首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

研究酸奶的工艺论文

发布时间:

研究酸奶的工艺论文

酸奶的不同制作方法:原味酸奶作菌种制作酸奶原 料 鲜牛奶500克,原味酸奶50克1.将牛奶倒在不锈钢锅中, 上火加热到70~80℃,离火降温,待用。2.将容器用开水消过毒后,倒入牛奶,再加入原味酸奶,搅拌均匀。3.盖上盖子,放入酸奶机体中,再把外盖子盖上。接通电源,保温8小时左右。4.待牛奶呈豆腐脑状,即可取出食用。制作秘籍1.加热的牛奶降温至不烫手时为佳。若温度过高,会杀死酸奶中的乳酸菌,影响发酵。2.如果选用的是经过巴氏消毒的牛奶,则不需经过加热过程。3.如果家里有微波炉,可以将容器内放一勺水,盖上盖子,高火加热半分钟即能达到消毒效果。4.容器消毒最好不用消毒液,因为如果冲洗不干净,会杀死乳酸菌,使发酵失败。5.做好的酸奶要立刻放到冰箱里冷藏2小时,然后才能饮用。6.此酸奶制作时没有加入白糖,故食用时可根据个人口味加入白糖调味。以酸奶发酵剂作菌种制作酸奶原 料 鲜牛奶500克,酸奶发酵剂2.5包,白糖25克1.坐锅点火,倒入鲜牛奶和白糖。2.以中火煮开至白糖溶化,离火。待牛奶降温至不烫手时,加入酸奶发酵剂充分搅匀。3.取消毒的酸奶杯,盛入调好的牛奶,封好口。4.放入酸奶机体中,盖上盖子。5.接通电源,加热保温8~12小时,至呈豆腐脑状。6.取出酸奶,放入冰箱冷藏2小时即可食用。制作秘籍1.这种采用的是分杯酸奶机制作。2.要掌握好酸奶发酵剂与鲜牛奶的比例。3.加糖量一般控制在5%~10%之间。4.酸奶发酵剂最好先用少量牛奶在干净的小碗中完全溶解,然后再倒入酸奶机容器内搅匀。

1. 响应曲面法优化黄参酸奶生产工艺.食品科学(CSCD核心库期刊),2011,32(12):39-44(第一作者)2. 荷叶离褶伞菌丝体深层发酵及胞内外多糖含量的变化.中国酿造(CSCD核心库期刊),2011,230(5):56-59(第一作者)3. 荷叶离褶伞子实体、菌丝体及发酵液蛋白质营养价值评价伤.菌物学报(CSCD核心库期刊),2010,29(4):603-607(第三作者)4. 葡萄表面所得酵母的筛选及其鉴定.食品工业科技(CSCD核心库期刊),2010,31(6):182-184(第二作者)5. 人参果酸奶制作工艺的研究.中国酿造(CSCD核心库期刊),2009,212(11):167-169(第一作者)6.肉苁蓉多糖提取工艺及抑菌作用的研究.安徽农业科学(CSCD核心库期刊),2009,37(32):15855-15856,15878(第一作者)7.极大螺旋藻酸奶加工工艺的研究.中国酿造(CSCD核心库期刊),2009,213(12):155-158(第一作者)8.荷叶离褶伞子实体发酵液营养成分分析.食品科学(CSCD核心库期刊),2009,31(6):155-157(第三作者)9.酿酒酵母菌的紫外诱变及其突变株的性能测定.中国酿造(CSCD核心库期刊),2009,211(10):66-68(第二作者)10.荷叶离褶伞多糖的提取工艺及其抑菌作用的研究.中国食品工业,2009,(12):51-53(第一作者)11.曼陀罗种子生物碱提取物抑菌活性的研究. 甘肃农业,2009,(5):90--92(第一作者)12.”Ni2+“对大蒜根尖细胞有丝分裂的影响. 作物杂志(CSCD核心库期刊),2008,(1):37-40(第一作者)13.黄花蒿不同溶剂提取液的抑菌作用研究,中国野生植物资源,2008,(3):45-48(第一作者)通讯作者14.镉胁迫对红果龙葵幼苗生理生化的影响. 沈阳农业大学学报,2008,(2):(第三作者)15.”Cd2+“对龙葵根尖细胞有丝分裂的影响. 河西学院学报,2007,(5):48-50(第一作者)16.工业废水对黄瓜幼苗生长及叶片抗氧化系统的影响.干旱地区农业研究(CSCD核心库期刊),2006,24(4):76-80(第三作者)

酸奶研究工艺论文

发酵工程论文

发酵工程是利用工业微生物的特定性状和功能,通过发酵过程来生产目的产物或将生物直接用于工业化生产的技术体系,是建立在发酵工业基础上,与化学工程紧密结合的一门学科,现在是我为您整理的发酵工程论文,希望对您有所帮助。

从多年发酵工程课程的讲授以及国内大部分高校发酵工程课程的讲授内容来看,发酵工程授课案例主要涉及到抗生素、氨基酸、柠檬酸等好氧发酵工艺及发酵机制,以及酒精、酿造酒、乳酸等厌氧发酵机制及工艺,很少涉及到基因工程产品如EGF、EPO、重组人乙肝疫苗等的发酵机制和工艺。生物技术药物已广泛用于治疗癌症、艾滋病、贫血、发育不良、糖尿病、心力衰竭、血友病、囊性纤维变性和一些罕见的遗传疾病[6]。目前我国从事生物技术药物产业研究与开发人数仅相当于美国的1/4,从事生物医药产品研究与开发的人才更是严重不足,已成为制约我国生物医药产业发展的瓶颈。这就要求我们编制、修订教学大纲时,在保留典型的传统菌的好氧发酵和厌氧发酵案例基础上,着重引入基因工程菌制药的发酵工艺,扩展学生的知识面,为他们将来到制药企业就业奠定良好基础。

1选取合适的教材

发酵工程优秀教材很多,像《微生物工程工艺原理》、《微生物工程》、《发酵工艺原理与技术》、《生物工艺学》、《现代工业发酵调控学》、《发酵工艺学》等,我们在前些年的教学过程中也选用了多个版本的《微生物工程》,结合我校生物技术专业学生的知识体系和培养方向,目前我们选用全国高等学校发酵工程专用教材、教育部普通高等教育“十一五”国家级规划教材华南理工大学姚汝华教授编写的《微生物工程工艺原理》,此书按照发酵工艺操作单元的先后顺序排布各章,脉络清晰,系统性好,该书在难易程度上很适合我们的学生,但是该书侧重于发酵机制的讲授,发酵工艺和设备没有涉及。因此,在前期教学积累的基础上,我们授课团队正在努力编写一本适合于我们自己的教材,增添发酵工艺及设备,以及基因工程产品的发酵工艺。同时为提高学习的广度和深度,为学生推荐了《发酵工艺原理》、《发酵设备》、《发酵工程实验技术》等参考书。

2开展发酵工程实验,提高学生综合素质

发酵工程是利用工业微生物的特定性状和功能,通过发酵过程来生产目的产物或将生物直接用于工业化生产的技术体系,是建立在发酵工业基础上,与化学工程紧密结合的一门学科,它是连接生命科学研究与应用的桥梁[7]。在基因工程和细胞工程的应用中,要想把定向改造的物种转化成产品,也需用到发酵工程技术。发酵工程实验开展的场所是发酵罐,这是发酵工业独有的特点,同时有一套严密的工艺流程让发酵原料通过菌种吸收转化成我们所需要的发酵产品,发酵周期长,步骤繁多。通过发酵工程实验课程的学习,培养学生实际动手操作能力,让学生亲自动手操作发酵罐,开展发酵罐空消和实消操作,以及常规发酵产品如酒精、柠檬酸、青霉素的发酵,使学生真正的达到学以致用,同时又锻炼了学生的自主性、创作性和责任心。师范院校的理科学生,普遍缺乏工艺概念,但他们又非常渴望了解真正的生产过程。我们针对发酵工程的主要内容,组织学生到啤酒厂、白酒厂、制药企业开展生产实习,使学生亲自到白酒、啤酒和药物的生产线上了解工艺流程,切切实实的把课堂上学到的理论知识与生产工艺联系起来,学生反映收获很大。总之,发酵工程实验集成度较高,牵涉到生物化学、微生物学、分析化学、有机化学、发酵工艺学、化学原理等学科的实验内容,有别于普通实验课程的是工厂生产实习,真正做到理论实践相结合,最终达到学以致用的培养目的。

3改进教学方法,切实提高学生创新能力

教学方法的改革,首先取决于教师本身的学术水平和综合素质的提高,教学方法改革服从人才素质培养,以大面积提高教学质量为目标,和教学内容的改革密不可分。生动、丰富的教材,有价值的有说服力的'理论,以培养学生学习和实践的态度、思维以及能力的开放式教学,无疑会激发学生的学习兴趣。从某种意义上说教学的目的是教会学生“学会学习”,“授人以鱼,不如授人以渔”。

