首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

立体几何研究内容论文

发布时间:

立体几何研究内容论文

立体几何中二面角的平面角的定位空间图形的位置关系是立体几何的重要内容,解决立体几何问题的关键在于三定:定性分析→定位作图→定量计算,其中定性是定位、定量的基础,而宣则是定位、定性的深化,在面面关系中,二面角是其中的重要概念之一,它的度量归结为平面上角的度量,一般来说,对其平面角的定位是问题解决的先决一步,可是,从以往的教学中发现,学生往往把握不住其定位的基本思路而导致思维混乱,甚至错误地定其位,使问题的解决徒劳无益,本文就是针对这一点,来谈一谈平日教学中体会。 一、 重温二面角的平面角的定义 如图(1),α、β是由ι出发的两个平面,O是ι上任意一点,OC α,且OC⊥ι;CD β,且OD⊥ι。这就是二面角的平面角的环境背景,即∠COD是二面角α—ι—β的平面角,从中不难得到下列特征: Ⅰ、过棱上任意一点,其平面角是唯一的; Ⅱ、其平面角所在平面与其两个半平面均垂直; 另外,如果在OC上任取上一点A,作AB⊥OD垂足为B,那么 由特征Ⅱ可知AB⊥β.突出ι、OC、OD、AB,这便是另一特征; Ⅲ、体现出一完整的垂线定理(或逆定理)的环境背景。 对以上特征进行剖析 由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。 特征Ⅰ表明,其平面角的定位可先在棱上取一“点”,耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背景相互沟通,给计算提供方便。 例1 已知正三棱锥V—ABC侧棱长为a,高为b,求侧面与底面所成的角的大小。 由于正三棱锥的顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,则∠VOC为侧面与底面所成二面角的平面角如图(2)。正因为正三棱锥的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使背景突出在面VOC上,给进一步定量创造得天独厚的条件。 特征Ⅱ指出,如果二面角α—ι—β的棱ι垂直某一平面γ与 α、β的交线,而交线所成的角就是α—ι—β的平面角,如图。 由此可见,二面角的平面角的定位可以考虑找“垂平面”。 例2 矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起, 使点A在平面BCD上的射影A′落在BC上,求二面角A—BC-—C的大小。 这是一道由平面图形折叠成立体图形的问题,解决问题的关键在 于搞清折叠前后“变”与“不变”。结果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了优质服务。事实上,AO=AB·AD/BD=3*4/5=12/5,OA′=OE=BO·tgc∠CBD,而BO=AB2/BD=9/5, tg∠CBD,故OA′=27/20。在Rt△AA′O中,∠AA′O=90°所以cos∠AOA′=A′O/AO=9/16,ty∠AOA′=arccos9/16即所求的二面arccos9/16。 通过对例2的定性分析、定位作图和定量计算,特征Ⅱ从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量。 特征Ⅲ显示,如果二面角α—ι—β 的两个半平面之一,存在垂线段AB,那么过垂足B作ι的垂线交ι于O,连结AO,由三垂线定理可知OA⊥ι;或者由A作ι的垂线交ι于O,连结OB,由三垂线定理逆定理可知OB⊥ι,此时,∠AOB就是二面角α—ι—β的平面角,如图。 由此可见,地面角的平面角的定位可以找“垂线段”。 例3 在正方体ABCD—A1B1C1D1中,棱长为2,E为BC的中点。求面B1D1E与面积BB1C1C所成的二面角的大小。 例3的环境背景表明,面B1D1E与面BB1C1C构成两个二面角, 由特征Ⅱ可知,这两个二面角的大小必定互补,下面,如 果思维由特征Ⅲ监控,背景中的线段C1D1会使眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1),即得面D1BE与面CC1B1E所成二面角的平面角∠C1OD1,如图,计算可得C1O=4*51/2/5。 在Rt△D1C1O中,tg∠C1OD=D1C1/C1O=51/2/2。 故所求的二面角角为arctg51/2/2或π-arctg=51/2/2 三、三个特征的关系 以上三个特征提供的思路在解决具体总是时各具特色,其标的是 分别找“点”、“垂面”、“垂线段”。事实上,我们只要找到其中一个,另两个就接踵而来。掌握这种关系对提高解题技能和培养空间想象力非常重要。 1、 融合三个特征对思维的监控,可有效地克服、抑制思维的 消极作用,培养思维的广阔性和批判性。 例3 将棱长为a的正四面体的一个面与棱长为a的正四棱锥的 一个侧面吻合,则吻合后的几何呈现几个面? 这是一道竞赛题,考生答“7个面”的占99.9%,少数应服从多数吗? 如图,过两个几何体的高线VP、VQ的垂足P、Q分别作BC的垂线,则垂足重合于O,且O为BC的中点,OP延长过A,OQ延长交ED于R。由特征Ⅲ,∠AOR为二面角A—BC—R平面角,结合特征Ⅰ、Ⅱ,可得VAOR为平行四边形,VA//BE,所以V、A、B、E共面,同理V、A、C、D共面,所以这道题的答案应该是5个面! 2、 三个特征,虽然客观存在,互相联系,但在许多同题中却 表现得含糊而冷漠——三个“标的”均藏而不露,在这种形势下,逼你去作,那么作谁? 由特征Ⅲ,有了“垂线段”便可定位。 例4 已知Rt△ABC的两直角边AC=2,BC=3,P为斜边上一 点,沿CP将此直角三角形折成直二面角A—CP—B,当AB=71/2时,求二面角P—AC—B的大小。 作法一:∵A—CP—B为直角二面角, ∴过B作BD⊥CP交CP的延长线于D,则BD⊥DM APC。 ∴过D作DE ⊥AC,垂足为E,连BE。 ∴∠DEB为二面角A—CP—B的平面角。 作法二:过P点作PD′⊥PC交BC于D′,则PD′⊥面APC。 ∴过D′作D′E′⊥AC,垂足为E′,边PE′, ∴∠D′E′P为二面角P—AC—B的平面角。 再说,定位是为了定理,求角的大小往往要化归到一个三角形中去解,有了“垂线段”就可把它化归为解一个直角三角形。 由此可见,要作,最好考虑作“垂线段”。 综上所述,二面角其平面角的正确而合理的定位,要在正确其定义的基础上,掌握其三个基本特征,并灵活运用它们考察问题的环境背景,建立良好的主观心理空间和客观心理空间,以不变应万变。 求解不可微函数优化的一种混合遗传算法摘 要 在浮点编码遗传算法中加入Powell方法,构成适于不可微函数全局优化的混合遗传算法。混合算法改善了遗传算法的局部搜索能力,显著提高了遗传算法求得全局解的概率。由于只利用函数值信息,混合算法是一种求解可微和不可微函数全局优化问题的通用方法。关键词 全局最优;混合算法;遗传算法;Powell方法1 此文章共有 74 页 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 函数图象中体现的辩证观点 在初三代数的函数及其图象中,蕴含的辩证观点极为丰富。这一章教学内容的最大特点是"变":变化、变量、运动,正如恩格斯所说的"数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。"� 现代课程理论及教学实践证明,搞好这一章的教学,不仅可以帮助学生深化对以前所学的过基础知识的理解,提高数学能力,形成运动、变化、联系的意识,而且能较自然地培养学生辩证唯物主义的世界观。� 一、常量与变量� 辩证法认为,世界上的万事万物,都是相互联系、运动、变化和发展的。常量,是相对于某一过程或另一个变量而言的。绝对的常量是没有的。因为物质的运动是绝对的,静止是相对的,故物动则变。既然如此,相对的常量是有的,绝对的常量是不存在的。因此,在教学过程中,为帮助学生认识常量与变量这一辩证关系,不妨取如下实例。(1)匀速直线运动中,速度是常量,时间与路程均为变量;且人在实际运动的过程中。绝对的匀速运动是没有的。例如在一个学生骑车回家这一日常易见的运动过程中,也免不了加速、减速、刹车等情况。