料经过长时间应力失效,已经定型。

2)高中、低压外缸是不可调整的,所以大修机组更应该实实在在地考虑全实缸下的动静中心。

2洼窝变形测量仪探头布置

测量前应在每个洼窝的测量点(测量3点,即左a、右b和下部c)上做好标记,以便每一次都在同一个位置上进行测量,以提高测量的准确性。扣上半持环隔板、内缸,复测自然状态下汽缸平面间隙。如果是首次检修,建议在拧紧螺栓前在这个状态下再测量一次各部位洼窝中心,(仍旧测量下三点)我们都知道在半缸状态下,汽缸的刚度要比全缸低。尤其是合缸机其刚度较差,在上半持环、内层缸吊入后,在其上半部件重量的作用下,汽缸将向下变形。这个数字应当是一个衡量,测量结果对于以后的检修一直可以借鉴。根据平面间隙分布情况紧1/3螺栓,螺栓拧紧后法兰平面的最大间隙应小于0.05mm。如间隙超标应拧紧全部螺栓;如拧紧全部螺栓后间隙仍超标热紧螺栓,直至法兰平面的最大间隙应小于0.05mm。(个别边缘紧不掉例外)测量持环、内层缸在紧螺栓后的洼窝中心。在进行内缸测量的时候,我们要求测量技术以及测量要求完全与外缸的测量一致。当我们将内外缸扣好以后,我们就通过上测量点、下测量点、左测量点以及右测量点进行洼窝中心的测量。在这测量过程中,我们要根据内缸以及外缸测量的中心变化进行分析。通常情况下,内缸以及外缸的中心变化是由于张口法兰以及螺栓紧固件问题造成的。因此我们在进行处理的时候,要对螺栓紧固件的刚度以及垂直度进行检查,因为一旦螺栓紧固件出现了强度以及垂直度问题,就会对内缸以及外缸的支点标高造成影响。通过本次缸体的测量,我们能够从测量结果中分析出:气缸的内外环以及隔板之间的真实中心是洼窝的真实中心位置。同前面的测量操作一样,我们在测量过程中还要将外缸扣上,但是这一过程中我们不能够连接螺栓以及法兰,这样我们就能够通过外缸自身的重力进行持环中心以及内缸中心的变化测量。在气缸开缸之后,我们要对各种中心变化数据进行复核,然后通过复核的结果同上一次的测量数据进行对比,如果2次测量数据变化不大,我们认为气缸的变形较为稳定,如果2次的测量数据变化较大,就说明气缸的中心变化较大,我们需要针对这一变化进行分析,找出中心变化的原因,确保测量结果可靠。对测量结果进行比较,计算出汽缸螺栓拧紧后各汽封漥窝中心的变化量。在开缸状态下,根据实际偏差和变化量对持环、隔板洼窝中心进行调整,使其在合缸后处于与转子同心的位置上。即保证全实缸状态下的洼窝左等于右,上等于下。

考虑到现场的实际情况,有些通流部分内径较小,大部分情况下,上半持环、内缸扣上后,人无法进入,合外缸后只能测量下3点。所以还需分别测量出各持环、内缸在自然状态下和拧紧法兰螺栓后的椭圆度,在计算汽缸螺栓拧紧后各汽封洼窝中心的变化量时,纳入这部分影响。通过准确的变形量测量,能够更好地掌握缸体半缸与全实缸的实际变化情况,能够更准确地掌握汽封调整间隙的数值,保证调整后的汽封间隙更真实可靠,做到汽封间隙的最优化调整。汽轮机在应用的过程中,应用效率对于整个机组的影响非常巨大,直接关系到机组的`正常运行以及产生的经济效益。正是由于这一原因,在机组正常运行的过程中,我们要对汽轮机进行全面的检查,尤其是气缸的变形问题更要给予高度的重视。在进行气缸变形检测的过程中,我们要重点对气缸的间隙进行检查,只有这样才能够有效地检查出气缸的使用效果以及气缸的性能指标,为了有效地降低气缸检查过程中带来的巨大的工作量,我们在正常检查的时候,要尽量的调整气缸的径向间隙,保证气缸间隙达到应用标准。

3结语

通过该项技术的应用,为检修中的汽封间隙调整和阻汽片随缸修刮技术提供了数据上的基础数据,从而达到优化汽轮机通流间隙的最终目的,为提高汽轮机缸效和机组热效率提供了有力的技术保证,从而减小机组的煤耗值,电厂发电成本可靠降低提供了切实可行的解决办法。

参考文献

[1]国家能源局.DL/T869—2012DL/T753—2001,火力发电厂焊接技术规程[S].北京:中国电力出版社,2012.