3.1案例教学

发酵工程是一门实验实践极强的学科,知识的归纳和总结是建立于具体的发酵机制和工艺案例的基础上。在授课过程中,典型的案例不仅使课堂生动形象,而且使学生容易理解和记忆,触类旁通,达到知识迁移的目的。例如在讲青霉素的发酵这部分内容时,通过详细讲解青霉素的发现,引出伟大的科学家弗莱明,进而讲解青霉素发酵的发酵机制、过程控制、提取及纯化相关内容,学生被激起兴趣,学起来也容易接受。学习之后,可以引导学生进行讨论,如抗生素的种类、我们生小病的时候用到了哪些抗生素、抗生素对能治疗那些疾病、滥用抗生素有何危害等等问题,使学生从思想上真正理解“抗生素是一把双刃剑”,从而在以后的生活中学以致用,进而影响身边的人及下一代合理利用抗生素,为社会进步做出贡献。

3.2启发、讨论式教学

讲课的过程中首先讲授难点、重点,善于提出问题,让学生跟着老师的思路走,随着一个又一个的问题启发学生思考、归纳、总结。比如在讲授发酵过程的控制这部分内容开始时,引入酸奶的发酵。酸奶在生活中很普遍,同学们也不陌生,有的同学家做过酸奶,因此对酸奶的发酵还有一点常识,接受起来更容易一些。首先提出问题,酸奶发酵的原料和菌种从哪里来?酸奶发酵是好氧发酵还是厌氧发酵?发酵多长时间合适,夏天和冬天发酵时间一样吗?通过这些问题,启发学生思考讨论,最终引出酸奶的发酵工艺及注意事项,随后在实验课时让每位同学亲自动手做一款自己喜欢的酸奶,巩固和吸收理论学习。

3.3比较归纳教学法

比较式教学法通过对不同知识点的对比分析,找到其相同和不同处,在比较的过程中对知识点归纳概括,有助于从本质上理解和记忆知识。比如在讲授培养基的制备过程中,让学生比较种子培养基与发酵培养基的相同点和不同点,说出两种培养基C/N比有何不同及不同的原因是什么。又比如在讲培养基的灭菌时,在讲述了分批灭菌和三种常见的连续灭菌流程连消塔——喷淋冷却流程、喷射加热——真空冷却流程、薄板热交换器连续灭菌流程之后,让学生对分批灭菌和连续灭菌进行对比总结,学生就容易理清楚,弄懂复杂的内容。

4优化考试模式,重在平时学习的思考与探讨

在发酵工程实验及理论教学考核方法中,一是包括到课情况。在开课之前详细向学生讲述发酵工程课程在生物技术专业的应用及其重要性,课程的讲授和考核方式,通过到课率来约束学生学习及实验的自觉性。二是考核内容和考核方式多样化,加强课堂考核、作业考核,平时考核与期末考核成绩的比例由原来的3∶7加大到6∶4,综合反映发酵工程课程实践性强的特色。三是实践教学实施“以考促训,以赛促练”,强化技能培养,规定技能考试不过关,不允许参加理论考试。四是在教学中注重因材施教和个性化培养。

5小结

当前生物技术飞速发展,发酵新产品不断涌出,它要求我们的发酵工程专业课教师在讲授传统知识的同时,不断学习发酵工程方面的前沿知识,及时根据发酵工程产品市场更新教学内容,同时在授课的过程中灵活采用各种教学方法,甚至有必要到工厂车间实习实训。从当前经济发展和高校改革趋势来看,生物技术专业不但在地方师范院校有很大的发展空间,而且也将是今后一些师范院校向综合型大学转型的必要环节。发酵工程课程作为生物技术专业的核心课程,是微生物学、生物化学、数学、计算机技术的应用,同时又是分子生物学、细胞工程、基因工程技术的深入开展,而生化工程、生物工业下游技术、微生物遗传育种技术又是发酵工程课程的深入和补充,因此发酵工程课程在生物技术专业承上启下,是一门非常重要的专业必修课程。所以,在当前转型发展大形势下,发酵工程课程教学改革势在必行,必须以培养学生观察问题、分析问题和解决问题的能力为目标,在开展理论教学基础上,切实开展实验教学和生产实习,最终培养出满足企业、市场和科研需要的优秀毕业生。

The yogurt nutrition is rich, is a kind of love by consumer dairy products. In recent years, more and more the manufacturer production yogurt. Yogurt, while the spotty yoghurt shelf-life is too different. Yogurt short shelf life has been a major problem, but also of people today's research hot spot. According to the mechanism and corruption, fermented yoghurt from yogurt production and add preservatives, expounds several aspects of the extended warranty methods. Yogurt Discusses through adding proper stabilizer and calcium salt, determine the combination of sterilization process conditions after, creating a shelf life for six weeks (refrigerated) yoghurt.Keywords yogurt mechanism improve quality warranty

大豆果蔬酸奶生产工艺研究论文

酸奶的不同制作方法:原味酸奶作菌种制作酸奶原 料 鲜牛奶500克,原味酸奶50克1.将牛奶倒在不锈钢锅中, 上火加热到70~80℃,离火降温,待用。2.将容器用开水消过毒后,倒入牛奶,再加入原味酸奶,搅拌均匀。3.盖上盖子,放入酸奶机体中,再把外盖子盖上。接通电源,保温8小时左右。4.待牛奶呈豆腐脑状,即可取出食用。制作秘籍1.加热的牛奶降温至不烫手时为佳。若温度过高,会杀死酸奶中的乳酸菌,影响发酵。2.如果选用的是经过巴氏消毒的牛奶,则不需经过加热过程。3.如果家里有微波炉,可以将容器内放一勺水,盖上盖子,高火加热半分钟即能达到消毒效果。4.容器消毒最好不用消毒液,因为如果冲洗不干净,会杀死乳酸菌,使发酵失败。5.做好的酸奶要立刻放到冰箱里冷藏2小时,然后才能饮用。6.此酸奶制作时没有加入白糖,故食用时可根据个人口味加入白糖调味。以酸奶发酵剂作菌种制作酸奶原 料 鲜牛奶500克,酸奶发酵剂2.5包,白糖25克1.坐锅点火,倒入鲜牛奶和白糖。2.以中火煮开至白糖溶化,离火。待牛奶降温至不烫手时,加入酸奶发酵剂充分搅匀。3.取消毒的酸奶杯,盛入调好的牛奶,封好口。4.放入酸奶机体中,盖上盖子。5.接通电源,加热保温8~12小时,至呈豆腐脑状。6.取出酸奶,放入冰箱冷藏2小时即可食用。制作秘籍1.这种采用的是分杯酸奶机制作。2.要掌握好酸奶发酵剂与鲜牛奶的比例。3.加糖量一般控制在5%~10%之间。4.酸奶发酵剂最好先用少量牛奶在干净的小碗中完全溶解,然后再倒入酸奶机容器内搅匀。

食品加工质量安全管理工作是保障企业产品质量安全符合质量标准的关键、是维护企业市场信誉的关键,是企业在现代激烈市场竞争中赢得市场竞争力的关键。下面是我为大家推荐的食品加工论文,供大家参考。

食品加工论文 范文 一:食品工业泡沫分离技术的应用

泡沫分离又称泡沫吸附分离技术,是以气泡为介质,以各组分之间的表面活性差为依据,从而达到分离或浓缩目的的一种分离 方法 [1].20世纪初,泡沫分离技术最早应用于矿物浮选,后来应用于回收工业废水中的表面活性剂.直到20世纪70年代,人们开始将泡沫分离技术应用于蛋白质与酶的分离提取[2-3].目前,在食品工业中,泡沫分离技术已经应用于蛋白质与酶、糖及皂苷类有效成分的分离提取.由于大部分食品料液都有起泡性,泡沫分离技术在食品工业中的应用将越来越广泛.

1泡沫分离技术的原理及特点

1.1泡沫分离技术的原理

泡沫分离技术是依据表面吸附原理,基于液相中溶质或颗粒之间的表面活性差异性.表面活性强的物质先吸附于分散相与连续相的界面处,通过鼓泡形成泡沫层,使泡沫层与液相主体分离,表面活性物质集中在泡沫层内,从而达到浓缩溶质或净化液相主体的目的.

1.2泡沫分离技术的特点

1.2.1优点

(1)与传统分离稀浓度产品的方法相比,泡沫分离技术设备简单、易于操作,更加适合于稀浓度产品的分离.(2)泡沫分离技术分辨率高,对于组分之间表面活性差异大的物质,采用泡沫分离技术分离可以得到较高的富集比.(3)泡沫分离技术无需大量有机溶剂洗脱液和提取液,成本低、环境污染小,利于工业化生产.

1.2.2缺点

表面活性物质大多数是高分子化合物,消化量比较大,同时比较难回收.此外,溶液中的表面活性物质浓度不易控制,泡沫塔内的返混现象会影响到分离效果[4].

