首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

网教供用电毕业论文

发布时间:

网教供用电毕业论文

沙角C电厂厂用电结线分析1 方案选择沙角C电厂(简称沙角C厂)有3台660MW机组,每台机组发出的电能都是经各自的主变压器升压至500kV,由500kV变电站进入广东省主网。发电机机端电压为19kV,主变压器为Yo/△接线,每台机有2台容量各为44MVA的△/Yo接线高压厂用工作变压器,2台高压厂用工作变压器各带一10kV机组段。全厂设1台容量为44MVA的高压厂用备用变压器及设高压厂用公用段10kV两段。厂用电接线如图1所示。对于这样一种结线,在工程谈判阶段业主和设计院曾就电厂的厂用电结线作了两个方案比较。方案一:全厂设高压厂用起动/备用变压器,而不设发电机开关;方案二:每台机装设发电机开关,而全厂只设1台容量较小的高压厂用备用变压器。方案二的优点是:a)机组正常起、停不需切换厂用电,只需操作发电机开关,厂用电可靠性高。b)机组在发生发电机开关以内故障时(如发电机、汽机、锅炉故障),只需跳开发电机开关,厂用电源不会消失,也不需切换,提高了厂用电的可靠性,同时减轻了操作人员的工作量和紧张度。这一点在沙角C厂的调试过程中,表现非常突出。同时对于国内大型机组采用一机只配一主操作员和一副操作员的值班方式非常有益。c)对保护主变压器、高压厂用工作变压器有利。对于主变压器、高压厂用工作变压器发生内部故障时,由于发电机励磁电流衰减需要一定时间,在发电机-变压器组保护动作切除主变压器高压侧断路器后,发电机在励磁电流衰减阶段仍向故障点供电,而装设发电机开关后由于能快速切开发电机开关,而使主变压器受到更好的保护,这一点对于大型机组非常有利。d)发电机开关以内故障只需跳开发电机开关,不需跳主变压器高压侧500kV开关,对系统的电网结构影响较小,对电网有利。方案一无上述优点。对于方案二,当时我们主要担心发电机开关价格昂贵,增加工程投资,以及发电机开关质量不可靠,增加故障机会。对于工程投资的比较是如果不装设发电机开关,按目前国内大型火力发电厂设计规程要求的2台600MW机组需配2台高压厂用起动/备用变压器的原则,沙角C厂则要配4台较大容量起动/备用变压器,且由于条件所限,起动/备用变压器的电源只能从沙角A厂220kV系统引接。因而,方案一需增加220kVGIS间隔4个,220kV电缆4根,220kV级的较大容量起动/备用变压器4台;方案二需增加33kV电缆1根,33kV级的较小备用变压器1台,发电机开关3台。方案一的投资可能超过方案二。对发电机开关质量问题,经调查了解,当时GEC-ALSTHOM公司法国里昂开关厂生产的空气断路器,额定电流33.7kA,额定开断电流180kA,这种断路器已供应美国、法国许多大型核电站使用,运行良好。因此,我们最终选择了方案二,并选用了GEC-ALSTHOM公司的PKG2C空气断路器。目前这种断路器经在沙角C厂多年的运行,上百次的动作,证明其性能良好。沙角C厂发电机开关的主要技术参数:型号灭弧介质额定电流额定电压额定频率额定对称开断电流额定不对称开断电流额定短路关合电流额定短时承受电流对地工频耐压雷电冲击耐压峰值额定开断时间额定负载下操作顺序正常操作压力最低操作压力 PKG2C压缩空气33.7kA21kV50Hz180kA340kA509kA275kA70kV/min170kV0.1sCO—30min—CO3.34MPa3.00MPa2 设计原则2.1 高压厂用工作变压器的容量设计GEC-ALSTHOM公司对高压厂用工作变压器容量的设计原则为:a)带单机负荷的一半,加1台电动给水泵再加公用厂用负荷的一半;b)提供单机辅助负荷一半,再加2台电动给水泵。2.2 备用变压器容量设计备用变压器的容量选择同高压厂用工作变压器容量。2.3 10kV厂用电系统运行方式的设计由于受备用变压器容量所限,备用变压器在同一时间内只能带1段10kV公用段及1段10kV机组段,因此要求在正常情况下公用段尽量由某2台正常运行机组的高压厂用工作变压器各带1段。同时为防止不同机组的10kV段ü��枚尾⒘校�诟骰�榛�槎沃凉�枚蔚牧�缈�厣嫌械缙�账�?br>2.4 10kV厂用电源事故切换10kV厂用电源事故切换采用自动慢切换,当正在向1段10kV公用段供电的10kV机组段由电压继电器判断为失压,且保护是反应非10kV母线段上故障时,在确认10kV机组段进线开关已跳开后,将会起动自动慢切换,经5s延时,将备用变压器低压侧10kV开关合上,从而恢复该机组段和原由它供电的公用段的供电。当保护是反应10kV母线段上故障时,则不起动自动慢切换。自动慢切换是采用传统的中间继电器和时间继电器通过硬接线来实现的。虽然备用变压器下接10kV公用段A和10kV公用段B,但由于备用变压器容量有限,在同一时间内备用变压器只能带1段公用段,从备用变压器来的10kV公用段A进线开关和10kV公用段B进线开关之间有电气闭锁,防止2个开关同时合上。同样,虽然各机组的10kV机组段各段与相应的10kV公用段各段都有联络断路器连接,但为防止正常情况下不同机组的10kV机组段通过10kV公用段并列,相互之间设有闭锁,防止同一时间2台机的10kV机组段向同一10kV公用段供电。正常情况下,厂用电源的手动切换及由备用变压器供电转为正常供电时厂用电的短时并列供电,要通过手动经同期装置进行,并经200ms延时自动跳开另一开关。由上可知,由于备用变压器受容量及上述运行方式的限制,在事故情况下只能向1段公用段及当时向该公用段供电的机组段供电,因而事故情况下后备电源只能保证机组50%的负荷。而且,如果当时该机组段未带1段公用段,则后备电源将不能向机组提供厂用电源。如果该机组又失去全部厂用电,则需要靠柴油机组来保障机组的安全。因此,该种接线对柴油机组要求较高,而目前沙角C厂使用的柴油机组质量较好,经受了很多次起动的考验。由上可见,备用变压器主要是作为全厂的1个由系统来供电的用于机组停机或停机后的安全电源,且对其中的1台机组起不到提供后备电源的作用。3 厂用电系统电压等级及切换3.1 厂用电系统电压等级目前沙角C厂厂用电有3个电压等级:10kV电压,3kV电压,380V电压。其中10kV系统、3kV系统为中阻接地,380V系统为不接地系统。380V的照明用电和其他需要中性点接地的380V/220V系统,采用△/Yo的变压器来产生。3.2 各级电压的切换10kV系统如前所述有电源自动慢速切换。3kV系统机组2段之间、3kV系统公用2段之间有联络开关,联络开关之间不带同期和自动切换。当需要切换电源时只能通过手动切换。380V系统机组锅炉、汽机、除尘各有2段,公用段也有2段,2段之间有联络开关,联络开关之间不带同期和自动切换。当需要切换电源时只能通过手动切换。4 开关设备型式10kV系统开关全部采用真空开关,型号HWX。3kV系统的进线开关采用真空开关,馈线采用F-C回路,型号HMC1172。380V系统的进线开关采用空气开关,接触器、熔断器。5 结束语沙角C厂厂用电结线采用装设发电机开关的接线型式,机组正常启停不需要切换厂用电,在遇到发电机开关以内的故障如发电机、汽轮机、锅炉故障时,只须跳开发电机开关,不需要切换厂用电,厂用电扰动小,可靠性提高,减轻运行人员的工作量,特别是故障情况下的工作量,给运行人员带来极大便利,受到电厂运行人员欢迎。尤其是机组在调试过程中,大部分的机组跳机都是来自锅炉和汽机,这一点在沙角C厂表现非常突出。沙角C厂调试过程中上百次的跳机绝大部分都是锅炉和汽厂调试过程中上百次的跳机绝大部分都是锅炉和汽机引起的。沙角C厂由于后备电源作用较组的正确起动要求较高,应选用高可靠起动的柴油机。目前,沙角C厂厂用电结线的缺点是由于只有1台备用变压器且自动投入只对带公用段的机组,而使第3台机的10kV段不能得到后备电源,降低了该台机厂用电的可靠性。在装设发电机出口开关下采用2台机组和1台后备变压器,该台备用变压器容量大于或等于1台高压厂用变压器的容量,或改善备用电源自动切换回路或设专门备用段较为合适。目前台山电厂的评标方案就是采用前一方案的。

一 毕业大学生或导师进!!人大网络教育本科毕业论文好过吗几率高吗 您有空可以找些论文站看看网上搜索“毕业论文”就有很多可以借鉴的范例 二 远程教育专科毕业论文通过率 这个是可以的,一般的远程教育类的论文导师不会去查重的,不过你最好稍微改改,组织成自己的语言 三 大连理工大学网络教育毕业论文答辩难不难 论文还来是比较容易通过得自,而且查重率也比较低,主要是您先要满足申请学位得要求,大部分学校得要求有三个。 1、各门成绩平均分70+ 2、论文成绩良+ 3、通过学位英语和计算机等级考试 前两个都是相对比较容易得,最难得是第三个学位英语,因为设计得国家统考,所以很多同学都是再这上面卡住。不过现在有些学校可以用公共英语三代替学位英语考试。 四 西安交通大学网络教育学院的毕业论文难吗 该怎么写啊完全没有头绪。 不难 这边有样板 按照样板修改 基本上就能够过 五 你好,我想问一下人大网络教育毕业论文的通过率 同学你好,我院同学在毕业论文写作的整个过程都有论文指导老师进行辅导,初稿虽然没有通过,但同学根据论文指导老师提出的修改建议,认真修改,并不影响最终的成绩。如果针对论文指导老师的评语有不明确的地方,同学可以给论文指导老师发送邮件详细请教,最好同时抄送给论文管理邮箱,方便学院负责老师协助帮助同学顺利完成论文修改。 六 华东理工大学网络教育毕业论文 75分难么 华东理工大学网络教育毕业论 了解分析肯定好 七 浙江大学远程教育毕业论文没过怎么办 浙江大学远程教育毕业论文没过会延期到第二年,学费不用交,论文重修,第一次免费,第二次才收费300。 浙江大学是一所历史悠久、声誉卓著的高等学府。经过110多年的建设与发展,浙江大学已成为一所特色鲜明,在海内外有较大影响的综合型、研究型、创新型大学。 浙江大学是教育部批准开展现代远程教育的第一批四所试点高校之一,也是卫生部确定的全国远程医学教育首批示范试点单位。自1998年开始现代远程教育试点,目前,浙江大学远程教育已设有20多个专业,涉及文、经、管、教育、医、法、工、农等学科,是学科涉及面较广、开设专业较多的网络院校之一。办学以来,浙江大学远程教育秉承“求是创新”的校训,坚持以质量为本,以规范求发展,在社会上赢得了良好的声誉。 八 想问下网络教育学院最后那个毕业论文严不严 专家提醒:抄主要是具体学校,有些严格,有些不严。学生必须做好充分准备,不能临时抱佛脚 毕业论文,泛指专科毕业论文、本科毕业论文(学士学位毕业论文)、硕士研究生毕业论文(硕士学位论文)、博士研究生毕业论文(博士学位论文)等,即需要在学业完成前写作并提交的论文,是教学或科研活动的重要组成部分之一。 九 有通过远程教育毕业的吗取得毕业证难不难 网络教育,是成人教育学历中的一种。是指使用电视及互联网等传播媒体的教学模式,它突破了时空的界线,有别于传统的在校住宿使用这种教学模式的学生,通常是业余进修者。由于不需要到特定地点上课,因此可以随时随地上课。学生亦可以透过电视广播、互联网、辅导专线、课研社、面授(函授)等多种不同管道互助学习。是现代信息技术应用于教育后产生的新概念,即运用网络技术与环境开展的教育。 1)高起专、专升本层次最短学习期限为2.5年,高起本层次最短学习期限为5年,即从教育部学籍正式注册时间开始算起(通常春季为3月1日;秋季为9月1日),高起专、专升本层次2.5年,高起本层次5年修完学业可申请毕业(不含发证时间)。高起专、专升本层次最长学习期限为4.5年,高起本层次最长学习期限为7年,达到最长学习期限仍未满足毕业条件的学生,学籍将被注销。 2)部份省份招生层次或专业有特殊规定的,以省级教育主管部门的公告为准。 3)招生对象 报考专科的考生应具有高中毕业或相当于高中毕业文化程度(同等学力者须年满18周岁) 报考专科起点本科的考生必须具有国民教育系列的大专或以上毕业证书 报读高中起点专科的学生,报读时年龄须满18周岁 招收高起专、专升本学生均为非全日制学习 春季报读学生,其前置证书取得时间不得晚于当年2月28日 秋季报读学生,其前置证书取得时间不得晚于当年8月31日 4)报名办法 全年组织报名,春秋两季注册 春季注册为3月,秋季注册为9月