[2]国家经济贸易委员会.DL/T753—2001,汽轮机铸钢件补焊技术条件[S].北京:中国电力出版社,2001.

[3]国家能源局.DL/T819—2010,火力发电厂焊接热处理技术规程[S].北京:中国电力出版社,2010.

汽轮机在不具备启动条件下启动,由于上下缸温差大、大轴存在临时弯曲、汽缸进水、进冷汽,机组强烈振动以及动静间隙小等因素,引起大轴与静止部分摩擦,将会造成大轴弯曲。一般大轴弯曲超过0.07mm以上时,就不能维持机组运行时的正常振动值,必须进行直轴处理。近年来大轴弯曲事故相当频繁,尤其是200MW及以上中间再热式机组更为突出,粗略估计在20~30多次以上。1985年水电部召开了防止200MW机组大轴弯曲座谈会,对已发生的7台次大轴弯曲事故进行了技术分析。分析表明:7台次大轴弯曲事故均发生在启动过程中,其中5台次是热态启动中发生的;7台次大轴弯曲事故中,大多数在停机或启动中发生了汽缸进水,多数在机组一阶临界转速以下振动大,领导和有关人员执行规程不严,强行升速临界,甚至强行多次启动。7台次大轴弯曲都在高压转子前汽封处。座谈会在分析7台次大轴弯曲事故技术原因的基础上,制定了《关于防止200MW机组大轴弯曲技术措施》(简称《措施》)这项措施对其他容量的机组也可参照执行。通过《措施》的贯彻落实,频繁发生大轴弯曲事故的局面得到一定程度的控制。但由于人员不断变动,新人员对《措施》的掌握程度问题、领导决策问题、设备问题等诸多因素,大轴弯曲事故仍时有发生,迄今未能得到有效控制。例如: 2巺托 ?瓗 (1)1986年某厂一台国产200MW机组在电气系统故障中甩负荷停机后,因电动盘车投不上,手动盘车装置也失灵,被迫采用半小时盘180°。3h后才投上电动盘车,大轴晃度逐渐恢复到原始值。次日机组在热态启动中,采用除氧器汽平衡管蒸汽向轴封送汽,当时真空200mm汞柱,同时用电动主汽门旁路冲转,节流扩容后,主汽温度进一步降低。(当时内缸下缸壁温为370℃)进入轴封的低温蒸汽及进入汽缸的低温蒸汽,使缸壁温度突然下降,上下缸温差增大,引起汽缸变形拱起,轴封套收缩变形,导致轴封与大轴摩擦局部过热弯曲。解体检查大轴高压汽封处弯曲0.5mm,进行直轴处理后恢复运行。 AC~?娪 ?,蹜街鞫 (2)1987年某厂一台国产200MW机组,小修后启动运行不久。因发电机断水保护误动掉闸,之后经连续几次启动,都因振动大而停机。后解体检查,高压转子高压汽封处弯曲0.30mm,经检查该机高压缸向B列偏移,前侧偏移1mm多,后侧偏移0.76mm,原因是前部定位销孔错位1.5mm多,安装时就未装定位销,导致运行中不均匀受力使汽缸偏移。大修中测量两侧径向间隙时也未发现汽缸偏移。事故前不久一次停机中,转子在90r/min时突然止速,对此也未分析查明原因。以致在断水保护误动停机过程中,高压汽封与大轴在高速状态摩擦,导致大轴弯曲,后经直轴处理,并消除滑销系统缺陷后恢复运行。 灍钰髷,h ? ?戙��筻? (3)1994年某厂一台国产220MW机组,停机后热态启动中,由于轴封供汽门泄漏,在缸温406℃情况下将锅炉305℃蒸汽漏入汽缸,使汽缸、转子受到不均匀冷却,大轴产生临时变形。而启动时,又因晃度表传动杆磨损,一直指示在0.05mm不变,当第一次在500r/min时2号轴瓦振动超过0.10mm,最大到0.13mm才打闸停机,停机后未认真查找分析原因,误认为晃度0.05mm已达到原始值,且在盘车不足4h(仅2h12min)就二次启动,到1368r/min时3号轴瓦振动0.13mm,即打闸停机。解体检查高压转子调节级处弯曲0.39mm,经直轴处理后恢复运行。 do{k8w?
oQF嗵1\絁6