(2)电影院里统计票房收入,对某一个场次和座位类别而言,票价是常量,而售票张数和收入均为变量;但相对于某个较长时间间隔而言,由于演出的内容、种类、档次的不同,其票价仍是一个变量。(3)某日或连续几日测量某同学的身高,可以近似地看做常量;但是此同学的身高,如果从一个较长时间去看,则又是变量了。 教学实践表明,要使学生认识常量与变量这一辩证关系,就必须多形式、多角度、多层次地予以阐释。� 二、运动与静止� 根据人类认识事物的客观规律及青少年实践和知识的发展水平,我们可结合教材中的具体教学内容,引导学生逐步认识事物的绝对运动与相对静止这一辩证关系。� 例如,我们可以引导学生从教科书上看到的,在练习本或黑板上画出的y=x的图象去思考:这个图象表面上是静止的,但从列表、描点到连线的过程去看却是运动的、变化的。再进一步挖掘,可以发现:画成的图象表面上是完整的,其实是不完整的,因为它还可以向两方无限延伸,即不断运动、发展和变化,画出的函数图象永远只能是局部的,它只能是某个函数图象的一个象征物;同时这一例举也体现了部分与整体的辩证统一。� 三、内容与形式 根据现行教材体系,初一上学期,学生学习了方程的有关概念后会认为,形如y=2x+1的式子表示一个二元一次方程;初三学生刚接触一次函数概念时,会认为y=2x+1表示一个一次函数;当学生用描绘函数图象的一般方法描出y=2x+1的图象后,又认识到y=2x+1还可以表示一条直线。从哲学的角度去看,y=2x+1表示一类事物的本质联系,其内容是极其丰富的,而表达这丰富内容的形式却是相同的。这正表明,同一事物在不同的外部条件下可有多种不同的外部表现形式,相同的外部形式可以表示不同的本质内容。随着学生知识的增多和认识能力的提高,他们对事物本质的认识也将逐步地从感性上升为理性。� 四、特殊与一般� 辩证法认为,一般性寓于特殊性之中。教材中涉及特殊与一般这一内容至少有以下几个方面:(1)y=kx与y=kx+b;(2)y=ax2与y=ax2+k;(3)y=ax2与y=a(x-h)2;(4)y=ax2与y=ax2+bx+c。它们之间的关系,均是典型的特殊与一般之间的关系,而这一关系又是辩证统一的。为利于学生认识事物的本质属性,教材中总是先介绍简单的、特殊的内容,然后再逐步推广、逐步加深到较复杂的、更一般的内容,从而引导学生逐步认识事物的本质属性,掌握对事物的认识规律。� 五、现象与本质 在物质世界中,没有一定的现象,就不能表现出事物的本质,而且其本质常常寓于现象之中。当然,个别现象不一定能暴露出事物的本质,因为本质是若干同类现象的寓归。这在数学上也会如此。� 例如,在初一年级,学生可以顺利地判定方程组的解集为空集,而相对于认识"y=2x+1与y=2x+3表示两条平行直线,自然没有交点",属于对事物表象--现象的认识;只有达到透彻理解一次函数的概念与性质以后,才算是认识了事物的本质。一元二次方程x2+2x+3=0为什么没有实数解?函数y=x2+2x+3的图象与x轴为什么没有交点?函数y=x2+2x+3的最小值是多少?学生从"实数的偶次幂非负"到"列表--描点--连线",直观地看抛物线y=x2+2x+3的顶点的位置。到最一般地研究函数y=x2+2x+3的最小值,实乃学生由浅入深,由现象到本质的认识过程。这类问题中,方程没有实数根,或图象与x轴没有交点,或顶点在x轴上方,均是现象,而问题的本质,恰恰是"一元二次方程根的判别式"的值的状况对于这类问题的制约。再比如,研究如何去求解x-3>0, x-3=0,x-3<0,也均属于对现象的认识,而准确地认识函数y=x-3的性质,才是对事物本质的认识。 从外部形式看,y=a1x2,y=a2x2+k,y=a3(x-h)2,y=a4(x-h)2+k,y=a5x2+bx+c,它们各不相同;但当ai(i=1,2,…,5)为非零实常数,b、c、h、k均为实常数时,它们的本质特征就暴露了出来,显现在我们眼前的竟是同一类事物:均代表一条抛物线;特别地,当a1=a2=a3=a4=a5≠0时,它们的共性就暴露得更加彻底,后四条抛物线均可由y=a1x2经适当改变位置而得到,而开口方向、大小均不改变。 六、具体与抽象 现代认知科学理论告诉我们,人类对事物本质属性的认识,是由现象到本质、由具体到抽象、由浅入深的渐进过程。感性认识常来之于对某些具体实践的思考;而理性认识则来之于对这些初步认识概括和抽象的过程,从而达到对事物本质属性的认识。因此只有从具体的感性认识上升发展为抽象的理性认识以后,才容易纳入原有的认知结构,才可以转化为运用的能力,才能为更高级的抽象提供基础和保证。我们可从细读教材中发现,无论是对正比例函数、一次函数、二次函数的研究,还是对反比例函数的图象及性质的讨论,都是从具体到抽象逐步展开论述和论证,从而加深对这些知识的理解。为了使学生的认识不局限于具体,而使之逐步上升为抽象,教材中每讲好一些具体的、典型的例题后,总是来一个"一般地,函数……具有以下性质……",从而抓住了本质联系。正是这个"一般地",构成了学生认知的困难。为了帮助学生克服认知障碍,我们应给学生以丰富的感性材料,使之产生丰富的感性认识,而后逐步上升为理性认识。 七、量变与质变 本章体现量变与质变观点的内容,例子很多,要使学生深刻认识这些内容却是很困难的,因而我们在教学时宜逐步引导,点滴渗透,而后去系统推进对这些内容的理解。(1)对于一次函数y=kx+b,若从k≠0变为k=0,情况如何?(2)二次函数y=ax2+bx+c中,规定 a≠0;若令a=0,情况如何?(3)反比例函数y=中,自变量x的取值范围是x≠0;如果x=0,或y=0,又将如何?(4)对于y=kx+b,从k>0变为k<0,则其变化特征如何相应变化?(5)对于二次函数y=ax2+bx+c,若Δ>0变为Δ=0或Δ<0,相应的函数图象及性质将如何改变?(6)对于周长确定的矩形,当相邻边长均为周长的时,面积的大小有何特征?(7)对于一般的二次函数y=ax2+bx+c,从x<-变为x=-,再变为x>-,其增减趋势如何相应地改变?� 诸如此类,均是量变积累到一定程度导致质变的例子。 八、有限与无限� 事物或数量中,有限总是表现为具体的,因而我们对这一概念可以穷极或易于理解,或能完全把握;而无限则是抽象的,它是一种运动无限延长的过程,是物的一种变化发展趋势,是一种抽象的理念,需反复渗透方可形成一定程度的认识。 (1)学生"准确地""画出函数y=2x-1的图象",其实只是画出了这个函数图象的一个有限部分,远非全部,即用有限的部分去"表示""无限"的趋势。(2)列表、描点、连线,画出抛物线,显然也只是画出了函数图象的一个"部分",用"有限"的一些点"确定"其"大致"位置、形状、大小,而连线是从有限走向了无限。(3)在画反比例函数的图象时,关于有限与无限、极限的思想体现得更为充分,例如观察教科书上例题y=的图象,当x(或y)的绝对值越大(或越小)时,y(或x)的绝对值如何变化?何谓"无限接近"而"永远不能到达"两坐标轴?(4)坐标轴上有多少个点?坐标轴有多长?一个象限内有多少个点?直角坐标平面内有多少个点?坐标轴上任意两点之间有多少个点?以坐标平面内任一点P(a,b)为圆心,任意小的正数r为半径作圆,圆内有多少个点?圆上有多少个点?圆外还"剩余"多少个点?抛物线可以画多长?……�所有这些具体的、生动的材料,都在向学生对数的理解方面潜移默化地渗透着无限、极限等观点。 九、离散与连续 离散与连续是一个矛盾的两个方面,但在列表--描点--连线的过程中,连线使离散与连续得到了统一。如教科书上画y=x及y=x2的图象,均采用了由简单到复杂、从特殊到一般、由离散到连续的手法,体现了这种对立统一的关系。 仔细分析教材,不难发现《函数及其图象》这一章中,渗透和体现的上述辩证观点的内容是十分丰富的。主要观点除上面已叙述的内容之外,至少还有微观与宏观,直与曲,精确与近似,部分与整体,绝对与相对,主观与客观辩证统一等内容。限于篇幅,不再一一赘述。 为帮助学生培养辩证唯物主义的世界观,我们应根据教材中相关的教学内容,结合学生的认识水平,有目的、有计划、有系统、有重点地组织教学内容,采用学生易于接受的教育、教学方法,适当渗透,系统推进,当渗透到一定程度时,再适时进行整理,适度地进行概括和抽象;日积月累,使这些教学内容在学生的头脑中系统地并深刻地扎下根去。这样,教学大纲中规定的培养辩证唯物主义观点的任务就可以顺利完成。