2泡沫分离技术在食品工业中的应用

2.1蛋白质的分离

在分离蛋白质的过程中,表面活性差异小的蛋白质,吸附效果受到气-液界面吸附结构的影响,因此蛋白质表面活性的强度是考察泡沫分离效果的主要指标.谭相伟等[5]研究了牛血清蛋白与酪蛋白在气-液界面的吸附,并发现酪蛋白对牛血清蛋白在气-液界面处的吸附有显著影响.此后,Hossain等[6]利用泡沫分离技术对β-乳球蛋白和牛血清蛋白进行分离富集,结果得到96%β-乳球蛋白和83%牛血清蛋白.Brown等[7]采用连续式泡沫分离技术从混合液中分离牛血清蛋白与酪蛋白,结果表明酪蛋白的回收率很高,而大部分的牛血清蛋白留在了溶液中.Saleh等[8]研究了利用泡沫分离法从乳铁传递蛋白、牛血清蛋白和α-乳白蛋白3种蛋白混合液中分离出乳铁传递蛋白,在牛血清蛋白和α-乳白蛋白的混合液中加入不同浓度的乳铁传递蛋白,并不断改变气速,优化了最佳工艺条件.结果得出:在最佳工艺条件下,87%的乳铁传递蛋白留在溶液中,98%牛血清蛋白和91%α-乳白蛋白存在于泡沫夹带液中.由此可见,利用泡沫分离法可以有效地从3种蛋白质混合液中分离出乳铁传递蛋白.Chen等[9]利用泡沫分离技术从牛奶中提取免疫球蛋白.考察了初始pH值、初始免疫球蛋白浓度、氮流量、柱的高度及发泡时间等因素对反应的影响,结果表明:采用泡沫分离方法可以有效地从牛奶中分离出免疫球蛋白.Liu等[10]从工业大豆废水浓缩富集大豆蛋白,最佳工艺条件:温度为50℃,pH值为5.0,空气流量为100mL?min-1,装载液体高度为400mm,得到大豆蛋白富集比为3.68.Li等[11]为了提高泡沫析水性,研发了一种新型的利用铁丝网进行整装填料的泡沫分离塔,利用铁丝网整体填料塔泡沫分离法对牛血清蛋白进行分离.通过研究填料对气泡大小、持液量、富集比和在不同条件下以牛血清蛋白水溶液作为一个参考物的有效收集率的影响,评价填料的作用.结果表明,填料可以加速气泡破裂、减少持液量、提高泡沫析水性和牛血清蛋白的富集比.研究表明,在积液量为490mL,空气流速为300mL?min-1,牛血清蛋白初始浓度为0.10g?L-1,填料床高度为300mm和初始pH值为6.2的条件下,最佳的牛血清蛋白富集比为21.78,是控制塔条件下富集比的2.44倍.刘海彬等[12]以桑叶为原料,采用泡沫分离法对桑叶蛋白进行分离,并分析了影响分离效果的主要因素,结果测得桑叶蛋白回收率为92.50%、富集比为7.63.由此可见,利用泡沫分离法对桑叶进行分离可得到含量较高的桑叶蛋白.与传统的叶蛋白分离方法如酸(碱)热法、有机溶剂法相比较[13-14],泡沫分离法分离效果好,避免了加热导致蛋白质变性以及减少有机溶剂带来的环境污染等问题.李轩领等[15]以亚麻蛋白浓度、NaCl浓度、原料液pH值以及装液量为主要考察因素,用响应面法优化了从未脱胶亚麻籽饼粕中泡沫分离亚麻蛋白的工艺条件.在最佳工艺条件下,得到95.8%的亚麻蛋白质,而多糖的损失率仅为6.7%.可见,采用泡沫分离技术可以从未脱胶亚麻籽饼粕中有效分离出亚麻蛋白.

2.2酶的分离

蛋白质属于生物表面活性剂,包含极性和非极性基团,在溶液中可选择性地吸附于气-液界面.因此,从低浓度溶液中可泡沫分离出酶和蛋白质等物质.Linke等[16]研究了从发酵液中泡沫分离胞外脂肪酶,考察了通气时间、pH值及气速等主要因素对回收率的影响,研究得出通气时间为50min、pH值为7.0及气速为60mL/min时,酶蛋白回收率为95%.Mohan等[17]从啤酒中泡沫分离回收酵母和麦芽等,结果表明,分离酵母和麦芽所需的时间不同,而且低浓度时更加容易富集.Holmstr[18]从低浓度溶液中泡沫分离出淀粉酶,研究发现在等电点处鼓泡,泡沫夹带液中的淀粉酶活性是原溶液中的4倍.Lambert等[19]采用泡沫分离技术考察了β-葡糖苷酶的pH值与表面张力之间的关系,研究表明,纤维素二糖酶和纤维素酶的最佳起泡pH值分别为10.5和6~9.Brown等[7]利用泡沫分离技术对牛血清蛋白与溶菌酶以及酪蛋白与溶菌酶的混合体系分别进行了分离纯化的研究.结果表明,溶菌酶不管与牛血清蛋白混合还是与酪蛋白混合,回收率都很低,但是由于溶菌酶可提高泡沫的稳定性,从而提高了牛血清蛋白与溶菌酶的回收率.Samita等[20]对牛血清蛋白与酪蛋白、牛血清蛋白与溶菌酶两种二元体系分别进行了研究,发现在牛血清蛋白与酪蛋白的蛋白质二元体系中酪蛋白在气-液界面处的吸附占了大部分的气-液界面,从而阻止了牛血清蛋白在气-液界面处的吸附.而在牛血清蛋白与溶菌酶的二元体系中,研究表明溶菌酶提高了牛血清蛋白的回收率,同时提高了泡沫的稳定性.针对这种现象,Noble等[21]也采用泡沫分离法分离牛血清蛋白与溶菌酶的二元体系,研究发现泡沫夹带液中存在少量的溶菌酶,提高了泡沫的稳定性,牛血清蛋白溶液在低浓度下本来不能产生稳定泡沫,溶菌酶的存在使得其也能产生稳定的泡沫.这些研究表明,泡沫分离技术可以在较低的浓度下分离具有表面活性的蛋白质,为泡沫分离技术在蛋白质分离中的应用研究开辟了新的领域.国内泡沫分离技术已应用在酶类物质分离中,范明等[22]设计了泡沫分离装置,利用泡沫分离技术分离脂肪酶模拟液和实际生产生物柴油的水相脂肪酶溶液,对水相脂肪酶进行回收并富集.考察了通气速度、进料酶浓度及水相脂肪酶溶液中pH值等主要因素对分离效果的影响,当通气速度为10L/(LH)、进料酶浓度为0.2g/L、pH值为7.0时,蛋白和酶活回收率接近于100%,富集比为3.67.研究表明,初始脂肪酶浓度对泡沫分离的富集比和蛋白回收率有显著影响,pH值对富集比、蛋白和酶活回收率无显著影响,而气速是影响蛋白回收速率的一个重要因素.回收水相脂肪酶的过程中酶活性无损失.可见,泡沫分离是一个回收液体脂肪酶的有效方法[22].

2.3糖的分离

糖一般存在于植物和微生物体内,可根据糖与蛋白质或者其他物质的表面活性差异性,利用泡沫分离技术对糖进行分离提取[23].Fu等[24]采用离心法从基隆产的甘薯块中分离提取可溶性糖和蛋白,得到的回收率分别为4.8%和33.8%;而采用泡沫分离法时,可溶性糖和蛋白的回收率分别为98.8%和74.1%.Sarachat等[25]采用泡沫分离法富集假单胞菌生产的鼠李糖脂,最佳工艺条件下得到鼠李糖脂97%,富集比为4.__洲[26]利用间歇式泡沫分离法从美味牛肝菌水提物中分离牛肝菌多糖,考察了pH值、原料液浓度、空气流速、表面活性剂用量及浮选时间等主要因素对分离效果的影响,以回收率为指标评价分离的效果,并优化了分离牛肝菌多糖的工艺条件.在最佳工艺条件下,牛肝菌多糖回收率为83.1%.国内关于食用菌多糖的提取一般利用水提醇析法,但是该法需要消耗大量的乙醇,操作周期长,能耗大[27-28],而泡沫分离法具有快速分离、设备简单、操作连续、不需高温高压及适合分离低浓度组分等优势,因此间歇式泡沫分离法是提取食用菌多糖的一种有效方法.

2.4皂苷类有效成分的分离

皂苷包含亲水性的糖体和疏水性的皂苷元,具有良好的起泡性,是一种优良的天然非离子型表面活性成分,因此可采用泡沫分离法从天然植物中分离皂苷[29].泡沫分离法已广泛用于大豆异黄酮苷元、人参皂苷、无患子皂苷、竹节参皂苷、文冠果果皮皂苷等有效成分的分离.

2.4.1大豆异黄酮苷元的分离Liu等[10]

采用泡沫分离与酸解方法从大豆乳清废水中分离大豆异黄酮苷元,指出从工业大豆乳清废水中提取的异黄酮苷元主要以β-苷元的形式存在,并利用傅里叶变换红外光谱分析发现大豆异黄酮和大豆蛋白以复合物的形式存在.研究结果表明,利用泡沫分离技术可以从大豆乳清废水中有效地富集大豆异黄酮,分离出大豆异黄酮苷元和β-苷元.