供用电技术毕业论文变电站

给你一部分参考,如果赏分的话,本人为你设计,给你现成的。

引 言

变电站自动化是自动化的一种具体形式。它是指应用各种具有自动检测、决策和控制功能的装置,并通过信号系统和数据传输对电力系统各元件、局部系统或全系统进行就地或远方的自动监视、协调、调节和控制,保证变电站安全经济运行和具有合格的电能质量。由于电力系统的结构复杂而庞大,电能不能储存,暂态过程非常迅速,电能对人民日常生活又非常重要,220KV变电站在电力系统中的地位越来越重要,此次设计的题目正是适应电力系统当今发展趋势的一个实用题目。目前,220KV变电站在电力系统中的重要地位更彰显出来,设计一座大型城市变电站,使设计者了解现行变电站的先进技术,培养设计者的创新能力、实践能力和独立工作能力,更使设计者把所学的专业知识有机融合,由此,应运而生了此次毕业设计。

概 述

变电站是以变换电压,交换功率和汇集、分配电能为主的电能设施。在电力系统中,变电站介于发电厂和电力用户之间的中间环节。变电站由主变压器、母线、断路器、隔离开关、避雷器、互感器等设备或元件集合而成。它具有汇集电源、变换电压等级、分配电能等功能。电力系统内继电保护装置、自动装置、调度控制的远动设备等也安装在变电站内,因此变电站是电力系统的重要组成部分。

此次设计所述变电站为一大型城市变电站,位于地区电网的枢纽点上,以高压侧和中压侧接受电能,但以高压侧为主,中压侧还肩负着向地区供电的任务,低压侧则直接向邻近负荷供电,并以此来选择变压器、进行短路计算,和设备选择。

在此次设计的最后一部分,进行了变电站的监控系统设计,把微机技术加入到变电站中,利用微机的人工操作性和电气量在电力系统运行中的变化,完成电力设备的信息采集,使一次设备信息中模拟量和开关量数字化,上送测量和保护信息,接受站控层下传的控制命令和参数。

电气主接线的设计

电气主接线是发电厂、变电站设计的主体。采用何种接线形式,与电力系统原始资料,发电厂、变、电站本身运行的可靠性、灵活性和经济性的要求等密切相关,而且对电气设备选择、配电装置布置和控制方式的拟订都有较大的影响。

因此,主接线的设计必须根据电力系统、发电厂或变电站的具体情况,全面分析,正确处理好各方面的关系,通过技术经济比较,合理地选择主接线方案。

2.1 电气主接线概述

变电站电气主接线是电力系统接线的主要部分,它表明了变压器、线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。变电所的主接线是电力系统接线组成中的一个重要组成部分。主接线的确定,对电力系统的安全、稳定、灵活、经济、运行以及变电所电气设备的选择、配电装置的布置、继电保护和控制方法的拟定将会产生直接的影响。

2.1.1 主接线设计考虑的因素

(1)考虑变电所在电力系统中的地位和作用;② 考虑近期和远期的发展规模;③ 考虑负荷的重要性分级和出线回数多少对主接线的影响;④ 考虑主变台数对主接线的影响;⑤考虑备用容量的有无和大小对主接线的影响。

2.1.2 主接线的设计原则和要求

(1)接线方式

在本次设计中,220KV线路有6回架空线,根据接线原则应选择双母线带旁路接线方式;110KV线路有5回架空线,根据设计原则应选择双母线接线方式,35KV线路有25回出线,由于出线回路多, 所以选择双母分段接线。

(2)中性点接地原则

电网中性点接地方式与电网的电压等级,单相接地故障电流,过电压水平以及保护配置等有密切关系。电网中性点接地方式直接影响电网的绝缘水平;电网供电的可靠性、连续性和运行的安全性;电网对通信线路及无线电的干扰。选择接地点时应保证在任何故障形式下,都不应使电网解列成为中性点不接地系统。

(3)断路器的配置

根据电气接线方式,每回线路均应设有相应数量的断路器,用以完成切、合电路任务。

2.2 电气主接线设计方案的确定

按照设计任务书中所提供的变电站带负荷数及出线回路数等信息,按变电站设计技术的相关规定,“220KV配电装置出线回路数在4回及以上时,宜采用单母分段、双母线及其他接线形式”,因此在设计变电站时分别考虑了两种方案。

电气主接线设计方案1本变电站220KV侧采用双母线带旁路接线,此接法可靠性高,即使检修母线或断路器时都不会停电;运行操作方便,不影响双母线正常运行。35KV采用双母三分段接线形式,该种接线,负荷分配均匀,调度灵活方便,运行可靠性高,任一条母线或母线上设备检修时,不需要停掉线路,且较方案2投资少;发电厂方案2采用的是35KV侧采用及220KV侧采用双母线的接线形式,双母四分段它是用分段断路器将一般双母线中的两组母线各分为两段,并设置两台母联断路器。正常运行时,电源和线路大致均分在四段母线上,母联断路器和分段断路器均合上,四段母线同时运行。当任一段母线故障时,只有1/4的电源和负荷停电;当任一母联断路其或分段断路器故障时,只有1/2左右的电源和负荷停电(分段单母线及一般双母线接线都会全停电)。但这种接线的断路器及配电装置投资更大,用于进出线回路数甚多的配电装置。图2-1是发电厂电气主接线设计图(方案1)。

图 2-1  发电厂电气主接线方案

2.3  变电站中主变的选择

2.3.1 主变的选择原则

(1)变压器原、副边额定电压应分别与引接点和厂(所)用电系统的额定电压相适应。

(2)联接组别的选择,宜使同一电压级(高压或低压)的厂(所)用变压器输出电压的相位一致,220KV主变压器选用三项,应根据变电站在系统中的作用和地位、可靠性要求、制造条件运输条件等选择,经技术经济比较来确定。

(3)阻抗电压及调压型式的选择,宜使引接点电压及厂(所)用电负荷正常波动范围内,厂(所)用电各级母线的电压偏移不超过额定电压的±5%。

(4)变压器的容量必须保证厂(所)用机械及设备能从电源获得足够的功率,变压器容量、台数、相数、绕组数等的选择,应根据电力负荷情况及潮流变化情况而定。

2.3.2 主变型号的选择

变电所主变压器的容量一般应根据主变电站建成5~10年的规划负荷考虑,并且按照其中一台(组)事故停运后,其余几台变压器应保证承担该所全部负荷的(KV变电所为60%,KV变电所为70%)或重要负荷(当Ⅰ、Ⅱ类负荷超过上述比例时)选择,即为了保证供电的可靠性,变电所一般应装设2台主变压器;枢纽变电所应装设台;地区性孤立的一次变电所或大型工业专用变电所,可装设3台。

(1)根据毕业设计任务书可知220KV于110KV之间的潮流变化范围是200~400MW,可以确定220KV最大负荷为400MW,本变电站是通过220KV和110KV接受电能。

根据发电厂电气部分变电站选择原则有

根据发电厂电气部分中220KV三绕组变压器技术数据可知

表2-1 主变压器参数

型号

相数

频率

额定容量

阻抗电压

SFPS7-240000/220

三项

50HZ

240/240/120MVA

(3)负荷率计算

据电力工程电气设计200例中负荷率计算公式可知

(3-2)

1)根据式(3-2),110KV侧最大、最小负荷率计算

2)根据式(3-2),35KV侧最大、最小负荷率计算

① 近期最小

② 远期最大

根据以上负荷计算可得,110KV和35KV的最大负荷、最小负荷均不过载,所以选择的变压器满足过载要求。

2.4 变电站所用变的选择

浅谈500kV变电站500kV刀闸的操作顺序论文

摘要:

介介绍了500 kV 3/2开关接线方式及其特点,结合几种典型的500kV停送电操作任务(线路停电倒闸操作、母线侧开关停送电操作、中间开关停送电操作),对500kV刀闸的操作顺序进行了分析,指出了正确的操作步骤,降低刀闸误操作的概率。

关键词:

500kV变电站;刀闸;操作顺序

一、引言

500kV变电站在系统中担负着连接电源、联网、转送功率、降压和保证供电等任务,因此,500kV变电站主接线供电可靠性显得尤为重要。目前,南方电网500kV电气主接线都采用可靠性高的3/2开关接线方式。

3/2开关接线是指3台开关串联,接于2条母线,形成一串,从2台开关之间引出2条线路(3台开关供2条线路),每条线路占1.5个开关,又称为一个半开关接线。3/2开关接线的倒闸操作不同于双母线和单母线接线的倒闸操作。

从以往的运行经验看,在电力系统倒闸操作中,带负荷拉合闸事故是危及电网安全运行的恶性误操作事故之一,正确把握操作过程中刀闸操作顺序避免或尽可能缩小倒闸的误操作事故对电网安全运行的影响显的尤为重要。《电力安全工作规程》第19条规定:停电拉闸操作必须按照断开开关——拉开负荷侧刀闸——拉开母线侧刀闸的顺序进行。送电操作相反。3/2接线的开关停送电时,因为两侧均为电源侧,对于”电源侧”、“负荷侧”有时难以明确界定,而且母线故障影响较小,该条规定意义不大。根据3/2开关接线特点,线路或变压器比母线更重要,因此,必须分析开关两侧刀闸发生带负荷拉、合刀闸事故对系统的影响,以确定拉闸顺序。