注意你说话的方式,你不懂得礼貌吗

这篇挺合适的,改改应该可用: 立体几何的归纳推理,定义,归纳法 学生姓名:林新彰 就读学校:国立台南第一高级中学 指导教授:柯文峰教授 壹,学习目的 Laplace曾说过,在数学里发现真理的主要工具是归纳和类比.我们可从立 方体,三稜柱,五稜柱,方锥,八面体,来推知F + V = E + 2的欧拉公式,这 就是归纳的基本要件,从塔顶及截角立方体之几何图形做类比.我们学习几何 学的目的,从实质来看,是为了将周遭摸得到看得到的东西,作研究推理,深 一层则是为了,促进平面空间的概念,增加思考逻辑的灵活性归纳法部份,则 是将算术,几何,集合等数学单元,作直觉性的观察今日所知的数之多种性质, 大部份系经由观察法所发现,而严格证明则需经过数十年甚至数百年才诞生. 贰,学习方法 藉由教授的讲解,同伴的讨论,或者上去黑板试著讲解给新来的学弟妹听, 能更进一步的去探索逻辑,几何和立体几何的观念,也能从归纳推理的过程中 得知公式的来龙去脉,而不是只知道F + V = E + 2的欧拉公式. 参,学习过程与结果 一,观察归纳法即科学家处理经验的步骤.在使用观察归纳法建立猜测时,必 须坚守以下三原则:第一,必须能随时修正自己的见解.第二,如果有不 得不改变自己的见解时,就必须当机立断改正.第三,不在没有充份理由 支持下,盲目的改变见解.即使多数人我们持有不同意见,也不西瓜靠大 边. 二,在分割元素这个部份看似没啥新鲜的(当它分割元素的个数不大时) ,但到 了大一点点的数时,就开始搅尽脑汁,还是没什麼头绪.还好最后从分割 个数少的,推到个数大的.举例来说,从直线被点分割的个数1,2,3,4, 5,6,…,推到平面被直线分割的个数1,2,4,7,11,16,…,最后就 可以推到空间被平面分割的个数1,2,4,8,15,26,…. 肆,讨论及建议 一,使用观察归纳法也须有耐心,不太快下结论.例如:法国数学家费马认为 2的2之n次方 + 1皆为质数.但他只算n = 1,2,3,4均为质数,就推 测当n = 5,6...等等皆对.但欧拉却真的把n = 5代入,发现它可被 641整除,因而不是质数. 二,从实作我们可以学到很多东西,就速成的眼光而言,实作是花时间的,但 实作却有慢工出细活的优点.举个例子来说,碳60,俗称巴克球,是最近 才发现的碳之同素异形体.有一天上课时,柯教授叫我和另一名同伴作一 个巴克球,费了九牛二虎之力摺一个歪七扭八的球形,但藉由它,我得知 它有12个正五边形,20个正六边形,并得到一些附属品90个sigma键及 30个pi键.

高中需写数学论文

竞赛立体几何研究现状论文

高中需写数学论文?