(4)1995年6月某厂一台200MW机组冷态启动中,高压内缸缸壁温度测点失灵,当转速升到1000r/min时,机组振动突然增大,但现场运行人员跑到集控室去请示汇报,延误了及时停机。停机揭缸检查发现高压内缸疏水管断裂,高压转子大轴弯曲超标,分析认为高压缸在启动中受温差大影响而变形,导致汽封与大轴摩擦造成永久性弯曲,经直轴处理后恢复运行。 騴漹??SJ
騌?犡o?
上述事故案例特别是近几年发生的大轴弯曲事故表明,防止大轴弯曲的反事故措施仍未得到认真贯彻落。发生大轴弯曲,将造成机组长时间停运,解体进行直轴,采用加压直轴,需将转子逐步加热到650℃左右才能加压,由于加热过程中易发生故障返工,往往拖长工期,给电厂工作造成被动和麻烦。因此,为防止大轴弯曲事故,应结合设备实际情况,全面认真贯彻或参照执行水电部[1985]电生火字87号和[1985]基火字69号文颁发的《关于防止200MW机组大轴弯曲的技术措施》,把各项措施要求,落实到现场运行规程和运行管理、检修管理、设备管理工作中,并强调以下几点: 呎(檄岠r?
5碞CCp?&
(1)按照防止大轴弯曲技术措施的要求,组织主要值班人员和厂、车间有关分管运行的领导和专业人员切实掌握各机组技术资料及确切数据,如大轴晃度表测量安装位置、大轴晃度原始值、机组轴系各轴承正常运行和启动过程的原有振动值、通流部分径向、轴向间隙值等等,使指挥者和操作者都做到心中有数。 X�\?挧┹
>F簧?IsD9
(2)根据机组设备情况,落实各项防止汽缸进水的技术措施(下面将具体叙述,这里不展开)。 ?k穠\�
|4莃?饛伫
(3)机组启动前必须检查:①大轴晃度不超过原始值0.02mm;②高压外缸及中压缸上下缸温差不超过50℃;③高压内缸上下缸温差不超过35℃;④主蒸汽、再热蒸汽温度至少高于汽缸金属50℃(但不应超过额定汽温),蒸汽过热度不低于50℃(滑参数启停时还应保持较高的过热度);不符合上述条件禁止启动机组。 戨兑?dF敆
箭帵奌狋
(4)机组冲转前应进行充分盘车(一般连续盘车2~4h,热态启动取大值),若盘车短时间中断时,则应按中断时间的10倍再加4h进行连续盘车方可冲转。 ?戋d妖禯
虋o1V彩晢?
(5)启动中在中速以前,轴承振动(特别是1号轴瓦、2号轴瓦)超过0.03mm时应打闸停机,过临界时振动超过0.10mm应打闸停机,严禁硬闯临界线速开机。停机后仍应连续盘车4h(中间停盘车时按上述要求增加盘车时间),方可再次启动。 U峗乥\鑓
揕围J嫾舣
(6)启动前供汽封的蒸汽温度应高于汽缸金属温度,并应在送汽前充分进行疏水,防止积水带入汽封引起骤冷。 Z蹞蔷o!暤
e3;?题x (7)启动中若轴承振动、蒸汽参数变化超过规程规定或机内有异常摩擦声、轴封处冒火花,应按规程规定立即停机。 翪猐瘨嚣- M殀F踿痸� (8)停机后应及时投入盘车,若盘车电流增大、摆动或有异常时,应分析原因并采取措施予以消除。若汽封磨擦严重时,可先手动方式定时盘车180°,待摩擦基本消除后再投入连续盘车。因故暂时停止盘车时,应监视大轴弯曲度的变化,当转子热弯曲较大时,应先手动定时盘车180°,待大轴热弯曲基本消失后再连续盘车。 痌?勡骝? 柫諥贷?x? (9)对上下缸温差大(有的机组正常运行中上下缸温差已超过启动条件的标准)的机组,可结合检修改进汽缸保温,采用优质的保温材料(如硅酸铝纤维毡、微孔硅酸钙等)和严格的保温工艺。实践证明效果是显著的。 渎��S覰? ?=矹躰钯# 大轴弯曲事故绝大多数发生在机组启动中,特别是热态启动中,因此对大中型机组的启动,领导(指负责启动的厂、车间领导)一定要持慎重态度,坚持严格按规程规定和技术措施要求启动机组。当启动不顺利时,一定要认真分析查找原因,消除异常后按规定启动,决不可为了赶工期,为了不影响安全考核等等而侥幸闯关,多次强行启动,在这一点上,决策是否再次启动的各级领导人员都应正确对待,不符合启动条件的,决不强行启动。热态启动不顺利的,可待机组温度降低,具备启动条件后再启动,切实防止因决策失误而造成大轴弯曲。