2.4.2无患子总皂苷的分离魏凤玉等[30]

分别采用间歇和连续泡沫分离法分离纯化无患子皂苷,利用正交试验,考察了原始料液浓度、气体流速、温度、pH值等因素对无患子皂苷回收率的影响,确定了泡沫分离最佳工艺条件.林清霞等[31]采用泡沫分离技术分离纯化无患子皂苷,利用紫外分光光度计测定无患子皂苷含量,通过富集比、纯度及回收率判断分离纯化的效果.在进料浓度为2.0g/L、进料量为150mL、气速为32L/h、温度为30℃、pH值为4.3时,得到富集比为2.153,纯度与回收率分别为74.68%和79.19%.研究结果表明:无患子皂苷的回收率随着进料浓度的增大而减小,随着气速、进料量的增大而增大;富集比随着进料浓度、气速及进料量的增大而减小,pH值对富集比的影响较小;纯度随着进料浓度、气速的增大而降低,进料量、pH值对纯度的影响较小.

2.4.3竹节参总皂苷的分离

竹节参的主要成分皂苷是一种优良的天然表面活性剂,而竹节参中的竹节参多糖、无机盐及氨基酸等是非表面活性剂,因此可根据表面活性的差异,采用泡沫分离技术对竹节参皂苷进行分离纯化[32-34].张海滨等[35]考察了气泡大小、pH值、原料液温度及电解质物质的量浓度等主要因素对泡沫分离竹节参总皂苷的影响,以富集比、纯度比及回收率等为指标分析分离纯化的效果,得出最佳工艺条件:气泡直径为0.4~0.5mm,pH值为5.5,温度为65℃,电解质NaCl浓度为0.015mol?L-1.在最佳工艺条件下,总皂苷富集比为2.1,纯度比为2.6,回收率为98.33%,能够得到较好的分离.张长城等[36]研究了利用泡沫分离技术对竹节参中皂苷进行分离纯化的方法与条件,指出泡沫分离技术分离纯化竹节参皂苷具有产品回收率高、工艺简单、能耗低及不使用有机溶剂等优点,为竹节参皂苷的开发利用提供了技术支持.

2.4.4文冠果果皮皂苷的分离

文冠果籽油是优质的食用油,含油率达35%~40%[37],同时可作为生物柴油的原料.文冠果果皮含有皂苷1.5%~2.4%.研究表明,文冠果果皮皂苷具有抗肿瘤、抗氧化及抗疲劳等功效[38].文冠果果皮皂苷的开发利用带来的附加价值可以有效地降低生物柴油的生产成本.在生产生物柴油的过程中需要处理大量的果皮,因此需要寻求一种简单可行、成本低、收率高以及对环境污染小的皂苷分离方法.吴伟杰等[39]使用自制起泡装置,研究了泡沫分离技术分离文冠果果皮总皂苷的可行性及最佳反应条件.研究得出泡沫分离文冠果皂苷的最佳工艺条件为:料液气体流速为2.5L?min-1,初始浓度为2mg?mL-1,温度为20℃,pH值为5.与泡沫分离人参、三七等皂苷的气体流速相比较,文冠果果皮的气体流速较低,这样可以更大限度地降低能耗、节约成本.同时,泡沫分离文冠果果皮皂苷可在室温条件下进行,降低了加热所需的能耗.此外,由于文冠果果皮皂苷的水溶液pH值在5左右,泡沫分离时无需调节pH值.在最佳工艺条件下,得到富集比为3.05,回收率为60.02%,纯度为63.35%.研究表明,泡沫分离文冠果果皮皂苷可以达到较高的富集比、回收率和纯度,对于大力开发利用生物能源、综合利用文冠果以及降低生物柴油的成本有着重要意义.

3展望

泡沫分离技术是一种很有发展前景的新型分离技术,在食品工业中的应用将会越来越广泛,今后在天然产物及稀有物质的分离提取等方面有着更加广泛的应用.同时,泡沫分离技术也存在一定的局限性,为促进泡沫分离技术在食品工业中的应用发展,应该在以下方面进行深入研究:(1)对泡沫分离复杂物料实际分离过程的泡沫形成情况建立理论模型,对标准表面活性剂的分离提取建立标准数据库,对标准表面活性剂和非表面活性物质间的分离建立指纹图谱;(2)如何减少泡沫分离非表面活性物质时的表面活性剂消耗量;(3)如何解决泡沫分离高浓度产品时回收率低的问题;(4)目前泡沫分离设备存在局限性,应研究开发新型的适合食品工业分离的泡沫分离设备,提高泡沫分离的效果[40].

食品加工论文范文二:食品工业废水处理节能研究

食品工业包括制糖、酿造、肉类、乳品加工等,食品工业的废水主要来源于原料的处理、洗涤、脱水、过滤、脱酸、脱臭和蒸煮过程中产生的,这些废水含有大量的有机物、蛋白质、有机酸和碳水化合物,具有很强的耗氧性,如果不经处理直接排入水体会大量消耗水中的溶解氧,从而造成水体缺氧,造成水生生物的死亡。食品工业废水油脂含量高,多伴随大量悬浮物随废水排出,其中动物性食品加工排出的废水还可能含有病菌,此外,这些废水还含有铜、锰、铬等金属离子。近年来,随着食品加工业的快速发展,每年由此产生的废水量也呈现快速增长态势,许多废水未经有效处理便被直接排放,给环境产生了十分严重的破坏。因此,探讨食品工业废水处理对于生态环境保护具有非常重要的现实意义。

1食品工业废水处理工艺现状

目前,国内外对于食品工业废水的处理过程中主要采用的是生物处理工艺,其中主要包括有好氧生物处理工艺、厌氧生物处理工艺,以及由好氧生物处理工艺与厌氧生物处理工艺相结合的处理工艺。在好氧生物处理工艺方面,主要有活性污泥法(目前实际应用较为广泛的主要有SBR法)和生物膜法(具有代表性的是曝气生物滤池法)。由于厌氧生物处理工艺相较于好氧生物处理工艺无论在后期的运行管理费用还是前期的基建投资方面的费用都有较大优势,其中比较具有典型的处理工艺有厌氧颗粒污泥膨胀床(EGSB)工艺、第三代厌氧处理工艺———厌氧内循环反应器(IC)被广泛应用到了食品工业废水处理中。此外,厌氧生物处理工艺在处理食品工业废水方面具有良好的处理效果[1]。

2各种工艺特点及应用效果分析

目前国内外,食品工业废水的处理以生物处理[2]为主。在实际中运用较广,技术较为成熟的主要有厌氧接触法、厌氧污泥床法、浅层曝气、延时曝气、曝气沉淀池法等等。

2.1好氧生物处理工艺

好氧生物处理是在不断供氧的环境中,利用好氧微生物来氧化有机物。在好氧过程中,微生物对复杂的有机物进行分解,一部分被转化为稳定的无机物CO2、H2O和NH3,一部分则由微生物合成为新细胞,最后去除污水中的有机物。

2.1.1SBR法,即间歇式活性污泥系统(又叫序批式间歇活性污泥法)。SBR法目前在国内外应用较为广泛,生物反应池中集中了生物降解过程、沉淀过程以及污泥回流功能为一体,这种工艺比较简单,它是在以前间歇式活性污泥工艺基础上发展来的一种新工艺,采用SBR法处理废水的运行过程一般包括了进水、充氧曝气、静止沉淀、排水和排泥五个步骤。与连续性活性污泥工艺相比,该工艺具有的有点主要有:曝气池兼具二沉池的功能,不设二沉池,也没有污泥回流设备,系统结构简单,易于管理;耐冲击负荷,一般无需设置调节池;反应推动力大,较为简便的得到优质出水水质;污泥沉淀性能好,SVI值较低,便于自控运行,后期维护管理也较为简便。居华[3]通过SBR法在酱油、酱菜食品废水处理中的应用研究后得出,原废水CODcr在2000mg/L~4000mg/L范围内,经SBR法处理后出水水质得到了二级标准,去除率达96%以上,没有出现污泥膨胀现象,而且操作管理方便,占地面积小,运行的费用也低。

2.1.2BAF法,即曝气生物滤池法。这种工艺最早可以追溯上个世纪80年代,是由欧美等国家应用和发展起来的,大连马栏河污水处理厂是我国最早采用BAF工艺。该工艺是在生物接触工艺基础上,在滤池中填装陶粒、石英砂等粒状填料,以填料及其附着生产生物膜为介质,发挥生物的代谢功能,通过物理过滤功能,发挥膜和填料的截留吸附作用从而实现污染物的高效处理。廖艳[4]等采用混凝—ABR与曝气生物滤池(BAF)联合处理工艺,对某市肉联厂高浓度废水化学需氧量和氨氮的去除研究后发现,化学需氧量和氨氮的去除效果从原水时的1500mg/L~4500mg/L、30mg/L~85mg/L,经处理后出水COD<100mg/L,氨氮<50mg/L,达到了国家一、二级排放标准,取得良好的环境和社会效益。