二、线路停电倒闸操作

线路停电时应先断开中间开关,再断开母线侧开关,主要是为了防止发生故障,导致同串的线路或变压器停电(如图1所示)。线路L3进行停电操作时,应先断开5012开关,切断小负荷电流,再断开5013开关,切断全部负荷电流。这时若发生故障,则II母线母差保护动作,跳开5013、5023开关,切除故障,l号主变可继续运行。若先断开5013开关,后断开5012开关时发生故障,则将导致本串1号主变停电。

当500kV长输电线路装有并联高压电抗器时,线路停电应先断开电抗器侧开关,再断开另一侧开关。送电时则相反。为避免装有并联高压电抗器的500kV线路不带电抗器送电,无并联高压电抗器时,应根据线路充电功率对系统的影响选择适当的停、送电端。

3/2开关接线中,线路停电开关合环运行时,应将本侧远方跳闸装置停用,投入两开关之间的短引线保护。

(一)线路或主变停送电操作

500kV变电站220kV设备多采用双母线接线方式,220kV线路停送电操作过程中开关母线侧刀闸与线路侧刀闸的操作顺序比较明确,即停电操作时先分开关线路或主变侧刀闸,再分开关母线侧刀闸;送电操作时则先合母线侧刀闸,再合线路或主变侧刀闸。这是因为刀闸的作用只是使被检修设备有足够可见的安全距离,建立可靠的绝缘间隙,保证检修人员及设备的安全,所以它不具备切断负荷电流和短路电流的的能力。在停电操作时出现开关假分情况时,先分母线侧刀闸会导致故障使220kV母差保护动作切除故障点;如果先分线路或主变侧刀闸,则使线路或主变保护动作切除要停电检修的线路或主变。两相比较切除单一线路或主变对电网造成的`影响要小。

对于500kV线路停电操作,也是按照先分开关线路或主变侧刀闸,再分开关母线侧刀闸的顺序,原因也是因为出现开关假分情况时,切除要停电的线路或主变与切除母线相比,切除要停电的线路或主变对电网的影响小。

(二)母线侧开关停送电操作

l、线路或主变停电过程

如带负荷拉闸事故发生在线路或主变侧,两侧开关跳闸,切除故障点,保证其他线路、主变及母线正常运行;如带负荷拉闸事故发生在母线侧,母线上所有开关跳闸,造成母线失压,降低供龟可靠性,威胁系统安全运行。因此,应按照断开开关—,一拉开线路或主变侧刀闸——拉开母线侧刀闸的顺序依次操作。送电操作顺序相反。

2、线路或主变运行母线停电(或母线侧开关转检修的操作)如带负荷拉闸事故发生在母线侧,母线上所有开关跳闸,切除故障点,保证线路及主变正常运行;如带负荷拉闸事故发生在线路或主变侧,两侧开关跳闸,造成线路或主变停电事故,危及电网安全运行。因此,应按照断开开关——拉开母线侧刀闸——拉开线路或主变侧刀闸的顺序依次操作。送电操作顺序相反。

(三)中间开关停送电操作

1、500kV3/2接线中间开关一侧线路或主变运行,另一侧线路或主变需要停电的操作。如带负荷拉闸事故发生在线路或主变运行侧,造成运行中的线路或主变两侧开关跳闸。如带负荷拉闸事故发生在需要停电的一侧,线路两侧开关跳闸切除故障,不影响电网安全运行。所以应按照断开开关——拉开停电侧刀闸——拉开运行侧刀闸的顺序依次操作,停电操作应与上述相反的顺序进行。

2、500kV3/2接线中间开关两侧线路或主变都运行,中间开关转入检修停电的操作。顺序应视开关两侧发生带负荷拉闸事故对电网的影响程度进考虑。即按照断开开关——拉开对电网的影响较小一侧的刀闸——拉开对电网的影响较大一侧的刀闸的顺序依次操作。送电操作应与上述相反的顺序进行。

(四)母线停送电操作

对于线路停电操作的情况调度值班员是按规定顺序下逐项操作指令的,操作人员执行没有难度与异议。但是500kV母线停电操作时,通常调度只下综合指令,而对于先拉开关母线侧刀闸,还是先拉开关线路侧刀闸没有明确指令。笔者认为此时应抛弃传统上认为母线为电源侧的观念,操作顺序为先拉开关母线侧刀闸,再拉开关线路侧刀闸。因为此时操作的目标元件是母线,操作目的是让母线停电检修,此时的电网调度运行方式的考虑因素包括母线停电。如果此时出现开关假分情况,先拉开关母线侧刀闸导致的后果是使母线切除,而如果先拉开关线路侧刀闸,必然会导致线路跳闸,两种后果相比较,500kV”母线切除”对电网的影响相对要小。

三、结束语

在电力系统倒闸操作中,带负荷拉、合刀闸是几种常见的恶性误操作事故之一。通过对3/2开关接线刀闸操作顺序的分析,指出了正确的操作步骤,降低了事故发生率。

参考文献:

[1]全国电力工人技术教育供电委员~.500kV变电运行岗位技能培训教材[M].北京:中国电力出版社,2002.

[2]江苏省电力工业局.变电运行技能培训教材(500kV变电所)【M】,北京:中国电力出版社,1999.

[3]李涟叶,郭克等,中国南方电网有限责任公司企业标准Q/CSG10006-2004.电气操作导则[s].北京:中国电力出版社,2004,04.

供用电技术专业毕业论文

电气自动化技术是就是电气工程及自动化。 电气自动化技术专业主要培养掌握电气技术、电力自动化技术、各种电气设备及自动化设备的基本原理和分析方法,能够从事供用电、各类电气设备、电气控制及自动化系统的安装、设计、调试、维护、技术改造

配电网络规划 配电网络的规划是供电企业的一项重要工作,为了获取最大的经济效益,电网规划既要保证电网安全可靠,又要保证电网经济运行,所以配电网络规划的主要任务是,在可行技术的条件下,为满足负荷发展的需求,制定可行的电网发展方案。 1 负荷预测 网络规划设计最终目的是为满足负荷需求服务的,负荷的发展状况足以影响网络发展的每个环节。网络规划的发展步骤要以负荷发展状况为依据,使用各馈线负荷数据可以掌握负荷发展情况,将过去的负荷进行分析,掌握负荷的发展规律。要对负荷进行分析,确定最高用电负荷时间和负荷率,得出最高用电负荷时间和负荷值,这些数据是预测未来负荷的基本资料。配电网络规划可以使用两种常用的预测方法。外推法就是基于用电区域的历史数据,假设负荷发展率是连续变化的,根据原来的负荷发展率推移以后各时期的发展状况。在一个用电区域里,初期负荷发展比较快,但土地资源逐步使用,用电负荷逐步趋于稳定,负荷发展率从大到小变化,最终负荷达到饱和或稳步发展状态。但对于经济发展迅速的地区,负荷发展率并不是连续变化的,而是呈现跳跃式的增长,用外推法显得有一定的误差。而仿真法与外推法有互补的作用,仿真法是以用电区域每年的用电量为依据的,通过调查每个用电负荷类型和每个类型用户的数量来计算负荷预测值。任何负荷预测方法都不可能完全准确,当掌握更新的负荷发展数据后,就必须对原有的负荷预测值进行修正。 2 确定网络的系统模型 确定网络的系统模型,包括确定网络是采用架空线路还是电缆供电,确定导线截面大小,网络接线方式,负荷转移方案,网络中有关设备的选型,网络在运行期间遇到不适应要求时应如何进行改造,系统保护功能,配网自动化规划等。 (1)在负荷分散或发展缓慢地区应使用架空线供电。在负荷密度比较大、发展迅速或基于城市环境美化建设考虑,应使用电缆供电。 (2)导线截面大小的选择确定了导线的输送容量,要选择足够大的导线保证线路满足网络规划的要求,例如:负荷发展时期,不应经常更换导线截面。在线路故障时,可以将故障线路的负荷转由临近馈线供电,而不会过负荷运行。另外,导线截面的选择要保证线路末端电压降处于合格的范围内。在线路发生短路故障时也能承受故障电流。所以导线截面要比最大负荷电流所需的截面大,但同时截面的选择要符合经济原则,在导线输送容量与工程投资之间作比较。 (3)具有灵活接线方式的规划,可以使供电网络最大地发挥功能。对于架空线网络,最有效的方式,是将馈线与邻近变电所或同一个变电所的不同母线段的出线在线路末端联网,两回馈线也分别装上分段负荷开关和隔离刀闸。在其中一回馈线出现故障时,可通过分段开关将故障段隔离出来,对于电缆网络接线方式可以采用两回馈线组成互为备用网络,或采用三回馈线相互联络组成一个供电区域,其中两回带负荷,一回空载,作为两回负荷线的备用线。馈线之间可以组成大环网,一条馈线的负荷之间也可以组成小环网,形成大环套小环的形式。在负荷密集地区还可以建设开关站,变电所与开关站通过电源线连接,再由开关站向附近负荷供电,其作用是将变电所母线延长至用电负荷附近。 (4)制定负荷转移方案的原则是减少停电范围,尽量减少停电时间。在发现回馈线发生故障时,必须尽快查找到故障点,并将故障点前后的负荷转由邻近馈线供电,以使故障点的负荷隔离出去。 (5)国内外对各种电气设备都制定了详细标准,为设备选型提供了可靠依据。作为配网规划应选用运行效益好,损耗低,可靠性高,免维护的设备。对于开关设备应选用具备配网自动化功能,在设备中先安装配网自动化设备或者为以后发展预留空间。有些新型设备的购置费用虽然高,但运行可靠性高,故障率低,维护费用少,总体经济效益是相当理想的。 (6)配电网络规划在实施过程中随着负荷的发展状况稳定,在馈线负荷超出安全电流或没有足够的备用容量时,应该增加馈线,对用电区域的馈线正常供电范围进行调整。同时,配网规划内容也应作相应修改。 (7)为确保电网正常运行,必须建立健全的保护系统,在系统出现故障时,通过最少的操作次数将故障点隔离,保证非故障点尽早恢复用电。现在常用的系统保护方法有: ①用熔断器或过电流继电器实现过流保护,熔断器在超过熔断电流时自动熔断,迅速切断电流、保护用电设备,熔断器主要用于变压器保护。过电流继电器用于线路保护。 ②接地故障保护用于消除接地故障,对直接接地或通过不可调阻抗接地的系统,可以把电流互感器二次绕组接到接地故障继电器上,或者把过流继电器与接地故障继电器集中使用。对于中性点不接地系统或通过消弧线圈接地的系统,由于接地故障会造成系统电压和电流不对称,继电器可根据基本判据来确定是否控制相应的断路器动作断开。 ③单元保护,用于对系统中一个单元的保护,根据正常运行两侧电压相同的电路,流入的电流和流出的电流是相同的,通过比较两侧电流大小可以判断是否出现故障。但是单元保护要使用通讯线路,在保护线路太长的地方,很难将数据完整地集中起来进行比较。使用距离保护法可以打破这种局限性,在距离保护方案中,根据故障距离与故障阻抗成正比的原理,采用线路的电压和电流来计算故障距离。 ④自动重合闸装置的方法是利用继电器控制断路器去执行不同的跳闸与闭合顺序。线路中有大部分故障是可以自动消除或暂时性的,使用自动重合闸装置可以自动恢复供电。⑤电力系统中,有时出现运行电压远远超过额定电压值的情况,例如:开关操作瞬间或系统受雷击时,都会产生过电压现象。加强各设备绝缘强度和绝缘水平,或在网络中安装过电压保护设备,可以使过电压降低到安全水平,例如使用空气间隙保护或安装避雷器作保护。 (8)配电网络自动化管理系统是利用计算机网络,将自动控制系统和管理信息系统结合起来,建立系统控制和数据采集系统,为全面管理网络安全和经济运行提供依据。配网自动化系统的主要功能可以分成四个组成部分,第一是电网运行监控和管理功能,包括电网运行监视,电网运行的控制,故障诊断分析与恢复供电,运行数据统计及报告。第二是运行计划模拟和优化功能,包括配网运行模拟,倒闸操作计划的编制,各关口电量分配计划和优化。第三是运行分析和维护管理功能,包括对电网故障和供电质量反馈的信息进行分析,确定系统薄弱环节安排维修计划。第四是用户负荷监控和报障功能,包括用户端负荷和电能质量的遥测,用户端计量设备的控制,用户故障报修处理系统。 3 效益评估 配网规划经济效益评估,包括电网投资与增加用电量所产生收益的比较,以及为了使电网供电可靠性,线损率,电压合格率达到一定指标与所需投入费用之间的比较,采用投资与收益的研究可以确定使用那一种供电方式。 加快电力建设为地区经济发展提供了有利条件,但是电网投资与增加的用电量作比较,以此确定这些投资是否值得。所以电网投资要以分地区分时期发展,用电量发展快的地方相应电网投资也大,用电量发展慢的地方,相应电网投资也少一些。 对于用户来说,供电可靠性越高越好,但相应电网的投资也会大大增加。对于大用电量或重要用户,为确保有更高的可靠性,可以加大电网投资,因为减少停电时间可以同时减少用户和供电企业的损失。线损率是用来反映电能在电网输送过程中的损耗程度,公共电网中的损耗是由供电企业来承担的,通过对电网设备的技术改造,可以让供电企业直接得到经济效益。为了使供用电设备和生产系统正常运行,国家对供电电压质量制定了标准,对电压的频率、幅值、波形和三相对称性的波动范围作了规定。稳定的电压质量可以使供用电设备免受损害,让用户能正常生产,相比之下用户得到的好处会更多。