研究性论文汽车转弯问题

毕业论文;课题名称;姓名号所在系;专业年级指导教师称;二O一二年五月十八日;汽车转向系故障的分析与检修;【摘要】转向系是汽车行驶的指南针,它的好坏关系着;行了诊断分析和检修;【关键词】轿车,转向器,故障分析,检查维修;引言;汽车发展的趋势是安全、节能、环保;分析;由转向油泵、转向油管、转向油罐以及位于整体式转向;1.汽车动力转向系的工作原理;(1)当汽车直线毕 业 论 文课题名称姓 名 号 所在系专业年级 指导教师 称二O一二年五月十八日汽车转向系故障的分析与检修【摘要】转向系是汽车行驶的指南针,它的好坏关系着汽车能否安全行驶。本文首先讲述了汽车动力转向系的整体结构;具体介绍了它的功用;分类和工作原理。然后具体对轿车动力转向系统常见的几种故障:一转向沉重,二转向时有噪声,三方向盘自由行程过大,四左右转向时轻重不一,五转向时转向盘强烈抖动,六汽车直线行驶时,转向盘发飘或跑偏。最后讲述了轿车动力转向系中转向盘的自由行程,转向储液罐的液面高度,液压泵的泵送压力,液压系统的密封性,转向柱的检查方法以及通过轿车动力转向系的故障现象进行了诊断分析和检修。对使用和维护汽车有着很现实。【关键词】 轿车, 转向器,故障分析 ,检查维修引言汽车发展的趋势是安全、节能、环保。转向系统是关系主动安全的重要系统,其操纵稳定性好坏对汽车性能影响很大。操纵性是汽车准确跟踪驾驶员意图行驶;稳定性是要求危险工况(高速行驶,侧向加速度大,离心力大,超过轮胎侧偏力而发生大的侧滑;小附着系数路面的侧滑;对开路面上轮胎左右侧偏力不相等、侧向风引起的横摆)下汽车仍稳定行驶。为提高操纵稳定性,出现了ESP(电子稳定程序)、主动转向、4WS(4轮转向)等。ESP判断产生不足转向或过度转向时相应在后轮、前轮产生制动力,产生横摆力矩即纠偏力矩。四轮转向的后轮也参与转向。低速时,后轮与前轮反向转向,减小转弯半径,提高机动灵活性。高速时,后轮与前轮同向转向,提高汽车的稳定性。其控制目标是质心侧偏角为零。然而这些汽车转向系统却处于机械传动阶段,由于其转向传动比固定,汽车的转向响应特性随车速而变化。因此驾驶员就必须提前针对汽车转向特性的幅值和相位变化进行一定的操作补偿,从而控制汽车按其意愿行驶。如果能够将驾驶员的转向操作与转向车轮之间通过信号及控制器连接起来,驾驶员的转向操作仅仅是向车辆输入自己的驾驶指令,由控制器根据驾驶员指令、当前车辆状态和路状况确定合理的前轮转角,从而实现转向系统的智能控制,必将对车辆操纵稳定性带来很大的提高,降低驾驶员的操纵负担,改善人一车闭环系统性能。分析由转向油泵、转向油管、转向油罐以及位于整体式转向器内部的转向控制阀及转向动力缸等组成。当驾驶员转动转向盘时,转向摇臂摆动,通过转向直拉杆、横拉杆、转向节臂,使转向轮偏转,从而改变汽车的行驶方向。同时,转向器输入轴还带动转向器内部的转向控制阀转动,使转向动力缸产生液压作用力,帮助驾驶员转向操纵。这样,为了克服地面作用于转向轮上的转向阻力矩,驾驶员需要加于转向盘上的转向力矩,比用机械转向系统时所需的转向力矩小得多。1.汽车动力转向系的工作原理(1)当汽车直线行驶时:转阀处于中间位置,来自转向油泵的工作液从转向器壳体的进油口流到阀体的中油环槽中。