2.1.3MBR法,即膜生物反应器法。是上个世纪90年代逐渐发展起来的一种废水处理技术,该工艺是将膜组件替代传统的二沉池,实现固相和液相分离。其实质是把细菌和微生物以生物膜的方式附着在固体表面上,以污水中的有机物为营养物进行新陈代谢和生长繁殖,从而达到实现净化污水的效果。该工艺具有较强的抗冲击力,对水质和水量变化具有较强适应性;污泥产量较低且沉降性能优,易于固液分离;对于低浓度污水也可以进行处理,在正常运行时可以把原水中的BOD5由20mg/L~30mg/L降至5mg/L~10mg/L;运行费用也不高,管理方便。张亮平,王峰[5]以MBR在湖北某食品厂废水处理中的应用为例进行研究后发现,采用MBR-活性炭-杀菌联合工艺,出水COD和BOD的去除率达到了99%以上,系统工艺能耗低,运行稳定。

2.2厌氧生物处理工艺

在食品废水处理过程中,厌氧处理法与好氧处理法相比由于产生的污泥少,动力流耗小,管理简便,既能节能又能降低成本,逐渐在高浓度有机废水行业———食品工业广泛推崇。

2.2.1UASB法,即升流式厌氧污泥床法。该种工艺是由高活性厌氧菌体构成的粒状污泥,在UASB装置内随上升的气流呈向上流动的状态。处理效率高、性能可靠、能耗低,也不需要填料和载体,运行成本低等优点,既可以处理高负荷废水,也不会产生堵塞等优点。也是当前应用最为广泛的高速反应器之一。王炜,何好启[6]研究发现,食品废水经由UASB+接触氧化法工艺处置后,CODcr、BOD5、SS和植物油由原水浓度的1170mg/L、570mg/L、600mg/L、150mg/L,处置后的效果为60.2mg/L、15.5mg/L、40mg/L和3mg/L,出水水质达到了《污水综合排放标准》中的一级标准,且工程的经济运行效益也良好,总运行费用约为0.54元/m3,工艺占地小,处理成本低,运行方式灵活,值得推广。

2.2.2EGSB反应器,即膨胀颗粒污泥床反应器。该工艺是在UASB基础上发展起来的一种新厌氧工艺,与UASB工艺相比,EGSB增加了出水的回流,提升了反应器中水流的速度,其速度可以达到5m/h~10m/h,比UASB的0.6m/h~0.9m/h高出近10倍。李克勋[7]等以天津某淀粉厂采用EGSB处理淀粉废水为例,EGSB的厌氧反应器对COD的去除率超过了85%,出水水质达到了国家一级排放标准,大量有机物被去除,后续单元的处理压力被减轻,此外,厌氧反应器的介入使用,可以产生沼气作为能源进行二次利用,降低运行费用(总运转费用为0.73元/m3?d),具有良好的环境效益和社会效益。

2.2.3ASBR法,即厌氧序批式活性污泥法。ASBR厌氧序批式活性污泥法最早诞生于上世纪90年代的美国,是在SBR基础上发展起来的,该工艺的显著特点是以序批间歇运行,按次序分为进水、反应、沉淀和排水四个步骤,与连续流厌氧反应器相比,该工艺由于不需要大阻力的配水系统,因此极大地减少了系统的能耗,也不会产生断流和短流,运行灵活,抗击能力较强,实现厌氧功能,也同时兼有了SBR的优点。

3厌氧生物处理工艺优势分析

与好氧生物处理工艺相比,在食品工业废水处理方面,厌氧生物处理工艺具有很多优势:工艺运行时污泥的剩余量非常少,由于不需要附加氧源而降低运行管理费用;食品工业废水有机物浓度高,而厌氧生物处理工艺拥有良好的抗高浓度有机物的冲击负荷力优势,能够做到间接性排放;另外,厌氧生物处理工艺能够产生沼气,实现资源的二次利用,真正实现了 变废为宝 ,降低能耗,因此,厌氧处理工艺在食品工业废水处理中是一种节能型废水处理工艺。作为低能耗而且能够产生二次能源的厌氧生物处理工艺必将成为食品工业废水处理的主流方向[8]。

酸奶工艺研制论文参考文献

发酵剂制备:将乳粉用水复原成12%的脱脂乳,经115℃,10min灭菌,冷却后以4%的比例接入活化好的菌种,在43℃培养4~8h,待乳凝固后,置于0~5℃保存备用。 比例一般采用S:L为1:1的,但我认为1.5:1更好。具体参考文献:李志成,蒋爱民,丁武,张静.球杆菌比例、固形物含量和灌装方式对酸奶保存期的影响.食品科技,2004,(12):58-61.

酒文化在中国历史中占据着不可取代的地位。随着经济的发展,人们逐渐出现长期饮酒、过量饮酒的趋势,对身体的健康造成了种种伤害,增加患胃癌、心脑血管疾病和糖尿病的发病率[1]等。目前,市面上出现了许多解酒产品,但对于解酒酸奶的相关研究鲜有报道[2]。 酸奶是指新鲜牛乳经消毒等预处理、加入乳酸菌发酵而制成的乳制品[3],深受广大消费者的喜爱。若在饮酒前喝酸奶,可以在胃黏膜表层形成保护膜,减少人体对酒精的吸收;若在饮酒时喝酸奶,可使酸奶中蛋白质与乙醇形成络合物,减少酒精对人体的伤害。蜂蜜具有解毒、抗氧化等功效,同时对于胃炎、胃溃疡、便秘等疾病有一定疗效。蜂蜜能够减轻胃黏膜损伤,缓解急性酒精中毒。魔芋葡甘露聚糖(Konjac glucomannan,KGM) 是存在于魔芋中的一种天然高分子可溶性膳食纤维,有助于通便、平稳血糖、降血脂和抗脂肪肝。有研究表明,KGM 具有良好的解酒作用,能明显延长小鼠的耐受时间,降低血液中乙醇浓度。以柚子和酸奶为主要原料,蜂蜜、魔芋等为辅料,通过响应面法和重铬酸钾法确定最佳成品配比和解酒效果,研制具有降解酒精、保护肝脏和胃等多种功效的功能性酸奶,可以为其他解酒产品的研制提供参考。1、产品工艺流程: 复配胶水溶液 新鲜柚子↓ (浓缩)→ ↓(鲜乳→均质→巴氏杀菌→发酵→后熟→搅拌→成品。2、实验方法2、1酸奶复配胶的确定将魔芋粉0.03%分别与卡拉胶0.02%,黄原胶复配,以单独魔芋粉为空白组,确定最佳复配胶类型。随后以 0,0.02%,0.03%,0.04%,0.05%,0.06%,0.07%的梯度筛选魔芋粉的最佳添加量。用黏度计测定酸奶黏度,以确定酸奶复配胶的最佳配方。2、2浓缩柚子及蜂蜜最适添加量的确定分别取不同的发酵后酸度 (80,85,90,95, 100 °T) 进行单因素试验,确定最佳发酵酸度。随后将 1%,2%,3%,4%,5%的蜂蜜与酸奶混合均匀,确定蜂蜜的最适添加量。在确定蜂蜜的最适添加量后,加入 6%,7%,8%,9%,10%的浓缩柚子,确定出柚子的最适添加量。3、结论通过实验表明以发酵 200 mL 酸奶为基准的柚子 - 魔芋解酒型功能酸奶最佳发酵工艺条件为菌种 0.3 g (0.15%), 魔芋粉 0.12 g (0.06%),卡拉胶 0.04 g (0.02%),白砂糖 7 g (3.5%),浓缩柚子 18 g (9%),蜂蜜 8 g(4%),43 ℃下发酵 3.5 h。按该酸奶研制工艺发酵, 制得的酸奶组织状态良好,乳清析出较少,有发酵乳特有的香味,口感细腻、酸甜适中。用重铬酸钾氧化分光光度法对酸奶降解酒精能力进行分析,该配方酸奶在模拟人工胃液的环境中可降解酒精 15%左右,有效解酒时间 24 min。该款酸奶具有解酒功效且风味口感俱佳,易被消费者接受,具有广阔的市场前景。 参考文献:《柚子-魔芋解酒型功能酸奶的研制》赵慧芳 等

研究了魔芋精粉的酶水解增溶条件,并通过正交试验对魔芋酸奶的配方进行优化。结果表明:魔芋精粉的控制酶水解条件是β-葡聚糖酶0.04%、魔芋精粉4%,pH6.5,温度45℃、时间5—10 h;魔芋酸奶的优化配方为魔芋精粉3%、奶粉8%、明胶0.3%、砂糖6%。