引 言燃料电池发电是将燃料的化学能直接转换为电能的过程,其发电效率不受卡诺循环的限制,发电效率可达到50%一70%,被誉为二十一世纪重要的发电新技术之一。目前,国际上磷酸型燃料电池已进入商业化,其它几种燃料电池预计在2005年一2010年200KW一将全面进入商业此。对于这种蓬勃发展的发电新技术,国家电力公司应该采取怎样态度?要不要发展?怎样发展?这些问题亟待解决。一 燃料电池发电的技术特点和应用形式1.1技术特点燃料电池发电是在一定条件下使燃料(主要是H2)和氧化剂(空气中的02)发电化学反应,将化学能直接转换为电能和热能的过程。与常规电池的不同:只要有燃料和氧化剂供给,就会有持续不断的电力输出。与常规的火力发电不同,它不受卡诺循环的限制,能量转换效率高。与常规发电相比燃料电池具有以下优点:(1)理论发电效率高,发展潜力大。燃料电池本体的发电效率可达到50一60%,组成的联合循环发电系统在(10—50)MW规模即可达到70%以上的发电效率。(2)污染物和温室气体排放量少。与传统的火电机组相比,C02排出量可减少40%一60%。Nox(<2ppm)和SOx(<1ppm)排放量很少。(3)小型高效,可提高供电可靠性。燃料电池的发电效率受负荷和容量的影响较小。(4)低噪音。在距发电设备3英尺(1.044米)处噪音小于60dB(A)。(5)电力质量高。电流谐波和电压谐波均满足IEEE519标准。(6)变负荷率高。变负荷率可达到(8%一lO%)/min,负荷变化的范围大(20一120)。(7)燃料电池可使用的燃料有氢气、甲醇、煤气、沼气、天然气、轻油、柴油等。(8)模块化结构,扩容和增容容易,建厂时间短。(9)占地面积小,占地面积小于lm2/KW。(10)自动化程度高,可实现无人操作。总之,燃料电池是一种高效、洁净的发电方式,既适合于作分布式电源,又可在将来组成大容量中心发电站,是2l世纪重要的发电方式。制约燃料电池走向大规模商业化的主要因素是:高价格和寿命问题。1.2燃料电池的应用形式(1)现场热电联供,常用的容量为200KW一1MW。(2)分布式电源,容量比现场用燃料电池大,约(2—20)MW。(3)基本负荷的发电站(中心发电站),容量为(100—300MW)。(4)燃料电池还可用于100W—100KW多种可移动电源、便携式电源、航空电源、应急电源和计算机电源等。二 为什么要在我国电力系统发展燃料电池发电技术2.1采用燃料电池发电是提高化石燃料发电效率的重要途径之一以高温燃料电池组成的联合循环发电系统,可使发电效率达到60—75(LHV),这一目标将在2005年左右实现。预计到2010年,发电效率可超过72%。煤气化燃料电池联合循环(IGFC)的发电效率可达到62%以上。以燃料电池组成的热电联产机组的总热效率可达到85%以上。燃料电池本体的发电效率基本不随容量的变化而变化,这使得燃料电池既可用作小容量分散电源,又可用于集中发电应用范围广泛。2.2燃料电池发电可有效地降低火力发电的污染物和温室气体排放量燃料电池发电中几乎没有燃烧过程,NOx排放量很小,一般可达到(O.139一0.236)kg/MW?h以下,远低于天然气联合循环的NOx排放量(1kg/MW?h一3kg/MW.h)。由于燃料进入燃料电池之前必须经过严格的净化处理,碳氢化合物也必须重整成氢气和CO,因此,尾气中S02、碳氢化合物和固态粒子等污染物排量也污染物的含量非常低。与常规燃煤发电机组相比,C02的排放量可减少40%一60.在目前CO2分离和隔绝技术尚不成熟的状况下,通过提高能源转换效率减少CO2排放是必然的选择。2.3采用燃料电池发电可提高供电的灵活性和可靠性燃料电池具有高效率、低污染、低噪声、模块化结构、体积小、可靠性高等突出特点,是理想的分布式电源。与目前一些可做为分布式电源的内燃机相比,燃料电池的发电效率更高、污染更低。在250KW—lOMW的功率范围内,具有与目前数百兆瓦中心电站相当甚至更高的发电效率。作为备用电源的柴油发电机由于污染和噪声大不宜在未来的城市中应用。低温燃料电池不仅发电效率高,而且启动快、变负荷能力强,是很好的备用电源。现代社会对供电的可靠性和环境的兼容性要求越来越高,高效、低污染的分布式电源系统日益受到重视。近年来美国、加拿大、台湾相继发生因自然灾害或人为因素造成的大面积停电,许多重要用户长期不能恢复供电,给社会和经济造成了巨大的损失。北约轰炸南联盟,使电力系统严重受损。这些由不可抗力引起的电网破坏无不使人引发出一个重要的思考:提高我国电力系统供电的可靠性和供电质量,虽然主要依靠电网的改造和技 术革新,但如果在电网中有许多分布式电源在运转,供电的可靠性将会大大提高。 对于象军事基地、指挥中心、医院、数据处理和通讯中心、商业大楼、娱乐中心、政府要害部门、制药和化学材料工业、精密制造工业等部门,对电力供应的可靠性和质量要求很高。目前采用的备用电源效率低、污染严重、电压波动大。而采用燃料电池作为分布式电源向这些部门提供电力,会使供电的可靠性和电力质量大大提高。他们将是燃料电池发电技术的第一批用户。对于边远地区,负荷小且分散,若建设完善的电网,不仅投资大,线损大,且电网末端地区电力质量不稳定。对于这些区域若辅助燃料电池发电的分布式电源,更能有效地解决这些地区的电力供应问题。燃料电池的重量比功率和体积比功率均比常规的小型发电装置大,因此,它也是理想的移动电源,适合于各种建设工地、野外作业和临时急用。2.4发展燃料电池发电技术是提高国家能源和电力安全的战略需要美国已将燃料电池发电列为国家安全关键技术之一。美、日之所以能在燃料电池技术方面处于世界领先地位,与国家从战略高度予以组织、资助和推动密不可分。在目前复杂的国际环境下,高技术的垄断日趋严重,掌握清洁高效发电的高新技术对未来国家的能源和电力安全具有重要的战略意义,而燃料电池发电技术,正是这种高效清洁的高新发电技术之一。燃料电池突出的优点,以及发达国家竟相投入巨资研究开发的行动,足以说明燃料电池发电技术在21世纪会起到越来越重要的作用。2.5发展燃料电池发电技术是国电公司“加强技术创新,发展高科技,形成高新技术产业”的需要燃料电池发电技术是电力工业中的高新技术,己受到普遍重视。美国燃料电池发电技术的研究开发主要由美国能源部组织实施,其中一个重要的目的就是形成新的高技术产业,为美国的经济注入新的活力。日本的东京电力公司、关西电力公司及其它公用事业单位是日本燃料电池开发及商业化的主要承担者和推动者,其目的也是为电力公司注入新的经济增长点以获得巨大的经济效益和社会效益。国家电力公司处在完成“两型”、“两化”、“进入世界500强”的历史时刻,恰逢党中央国务院号召全国各行业“加强技术创新,发展高科技,实现产业化”的有利时机,在国家电力公司内不失时机地进行燃料电池发电技术的研究开发是非常必要的。采取引进、消化、吸收和再创新的技术路线,以高起点,在尽可能短的时间内初步形成自主产权的燃料电池发电关键技术,不仅可以使我国在燃料电池发电技术领域与国外的差距大大缩小,而且,对国家电力公司进行发电系统的结构调整、技术创新、形成高新技术产业、实现跨越式发、提高国际竞争能力都具有非常重要的意义。2.6燃料电池发电技术在我国有广阔的发展前景未来二十年,随着我国“西气东送”,全国天然气管网的不断完善及液化天然气(LNG)的广泛应用,燃用天然气的燃料电池发电将会有很大市场。煤层气也是燃料电池的理想燃料。我国丰富的煤层气资源也将是燃料电池发电的巨大潜在能源之一。燃料电池可与常规燃气一蒸汽联合循环结合,形成更高效率的发电方式。与煤气化联合循环(IGCC)结合,形成数百兆瓦级的大型、高效、低污染的中心发电站,比IGCC效率更高,污染更小。燃料电池可与水电、风电和太阳能发电等结合,在高出力时,利用电解水制氢,低出力时用燃料电池发电,达到既储能,又高效发电的目的。采取气化或厌氧处理的方法将生物质变为燃料气,通过燃料电池发电,提高能源转换效率,并降低污染物排放量。对一些经济欠发达但有丰富的沼气资源的地区,利用燃料电池发电技术有可能更有有效地解决这些地区的电力供应问题。2.7与国外有较大的差距在燃料电池发电技术方面,我国与国际先进水平有较大的差距。在MCFC和SOFC技术方面,国外已分别示范成功了2MW和100KW的燃料电池发电机组,而我国在这方面才刚刚起步,2000年才可望研制出2KW左右的试验装置。在PAFC和PEFC技术方面,国内与国外的差距更大。倘若我们现在不开始研究开发燃料电池发电技术,等到燃料电池完全成熟后再引进,不但会受制于人,还将付出更大的经济代价,更谈不上尽快形成燃料电池发电的产业化。若不能形成燃料电池的产业化并在电力系统广泛应用,那么,也谈不上提高发电效率和降低污染物的排放。只有从现在开始,在国外的基础上,高起点研究,经过10—20年的努力,有可能在国电公司形成燃料电池的产业和广泛的商业应用。2.8在我国电力系统发展燃料电池发电技术是市场经济条件下的迫切要求分散式电源作为大电网的有效补充己得到许多国家的重视,而电源提供者的多元化更是一种趋势。我国电网的容量大、技术水平和可靠性还较低、抵御各种灾害的能力较差,在这种情况下,小型高效的燃料电池分布式电源随着技术的商业化市场潜力巨大。倘若电力系统不及时进行研究开发,在未来几年内,有可能被国外企业和国内其它其它行业或民营企业占领燃料电池分散电源市场。在市场经济条件下,国电公司既是用户,又是开发者。对于燃料电池这样重要的发电高新技术,应不失时机地着手研究开发,联合国内一些基础研究单位,争取纳入国家的攻关计划,获得国家支持,在尽可能短的时间内,形成燃料电池发电技术研究开发的优势,开发燃料电池发电关键技术和成套技术,形成国电公司的高新技术产业,既可优化调整电力结构,又能满足市场的不同需求。三 国外燃料电池发展计划及商业化的预测3.1美国燃料电池发电技术研究开发状况3.1.1美国燃料电池发电技术的研究开发计划1997年,美国总统克林顿颁发了"改善气候行动计划”,燃料电池被确定为一项关键技术,联邦政府为此制定了一项“美国联邦燃料电池发展计划”,目的是通过燃料电池的商业化来减少温室气体排放量。在这项计划中,对每一个燃料电池的新用户资助l000/KW的优惠。结果,仅在1998年,就有42台200kwPAFC发电机组投入运行。美国政府鼓励在一些对环境敏感的地区建立燃料电池发电站。此外,政府已促使美国所有的军事基地安装200KW燃料电池发电机组。通过这些措施,加速燃料电池的商业化,并提高国家能源的安全性。美国政府投入巨资研究开发燃料电池发电技术的另一个目的,就是要保持美国在这一领域的领先地位。随着商业化过程不断深入,将逐步形成新的高技术产业,为美国的经济注入新的活力,提供更多的就业机会。美国DOE的燃料电池发展计划如下:PAFC己商业化,不再投入资金进行研究开发。PAFC目前的发电效率为40%一45(LHV),热电联产的热效率为80%(LHV)。已完成250KW和2MWMCFC的现场示范,预计2002年进行20MW的示范;2003年左右,使250KW和MW级MCFC达到商业化;2010年,燃用天然气的250KW一20MWMCFC分散电源达到商业化,100MW以上MCFC的中心电站也进入商业化;2020年,100MW以上燃煤MCFC中心发电站进入商业化。MCFC技术目标是运行温度为650℃,发电效率达到60%(LHV),组成联合循环的发电效率为70(LHV),热电联产的热效率达到85(LHV)以上。目前,己完成25kw和100kwSOFC现场试验,正在进行SOFC的商业化设计。预计2002年左右,进行MW级SOFC示范;2003年左右,100kw一1MWSOFC进行商业化:2010年,250kw一20MW燃用天然气的SOFC以分布式电源形式进入商业化,100MW以上燃用天然气的SOFC以中心电站形式进入商业化;2020年,100W及以上容量的燃煤S0FC以中心电站的形式进入商业化。SOFC技术目标是:运行温度为1000℃,发电效率达到62%(LHV),组成联合循环的发电效率达到72%(LHV),热电联产的热效率达到85(LHV)以上,燃煤时发电效率可达到65%(LHV),这一目标预计2010完成。美国是最早研究开发PEFC的国家,但在大容量化和商业应用方面已落后于加拿大。目前美国生产的质子交换膜仍居世界领先水平。美国在PEFC的开发方面是面向家庭用分散式电源,实现热电联供。