经过其槽底的通孔进入阀体和转阀之间,此时因转阀处于中间位置,所以进入的油液分别通过阀体和转阀纵槽槽肩形成的两边相等的间隙,再通过转阀的纵槽和阀体的纵槽以及阀体的径向孔流向阀体外圆上、下油环槽,然后通过壳体中的两条油道分别流到动力缸的上、下腔中去,即左转向动力腔l和右转向动力腔r,但上、下腔油压相等且很小。此时齿条-活塞既没有受到转向螺杆所造成的轴向推力,也没有受到上、下腔因压力差造成的轴向推力,所以齿条-活塞处于中间位置,动力转向不工作。流入阀体内腔的油液在通过转阀纵槽流向阀体上、下油环槽的同时,通过转阀槽肩上的径向油孔流到转阀与扭杆轴组件之间的空隙中,经阀体组件和调整螺塞之间的空隙流到回油口,经油管回到油罐中去,形成了常流式油液循环。(2)当汽车左转弯时:转动转向盘,使短轴逆时针转动,通过其下端轴销子带动转阀同步转动,这个扭矩也通过具有弹性的扭杆轴传给下端轴盖,下端轴盖边缘上的缺口通过固定在阀体上的销子带动阀体转动,阀体通过其下端缺口和销子,把转向力矩传给螺杆。由于转向阻力的存在,要有足够的转向力矩才能使转向螺杆转动。这个扭矩促使扭杆轴发生弹性扭转,造成阀体的转动角度小于转阀的转动角度,两者产生相对角位移。通下动力腔的进油缝隙减小(或封闭),回油缝隙增大油压降低;通上动力腔的进油缝隙增大而回油缝隙减小(或关闭),油压升高,上、下动力腔产生油压差。齿条-活塞便在上、下腔油压差的作用下移动,产生助力作用。此时来自转向油泵的压力油通过槽隙流向动力缸上腔,动力缸下腔的油则通过阀体径向孔、槽隙、转阀径向孔和回油口流向储油罐。(3)右转弯基本相似。不同的是由于转向方向相反,造成的阀体和转阀的角位移相反,齿条-活塞下腔压力升高而上腔油压降低,产生右转向助力。(4)当转向盘停在某一位置不再继续转动时:此时阀体随螺杆在液力和扭杆轴弹力的作用下,沿转向盘转动方向旋转一个角度,使之与转阀相对角位移量减小,上、下动力腔油压差减小。但仍有一定的助力作用,此时的助力扭矩与车轮的回正力矩相平衡,使车轮维持在某一转向位置上。(5)渐进随动原理:在转向过程中,若转向盘转动的速度快,阀体与转阀相对的角位移量也大,上、下动力腔的油压差也相应加大,前轮偏转的速度也加快,如转向盘转动的慢,前轮偏转的也慢;若转向盘转在某一位置上不变,对应着前轮也转在某一位置上不变。此即谓“渐进随动原理”,也就是:“快转快助,大转大助,不转不助”原理。(6)转向后需回正时,如果驾驶员放松转向盘,转阀回到中间位置,失去了助力作用,此时转向轮在回正力矩的作用下自动回位;若司机同时回转转向盘时,转向助力器助力,帮助车轮回正。(7)当汽车直线行驶偶遇外界阻力使转向轮发生偏转时:阻力矩通过转向传动机构、转向螺杆、螺杆与阀体的锁定销作用在阀体上,使之与转阀之间产生相对角位移,这样使动力缸上、下腔油压不等,产生了与转向轮转向相反的助力作用。在此力的作用下,转向轮迅速回正,保证了汽车直线行驶的稳定性。一旦液压助力装置失效,该动力转向器即变成机械转向器。此时转动转向盘,带动短轴转动,短轴下端法兰盘边缘有弧形缺口,转过一定角度后,通过螺杆上端法兰盘的凸块带动螺杆旋转,以保证汽车转向。不过这时转向盘的自由行程加大,转向沉重。 2 轿车动力转向系故障诊断分析本章讲述了汽车常见的几种故障并对其进行了诊断分析。