关于高中数学立体几何学习的研究与实践如需要全文,可以再联系

立体几何中二面角的平面角的定位空间图形的位置关系是立体几何的重要内容,解决立体几何问题的关键在于三定:定性分析→定位作图→定量计算,其中定性是定位、定量的基础,而宣则是定位、定性的深化,在面面关系中,二面角是其中的重要概念之一,它的度量归结为平面上角的度量,一般来说,对其平面角的定位是问题解决的先决一步,可是,从以往的教学中发现,学生往往把握不住其定位的基本思路而导致思维混乱,甚至错误地定其位,使问题的解决徒劳无益,本文就是针对这一点,来谈一谈平日教学中体会。 一、 重温二面角的平面角的定义 如图(1),α、β是由ι出发的两个平面,O是ι上任意一点,OC α,且OC⊥ι;CD β,且OD⊥ι。这就是二面角的平面角的环境背景,即∠COD是二面角α—ι—β的平面角,从中不难得到下列特征: Ⅰ、过棱上任意一点,其平面角是唯一的; Ⅱ、其平面角所在平面与其两个半平面均垂直; 另外,如果在OC上任取上一点A,作AB⊥OD垂足为B,那么 由特征Ⅱ可知AB⊥β.突出ι、OC、OD、AB,这便是另一特征; Ⅲ、体现出一完整的垂线定理(或逆定理)的环境背景。 对以上特征进行剖析 由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。 特征Ⅰ表明,其平面角的定位可先在棱上取一“点”,耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背景相互沟通,给计算提供方便。 例1 已知正三棱锥V—ABC侧棱长为a,高为b,求侧面与底面所成的角的大小。 由于正三棱锥的顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,则∠VOC为侧面与底面所成二面角的平面角如图(2)。正因为正三棱锥的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使背景突出在面VOC上,给进一步定量创造得天独厚的条件。 特征Ⅱ指出,如果二面角α—ι—β的棱ι垂直某一平面γ与 α、β的交线,而交线所成的角就是α—ι—β的平面角,如图。 由此可见,二面角的平面角的定位可以考虑找“垂平面”。 例2 矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起, 使点A在平面BCD上的射影A′落在BC上,求二面角A—BC-—C的大小。 这是一道由平面图形折叠成立体图形的问题,解决问题的关键在 于搞清折叠前后“变”与“不变”。结果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了优质服务。事实上,AO=AB·AD/BD=3*4/5=12/5,OA′=OE=BO·tgc∠CBD,而BO=AB2/BD=9/5, tg∠CBD,故OA′=27/20。在Rt△AA′O中,∠AA′O=90°所以cos∠AOA′=A′O/AO=9/16,ty∠AOA′=arccos9/16即所求的二面arccos9/16。 通过对例2的定性分析、定位作图和定量计算,特征Ⅱ从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量。 特征Ⅲ显示,如果二面角α—ι—β 的两个半平面之一,存在垂线段AB,那么过垂足B作ι的垂线交ι于O,连结AO,由三垂线定理可知OA⊥ι;或者由A作ι的垂线交ι于O,连结OB,由三垂线定理逆定理可知OB⊥ι,此时,∠AOB就是二面角α—ι—β的平面角,如图。 由此可见,地面角的平面角的定位可以找“垂线段”。 例3 在正方体ABCD—A1B1C1D1中,棱长为2,E为BC的中点。求面B1D1E与面积BB1C1C所成的二面角的大小。 例3的环境背景表明,面B1D1E与面BB1C1C构成两个二面角, 由特征Ⅱ可知,这两个二面角的大小必定互补,下面,如 果思维由特征Ⅲ监控,背景中的线段C1D1会使眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1),即得面D1BE与面CC1B1E所成二面角的平面角∠C1OD1,如图,计算可得C1O=4*51/2/5。 在Rt△D1C1O中,tg∠C1OD=D1C1/C1O=51/2/2。 故所求的二面角角为arctg51/2/2或π-arctg=51/2/2 三、三个特征的关系 以上三个特征提供的思路在解决具体总是时各具特色,其标的是 分别找“点”、“垂面”、“垂线段”。事实上,我们只要找到其中一个,另两个就接踵而来。掌握这种关系对提高解题技能和培养空间想象力非常重要。 1、 融合三个特征对思维的监控,可有效地克服、抑制思维的 消极作用,培养思维的广阔性和批判性。 例3 将棱长为a的正四面体的一个面与棱长为a的正四棱锥的 一个侧面吻合,则吻合后的几何呈现几个面? 这是一道竞赛题,考生答“7个面”的占99.9%,少数应服从多数吗? 如图,过两个几何体的高线VP、VQ的垂足P、Q分别作BC的垂线,则垂足重合于O,且O为BC的中点,OP延长过A,OQ延长交ED于R。由特征Ⅲ,∠AOR为二面角A—BC—R平面角,结合特征Ⅰ、Ⅱ,可得VAOR为平行四边形,VA//BE,所以V、A、B、E共面,同理V、A、C、D共面,所以这道题的答案应该是5个面! 2、 三个特征,虽然客观存在,互相联系,但在许多同题中却 表现得含糊而冷漠——三个“标的”均藏而不露,在这种形势下,逼你去作,那么作谁? 由特征Ⅲ,有了“垂线段”便可定位。 例4 已知Rt△ABC的两直角边AC=2,BC=3,P为斜边上一 点,沿CP将此直角三角形折成直二面角A—CP—B,当AB=71/2时,求二面角P—AC—B的大小。 作法一:∵A—CP—B为直角二面角, ∴过B作BD⊥CP交CP的延长线于D,则BD⊥DM APC。 ∴过D作DE ⊥AC,垂足为E,连BE。 ∴∠DEB为二面角A—CP—B的平面角。 作法二:过P点作PD′⊥PC交BC于D′,则PD′⊥面APC。 ∴过D′作D′E′⊥AC,垂足为E′,边PE′, ∴∠D′E′P为二面角P—AC—B的平面角。 再说,定位是为了定理,求角的大小往往要化归到一个三角形中去解,有了“垂线段”就可把它化归为解一个直角三角形。 由此可见,要作,最好考虑作“垂线段”。 综上所述,二面角其平面角的正确而合理的定位,要在正确其定义的基础上,掌握其三个基本特征,并灵活运用它们考察问题的环境背景,建立良好的主观心理空间和客观心理空间,以不变应万变。 求解不可微函数优化的一种混合遗传算法摘 要 在浮点编码遗传算法中加入Powell方法,构成适于不可微函数全局优化的混合遗传算法。混合算法改善了遗传算法的局部搜索能力,显著提高了遗传算法求得全局解的概率。由于只利用函数值信息,混合算法是一种求解可微和不可微函数全局优化问题的通用方法。关键词 全局最优;混合算法;遗传算法;Powell方法1 此文章共有 74 页 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 函数图象中体现的辩证观点 在初三代数的函数及其图象中,蕴含的辩证观点极为丰富。这一章教学内容的最大特点是"变":变化、变量、运动,正如恩格斯所说的"数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。"� 现代课程理论及教学实践证明,搞好这一章的教学,不仅可以帮助学生深化对以前所学的过基础知识的理解,提高数学能力,形成运动、变化、联系的意识,而且能较自然地培养学生辩证唯物主义的世界观。� 一、常量与变量� 辩证法认为,世界上的万事万物,都是相互联系、运动、变化和发展的。常量,是相对于某一过程或另一个变量而言的。绝对的常量是没有的。因为物质的运动是绝对的,静止是相对的,故物动则变。既然如此,相对的常量是有的,绝对的常量是不存在的。因此,在教学过程中,为帮助学生认识常量与变量这一辩证关系,不妨取如下实例。(1)匀速直线运动中,速度是常量,时间与路程均为变量;且人在实际运动的过程中。绝对的匀速运动是没有的。例如在一个学生骑车回家这一日常易见的运动过程中,也免不了加速、减速、刹车等情况。