PlugPower公司与GE合作,计划2001年使10kwPEFC进入商业化,价格达到S750—1000/kw,大批量生产后,使PEFC的价格达到$350/kw。3.1.2市场预测美国能源部(DOE)对美国潜在的燃料电池市场的预测认为:在2005年一2010年,美国年需求燃料电池发电容量约2335MW一4075MW。现在美国的燃料电池年生产能力为60MW,商业化的价格为$2000一$3000/kw,若年生产能力达到100MW/a,商业化的价格则可达到$l000—$1500/Kw。若能达到(2000—4000)MW/a的生产能力,燃料电池的原材料费仅$200一$300/kw。那么燃料电池的价格则有可能达到$900—$l100/kw,此时可完全与常规的发电方式竞争。3.2日本燃料电池发电技术的发展进程及应用前景预测3.2.1发展进程日本在PAFC研究方面,走的是一条引进合作、消化吸收、再提高的路线。1972年东京煤气公司从美国引进两台PAFC燃料电池发电机组,大阪煤气公司也在1973年引进两台PAFC机组。日本政府于1981年设立了以开发节能技术为宗旨的“月光计划”,燃料电池发电是其中一项重要内容。此后,日本国内的电力公司、煤气公司和一些大型的制造厂纷纷投入燃料电池的研究开发,并与美国IFC合作,使日本的PAFC得到更大的发展。目前,日本的PAFC技术已赶上了美国,商业化程度超过了美国。5MW(富士电机制造)和11MW(东芝与IFC合制)均在日本投运,日本公司制造的PAFC机组已运行了近100多台。日本有关MCFC的研究是从1981年开始的,通过自主开发并与美国合作。1987年10kwMCFC开发成功,1993年100kw加压型MCFC开发成功,1997年开发出1MW先导型MCFC发电厂,并投入运行。MCFC已被列为日本“新阳光计划”的一个重点,目标是2000年一2010年,实现燃用天然气的10MW一50MW分布式MCFC发电机组的商业化,并进行100MW以上燃用天然气的MCFC联合循环发电机组的示范,2010年后,实现煤气化MCFC联合循环发电,并逐步替代常规火电厂。日本的SOFC技术也是从1981年的“月光计划”开始研究的,立足于自主开发。1989年一1991年,开发出l00W一400WSOFC电池堆,1992年一1997年开发出l0kw平板型SOFC。SOFC的研究进展也远远落后于NEDO原来的计划。“新阳光计划”中预计2000年一2010年,使SOFC达到MW级,并形成联合循环发电。日本的PEFC也被列入“新阳光计划”,目前开发的容量为(1—2)kw。3.2.2政府采取的措施日本政府在“月光计划”和“新阳光计划”中,先后资助了3台200kw、2台lMW和l台5MW的PAFC;1台100kw和1台1MW的MCFC示范电站研究开发、建设及运行。在通产省和NEDO的统一组织和管理下,使公用事业单位(电力公司和煤气公司)和开发商及研究单位紧密结合,实现燃料电池研究开发和商业示范应用一体化。日本电力公司和煤气公司,过去十年来安装了约80多台燃料电池机组,装机容量达到20.1MW,燃料电池及电厂的费用主要由业主承担,但是制造商和政府也各承担一部分。这种政府和企业联合研究开发的方式促进了日本燃料电池的发展。使用燃料电池发电享有许多优惠政策:燃料电池的相关设备,在未超过一定规模时,其工程计划仅须申报即可动工。对500kw以下的常压燃料电池生产与使用的审批手续大大简化。在医院、旅馆、办公大楼等安装的燃料电池发电机组,政府提供的经费资助。新建的燃料电池发电设备享有10的免税额,并获有30%的加速折旧。对装设于电力公司或自备发电用的燃料电池项目,日本开发银行将提供投资额40%的低息贷款。3.2.3市场预测1990年,日本通产省发表了“长期电源供需展望”报告,预计日本国内的燃料电池发电容量到2000年约2250MW;2010年约10720MW,电力系统用5500MW,其中约有2400MW是MCFC和SOFC高温型燃料电池;2010年煤气化MCFC和SOFC达到实用化;发电效率达到50%一60%。由于燃料电池发电技术仍有许多技术上的难题没有突破,进展速度低于预期值,因此日本目前已将原目标做了修正,预计2000年燃料电池装机容量将达到200MW,其中分布式电源l12MW,工业用热电联产型为88MW;2010年将达到2200MW,其中分布式电源型为735MW,工业用热电联产型为1465MW。3.3其它国家和地区的发展进程目前,欧洲的燃料电池发电技术远远落后于美国和日本。80欧洲又重新开始研究燃料电池发电技术。它们采用向美国、日本购买电池组,自行组装发电厂的方式来发展PAFC发电技术。1990年成立了一个“欧洲燃料电池集团(EFCG)”。意大利已完成了一座1MW的PAFC示范工程,由IFC供应,BOP由欧洲制造。意大利、西班牙与美国IPC合作,于1993年在米兰建了一座l00kwMCFC电厂,1996年投运。德国正在开发250kwMCFC。德国西门子公司于1998年收购了美国西屋公司的管形SOFC技术后,现在拥有世界上最先进的平板型和管形SOFC技术。 加拿大在PEFC方面居世界领先地位,在继续开发交通用PEFC的同时,目前也将PEFC应用于固定电站,已建成250kwPEFC示范电站,目标是在近几年内使250kw级PEPC商业化。澳大利亚在1993年一1997年,共投资3000万美元,研究开发平板型SOFC,目前正在开发(20一25)kwSOFC电池堆。韩国电力公司于1993年从日本购进一座200kwPAFC进行示范运行。3.4国外发展燃料电池发电技术的经验总结回顾国外燃料电地发展的道路,有许多值得我们吸取和借鉴的经验。美国在燃料电池发电技术的研究开发方面始终处于世界领先地位。除了雄厚的财力之外,还有三方面重要的原因:一是政府将燃料电池发电技术视为提高火力发电效率、减少污染物和温室气体排放的重要措施,列入政府的“改变气侯技术战略”中,并大力投入资金和力量研究开发;二是燃料电池技术提高到“国家能源安全并大力投入资金和力量研究开发;三是将燃料电池技术提高到“国家能源安全关键技术”的战略高度,DOD和DOE均投入资金研究开发;四是对燃料电池的应用前景充满信心,希望能形成新的高技术产业,给美国的经济注入新的活力,政府和企业共同投入资金研究开发,力图保持领先地位。日本走的是一条通过与美国合作、引进技术并消化吸收实现产业化的路线,并在PAFC的商业化方面己超过了美国,在MCFC的研究开发方面也接近美国。成功的重要经验也是政府对燃料电池给予高度重视,先后列入了“月光计划”和“新阳光计划”,大力投入研究开发。另一条经验是研究机构、企业和用户联合,组成从研究、开发到商业应用一体化集团,既承担研究开发的风险,也享受成功的优惠。加拿大Ballard公司在PEFC方面成功的经验告诉我们:只要坚定不移地进行研究开发,一个小公司也能在10—20年内成为举世瞩目的燃料电池技术拥有者。 燃料电池起源于欧洲,但是,现在欧洲的燃料电池技术已远远落后于美国和日本。主要原因是政府和企业对燃料电池发电技术重视不够。目前,欧洲已经意识到这一点,成立了—个燃料电池发电技术集团,引进美国、日本的技术,并进行研究开发。四 各种燃料电池发电技术综合比较4.1 AFC:与其它燃料电池相比,AFC功率密度和比功率较高,性能可靠。但它要以纯氢做燃料,纯氧做氧化剂,必须使用Pt、Au、Ag等贵金属做催化剂,价格昂贵。电解质的腐蚀严重,寿命较短,这些特点决定了AFC仅限于航天或军事应用,不适合于民用。4.2 PAFC:以磷酸做为电解质,可容许燃料气和空气中C02的存在。这使得PAFC成为最早在地面上应用或民用的燃料电池。与AFC相比它可以在180℃一210℃运行,燃料气和空气的处理系统大大简化,加压运行时,可组成热电联产。但是,PAFC的发电效率目前仅能达到40%一45%(LHV),它需要贵金属铂做电催化剂;燃料必须外重整:而且,燃料气中C0的浓度必须小于1%(175℃)一2(200℃),否则会使催化剂中毒;酸性电解液的腐蚀作用,使PAFC的寿命难以超过40000小时。PAFC目前的技术已成熟,产品也进入商业化,做为特殊用户的分散式电源、现场可移动电源和备用电源,PAFC还有市场,但用作大容量集中发电站比较困难。4.3 MCFC:在650℃一700℃运行,可采用镍做电催化剂,而不必使用贵重金属:燃料可实现内重整,使发电效率提高,系统简化;CO可直接用作燃料;余热的温度较高,可组成燃气/蒸汽联合循环,使发电容量和发电效率进一步提高。与SOFC相比,MCFC的优点是:操作温度较低,可使用价格较低的金属材料,电极、隔膜、双极板的制造工艺简单,密封和组装的技术难度相对较小,大容量化容易,造价较低。缺点是:必须配置C02循环系统;要求燃料气中H2S和CO小于0.5PPM;熔融碳酸盐具有腐蚀性,而且易挥发;与SOFC相比,寿命较短;组成联合循环发电的效率比SOFC低。与低温燃料电池相比,MCFC的缺点是启动时间较长,不适合作备用电源。MCFC己接近商业化,示范电站的规模已达到2MW。从MCFC的技术特点和发展趋势看,MCFC是将来民用发电(分散电源和中心电站)的理想选择之一。4.4 SOFC:电解质是固体,可以被做成管形、板形或整体形。与液体电解质的燃料电池(AFC、PAFC和MCFC)相比,SOFC避免了电解质蒸发和电池材料的腐蚀问题,电池的寿命较长(已达到70000小时)。CO可做为燃料,使燃料电池以煤气为燃料成为可能。SOFC的运行温度在1000℃左右,燃料可以在电池内进行重整。由于运行温度很高,要解决金属与陶瓷材料之间的密封也很困难。与低温燃料电池相比,SOFC的启动时间较长,不适合作应急电源。与MCFC相比,SOFC组成联合循环的效率更高,寿命更长(可大于40000小时);但SOFC面临技术难度较大,价格可能比MCFC高。示范业绩证明SOFC是未来化石燃料发电技术的理想选择之一,既可用作中小容量的分布式电源(500kw一50MW),也可用作大容量的中心电站(>l00MW)。尤其是加压型SOFC与微型燃气轮结合组成联合循环发电的示范,将使SOFC的优越性进一步得到体现。4.5 PEFC:PEPC的运行温度较低(约80℃),它的启动时间很短,在几分钟内可达到满负荷。与PAFC相比,电流密度和比功率都较高,发电效率也较高(45%一50(LHV)),对CO的容许值较高(<10ppm)。PEFC的余热温度较低,热利用率较低。与PAFC和MCFC等液体电解质燃料电池相比,它具有寿命长,运行可靠的特点。PEFC是理想的可移动电源,是电动汽车、潜艇、航天器等移动工具电源的理想选择之一。目前,在移动电源、特殊用户的分布式电源和家庭用电源方面有一定的市场,不适合做大容量中心电站。结 论选择适合于我国电力系统发展的燃料电池发电技术,应综合考虑以下几点:较高的发电效率;环保性能好;既能作为高效、清洁的分布电源,又具有形成大容量的联合循环中心发电站的发展潜力;既能以天然气为燃料,又具有以煤为燃料的可能性;技术的先进性及商业化进程;运行的可靠性和寿命;降低造价的潜力;国内的基础。综合考虑以上几点,对适合于我国电力系统发展的燃料电池发电技术,提出以下几点选择意见:(1)优先发展高温燃料电池发电技术。即选择MCFC和SOFC为我国电力系统燃料电池发电技术的主要发展方向,这两种燃料电池既能以天然气为燃料作为高效清洁的分布电源,又具有形成大容量的联合循环中心发电站(以天然气或煤为燃料)的发展潜力。(2)MCFC和SOFC各有特点,都存在许多问题,尚未商业化。若考虑技术难度和成熟程度以及商业化的进程,对于MCFC,应走引进、消化吸收、研究创新,实现国产化的技术路线,并尽快投入商业应用:对于SOFC,应立足于自主开发,走创新和跨越式发展的技术发展路线。(3)随着氢能技术的发展,PEFC在移动电源、分散电源、应急电源、家庭电源等方面具有一定优势和的市场潜力,国家电力公司应密切跟踪研究。(4)AFC不适合于民用发电。PAFC技术目前已趋于成熟,与MCFC、SOFC和PEFC比较,已相对落后。因此,AFC和PAFC不应做为国家电力公司研究开发的方向。参考文献[1] 许世森,朱宝田等,在我国电力系统发展的燃料电池发电的技术路线和实施方案研究,国家电力公司热工研究院,1999.12