一转向沉重,二转向时有噪声,三方向盘自由行程过大,四左右转向时轻重不一,五转向时转向盘强烈抖动,六汽车直线行驶时,转向盘发飘或跑偏。2.1转向沉重2.1.1 故障现象可变液压动力转向的汽车,本来转向是很轻便的,突然感到转向沉重或方向盘转不动。2.1.2故障原因油箱缺油或油液高度不足。系统中混入大量空气。油箱滤网堵塞或管路堵塞。液压泵磨损,内部泄漏或驱动部分打滑、磨坏。助力器内溢油阀、安全阀机件磨损,弹簧过软或调整不当。助力器内滑阀与滑壁间隙过大或关闭不严。系统各接头、衬垫处密封不良,产生液压油外漏;系统内部密封元件损坏产生内漏。2.1.3故障诊断与排除检查液压泵驱动部分的工作情况。检查驱动皮带是否打滑或其他驱动形式的齿轮传动等有无损坏。检查油箱内的油面高度,看其是否达到规定的高度。如油面过低,应予以加足,使油面达到油尺上的高度标记。检查油箱内的滤清器是否堵塞或损坏,如果堵塞,应进行清洗;如果损坏,应予以更换。检查系统中是否混有空气。如果发现液压油中有泡沫(或液压油混浊),就可能是油路中有空气(通常通过观察回油管回油时是否夹带有气泡来判定)。空气的进入通常是液压泵的进油管裂损、接头松动以及液压泵轴上的密封环损坏等所致。如出现上述损坏,均应先给予维修,然后再排除系统中的空气。检查液压泵流量及溢油阀、安全阀的作用是否良好。可用压力表接在管路上检查,如果作用不良,应将阀及弹簧卸下,进行清洗和检查,必要时更换新件。检查控制阀内的滑阀,看其作用是否良好。如因间隙过大或关闭不严,应更换新的转向螺杆及滑阀。检查助力活塞上的密封环和阀室体径向环槽的中间密封作用是否良好,必要时应予更换,同时还要检查液压缸表面有无损伤。检查单向阀的球阀与阀座的接触是否严密。如因脏物垫起而关闭不严,应进行清洗,如因阀本身引起的关闭不严,必须更换新件。2.2 转向时有噪声2.2.1故障现象转向时液压泵处发生响声。2.2.2 故障原因液压泵驱动部分发响,如皮带过松、驱动齿轮传动件损坏等。液压油量不足、系统中混有空气。油箱滤芯堵塞或损坏。各管路接头松动或油管破裂、堵塞。2.2.3故障诊断与排除先检查油箱内的油面高度,若油面过低应补足液压油。检查驱动部分的工作情况,检查皮带是否过松、驱动齿轮及其他部件是否损坏,若不正常应按规定要求给予调整、修复。检查回油管的回油情况,观察液压油中是否夹带有气泡(油液呈混浊状) 之处,如有气泡,应先查出漏气,然后再排除空气。检查油箱滤芯以及油路各处有无堵塞、损坏,若有均应将其修复。2.3方向盘自由行程过大2.3.1故障现象转动方向盘发现自由行程过大。2.3.2故障原因转向纵拉杆两端的球头销与销座的间隙过大。齿条与齿扇的间隙过大。转向螺杆和转向螺母与钢球之间的间隙过大。2.3.3故障诊断与排除应逐一检查上述间隙是否过大,并采取相应的措施 。2.4左右转向时轻重不一2.4.1故障现象汽车在行驶中左右转弯时,左右转动方向盘感到轻重不同。2.4.2故障原因控制阀中的滑阀偏离中间位置,或虽在中间位置但与阀体台肩的缝隙大小不一致。 滑阀或阀体台肩处有毛刺、碰伤或有脏物阻滞,使液压油循环受阻致使加力不平衡。 动力缸一侧有空气,造成活塞两侧压力差过大,致使左、右向轻重不同。2.4.3故障诊断与排除