鲜奶发酵得酸奶。

色氨酸的工艺研究论文

这不是正大老师布置的论文作业们 哈哈哈啊哈哈

L-色氨酸的生产最早主要是依靠化学合成法和蛋白质水解法制造。随对微生物法生产色氨酸的研究的不断发展,人们开始利用微生物法发酵生产色氨酸。现已走向实用并且处于主导地位。微生物法大体可分为微生物发酵法和酶促转化法。近年来还出现了直接发酵法和化学合成法,直接发酵法和转化法相结合生产色氨酸的研究。另外,基因工程、酶的固定化和高密度培养等技术在微生物育种和酶工业上的应用极大地推动了直接发酵法和酶法生产色氨酸的工业化进程。 化学合成法就是利用有机合成和化学工程相结合的技术生产或制备氨基酸的方法。DL-色氨酸的化学法合成,大致可分为以吲哚为原料的合成法和以苯肼为原料的合成法两种。Snydcr和MacDonald研究出了一种简单的合成DL-色氨酸的方法,即在乙酸和乙酸酐的存在下利用吲哚和α-乙酰氨基丙烯酸直接缩合,得到N-乙酞-DL-色氨酸,此物质在氢氧化钠溶液中水解即可得到DL-色氨酸,收率为57.7%。Moe和MacDonald报道以苯肼为原料合成色氨酸,即在乙酸钠存在下,将丙烯醛和乙酰氨基丙二酸二乙酯缩合,缩合体再与苯肼反应而生成苯腙,苯腙在H2S04或BF3水溶液中回流水解,环化得到化合物3-吲哚基-甲基-乙酰氨基-丙二酸二乙酯,将此化合物水解脱羧可得DL-色氨酸。化学合成法的最大优点是在氨基酸品种上不受限制,既可制备天然氨基酸,又可制备各种特殊结构的非天然氨基酸。但这并不意味着具有工业生产价值,由于合成得到的氨基酸都是DL-型外消旋体,必须经过拆分才能得到人体能够利用的L-氨基酸。故用化学合成法生产DL-色氨酸时,除需考虑合成工艺条件外,还要考虑异构体的拆分与D-色氨酸异构体的消旋利用,三者缺一不可。因此,化学法合成L-色氨酸在工业上的应用也受到一定的限制。 酶法是利用微生物中L-色氨酸生物合成酶系的催化功能生产L-色氨酸的,能够利用化工合成的前体物为原料,既充分发挥了有机合成技术的优势,又具有产物浓度高、收率高、纯度高、副产物少、精制操作容易等优点,是一种成本较低的生产色氨酸的工业化生产方法。目前在L-色氨酸的生产中应用较为广泛。这些酶包括色氨酸酶、色氨酸合成酶、丝氨酸消旋酶等。根据提供这些酶的微生物种类数,可以分为双菌酶法和单菌酶法两种类型。双菌酶法是利用两种菌分别提供酶促反应所需的色氨酸合成酶(TS)、丝氨酸消旋酶(SR),以吲哚和DL-丝氨酸为底物酶促转化L-色氨酸。这种方法可以将具有不同高活性的酶促转化色氨酸所需的酶结合在一起,实现菌种的优势互补,提高底物的转化率。Makiguchi等用大肠杆菌的色氨酸合成酶和恶臭假单胞菌的丝氨酸消旋酶,以吲哚和DL-丝氨酸为底物,在200L反应罐中反应24h,L-色氨酸产量可达到110g/L,对吲哚吸收率为100%(摩尔比,下同),对DL-丝氨酸收率为91%。单菌酶法是利用一种菌提供色氨酸合成所需的色氨酸酶、色氨酸合成酶、丝氨酸消旋酶等酶类酶促转化色氨酸。Won-giBang等对单酶菌法生产色氨酸进行了研究,利用大肠杆菌B10的高Ts活性转化吲哚和DL-丝氨酸,添加非离子表面活性Triton X-100,37℃反应60h,色氨酸产量可达至141.4g/L,对吲哚收率为93.2%,对DL-丝氨酸收率为93.6%.由于底物吲哚对色氨酸合成酶抑制强烈,而对色氨酸酶抑制较弱,所以近年来人们更为倾向于将色氨酸酶用于L-色氨酸的生物合成。色氨酸酶正常情况下降解L-色氨酸生成丙酮酸、吲哚和氨,但在高浓度的丙酮酸和氨条件下也能有效地催化丙酮酸、吲哚和氨合成L-色氨酸。该酶还能催化L-丝氨酸或L-半胱氨酸和吲哚合成L-色氨酸。Nakazawa等以20g吲哚、30g丙酮酸钠、50g乙酸铵和4gProteus rettgeri(雷氏变形杆菌)菌体作为色氨酸酶源,37℃反应48h可积累23gL-色氨酸。Ujimaru等用Achromabacterliquidum(液形无色杆菌)色氨酸酶催化L-丝氨酸和吲哚合成L-色氨酸,L-丝氨酸转化率为82.4%,吲哚转化率为92.4%。国内也有研究以L-半胱氨酸和吲哚为原料酶法生产L-色氨酸。韦平和等用色氨酸酶基因工程菌WWW-4催化L-半胱氨酸和吲哚合成L-色氨酸,80mL反应液(L-半胱氨酸0.75g,吲哚0.75g)37℃反应48h,可积累L-色氨酸1.18g,L-半胱氨酸转化率为93.2%,吲哚转化率为90.1%,产品总回收率达70%。另外,也有报道利用具有丙酮酸高产率和高活性色氨酸酶的菌株酶促转化L-色氨酸。酶促转化法既可以直接利用高活性色氨酸合成酶、色氨酸酶,或者具有高活性色氨酸合成酶或色氨酸酶的菌体催化L色氨酸的合成,也可以将酶或菌体固定化后进行L-色氨酸的合成。菌体和酶固定化后具有提高酶的稳定性便于反复使用,便于实现生产连续化和自动化等优点。Won—Bang等利用聚丙烯酰胺固定具有高活性色氨酸合成酶的大肠杆菌Escherichia coli B10菌体细胞,在连续搅拌槽反应器中连续使用50天,色氨酸合成酶活性保持80%,最高产酸0.12g.L-1h-1。还有利用其它固定化技术进行酶促转化L-色氨酸。Eggers等报道了一种利用有机脂膜系统利用色氨酸酶酶促转化L-色氨酸。它是以环己烷作为有机相,有机脂膜将两水相和有机相分开,其中一水相构成酶促反应体系,另一水相构成反萃取体系,利用bis-tris-propane作为两水相的缓冲剂维持两水相的pH差值,从而影响反应体系中各物质在两水相的分配常数,再通过有机相中的阴离子交换剂Aliquat-336交换两水相中的丙酮酸和L-色氨酸。这种体系有利于L-色氨酸转运到反萃取水相中,而有助于色氨酸的提取和降低L-色氨酸对酶的抑制作用;而且,有机相还可以储存吲哚,使吲哚在酶促反应体系中的浓度低于对酶的抑制水平。Eggers等还建立了一种反胶团酶促转化L-色氨酸的反应体系,它是将色氨酸酶溶解在含有表面活性剂Brij56的环己烷和水构成的反胶团的水相中,利用吲哚和丝氨酸为底物,在有机相中添加阴离子交换剂Aliquat-336转运水相和有机相中的L-色氨酸。以bis-tris-propane作为两水相的缓冲剂,选择合适的含水量和pH值等参数条件,结果在1dm反应体积内,每g色氨酸酶经过lh反应可产酸10g。该系统除了上述脂膜反应体系的优点外,还可以提高色氨酸酶的稳定性。因此,在L-色氨酸的酶促转化中有着广阔的应用前景。 微生物发酵法包括直接发酵法和添加前体发酵法。1直接发酵法直接发酵法是以葡萄糖、甘蔗糖蜜等廉价原料为碳源,利用优良的色氨酸生产菌株,在合适的发酵条件下,直接发酵生产色氨酸。选育高产稳产的色氨酸优良菌株是直接发酵法研究的中心问题.在育种技术方面,传统的诱变育种国内外进行了大量的研究。Shiio等以黄色短杆菌酪氨酸缺陷型、对氟苯丙氨酸(4FP)抗性变异株为出发菌株,选育5-氟色氨酸(5-FT)抗性变异株No.187,该菌株可产L-色氨酸8.0 g/L。继续以No.187为亲株选育具有邻氨基苯甲酸结构类似的重氯丝氨酸(AsaSer)抗性变异株A100,其产酸率提高到lO.3 g/L,再从A-100选育磺胺胍(SG)抗性变异株S-225,其产酸率进一步提高到19g/L。国内的张素珍等人以亚硝基胍处理北京棒杆菌AS1.299,得到CG45突变株。该菌株具有5MT,6FT,4MP抗性标记,且以精氨酸和尿嘧啶为必需生长因子,在含12%葡萄糖的培养基中,30℃振荡培养5天。可积累色氨酸8g/L。该方法研究比较早,但在相当长的时间内无法达到工业化生产的要求。主要原因是从葡萄糖到色氨酸的生物合成途径比较长,其代谢流也比较弱,而且色氨酸的合成需要多种前体物质(PRPP、谷氨酰胺、L-丝氨酸等)。要想进一步提高L-色氨酸的产量还必须提高这些前体物的产量。另一方面色氨酸生物合成途径中的调节机制比较复杂,除了存在多重反馈调节外,还存在着弱化子系统。这使得色氨酸成为氨基酸发酵工业中最难发酵的氨基酸之一.随着DNA重组技术的在微生物育种中的应用,为优良色氨酸菌种的筛选提供了可靠的技术保证。使得产酸水平逐渐达到工业化生产的要求。Katsumata.R等将带有DAHP合成酶(DS)和色氨酸合成酶(TS) 基因的重组质粒引入产L-色氨酸43g/L的谷氨酸棒杆菌KY10-894中,使该工程菌株的L-色氨酸产量达到了66g/L产酸水平提高了54%。2添加前体发酵法该法又称为微生物转化法,它是使用葡萄糖作为碳源,同时添加合成色氨酸所需的前体物(如邻氨基苯甲酸、吲哚、L-丝氨酸等),利用微生物的色氨酸合成酶系转化前体来合成L-色氨酸。这种方法很早就投入了工业化生产,目前世界上最大的色氨酸生产厂家日本的昭和电工公司就是采用以邻氨基苯甲酸为前体物,利用Hansenula(汉逊氏酵母)或Bacillus(芽孢杆菌)菌种将其转化为色氨酸的生产方法,Yokozcnki等以DL-5-吲哚-甲基海因为原料,利用黄杆菌T-523分解其为色氨酸,可产L-色氨酸7.1 g/L。Fukui等由枯草杆菌选育5-氟色氨酸(5-FT)抗性突变株,在含l%葡萄糖和5%可溶性淀粉培养基中,连续流加邻氨基苯甲酸,可积累L-色氨酸9.6g/L。Nakayarna等进一步改造该突变株,使其具有5-FT和8-氮鸟嘌呤(8-AG)双重抗性,在含10%葡萄糖培养基中,连续流加邻氨基苯甲酸,可积累L-色氨酸15.6g/L。微生物转化法的不足之处在于当转化液中前体物浓度较高时,转化率有所下降,但可以通过分批次少量流加前体减少其抑制作用。另外,前体物价格比较昂贵,不利于降低成本。因此,有人研究利用发酵法廉价提供一种前体物,再结合其它方法的优势进行色氨酸的生产。Hajimu MOrikota等利用黄色短杆菌P390直接发酵L-谷氨酸-β-半醛(GSA)达13.2g/L,然后将发酵液适当稀释后加入苯肼的1mol/LH2S04溶液中加热回流1小时之后,48%的GSA可转化为L-色氨酸。SMgeru oita等利用硫辛酸和硫胺素双重缺陷性菌株Enterobacter aetogene LT-94,在含5%的葡萄糖培养中产丙酮酸30g/L,然后再通过添加吲哚和氯化铵,利用该菌的色氨酸酶酶促转化L-色氨酸16.7%。