大专供用电技术毕业论文

题目:低压网功率因数对供电企业的影响系部:专业:电气工程及其自动化姓名:班级:学号:指导教师:摘要随着我国电力的不断发展,对于供用电的要求也越来越严格,它是我们日常生活中不可缺少的部分,是整个国民经济的重要组成部分,它直接影响着工农业生产的发展和人民生活的提高,是当今社会经济发展和人民群众日常生活不可缺少的主要能源。对广大供电企业来说,用户功率因数的高低,直接关系到电力网中的功率损耗和电能损耗,关系到供电线路的电压损失和电压波动,而且关系到节约用电和整个供电区域的供电质量,这是众所周知的道理。因此,提高电力系统的功率因数,已成为电力工业中一个重要课题,而提高电力系统的功率因数,首先就要提高各用户的功率因数。文中简要集中探讨了影响电网功率因数的主要因素以及低压无功补偿的几种使用方法,以及确定无功补偿容量从而提高电力系统功率因数的一般方法。[关键词] 功率因数 影响因素 补偿方法 容量确定目录一、绪论 4二、主要内容: 61、影响功率因数的主要因素 61.1、电感性设备和电力变压器是耗用无功功率的主要设备 61.2、供电电压超出规定范围也会对功率因数造成很大影响 71.3、电网频率的波动也会对异步电动机和变压器的磁化无功功率造成一定的影响 72、低压网的无功补偿 82.1、低压网无功补偿的一般方法 82.1.1、 随机补偿 82.1.2、 随器补偿 82.1.3、跟踪补偿 92.2、 采用适当措施,设法提高系统自然功率因数 92.2.1、合理选用电动机 102.2.2、 提高异步电动机的检修质量 102.2.3、 采用同步电动机或异步电动机同步运行补偿 102.2.4、 正确选择变压器容量提高运行效益 113、 功率因数的人工补偿 123.1、 变电站最常用的安装并联电容器组 123.2 并联补偿移相电容器,应满足以下电压和容量的要求 123.3 分相补偿 13三、结束语 14四、参考文献 15一、绪论许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。为建立交变磁场和感应磁通而需要的电功率称为无功功率,无功功率是恒量能量转换规模的物理量;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。在功率三角形中,有功功率P与视在功率S的比值,称为功率因数COSφ,其计算公式为:COSφ=P/S 在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。无功功率补偿,又叫就地补偿,适当提高用户的功率因数,不但可以充分的发挥发、供电设备的生产能力、减少线路损失、改善电压质量,而且可以提高用户用电设备的工作效率和为用户本身节约电能。因此,对于全国广大供电企业,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显著的。二、主要内容:1、影响功率因数的主要因素1.1、电感性设备和电力变压器是耗用无功功率的主要设备大量的电感性设备,如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。据有关的统计,在工矿企业所消耗的全部无功功率中,异步电动机的无功消耗占了60%~70%;而在异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~70%。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。电力变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。1.2、供电电压超出规定范围也会对功率因数造成很大影响当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。由Q=UI*Sin?推出Sin?=Q∕UI,所以,应当采取措施使电力系统的供电电压尽可能保持稳定。1.3、电网频率的波动也会对异步电动机和变压器的磁化无功功率造成一定的影响综上所述,我们知道了影响电力系统功率因数的一些主要因素,因此我们要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。2、低压网的无功补偿2.1、低压网无功补偿的一般方法低压无功补偿我们通常采用的方法主要有三种:随机补偿、随器补偿和跟踪补偿。下面简单介绍这三种补偿方式的适用范围及使用该种补偿方式的优缺点。2.1.1、 随机补偿随机补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。通过控制、保护装置与电机同时投切。随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。此种方式可较好地限制农网无功峰荷。随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,不会造成无功倒送,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等优点。2.1.2、 随器补偿随器补偿是指将低压电容器通过低压开关接在配电变压器二次侧,以无功补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是农网无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加,不利于电费的同网同价。随器补偿的优点:接线简单、维护管理方便、能有效地补偿配变空载无功,限制农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前无功补偿中常用的手段之一。2.1.3、跟踪补偿跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4KV母线上的补偿方式。适用于100KVA以上的专用配电用户,可以替代随机、随器两种补偿方式,补偿效果好。跟踪补偿的优点是运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。但当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。2.2、 采用适当措施,设法提高系统自然功率因数提高自然功率因数是不需要任何补偿设备投资,仅采取各种管理上或技术上的手段来减少各种用电设备所消耗的无功功率,这是一种最经济的提高功率因数的方法。下面将对提高自然功率因数的措施做一些简要的介绍。2.2.1、合理选用电动机合理选择电动机,使其尽可能在高负荷率状态下运行。在选择电动机时,既要注意它们的机械特性,又要考虑它们的电气指标。举例说,三相异步电动机(100KW)在空载时功率因数仅为0.11,1/2负载时约为0.72,而满负载时可达0.86。所以核算负荷小于40%的感应电动机,应换以较小容量的电动机,并合理安排和调整工艺流程,改善运行方式,限制空载运转。故从节约电能和提高功率因数的观点出发,必须正确合理的选择电动机的容量。2.2.2、 提高异步电动机的检修质量实验表明,异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动是对异步电动机无功功率的大小有很大影响。因此检修时要特别注意不使电动机的气隙增大,以免使功率因数降低。2.2.3、 采用同步电动机或异步电动机同步运行补偿由电机原理可知,同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功取决于转子中的励磁电流大小,在欠激状态时,定子绕组向电网“吸取”无功,在过激状态时,定子绕组向电网“送出”无功。因此,只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网“送出”无功功率,减少电网输送给工矿企业的无功功率,从而提高了工矿企业的功率因数。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行状态,这就是“异步电动机同步化”。因而只要调节电机的直流励磁电流,使其呈过激状态,即可以向电网输出无功,从而达到提高低压网功率因数的目的。2.2.4、 正确选择变压器容量提高运行效益对于负载率比较低的变压器,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。如:对平均负荷小于30%的变压器宜从电网上断开,通过联络线提高负荷率。通过以上一些提高加权平均功率因数和自然功率因数的叙述,或许我们已经对“功率因数”这个简单的电力术语有了更深的了解和认识。知道了功率因数的提高对电力企业的深远影响,下面我们将简单介绍对用电设备进行人工补偿的方式和对补偿容量的确定方法。3、 功率因数的人工补偿功率因数是工厂电气设备使用状况和利用程度的具有代表性的重要指标,也是保证电网安全、经济运行的一项主要指标。供电企业仅仅依靠提高自然功率因数的办法已经不能满足工厂对功率因数的要求,工厂自身还需要装设补偿装置,对功率因数进行人工补偿。3.1、 变电站最常用的安装并联电容器组 从上图可以看出,在原来的电路中根据基尔霍夫定律,流入的电流等于流出的电流,但是并联接入电容器,在相量图中得知?角明显小于原来的角,因此,能提高功率因数,提高线路电能传输能力,减少线路上的损耗。 3.2 并联补偿移相电容器,应满足以下电压和容量的要求Ue?c≥Ug?cnQg?c≥Qc式中Ue?c——电容器的额定电压(KV)Ug?c——电容器的工作电压(KV)n——并联的电容器总数Qg?c——电容器的工作容量(Kvar)Qc——电容器的补偿容量(Kvar)3.3 分相补偿在民用建筑中大量使用的是单相负荷,照明、空调等由于负荷变化的随机性大,容易造成三相负载的严重不平衡,尤其是住宅楼在运行中三相不平衡更为严重。由于调节补偿无功功率的采样信号取自三相中的任意一相,造成未检测的两相要么过补偿,要么欠补偿。如果过补偿,则过补偿相的电压升高,造成控制、保护元件等用电设备因过电压而损坏;如果欠补偿,则补偿相的回路电流增大,线路及断路器等设备由于电流的增加而导致发热被烧坏。这种情况下用传统的三相无功补偿方式,不但不节能,反而浪费资源,难以对系统的无功补偿进行有效补偿,补偿过程中所产生的过、欠补偿等弊端更是对整个电网的正常运行带来了严重的危害。 对于三相不平衡及单相配电系统采用分相电容自动补偿是解决上述问题的一种较好的办法,其原理是通过调节无功功率参数的信号取自三相中的每一相,根据每相感性负载的大小和功率因数的高低进行相应的补偿,对其它相不产生相互影响,故不会产生欠补偿和过补偿的情况。三、结束语本文浅谈了功率因数对广大供电企业的影响以及提高功率因数所带来的经济效益和社会效益,尤其是最重要的线损(最为重要的是降损,分为技术降损和管理降损),介绍了影响功率因数的主要因素以及提高功率因数的一般方法,还阐述了如何确定无功功率的补偿容量及无功功率的三种人工补偿的具体方式。我们只有端正自己的认知态度,很好的去归纳,总结这些知识的重要部分,做好自己的本质工作,并且能在此基础上再更上一个台阶,用自己的实际行动,为供电事业贡献出自己的微薄之力。四、参考文献1、运新,《电监察》水利电力出版社 2、靳龙章 丁毓山,《网无功补偿实用技术》国水利水电出版社