0 前年,如果轿车安装有 ABS(防抱死制动系统),不但说明该车的安全性能出类拔萃,而且档次也相当高级。今天,安装ABS的轿车已经相当普遍,经济型车也安装有ABS。防抱死制动系统 ABS(Anti-lock Braking System)属于汽车的主动安全系。ABS系统的配置,既可有效避免紧急制动时车轮抱死(打滑)现象的发生,同时还可以保持车辆制动过程中的平稳。 随着对汽车安全性能的要求越来越高,一些中、高档级的轿车已经不满足于ABS,还安装了ASR(驱动防滑系统,Acceleration Slip Regulation,又称牵引力控制系统)防止车辆尤其是大马力车在起步、再加速时驱动轮打滑现象,以维持车辆行驶方向的稳定性。ASR与ABS的区别在于,ABS是防止车轮在制动时被抱死而产生侧滑,而ASR则是防止汽车在加速时因驱动轮打滑而产生的侧滑,ASR是在ABS的基础上的扩充,两者相辅相成.或者 ESP(电控行驶平稳系统),使汽车的安全性能进一步提高。ASR的作用是当汽车加速时将滑动率控制在一定的范围内,从而防止驱动轮快速滑动。它的功能一是提高牵引力;二是保持汽车的行驶稳定。行驶在易滑的路面上,没有 ASR 的汽车加速时驱动轮容易打滑; 如是后驱动的车辆容易甩尾, 如是前驱动的车辆容易方向失 控。有 ASR 时,汽车在加速时就不会有或能够减轻这种现象。在转弯时,如果发生驱动轮 打滑会导致整个车辆向一侧偏移,当有 ASR 时就会使车辆沿着正确的路线转向。 汽车的牵引力控制可以通过减少节气门开度来降低发动机功率或者由制动器控制车轮 打滑来达到目的,装有 ASR 的汽车综合这两种方法来工作,也就是 ABS/ASR 形式。 装有 ASR 的车上,从油门踏板到汽油机节气门(柴油机喷油泵操纵杆)之间的机械连 接被电控油门装置所取替。 当传感器将油门踏板的位置及轮速信号送至控制单元 (CPU) 时, 控制单元就会产生控制电压信号, 伺服电机依此信号重新调整节气门的位置 (或者柴油机操 纵杆的位置) ,然后将该位置信号反馈至控制单元,以便及时调整制动器。 ESP(电控行驶平稳系统,英文全称 Electronic Stabilty Program)包含 ABS 及 ASR,是 这两种系统功能上的延伸。因此,ESP 称得上是当前汽车防滑装置的最高级形式。ESP 系统 由控制单元及转向传感器(监测方向盘的转向角度) 、车轮传感器(监测各个车轮的速度转 动) 、侧滑传感器(监测车体绕垂直轴线转动的状态) 、横向加速度传感器(监测汽车转弯时 的离心力)等组成。 控制单元通过这些传感器的信号对车辆的运行状态进行判断,进而发出控制指令。有 ESP 与只有 ABS 及 ASR 的汽车,它们之间的差别在于 ABS 及 ASR 只能被动地作出反应, 而 ESP 则能够探测和分析车况并纠正驾驶的错误,防患于未然。 ESP 对过度转向或不足转向特别敏感,例如汽车在路滑时左拐过度转向(转弯太急)时 会产生向右侧甩尾, 传感器感觉到滑动就会迅速制动右前轮使其恢复附着力, 产生一种相反 的转矩而使汽车 保持在原来的车道上。当然,任何事物都有一个度的范围,如果驾车者盲 目开快车,现在的任何安全装置都难以保证其安全。据汽车工程界专家介绍,将来 ASR 等将变得如同 ABS 一样普及,因为 ABS、ASR 及 ESP 包含着技术及性能上的贯通。有专家认为在一定的范围内 ASR 等装置有取替 4 轮驱动的可能。例如轿车,过去人们认为提高轿车行驶性能最好是采用 4 轮驱动,可是与 4 轮驱动 相比,ASR 等装置更适合轿车。这是因为 4 轮驱动结构复杂成本高,增加车重而且耗油, 而 ASR 等装置结构简单安装方便,在一般城镇道路上使用效果并不差。 ABS/ASR/VDC 系统 ABS/ASR 系统成功地解决了汽车在制动和驱动时的方向稳定性问题,但不能解 决汽车转向行驶时的方向稳定性问题。 例如当汽车转向行驶时, 不可避免地受到侧向和纵向 力的作用,只有当地面能够提供充分的侧向和纵向力时,驾驶员才能控制住车辆。如果地面 侧向附着能力比较低,就会损害汽车按预定方向行驶的能力。雨天汽车高速转向行驶时,常 常侧向滑出,就是地面侧向附着能力不足的缘故。为解决此问题,最近汽车工业发达国家又 在 ABS/ASR 系统的基础上发展成汽车动态控制系统(英文名称为 Vehicle Dynamics Control,简称 VDC)。这个系统把汽车的制动、驱动、悬架、转向、发动机等各主要总成的控制系统在功能上、 结构上有机的综合在一起,可使汽车在各种恶劣工况下, 如冰雪路面上、 对开路面上、弯道路面上以及采取规避动作移线、制动、加速和下坡等工况行驶时,对不同承载、 不同轮胎气压和不同程度的轮胎磨损都有良好的方向稳定性,表现出最佳的行驶性能。 