这个够详细的 就怕看晕你 要有耐心啊 参考资料: 氨基酸的生理功能 氨基酸通过肽键连接起来成为肽与蛋白质。氨基酸、肽与蛋白质均是有机生命体组织细胞的基本组成成分,对生命活动发挥着举足轻重的作用。 某些氨基酸除可形成蛋白质外,还参与一些特殊的代谢反应,表现出某些重要特性。 (1) 赖氨酸 赖氨酸为碱性必需氨基酸。由于谷物食品中的赖氨酸含量甚低,且在加工过程中易被破坏而缺乏,故称为第一限制性氨基酸。 赖氨酸可以调节人体代谢平衡。赖氨酸为合成肉碱提供结构组分,而肉碱会促使细胞中脂肪酸的合成。往食物中添加少量的赖氨酸,可以刺激胃蛋白酶与胃酸的分泌,提高胃液分泌功效,起到增进食欲、促进幼儿生长与发育的作用。赖氨酸还能提高钙的吸收及其在体内的积累,加速骨骼生长。如缺乏赖氨酸,会造成胃液分沁不足而出现厌食、营养性贫血,致使中枢神经受阻、发育不良。 赖氨酸在医药上还可作为利尿剂的辅助药物,治疗因血中氯化物减少而引起的铅中毒现象,还可与酸性药物(如水杨酸等)生成盐来减轻不良反应,与蛋氨酸合用则可抑制重症高血压病。 单纯性疱疹病毒是引起唇疱疹、热病性疱疹与生殖器疱疹的原因,而其近属带状疱疹病毒是水痘、带状疱疹和传染性单核细胞增生症的致病者。印第安波波利斯Lilly研究室在1979年发表的研究表明,补充赖氨酸能加速疱疹感染的康复并抑制其复发。 长期服用赖氨酸可拮抗另一个氨基酸――精氨酸,而精氨酸能促进疱疹病毒的生长。 (2) 蛋氨酸 蛋氨酸是含硫必需氨基酸,与生物体内各种含硫化合物的代谢密切相关。当缺乏蛋氨酸时,会引起食欲减退、生长减缓或不增加体重、肾脏肿大和肝脏铁堆积等现象,最后导致肝坏死或纤维化。 蛋氨酸还可利用其所带的甲基,对有毒物或药物进行甲基化而起到解毒的作用。因此,蛋氨酸可用于防治慢性或急性肝炎、肝硬化等肝脏疾病,也可用于缓解砷、三氯甲烷、四氯化碳、苯、吡啶和喹啉等有害物质的毒性反应。 (3) 色氨酸 色氨酸可转化生成人体大脑中的一种重要神经传递物质――5–羟色胺,而5–羟色胺有中和肾上腺素与去甲肾上腺素的作用,并可改善睡眠的持续时间。当动物大脑中的5–羟色胺含量降低时,表现出异常的行为,出现神经错乱的幻觉以及失眠等。此外,5–羟色胺有很强的血管收缩作用,可存在于许多组织,包括血小板和肠粘膜细胞中,受伤后的机体会通过释放5–羟色胺来止血。医药上常将色氨酸用作抗闷剂、抗痉挛剂、胃分泌调节剂、胃粘膜保护剂和强抗昏迷剂等。 (4) 缬氨酸、亮氨酸、异亮氨酸和苏氨酸 缬氨酸、亮氨酸与异亮氨酸均属支链氨基酸,同时都是必需氨基酸。当缬氨酸不足时,大鼠中枢神经系统功能会发生紊乱,共济失调而出现四肢震颤。通过解剖切片脑组织,发现有红核细胞变性现象,晚期肝硬化病人因肝功能损害,易形成高胰岛素血症,致使血中支链氨基酸减少,支链氨基酸和芳香族氨基酸的比值由正常人的3.0~3.5降至1.0~1.5,故常用缬氨酸等支链氨基酸的注射液治疗肝功能衰竭等疾病。此外,它也可作为加快创伤愈合的治疗剂。 亮氨酸可用于诊断和治疗小儿的突发性高血糖症,也可用作头晕治疗剂及营养滋补剂。异亮氨酸能治疗神经障碍、食欲减退和贫血,在肌肉蛋白质代谢中也极为重要。 苏氨酸是必需氨基酸之一,参与脂肪代谢,缺乏苏氨酸时出现肝脂肪病变。 (5) 天冬氨酸、天冬酰胺 天冬氨酸通过脱氨生成草酰乙酸而促进三羧酸循环,故是三羧酸循环中的重要成分。天冬氨酸也与鸟氨酸循环密切相关,担负着使血液中的氨转变为尿素排泄出去的部分工作。同时,天冬氨酸还是合成乳清酸等核酸前体物质的原料。 通常将天冬氨酸制成钙、镁、钾或铁等的盐类后使用。因为这些金属在与天冬氨酸结合后,能通过主动运输途径透过细胞膜进入细胞内发挥作用。天冬氨酸钾盐与镁盐的混合物,主要用于消除疲劳,临床上用来治疗心脏病、肝病、糖尿病等疾病。天冬氨酸钾盐可用于治疗低钾症,铁盐可治疗贫血。 不同癌细胞的增殖需要消耗大量某种特定的氨基酸。寻找这种氨基酸的类似物――代谢拮抗剂,被认为是治疗癌症的一种有效手段。天冬酰胺酶能阻止需要天冬酰胺的癌细胞(白血病)的增殖。天冬酰胺的类似物S–氨甲酰基–半胱氨酸经动物试验对抗白血病有明显的效果。目前已试制的氨基酸类抗癌物有10多种,如N–乙酰–L–苯丙氨酸、N–乙酰–L–缬氨酸等,其中有的对癌细胞的抑制率可高达95%以上。 (6) 胱氨酸、半胱氨酸 胱氨酸及半胱氨酸是含硫的非必需氨基酸,可降低人体对蛋氨酸的需要量。胱氨酸是形成皮肤不可缺少的物质,能加速烧伤伤口的康复及放射性损伤的化学保护,刺激红、白细胞的增加。 半胱氨酸所带的巯基(-SH)具有许多生理作用,可缓解有毒物或有毒药物(酚、苯、萘、氰离子)的中毒程度,对放射线也有防治效果。半胱氨酸的衍生物N–乙酰–L–半胱氨酸,由于巯基的作用,具有降低粘度的效果,可作为粘液溶解剂,用于防治支气管炎等咳痰的排出困难。此外,半胱氨酸能促进毛发的生长,可用于治疗秃发症。其他衍生物,如L–半胱氨酸甲酯盐酸盐可用于治疗支气管炎、鼻粘膜渗出性发炎等。 (7) 甘氨酸 甘氨酸是最简单的氨基酸,它可由丝氨酸失去一个碳而生成。甘氨酸参与嘌呤类、卟啉类、肌酸和乙醛酸的合成,乙醛酸因其氧化产生草酸而促使遗传病草酸尿的发生。此外,甘氨酸可与种类繁多的物质结合,使之由胆汁或尿中排出。此外,甘氨酸可提供非必需氨基酸的氮源,改进氨基酸注射液在体内的耐受性。将甘氨酸与谷氨酸、丙氨酸一起使用,对防治前列腺肥大并发症、排尿障碍、频尿、残尿等症状颇有效果。 (8) 组氨酸 组氨酸对成人为非必需氨酸,但对幼儿却为必需氨基酸。在慢性尿毒症患者的膳食中添加少量的组氨酸,氨基酸结合进入血红蛋白的速度增加,肾原性贫血减轻,所以组氨酸也是尿毒症患者的必需氨基酸。 组氨酸的咪唑基能与Fe2+或其他金属离子形成配位化合物,促进铁的吸收,因而可用于防治贫血。组氨酸能降低胃液酸度,缓和胃肠手术的疼痛,减轻妊娠期呕吐及胃部灼热感,抑制由植物神经紧张而引起的消化道溃烂,对过敏性疾病,如哮喘等也有功效。此外,组氨酸可扩张血管,降低血压,临床上用于心绞痛、心功能不全等疾病的治疗。类风湿性关节炎患者血中组氨酸含量显著减少,使用组氨酸后发现其握力、走路与血沉等指标均有好转。 