供电企业电力t营销管理总体策略研究一f 供电企业营销管理的思想定位 首先应当明确的是,电力n营销必须采取市场导向的管理模式,把电力d营销定位为8供电企业的核心1业务,电力r的生产经营活动应服从0和服务于b电力i营销的需要。 其次,电力d营销的开s展应立足于y“电网是基础,技术是支s撑,服务和管理是保障”的原则。应当充分3利用目前“两网”改造的有利时机逐步解决供配电网络的“瓶颈”,满足广x大m用户8的用电需求,运用先进的通信、网络、计4算机技术,为2客户1提供高效的、全方1位的优质服务,以8严格规范的管理对各项业务进行监控,才h能实现企业的营销目标。 第三s,基于a买方8市场的要求建立起新型电力i营销理念。未来的电力f营销市场是一k个w买方7市场这是一a个l不d争的事实。供电企业应当改变过去建立在卖方0市场基础上p的旧的供电管理模式,建立一r个h能适应市场需求,充满市场活力f的市场营销体系和机制。 第四,进行商业化2运营,法制化1管理。政企分8开m后,电力g企业仍4然是一r个d接受政府监管的企业,因此,在实现商业化2运作的同时,还要严格按照上m级规定的市场营销政策和业务范围,从1事电力b市场的营销工a作。 二l 电力m企业营销管理的总体策略 在电力p经营体制的转变和电力v供需矛盾缓和的新形势下z,在国家关于b可持续发展策略的引7导下z,可将电力l营销总体策略定位为1环保能源扩张策略,即:以2国民经济可持续发展为0依托,以5环保、能源消费结构调整为1契机,以1市场需求为5导向,以4需求预测管理为3手6段,以1优质服务为2宗旨,以8满足客户2需求、引4导客户1消费为5中0心3,以7市政、商业、居民用电市场为3主攻方8向,以8稳定工j业市场用电为7重点,积极开u拓其他可替代能源市场,以5提高电力d在终端能源消费市场的比8例为5目标,实现社会效益和公3司效益的同步提高。 以8环保、调整能源消费结构为1契机。电能是公0认2的最清洁、安全、高效的能源,大x量煤炭直接燃烧造成了d严重环境污染,它被替代已u是必然趋势。依据我国现行的能源政策,调整并优化1能源结构,提高电能在终端能源消费市场的占有率将成为4一m种必然,这为5电力f发展提供了b很好的机遇。 以6市场需求为5导向。加强对市场需求预测的研究,搞好市场调查和市场预测,提高市场预测的及v时性和准确性。做好市场变化5的跟踪分3析,开z发并形成目标市场分2析软件系统。努力y开k辟新的供电领域,积极引3导广a大g用户3对电力v的消费,提高电力r在能源消耗中6的比8例,提高电力i企业的市场占有率,寻找电力k企业新的效益增长5点。 以0需求侧管理为0手6段。大c力o开v展需求侧管理工h作,借助经济、媒体宣传等手7段,引6导客户1合理用电,提高用电效率,提高负荷率。积极推广s有利于o环保、节能的技术和产品的应用,开z拓电力k市场。 以1优质服务为5宗旨。转变观念,增强电力c企业职工p的服务意识,提高服务质量。为3客户2提供方7便、快捷、优质的服务,来提高企业的信誉,增强企业的竞争力p,进而扩大a电力y消费市场。同时通过加强电网建设,保障供电可靠性,提供优质电能。 以2满足客户6需求,引4导客户3消费为3中2心8。不l仅0要根据客户1的要求提供优质、可靠、价格合理的电力x电量,还要做好全方3位的服务。引7导客户6改变传统的用能观念,使用高效洁净的电能,提高生活水7准。 以5市政、商业、居民生活用电市场为2主攻方8向:现阶段开a拓电力a市场的对象应以4潜力n很大k的市政、商业、居民为1重点。建立电气0化1示2范小a区a,组织各级部门z参观电气5化6示0范小b区z,通过现身说法的方6式,增加可靠性,增强人h们渴望生活电气5化7的欲望,推动生活电气2化5进程,进而推动电力n消费。特别是随着农村生活城镇化6的发展,在未来十g年中2农村居民生活用电量将有很大i增长7。 以8稳定工i业市场用电为1重点,积极开t拓其他可替代能源市场。工e业用电比5例近年虽有下d降,但所占比6例仍0占一f半左右,采用积极的措施来稳定这个d市场是很重要的,能源替代重点在替代煤锅炉,目前燃煤锅炉很多,能源替代潜力y很大h,家用燃气3热水7器也k是替代的一c个v方6向。以1提高电力f在终端能源消费中5的比6重为4目标,完成电力l营销目标,以0获取较大p的社会效益和适当的经济效益。 总体策略具体化8如下h: (一a)环保能源的品牌宣传策略 清洁、高效、快捷是电能的优势,使用电能符合国家的环保能源政策,受到国家政策的支a持,特别是在城区j日2益严重的环境污染使人d们对清洁能源的应用越来越重视,以6此为1契机作为2能源市场的切4入m口h,在宣传和推广t上g打出环保能源的品牌,并成为0形象设计2的主要特点。 (二h)销售市场的扩张策略 一b是营销地域的扩张,随着电力m体制改革的深入k,必定会要逐步放开m电力q销售市场,打破现有的专v营体制,抓住机遇,立足本地,辐射周边,实行销售市场的扩张策略,通过完善地区v的电网架构建设,主动出击,以5提供各项供电服务为0手4段,扩大g电力l营销市场。二r是能源市场的扩张,搞好以2电代煤,以5电代油,以5电代气1的工f作。 (三w)优质可靠的产品策略 通过改善电网结构,提高供电可靠性,改善电能的质量,来提高对客户8的吸引5力a。产品质量是营销的基础保证,要加大o城网和农网的改造力b度,加快一h户4一i表的改造步伐,改善电网结构,提高供电可靠性。 (四)全方6位提供的优质服务策略 未来的供电企业在服务市场上d赢得并捍卫z自己j的一e席之t地,意味着在多层面上g与y他人t竞争。因此,必须把不s断提高优质服务水0平作为5促进电力o的市场营销的自觉行为3,并体现在整个o生产经营的全过程和各个q环节,使每一u个u部门z,每一t个t员工l都为5企业的社会形象负责,真正树立全员营销的观点,与d客户1建立并保持一x种共同发展的新型供用电关系。 (五f)激励用电的价格策略 积极推行新的电价政策,到2030年前逐步取消各类价外加价,处理好电度电价和基本电价的比7例关系,在电价中7考虑供配电工z程贴费的因素,建立灵活弹性的电价体系。 (六0)气6电联合的能源互7补策略 气4电联合是在对热电联产、冷热电联产和微型分2散电源的研究的基础上f,主动进行气0电联合的能源互4补,以3求得协调发展。 (七c)规范到位的管理策略 跟踪国内5外先进的管理模式,调整内3部的管理,使之z与a市场的变化3和客户5的需要相适应。以4在城区s成立抄表公0司为5契机,逐步推广v公4变台区m管理,规范营抄秩序,提高用电营抄人j员的各方7面素质。加快整章建制,出台规范各项管理制度,对外树立优质服务的企业形象。 (八y)稳妥实用的技术推广m策略 积极在营销系统推广k新技术,提高营销的自动化4水6平,以6达到减人f增效和优质服务的目标。在推广g的过程中1要积极稳妥,以7实用为0准则。在近期要充分7利用当前成熟的计7算机和通信技术,建设和完善电力i营销管理系统,做到决策科学化0,缴费银行化5,管理集中5化8和考核制度化5,以2新技术的应用带动管理水7平的提高。 三m 总体策略的实施规划 (一f)建立新型营销体制 近期首先实施向市场营销体制的转变。按市场需求设置营销机构,改“用电管理”机构为4“电力u营销”机构,其职能相应转变到市场策划与r开l发、需求预测与q管理、业务发展与x决策、客户4服务与e支n持、电力p销售与d合同管理、公3共关系与h形象设计0、新技术、产品的开s发与s用电咨询、电费电价等方8面,全面开q展电力s的售前、售中8、售后工a作,形成以0客户5服务中4心4为2核心0的电力m营销管理体制,它包含主营系统、支j持系统、监督系统三w部分4设置。 (二l)拓展市场份额 5。运用灵活的电价政策,争取市场份额 根据市场需求的价格弹性,可把整个l用电市场细分1为3价格刚性市场、价格弹性市场和价格敏感市场。运用“价格”扩大j营销的目标市场是价格敏感型市场,如高能耗工c业用户4等。为5此需要调整现行的用电政策,主要措施:对大o工f业客户0实行超基数优惠电价、丰h水1期季节折扣电价,稳定工x业用电市场;拉大n分4时电价差。利用价格杠杆启动分8时用电市场。对居民生活用电实行两时段电价,引0导居民的合理用电;对冰蓄冷空调、蓄热电锅炉及g其它蓄能设备实行分4时段优惠电价;遵循市场细分1原则,对不k同用电性质的客户8采取差别定价策略,如负荷率电价、节假日7电价、可停电电价等;通过同网同价,直供到农户1,占领农村市场。 0。推广n用电,增加电能的使用 城市对环境质量的要求越来越高,供电企业应当联合政府部门q和用电设备制造商,适时加强宣传力l度,鼓励使用蓄热电锅炉、电空调、电炊具,引4导消费,力h争以2电的消费逐步取代燃煤和燃气2,增加电力s在能源消费中0的占有率。 3。细分7市场,重点突破 根据不s同时期的市场需求,实施重点市场开d拓,在今3后的五t到十g年内3重点在居民生活用电和大x型的能源消费市场,在居民生活方5面重点促销烹调、热水5、空调、暖气0、干g衣等电气6设备,大h型的能源消费市场主要是电锅炉。同时加强对农村电力a市场的研究,改善农村电力a质量,占领农村用电市场。 (三n)完善技术支y持系统 0。电网支j撑; 2。提高营销在线监控和营销信息自动采集水1平; 0。建立客户0服务计8算机管理系统; 1。建立需求侧管理支e持系统,加强对市场的分7析和预测工o作。 电力t营销是供电企业核心5业务,电力r营销工e作的质量关系到公8司自身的生存和发展,决定着公0司的市场竞争力s。电力f营销的开n展应立足于o“电网是基础,技术是支z撑,服务和管理是保障”的原则。在电力s经营体制的转变和电力q供需矛盾缓和的新形势下s,在国家关于m可持续发展策略的指示5下o,可将电力g营销管理总体策略定位为0环保能源扩张策略。总体策略的实施规划包括首先建立新型营销体制,实施向市场营销体制的转变。其次运用灵活的电价政策、推广r用电、增加电能的使用、实施重点市场等措施扩大v市场份额。第三g要完善技术支g持系统。 nfǜog¥еz绁z绁jmまyんまtе