VDC 的应用,在制动、加速和转向方面完全解脱对驾驶员的高要求,在汽车的主动安全行驶方面竖立了一个新的里程碑。VDC 系统对转向行驶的控制主要是借助于对各个车轮的制动控制和发动机功率输出控 制来实现的。例如汽车左转弯时,若前轮因转向能力不足而趋于滑出弯道,VDC 系统即可 测知侧滑即将发生,就采取适当制动左后轮的办法。左后轮产生的制动力可帮助汽车转向, 使汽车继续按照理想的路线行驶。若在同一弯道上,因后轮趋于侧向滑出 而转向过多,VDC 系统即采取适当制动右前轮的办法,维持车辆的稳定行驶。在极端情况 下,VDC 系统还可采取降低发动机功率输出的办法降低行驶车速,减少对地面侧向附着能 力的需求来维持车辆的稳定行驶。采用 VDC 系统后,汽车在对开路面上或弯道路面上的制 动距离还可进一步缩短。VDC 系统主要应用了下述传感器:车轮转速传感器,用来跟踪每一车轮的运动状态; 方向盘转角传感器,用来传感方向盘的转角; 横摆角速度传感器,用来记录汽车绕垂直轴线转动的所有运动; 侧向加速度传感器,用来检测转向行驶时离心力的大小; 车轮位移传感器,用来测量车轮和车身相对位置的变化。 这些传感器的核心部分是横摆角速度传感器, 这是因为汽车的横摆角速度和方向盘 转角的比值是反应汽车转向行驶品质的一个重要参数。位移传感器的信号传给电子控制装置,用来控制半主动悬架,改善汽车的接地性能。其它传感器则把汽车每一瞬时的运动状态 的信息传给电子控制装置,使之与理想的运动状态相比较,一旦汽车偏离了理想的路线,它就会在极短的时间内采取纠正措施, 给制动控制系统或发动机控制系统发出相应的指令, 维持汽车在理想的路线上行驶电子制动力分配系统(EBD) EBD 能够根据由于汽车制动时产生轴荷转移的不同,而自动调节前、后轴的制动 力分配比例,提高制动效能,并配合 ABS 提高制动稳定性。汽车在制动时,四只轮胎附着 的地面条件往往不一样。比如,有时左前轮和右后轮附着在干燥的水泥地面上,而右前轮和 左后轮却附着在水中或泥水中, 这种情况会导致在汽车制动时四只轮子与地面的摩擦力不一 样,制动时容易造成打滑、倾斜和车辆侧翻事故。EBD 用高速计算机在汽车制动的瞬间, 分别对四只轮胎附着的不同地面进行感应、计算,得出不同的摩擦力数值,使四只轮胎的制 动装置根据不同的情况用不同的方式和力量制动, 并在运动中不断高速调整, 从而保证车辆 的平稳、安全。 安全气囊(SRS) 安全气囊是现代轿车上引人注目的高技术装置。安装了安全气囊装置的轿车方向 盘,平常与普通方向盘没有什么区别,但一旦车前端发生了强烈的碰撞,安全气囊就会瞬间 从方向盘内“蹦”出来,垫在方向盘与驾驶者之间,防止驾驶者的头部和胸部撞击到方向盘 或仪表板等硬物上。安全气囊面世以来,已经挽救了许多人的性命。研究表明,有气囊装置的轿车发生正面撞车,驾驶者的死亡率,大轿车降低了 30%,中型轿车降低 11%,小型轿 车降低 14%。安全气囊主要由传感器、微处理器、气体发生器和气囊等部件组成。传感器和微处理器用以判断撞车程度,传递及发送信号;气体发生器根据信号指示产生点火动作,点燃固态燃料并产生气体向气囊充气,使气囊迅速膨胀,气囊容量约在(50-90)L。同时气囊设有安全阀,当充气过量或囊内压力超过一定值时会自动泄放部分气体, 避免将乘客挤压受伤。安全气囊所用的气体多是氮气或一氧化碳。 除了驾驶员侧有安全气囊外,有些轿车前排也安装了乘客用的安全气囊(即双安全气囊规格),乘客用的与驾车者用的相似,只是气囊的体积要大些,所需的气体也多一些而已。另外,有些轿车还在座位侧面靠门一侧安装了侧面安全气囊。

汽车在有牵引力的状态下快速转弯,其受到来自发动机动力经过动力总成传递到车身的转弯圆弧切线方向的牵引力,转向时轮胎摩擦力传递到车身的圆弧向心力,车身作转向时的离心力,以及地面摩擦力等主要受力。汽车转弯过程中,受力分析通常认为其受到了一个指向圆心的静摩擦力作用,这个静摩擦力提供了汽车转弯时的向心力.但是,此时对汽车受力分析,汽车受到一个向前的牵引力作用和一个指向圆心的静摩擦力作用,垂直的两个方向上均有加速度,应此并不能做匀速圆周运动.而汽车此时与地面发生摩擦,应存在一个滑动摩擦力,这个沿切线方向的力也刚好可以抵消牵引力作用,使汽车沿切线方向保持匀速,可是滑动摩擦力又不能与静摩擦力共存.也有人说,汽车此时仅有轮胎的滚动作用,应受到滚动摩擦力,那么滚动摩擦力也属于静摩擦力,这时候指向圆心的静摩擦力与切线方向的滚动摩擦力。

相关百科

热门百科

首页
发表服务