(2)电影院里统计票房收入,对某一个场次和座位类别而言,票价是常量,而售票张数和收入均为变量;但相对于某个较长时间间隔而言,由于演出的内容、种类、档次的不同,其票价仍是一个变量。(3)某日或连续几日测量某同学的身高,可以近似地看做常量;但是此同学的身高,如果从一个较长时间去看,则又是变量了。 教学实践表明,要使学生认识常量与变量这一辩证关系,就必须多形式、多角度、多层次地予以阐释。� 二、运动与静止� 根据人类认识事物的客观规律及青少年实践和知识的发展水平,我们可结合教材中的具体教学内容,引导学生逐步认识事物的绝对运动与相对静止这一辩证关系。� 例如,我们可以引导学生从教科书上看到的,在练习本或黑板上画出的y=x的图象去思考:这个图象表面上是静止的,但从列表、描点到连线的过程去看却是运动的、变化的。再进一步挖掘,可以发现:画成的图象表面上是完整的,其实是不完整的,因为它还可以向两方无限延伸,即不断运动、发展和变化,画出的函数图象永远只能是局部的,它只能是某个函数图象的一个象征物;同时这一例举也体现了部分与整体的辩证统一。� 三、内容与形式 根据现行教材体系,初一上学期,学生学习了方程的有关概念后会认为,形如y=2x+1的式子表示一个二元一次方程;初三学生刚接触一次函数概念时,会认为y=2x+1表示一个一次函数;当学生用描绘函数图象的一般方法描出y=2x+1的图象后,又认识到y=2x+1还可以表示一条直线。从哲学的角度去看,y=2x+1表示一类事物的本质联系,其内容是极其丰富的,而表达这丰富内容的形式却是相同的。这正表明,同一事物在不同的外部条件下可有多种不同的外部表现形式,相同的外部形式可以表示不同的本质内容。随着学生知识的增多和认识能力的提高,他们对事物本质的认识也将逐步地从感性上升为理性。� 四、特殊与一般� 辩证法认为,一般性寓于特殊性之中。教材中涉及特殊与一般这一内容至少有以下几个方面:(1)y=kx与y=kx+b;(2)y=ax2与y=ax2+k;(3)y=ax2与y=a(x-h)2;(4)y=ax2与y=ax2+bx+c。它们之间的关系,均是典型的特殊与一般之间的关系,而这一关系又是辩证统一的。为利于学生认识事物的本质属性,教材中总是先介绍简单的、特殊的内容,然后再逐步推广、逐步加深到较复杂的、更一般的内容,从而引导学生逐步认识事物的本质属性,掌握对事物的认识规律。� 五、现象与本质 在物质世界中,没有一定的现象,就不能表现出事物的本质,而且其本质常常寓于现象之中。当然,个别现象不一定能暴露出事物的本质,因为本质是若干同类现象的寓归。这在数学上也会如此。� 例如,在初一年级,学生可以顺利地判定方程组的解集为空集,而相对于认识"y=2x+1与y=2x+3表示两条平行直线,自然没有交点",属于对事物表象--现象的认识;只有达到透彻理解一次函数的概念与性质以后,才算是认识了事物的本质。一元二次方程x2+2x+3=0为什么没有实数解?函数y=x2+2x+3的图象与x轴为什么没有交点?函数y=x2+2x+3的最小值是多少?学生从"实数的偶次幂非负"到"列表--描点--连线",直观地看抛物线y=x2+2x+3的顶点的位置。到最一般地研究函数y=x2+2x+3的最小值,实乃学生由浅入深,由现象到本质的认识过程。这类问题中,方程没有实数根,或图象与x轴没有交点,或顶点在x轴上方,均是现象,而问题的本质,恰恰是"一元二次方程根的判别式"的值的状况对于这类问题的制约。再比如,研究如何去求解x-3>0, x-3=0,x-3<0,也均属于对现象的认识,而准确地认识函数y=x-3的性质,才是对事物本质的认识。 从外部形式看,y=a1x2,y=a2x2+k,y=a3(x-h)2,y=a4(x-h)2+k,y=a5x2+bx+c,它们各不相同;但当ai(i=1,2,…,5)为非零实常数,b、c、h、k均为实常数时,它们的本质特征就暴露了出来,显现在我们眼前的竟是同一类事物:均代表一条抛物线;特别地,当a1=a2=a3=a4=a5≠0时,它们的共性就暴露得更加彻底,后四条抛物线均可由y=a1x2经适当改变位置而得到,而开口方向、大小均不改变。 六、具体与抽象 现代认知科学理论告诉我们,人类对事物本质属性的认识,是由现象到本质、由具体到抽象、由浅入深的渐进过程。感性认识常来之于对某些具体实践的思考;而理性认识则来之于对这些初步认识概括和抽象的过程,从而达到对事物本质属性的认识。因此只有从具体的感性认识上升发展为抽象的理性认识以后,才容易纳入原有的认知结构,才可以转化为运用的能力,才能为更高级的抽象提供基础和保证。我们可从细读教材中发现,无论是对正比例函数、一次函数、二次函数的研究,还是对反比例函数的图象及性质的讨论,都是从具体到抽象逐步展开论述和论证,从而加深对这些知识的理解。为了使学生的认识不局限于具体,而使之逐步上升为抽象,教材中每讲好一些具体的、典型的例题后,总是来一个"一般地,函数……具有以下性质……",从而抓住了本质联系。正是这个"一般地",构成了学生认知的困难。为了帮助学生克服认知障碍,我们应给学生以丰富的感性材料,使之产生丰富的感性认识,而后逐步上升为理性认识。 七、量变与质变 本章体现量变与质变观点的内容,例子很多,要使学生深刻认识这些内容却是很困难的,因而我们在教学时宜逐步引导,点滴渗透,而后去系统推进对这些内容的理解。(1)对于一次函数y=kx+b,若从k≠0变为k=0,情况如何?(2)二次函数y=ax2+bx+c中,规定 a≠0;若令a=0,情况如何?(3)反比例函数y=中,自变量x的取值范围是x≠0;如果x=0,或y=0,又将如何?(4)对于y=kx+b,从k>0变为k<0,则其变化特征如何相应变化?(5)对于二次函数y=ax2+bx+c,若Δ>0变为Δ=0或Δ<0,相应的函数图象及性质将如何改变?(6)对于周长确定的矩形,当相邻边长均为周长的时,面积的大小有何特征?(7)对于一般的二次函数y=ax2+bx+c,从x<-变为x=-,再变为x>-,其增减趋势如何相应地改变?� 诸如此类,均是量变积累到一定程度导致质变的例子。 八、有限与无限� 事物或数量中,有限总是表现为具体的,因而我们对这一概念可以穷极或易于理解,或能完全把握;而无限则是抽象的,它是一种运动无限延长的过程,是物的一种变化发展趋势,是一种抽象的理念,需反复渗透方可形成一定程度的认识。 (1)学生"准确地""画出函数y=2x-1的图象",其实只是画出了这个函数图象的一个有限部分,远非全部,即用有限的部分去"表示""无限"的趋势。(2)列表、描点、连线,画出抛物线,显然也只是画出了函数图象的一个"部分",用"有限"的一些点"确定"其"大致"位置、形状、大小,而连线是从有限走向了无限。(3)在画反比例函数的图象时,关于有限与无限、极限的思想体现得更为充分,例如观察教科书上例题y=的图象,当x(或y)的绝对值越大(或越小)时,y(或x)的绝对值如何变化?何谓"无限接近"而"永远不能到达"两坐标轴?(4)坐标轴上有多少个点?坐标轴有多长?一个象限内有多少个点?直角坐标平面内有多少个点?坐标轴上任意两点之间有多少个点?以坐标平面内任一点P(a,b)为圆心,任意小的正数r为半径作圆,圆内有多少个点?圆上有多少个点?圆外还"剩余"多少个点?抛物线可以画多长?……�所有这些具体的、生动的材料,都在向学生对数的理解方面潜移默化地渗透着无限、极限等观点。 九、离散与连续 离散与连续是一个矛盾的两个方面,但在列表--描点--连线的过程中,连线使离散与连续得到了统一。如教科书上画y=x及y=x2的图象,均采用了由简单到复杂、从特殊到一般、由离散到连续的手法,体现了这种对立统一的关系。 仔细分析教材,不难发现《函数及其图象》这一章中,渗透和体现的上述辩证观点的内容是十分丰富的。主要观点除上面已叙述的内容之外,至少还有微观与宏观,直与曲,精确与近似,部分与整体,绝对与相对,主观与客观辩证统一等内容。限于篇幅,不再一一赘述。 为帮助学生培养辩证唯物主义的世界观,我们应根据教材中相关的教学内容,结合学生的认识水平,有目的、有计划、有系统、有重点地组织教学内容,采用学生易于接受的教育、教学方法,适当渗透,系统推进,当渗透到一定程度时,再适时进行整理,适度地进行概括和抽象;日积月累,使这些教学内容在学生的头脑中系统地并深刻地扎下根去。这样,教学大纲中规定的培养辩证唯物主义观点的任务就可以顺利完成。