供用电技术毕业论文题目

可以写最新的电气技术研究,开始也不会的,还是学长给的文方网,写的《基于节能理念的建筑电气施工初探》,很快就通过了。关于电气防火安全检测工作的实践与思考浅析建筑电气的设计与安装电气二次设计中的问题与有效措施分析浅析电气自动化在电气工程中的应用创新驱动 电气新技术与能效应用“正泰杯”第六届全国电气工程师论文大赛征文通知电厂电气设备的检修与管理辽宁后仙峪镁电气石热处理改性及其磁性研究电气石改性沥青混合料路用性能电气石颜色标型特征新型材料电气石对酸性溶液中镉离子的吸附煤矿电气安全关键技术研究 优先出版《引进设备电气技术》杂志征稿启事关于民用建筑电气设计中的节能措施探讨 优先出版建筑电气工程主要能源节能技术的分析 优先出版浅谈机械电气一体化设备安装技术要点 优先出版建筑电气中照明节能设计分析 优先出版基于改进杜邦分析法的平高电气经营绩效评价加拿大电子电气产品市场准入制度浅析浅谈高等职业院校电气控制课程实践教学校园电气设备故障排查的方法与步骤变电站电气误操作的因素及防范措施贺《建筑电气》创刊三十周年工业生产中电气设备的故障及维护的探讨土建工程与电气安装工程的施工要点分析建筑电气安装工程质量保证措施研究电气石在水处理方面的应用智能建筑的电气接地舰船电气火灾用新型消烟剂的研制高压电气设备绝缘在线监测研究上海Buick轿车的电气系统探讨电气的自动化在电气工程中融合运用机床电气故障维修与电气图分析电气工程中的电气自动化技术探析机床的电气图分析与电气故障维修电气工程及自动化工程的发展前景探讨浅谈预防建筑电气安装中常见质量通病基于CATIA电气元件库的设计与实现2013年《中国电气工业100强特刊》征稿启事创新驱动 电气新技术与能效应用 “正泰杯”第六届全国电气工程师论文大赛征文通知分析电气的自动化在电气工程中的融合运用谈建筑电气安装工程常见问题及解决办法

电力系统可以写现场管理、施工管理或者具体的电力技术。当时也是不会,还是学长给的文方网,写的《风电并网后电力系统可靠性评估和备用优化研究》,非常专业电力系统碳排放流分析理论初探含风电场多目标低碳电力系统动态经济调度研究分布式电源及其接入电力系统时若干研究课题综述非解析复变电力系统电压稳定的动态分析方法电力系统安全稳定标准研究先进控制理论在电力系统中的应用综述及展望 优先出版大规模风电接入电力系统备用决策评述基于马尔科夫链的电力系统运行可靠性快速评估电力系统电压稳定与功角稳定的统一分析原理电力系统碳排放流的计算方法初探基于风速预测和随机规划的含风电场电力系统动态经济调度电力系统模型预测控制技术研究电力系统的碳排放结构分解与低碳目标贡献分析双馈风电机组对电力系统低频振荡特性的影响改善电力系统阻尼特性的双馈风电机组控制策略含风电场的电力系统经济调度研究综述电力系统云计算中心的研究与实践基于可信性理论的电力系统运行风险评估 (一)运行风险的提出与发展基于全寿命周期成本的电力系统经济性评估方法电动汽车在含大规模风电的丹麦电力系统中的应用应用于电力系统的碳捕集技术及其带来的变革电力系统稳定的定义与分类述评考虑时滞影响的电力系统稳定分析和广域控制研究进展风—光—储混合电力系统的博弈论规划模型与分析电力系统复杂性及其相关问题研究电力系统分岔与混沌研究综述电力系统动态仿真的灵敏度分析多馈入交直流混合电力系统研究综述电力系统负荷预测研究综述与发展方向的探讨基于多因素分析的复杂电力系统安全风险评估体系电力电子装置在电力系统中的应用电力系统复杂网络特性分析与模型改进低碳电力系统规划与运行优化研究综述电力系统数字仿真技术的现状与发展智能电网对低碳电力系统的支撑作用广域测量系统在电力系统分析及控制中的应用综述电气介数及其在电力系统关键线路识别中的应用

1.PLC控制花样喷泉.doc 2.S7-200PLC在数控车床控制系统中的应用3.PLC控制五层电梯设计 4.超高压水射流机器人切割系统电气控制设计5.基于PLC的恒压供水系统设计 6.西门子PLC交通灯毕业设计7.双恒压供水西门子PLC毕业设计 8.世纪星组态PLC控制自动配料系统毕业论文9.三菱梯形图PLC控制四层电梯 10.三菱PLC五层电梯控制11.全自动洗衣机西门子PLC控制 12.欧姆龙PLC控制交通灯13.基于PLC电机故障诊断系统设计 14.双恒压无塔供水系统plc设计毕业论文15.工业用洗衣机的PLC控制 16.PLC在配料生产线上的应用毕业论文17.变频调速恒压供水系统 18.PLC电梯控制毕业论文19.基于PLC电梯控制设计 20.基于PLC中断技术的集选电梯控制系统实现

1. PLC控制花样喷泉.doc 2. S7-200PLC在数控车床控制系统中的应用3. PLC控制五层电梯设计 4. 超高压水射流机器人切割系统电气控制设计5. 基于PLC的恒压供水系统设计 6. 西门子PLC交通灯毕业设计7. 双恒压供水西门子PLC毕业设计 8. 世纪星组态 PLC控制自动配料系统毕业论文9. 三菱梯形图PLC控制四层电梯 10.三菱PLC五层电梯控制11.全自动洗衣机西门子PLC控制 12.欧姆龙PLC控制交通灯13.基于PLC电机故障诊断系统设计 14.双恒压无塔供水系统plc设计毕业论文15.工业用洗衣机的PLC控制 16.PLC在配料生产线上的应用 毕业论文17.变频调速恒压供水系统 18.PLC电梯控制毕业论文19.基于PLC电梯控制设计 20.基于PLC中断技术的集选电梯控制系统实现21.自动送料装车系统PLC控制设计 22.简易电梯控制模型的设计与实现.doc23.PLC在数控机床中的应用 24.机械手PLC控制设计25.PLC控制锅炉输煤系统 26.PLC控制自动门的课程设计 27.基于PLC的三层电梯控制系统设计 28.交流变频调速PLC控制电梯系统设计毕业论文29.PLC控制的自动售货机毕业设计论文 30.PLC在变电站变压器自动化中的应用31.PLC在电网备用自动投入中的应用305022336

相关百科

热门百科

首页
发表服务