“哪里有数学,哪里就有美!”——古希腊数学家普洛克拉斯。 一提到美,人们总是不禁想到“绕梁三日”的音乐之美;或是想到“巧夺天工”的艺术之美,或是想到“江山如此多娇”的自然之美……然而,现在的绝大多数学生都不会把高中数学和美联系到一起,这也在一定程度上说明我们数学美学教育的欠缺。据调查分析,现在的学生对数学的兴趣是建立在他们优异的初中数学成绩上,而进入高中后,数学难度骤增,导致多数学生的数学成绩骤降,从而一下子失去了对数学的热爱。由爱转恨来的如此的突然就是由于他们对数学是一种“假”的兴趣。而在数学教育中渗透美学教育,能激发学生对数学的“真”的兴趣,而这样的兴趣正是学生最好的老师。 人的爱美天性在青少年时期表现尤为突出,数学教师应当抓住这个最佳时期,不失时机地向学生揭示数学之美,从而愉悦他们的心境,激发他们的兴趣,陶冶他们的性情,塑造他们的灵魂,进而让学生领悟数学美,欣赏数学美,创造数学美。大数学家克莱因认为:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。” 那什么是数学美呢?罗素说:“数学,不但拥有真理,而且也具有至高的美,真正雕刻的美,是一种冷而严肃的美!”数学美不同于绘画,音乐等艺术之美,也不同于鲜花,彩虹等自然之美,它是一种科学力量的感性与理性的显现,是一种人的本质力量通过数学思维结构的呈现,这是一种真实的美,是反映客观世界并能改造客观世界的科学美。数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有具体的公式、定理美,而且有结构、整体美;不仅有语言的简明、精巧美,而且有方法与思路的奇异、统一美;不仅有逻辑、抽象美,而且有创造、应用美。而作为新一代的教师,正是要不断的去挖掘数学美,不断的去传授数学美,让学生感受到数学美,从而激发学生学习数学的兴趣。 新课标背景下,更是要求教师要在数学教育过程中实施美学教育,培养学生的审美能力,从而形成美的心灵,美的灵魂。而如何将美学教育贯彻到数学教学中呢,笔者在近些年的教学过程中,对此感触颇多。 一:简洁的数学美 爱因斯坦说过:“美,本质上终究是简单性。”而数学中的简洁美简直是无处不在。欧拉公式——“V+F-E=2”堪称简洁美的典范。世间的凸多面体无穷无尽,但是他们的面数,顶点数,棱数都符合这个简单的公式。此外,为大家熟知的勾股定理,用一个简单的二次式“ ”描述了全体直角三角形的直角边和斜边的关系。微积分基本定理更是用一个简洁的式子“ ”描述了定积分和原函数之间的关系。纵观整个数学史,伟大的数学家们无不为了追求更加简洁更加通用的定理而付出毕生精力。其中一些像是哥德巴赫猜想这样的富含简洁美的猜想正被无数的数学爱好者们努力攻破着。 我国著名数学家陈省身说过:“数学世界中,简单性和优雅性是压倒一切的。”作为新一代的教育者的我们,必须善于挖掘教材中的简洁美,适时的总结数学公式的简洁与通用,让他们感受到数学的简洁美,从而抓住他们的心。 二.统一的数学美 浩瀚宇宙,包罗万物。宇宙中的天体无穷无尽,而探究宇宙的奥秘一直是人类的追求梦想。面对无数的天体运动,人们研究出它们运行的轨迹或是椭圆,或是双曲线,或是抛物线,而数学上用仅用一句话就能将其统一起来:“到定点的距离与它到定直线的距离比是常数e的轨迹。当时,轨迹是椭圆;当时,轨迹是抛物线;当时,轨迹是双曲线。”数学中的统一美可见一斑。此外,立体几何中,台体的表面积和体积公式更是将椎体和柱体的表面积和体积公式和谐的统一起来。三角函数中,“万能公式”更是将正弦、余弦、正切统一的用正切来表示。何其统一啊,何其美啊! 而统一美的在教学中尤为重要,教师不仅要善于发现总结统一美,更要及时的将其向学生传授,正是在各种各样的统一美的介绍和学习过程中,让学生进行分析比较,从而从本质上突破难点重点,感受数学的统一美。 三.奇异的数学美 毕达哥拉斯说:“凡物皆数。”他将自然界和数和谐统一起来了。有一次,他的朋友问他:“我和你交朋友,和数有关吗?”他回答说:“朋友是你灵魂的倩影,要象220与284一样亲密。”望着困惑不解的人们,毕达哥拉斯解释道: 220的全部真因子1、2、4、5、10、11、20、22、44、55、110之和为284;而284的全部真因子1、2、4、71、142之和又恰为220。这就是亲密无间的亲和数。真正的朋友也象它们那样。奇异的数学美让听者无不折服,至今还有不少学者对亲和数津津乐道。此外,他还用完美数——所有的真因子和等于本身的数来形容美满的婚姻。高中数学里,圆锥曲线部分,离心率e的值是0.9999的时候,轨迹还是一个椭圆;而当它变成1时,轨迹却是抛物线;当它再变成1.0001时,轨迹又变成了双曲线。丁点的变化,却导致图像的截然不同,真是奇异啊。数学中确实是存在着许多奇异美,而正要通过我们的悉心挖掘,让学生感受到数学的神奇。 四.自然的数学美 新课标提出:“数学源自生活,并应用于生活。”生活中的数学处处可见,例如,黄金分割数0.618, 它是最和谐的比例关系,具有很高的美学价值。人的肚脐高度和人体总高度之比接近等于0.618;主持人主持节目时,站在舞台的黄金分割点位置,不显得呆板,声音传播效果最好;在建筑造型上,黄金分割处布置腰线或装饰物,则可使整幢大楼显得雄伟雅致。蜜蜂房呈六角形,角度也很精确,钝角 109 ° 32 ′,这样的巢不但节省材料,而且结实坚固,令人类工程师惊叹不已!更另人惊奇的是蜜蜂还知道两点间的最短距离,蜜蜂在花间随意来去采集花蜜后它知道取最直接的路线回到蜂房。 而善于利用自然界以及生活中的数学实例,展示数学的美和自然生活的完美结合,往往能让学生感受到数学的实用性,让学生真正的对数学产生兴趣。 有人说:如果把数学当作诗集来读,那么摆在面前的任何一本数学教程,就会突然从一堆死气沉沉的公式变成洋溢着和谐、充满着绝妙和浸透了对称美的一部诗集。只要我们把数学美融于数学的教学中,那么不但我们的授课变的轻松自然,而且学生也会如释重负,不断提高对数学的兴趣,使教与学达到和谐、完美、统一。 诚然,数学中蕴含的美是博大精深的,数学美不仅以上几点,它几乎贯穿于数学的方方面面。此外数学定理公式的对称性,相似性,和谐性,传递性等都是美的体现;有时候甚至是数学问题都展示着美,解体方法也散发着美的味道。当然数学不像是一首好曲子或是一件旷世的艺术品一样能一眼品出它的美,特别对课业繁重的学生而言,他们受阅历水平,基础知识,数学训练等影响,很难把各色的数学美都品味出来。这就要求教师们需要精心研究,不断从相对枯燥的教材中去发现美,并不失时机的加以引导和培养。展望未来的教育趋势,美育教学和数学教学的结合是必要的,必然的,不仅仅为了唤醒学生日益减弱的数学兴趣,更是为了提高学生的审美能力,从而培养下一代的创造美的能力。

立体几何解答题的研究与思考论文

高中就写论文啦?

立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2、判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3、两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”。 (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 (3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。 (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (5)夹在两个平行平面间的平行线段相等。 (6)经过平面外一点只有一个平面和已知平面平行。 以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。 解答题分步骤解决可多得分 01、合理安排,保持清醒。 数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。 02、通览全卷,摸透题情。 刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。 03、解答题规范有序。 一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。 对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考阅卷是“分段评分”。 比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。 有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。

高中数学是培养高中升思维能力的重要的学科,也是高考考试中占重要地位的一门学科,如何才能提高数学教学的有效性呢?本文是我为大家整理的高中数学有效性教学研究论文,欢迎阅读! 高中数学有效性教学研究论文篇一:高中数学作业的有效性 一切实把握好“度”。 教师要认真钻研教材,正确掌握教学目标和学生实际,认真挑选与教学目标密切关联的作业内容,合理安排作业的量,正确把握作业的难易度,哪些是必做题,哪些是选做题。让学生根据自己的知识水平量力而行。 二做好作业前期准备。 作业前期准备有学生和教师的准备。学生首先认真阅读课本,本节知识点有哪些,需要掌握到什么程度,知识点之间有什么联络,研究例题,反思老师怎么分析、怎么讲解、怎么板书。其次反思本节知识难点的分解,反思所涉及的数学思想。最后再做作业。教师根据所任教班级的学生学情来把握是否有必要题意解释,适当地点拨,甚至详讲。 三精选作业内容。 1.选择涉及本节知识的部分较易的作为作业。如:学习全集补集概念课后布置作业:1若C∪A={5},则5与U,A的关系如何2已知全集U={1,2,3,4,5,6},C∪A={5,6},则A=____2.选择以涉及本节知识为主,但相对稍难的作为选作作业。例如,学习全集补集概念课后布置作业:已知 *** A={1,3,x},B={1,x2},设全集为U,若B∪〔UB=A,求〔UB.3.选择以章节知识为主,但具有一定的综合性、拓展性的作为章节复习作业。例如, *** 复习课后布置作业:设全集U={x∈N+|x≤8},若A∩C∪B={2,8},C∪A∪C∪B={1,2,3,4,5,6,7,8},求 *** A 四精选题型 要注重变式题、同类题、多解题、易错题、探究题题型的精选。1.变式题变式题指对原命题交换条件和结论或变换部分条件得出新题。这类题型有助于学生开阔思路,思维灵活多变,培养解题的灵活性,思维的发散性以及创新能力。例如,学习空间图形的基本关系与公理后布置作业:在平面几何中,对于三条直线a,b,c存在下面三个重要命题:若a‖b,b‖c,则有a‖c;若a⊥c,a‖b则有b⊥c:若a⊥c,b⊥c则有a‖b,它们都是真命题,若把a,b,c换成i不在同一个平面内的三条直钱,ii三个平面α,β,γ,iii其中两条直线换成两个平面,另一条还是直线,iv其中一条直线换成平面,另两条还是直线。一共可得到16个不同的命题,其中将正确的命题写在空白处。2.同类题同类题指具有多题一解的一类题。这类题型让学生领悟一类题解题的一般规律,加深对知识的理解,培养类聚思维,化归思想。例如,学习了简单的幂函式后布置作业:1已知fx+2f1x=2x,求fx的解析式。2若函式fxgx分别是R上的奇函式,偶函式,且满足fx-gx=x3+2x2+1求fx的解析式。3.多解题多解题是指是有多种解法的一类题。这类题型可以开拓学生解题思路,激发学生发散性思维和创新能力。但要注意多解不是目的,主要是能从多解中寻求最佳解法。例如,学习完直线与圆的位置关系后布置作业:已知x,y满足x+y=3,求证:x+52+y-22≥184.易错题易错题是一类具有隐含条件,解题稍一疏忽,就会因考虑不周到而失误的题目。这类题型能够考察出学生考虑问题是否全面,思维是否缜密。例如,在学习了 *** 间的基本关系后布置作业:已知 *** A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B哿A,求实数m的取值范围没有考虑B=Φ时的特殊情况而失误在学习了导数后布置作业求过点P1,2且与曲线fx=x3-2x+3相切的直线方程。没有考虑P不是切点的情况而失误5.探究题探究题是指提供情境,从中发现问题进行探究的一类问题。这类题型可以培养学生观察能力与思维能力,分析问题和解决问题能力。例如,学习完指数函式后布置作业:fx是定义在R上的函式,且满足fx•gx=fx+y,当x>0时,fx>1,f0≠0,求证:1f0=1;2fxf-x=1;3当x<0时,0 五做好作业的指导 对学生作业的指导是提高有效性的重要保证。成绩好的学生往往喜欢独立思考,独立完成作业;而成绩不理想的学生往往不善于独立思考,喜欢依赖别人。教师要根据学生在课堂上掌握情况预知作业进展情况,预料学生做作业时可能存在的问题,布置作业前在课堂上进行提示或讲解,之后学生再做作业,效果会更好一些,真正达到做作业的实效。 六改进作业的评价 批改作业,教师要做到及时,认真,把批改作业中发现的问题,错误以及所犯错误的数量,性质进行记录分析,并在下一次课中有针对性的指出,纠正。教师往往对作业评价只打“√”或“×,这样不利于调动学生学习的积极性。教师应改变对作业简单地打“√”或“×”的评价方式。可以改“×”为在出错的地方打“?”或提示语的方式,使学生明确错在何处或何因出错。根据学生作业情况反馈资讯及时作出正确评价。对于优秀作业或解题有创意的作业用赞美的语言或采用优秀作业展览的形式来激励学生。总之,让学生感受到老师的关爱,以及自己勤奋严谨获得的成功,增加学好数学自信心。 作者:姜长虹 单位:内蒙古扎兰屯第一中学 高中数学有效性教学研究论文篇二:高中数学教学模式 一、在高中数学实现有效的教学模式的意义 高中数学是培养高中升思维能力的重要的学科,也是高考考试中占重要地位的一门学科。纵观高中数学的内容,我们发现高中数学的难度比较大,单单依靠学生自学是无法完全掌握这门学科的,还需要教师对于知识的归纳和总结,提供给学生一种解题的思维和技巧。因此在提高高中数学课堂的有效性显得尤为重要。实现高中课堂学习的有效性,可以提高学生学习的效率。高中课程的学习不同于初中课程,高中每门课程的难度都比较大,要全面兼顾好每门课程的学习,因此学习效率对于高中生而言尤为重要,只有提高了学生的学习效率,学生才有更多的时间用于身体锻炼和学习更多的内容,这样才能培养全面的人才,贯彻新课改的要求。 二、如何实现高中数学有效的教学模式 一高中数学教师要创新教学模式,改变沉闷的教学氛围。在传统的高中数学教学模式之中,教师往往忽视教学氛围对于学生学习的重要作用,在枯燥的教学环境中,学生往往对课程的学习也不感兴趣。因此为了使高中数学课堂更加高效率,教师在教学模式上也要创新和改革,改变以往不符合学生学习规律的教学方法,建立起新的教学模式,活跃课堂气氛,提高学生学习的积极性。例如教师在教学生抛物线这个知识点的时候,老师可以在上课时,用一根粉笔,直接用手将粉笔往上抛,以这种生动的形式来作为课堂导课。这样不仅仅在一瞬间抓住了学生的注意力,还能够让学生将今天所学的知识与自己的生活实际联络在一起,不仅仅体现了新课改的要求,还极大的激发了学生学习的兴趣。 二高中数学教师要以学生作为教学的主体,给予学生更多的关注和鼓励。总所周知,学生对于这个老师的好感与学好这门课程是密切相关的,因此,教师要和学生建立良好的师生关系。高中数学的知识点比较难,考验学生较强的思维能力,但是很多学生在面对高中数学时常常有挫败感和恐惧感,这些挫败感和恐惧感极大的阻碍了学生学习高中数学。因此高中数学老师在教学中应该这样做,例如,在为学生讲述数列这一个知识点的时候,要求学生做相应的基础知识的练习,刚开始对学生要求做的练习的难度不应该太大,慢慢培养学生的成就感和对于高中数学的喜爱。除此之外,教师在教授课程的速度也不应该太快,要考虑到学生的接受能力,对于那些数学基础比较差的学生,教师要有足够的耐心去教,不要随意放弃任何一位学生,对于基础差的,跟不上全班学习进度的学生,高中数学教师可以为这些学生在课前找一些基础的练习题,让这些学生提前练习,学会笨鸟先飞,逐步跟上全班的数学水平。 三高中数学教师要创新自我的课堂教学设计,善于使用肢体语言让学生得到肯定。在新课改的背景下,高中数学教师不仅仅作为一名传授课堂知识的工作者,还要学会如何有效地将课堂知识传授到学生的身上,让学生真正的掌握知识。课堂知识的传授不在于教师讲授了多少,而在于学生吸收了多少。在创新课堂教学设计中,例如高中教师在讲授函式的单调性的时候,可以采用设问的方法,让学生主动思考,例如,教师可以让学生回答一次函式的单调性,然后再想想我们所学的函式方程,他们的单调性又存在什么特点,通过问题教学法,层层的问题的设定,让学生在思考问题中自己发现函式单调性的内在规律,除此之外,教师在教学的过程中,要常常对学生微笑,运用肢体语言给予学生更多的鼓励和肯定,让学生在学习中逐渐找到自我的学习方法和成就感。 作者:黄兵 单位:贵州省遵义县第一中学 高中数学有效性教学研究论文篇三:高中数学的有效教学 一、采取恰当的教学方法 高中数学这门学科虽然是一门对逻辑性思维具有较高要求的一门学科,但是在整个的教学过程中,笔者认为教师还应该积极地根据教学的不同内容和知识特点采取不一样的教学方法,从而更好地促进学生的能力发展和实现有效教学这一目标.所谓采取恰当的教学方法具体而言就是要根据函式和三角函式这一类的知识点采取数形结合、讲练结合的方式来开展教学;要根据立体几何的立体空间特点引导学生通过观察立体图形的方式开展教学;要根据 *** 、命题、概率等内容采取透析概念、侧重语言文字转化为数学语言的方式来开展教学;等等. 通过这样一系列的各种各样的方式,将有效地提升学生的认识,引导学生分别从不同的方面找出不同的思考方式,从而更好地开展高中数学教学,有效地提升学生对知识的理解.例如,在讲“ *** ”时,教师要注意加强对 *** 、元素、子集、 *** 的特征等概念的学习,加强学生对 *** 的基本运算交集、补集、并集的概念区分.特别是要引导学生对 *** 内元素的互异性这一具体运用以及具体的教学例子的讲解,帮助学生获得提升和发展.通过这样一种细化不同知识点的方式,将有效地提升学生对 *** 内各个概念的理解,也将更好地提升整个教学的效率,从而实现高中数学有效教学. 二、注重教学的启发性 高中数学这门学科因为具有很强的逻辑性所以对学生的思维发展是一个挑战,也是一个重要的契机.所以,在整个的教学实施过程中,笔者认为教师还应该积极地引导学生在教学实施的过程中注重教学的启发性,从而更好地发散学生的思维,促进学生的创新行思维和经纬网式的综合性思维的发展.在教学过程中,教师要注意通过一些具有启发性的题目和内容来锻炼学生的思维,鼓励学生去探究有关的知识点和激励学生去思考,激发学生的潜力。这样一改,学生能够在第一眼就发现这个题目解答的最便捷方法就是属性结合,可以将已知内容看做一个圆,而需要求解的内容则是一条直线.然后就是求解该直线与圆之间相交的范围.随后,教师再引导学生切入到之前的题目中,从而更好地激发学生的思维,有效地启发了学生思考. 作者:陈督武 单位:浙江乐清市白象中学 看过" 高中数学有效性教学研究论文"的还:

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。708字

向量法与立体几何法对比研究论文

一般的方法重在分析,利用空间几何中的相关关系,来得出你想要得到的结果,分析的过程很重要,它的计算量相对小,向量法重在建系,建系是解题的基础,虽然当所有点的坐标都已知后,按相关计算的公式计算就好,看似简单但计算量相对较多,向量法的通用性较强,但在能用一般方法解决的问题上还是用一般方法解决的好,可以节约时间,以上仅是个人看法,我习惯用一般方法

一般方法:会给人一种数学学的很好的感觉 相比向量法思维要求更高 有时比向量法易书写 向量法:比较机械 只要照着步骤去做只要细心都能做出来 但会出现一些计算 但我看到你的问题后 我推荐你就重点学习向量法把 几何法考思维

我觉得不能绝对的说哪个更好用,引题而已,与个人偏好也有关。有一点要说明的是高考的立体几何题一定是既能用几何法又能用向量法。

各自有各自的用处。建议在不着急的情况下多试试几何法,这样锻炼思维能力,要知道,学习的一个重要目的就是锻炼思维能力,其次理解力,都是很重要的,向量法简单,但是太过应试教育了。毕竟不管是向量法还是几何法都是先辈们想出来的,我们只是学而已,那么学就尽量多学点,增加自己的能力是最重要的了。注意,考试什么的可以向量法,向量法好理解,平时你可以在用向量法解好了再用几何法在草稿本啊什么的再解打了这么多字,希望采纳

立体几何论文答辩题目

解:(1)连接BD1在三角形DD1B中E F分别为DD1 BD的中点所以EF∥BD1又因为BD1∈面ABC1D1EF∉面ABC1D1所以EF∥面ABC1D1(2)证明:易知B1E在面A1B1C1D1的射影为B1D1又因为A1C1⊥B1D1且CF∥A1C1所以CF⊥B1D1所以CF垂直B1E(3)易知VB1-EFC=VC-BEF=1/3×S△BEF×CF又因为S△BEF=1/2根号18CF=根号2所以VC-BEF=1/3×S△BEF×CF=1/3×1/2根号18×根号2=1

相关百科

热门百科

首页
发表服务