在组氨酸脱羧酶的作用下,组氨酸脱羧形成组胺。组胺具有很强的血管舒张作用,并与多种变态反应及发炎有关。此外,组胺会刺激胃蛋白酶与胃酸。 (9) 谷氨酸 谷氨酸、天冬氨酸具有兴奋性递质作用,它们是哺乳动物中枢神经系统中含量最高的氨基酸,其兴奋作用仅限于中枢。当谷氨酸含量达9%时,只要增加10–15mol的谷氨酸就可对皮层神经元产生兴奋性影响。因此,谷氨酸对改进和维持脑功能必不可少。 谷氨酸经谷氨酸脱羧酶的脱羧作用而形成γ–氨基丁酸,后者是存在于脑组织中的一种具有抑制中枢神经兴奋作用的物质,当γ–氨基丁酸含量降低时,会影响细胞代谢与细胞功能。 谷氨酸的多种衍生物,如二甲基氨乙醇乙酰谷氨酸,临床上用于治疗因大脑血管障碍而引起的运动障碍、记忆障碍和脑炎等。γ–氨基丁酸对记忆障碍、言语障碍、麻痹和高血压等有效,γ–氨基β–羟基丁酸对局部麻痹、记忆障碍、言语障碍、本能性肾性高血压、羊癫疯和精神发育迟缓等有效。 谷氨酸与天冬氨酸一样,也与三羧酸循环有密切的关系,可用于治疗肝昏迷等症。谷氨酸的酰胺衍生物――谷氨酰胺,对胃溃疡有明显的效果,其原因是谷氨酰胺的氨基转移到葡萄糖上,生成消化器粘膜上皮组织粘蛋白的组成成分葡萄糖胺。 (10) 丝氨酸、丙氨酸与脯氨酸 丝氨酸是合成嘌呤、胸腺嘧淀与胆碱的前体,丙氨酸对体内蛋白质合成过程起重要作用,它在体内代谢时通过脱氨生成酮酸,按照葡萄糖代谢途径生成糖。脯氨酸分子中吡咯环在结构上与血红蛋白密切相关。羟脯氨酸是胶原的组成成分之一。体内脯氨酸、羟脯氨酸浓度不平衡会造成牙齿、骨骼中的软骨及韧带组织的韧性减弱。脯氨酸衍生物和利尿剂配合,具有抗高血压作用。 牛 磺 酸 牛磺酸是牛黄的组成成分。 牛磺酸普遍存在于动物乳汁、脑与心脏中,在肌肉中含量最高,以游离形式存在,不参与蛋白质代谢。植物中仅存在藻类,高等植物中尚未发现。体内牛磺酸是由半胱氨酸代谢而来的。 牛磺酸的缺乏会影响到生长、视力、心脏与脑的正常生长。 被细菌感染的病人,由于细菌的大量繁殖消耗了体内的牛磺酸,也会形成牛磺酸缺乏,发生眼底视网膜电流图的变化,而补充牛磺酸后会使眼底的病变好转由于人类只能有限地合成牛磺酸,因此膳食中的牛磺酸就显得非常重要。 奶制品中牛磺酸的含量很低。禽类中,黑色禽肉的牛磺酸含量要比白色肉的高。海产品与禽、畜类比较,以海产品中的牛磺酸含量最高,如牡蛎、蛤蜊与淡菜中牛磺酸可高达400mg/100g以上,同时加热烹调对其牛磺酸的含量没有什么影响。日常的各种食物,包括谷物、水果和蔬菜等,都不含牛磺酸。 精 氨 酸 (一) 精氨酸是鸟氨酸循环中的一个组成成分,具有极其重要的生理功能。多吃精氨酸,可以增加肝脏中精氨酸酶的活性,有助于将血液中的氨转变为尿素而排泄出去。所以,精氨酸对高氨血症、肝脏机能障碍等疾病颇有效果。 精氨酸是一种双基氨基酸,对成人来说虽然不是必需氨基酸,但在有些情况如机体发育不成熟或在严重应激条件下,如果缺乏精氨酸,机体便不能维持正氮平衡与正常的生理功能。病人若缺乏精氨酸会导致血氨过高,甚至昏迷。婴儿若先天性缺乏尿素循环的某些酶,精氨酸对其也是必需的,否则不能维持其正常的生长与发育。 精氨酸的重要代谢功能是促进伤口的愈合作用,它可促进胶原组织的合成,故能修复伤口。在伤口分泌液中可观察到精氨酸酶活性的升高,这也表明伤口附近的精氨酸需要量大增。精氨酸能促进伤口周围的微循环而促使伤口早日痊愈。 精氨酸的免疫调节功能,可防止胸腺的退化(尤其是受伤后的退化),补充精氨酸能增加胸腺的重量,促进胸腺中淋巴细胞的生长。 补充精氨酸还能减少患肿瘤动物的体积,降低肿瘤的转移率,提高动物的活存时间与存活率。 在免疫系统中,除淋巴细胞外,吞噬细胞的活力也与精氨酸有关。加入精氨酸后,可活化其酶系统,使之更能杀死肿瘤细胞或细菌等靶细胞。 郑建仙博士,华南理工大学教授 氨基酸与人类健康 氨基酸是构成生物体蛋白质并同生命活动有关的最基本的物质,是在生物体内构成蛋白质分子的基本单位,与生物的生命活动有着密切的关系。它在抗体内具有特殊的生理功能,是生物体内不可缺少的营养成分之一。 一、构成人体的基本物质,是生命的物质基础 1.构成人体的最基本物质之一 构成人体的最基本的物质,有蛋白质、脂类、碳水化合物、无机盐、维生素、水和食物纤维等。 作为构成蛋白质分子的基本单位的氨基酸,无疑是构成人体内最基本物质之一。 构成人体的氨基酸有20多种,它们是:色氨酸、蛋氨酸、苏氨酸、缬氨酸、赖氨酸、组氨酸、亮氨酸、异亮氨酸、丙氨酸、苯丙氨酸、胱氨酸、半胱氨酸、精氨酸、甘氨酸、丝氨酸、酪氨酸、3.5.二碘酪氨酸、谷氨酸、天门冬氨酸、脯氨酸、羟脯氨酸、精氨酸、瓜氨酸、乌氨酸等。这些氨基酸存在于自然界中,在植物体内都能合成,而人体不能全部合成。其中8种是人体不能合成的,必需由食物中提供,叫做“必需氨基酸”。这8种必需氨基酸是:色氨酸、苏氨酸、蛋氨酸、缬氨酸、赖氨酸、亮氨酸、异亮氨酸和苯丙氨酸。其他则是“非必需氨基酸”。组氨酸能在人体内合成,但其合成速度不能满足身体需要,有人也把它列为“必需氨基酸”。胱氨酸、酪氨酸、精氨酸、丝氨酸和甘氨酸长期缺乏可能引起生理功能障碍,而列为“半必需氨基酸”,因为它们在体内虽能合成,但其合成原料是必需氨基酸,而且胱氨酸可取代80%~90%的蛋氨酸,酪氨酸可替代70%~75%的苯丙氨酸,起到必需氨基酸的作用,上述把氨基酸分为“必需氨基酸”、“半必需氨基酸”和“非必需氨基酸”3类,是按其营养功能来划分的;如按其在体内代谢途径可分为“成酮氨基酸”和“成糖氨基酸”;按其化学性质又可分为中性氨基酸、酸性氨基酸和碱性氨基酸,大多数氨基酸属于中性。 2.生命代谢的物质基础 生命的产生、存在和消亡,无一不与蛋白质有关,正如恩格斯所说:“蛋白质是生命的物质基础,生命是蛋白质存在的一种形式。”如果人体内缺少蛋白质,轻者体质下降,发育迟缓,抵抗力减弱,贫血乏力,重者形成水肿,甚至危及生命。一旦失去了蛋白质,生命也就不复存在,故有人称蛋白质为“生命的载体”。可以说,它是生命的第一要素。 蛋白质的基本单位是氨基酸。如果人体缺乏任何一种必需氨基酸,就可导致生理功能异常,影响抗体代谢的正常进行,最后导致疾病。同样,如果人体内缺乏某些非必需氨基酸,会产生抗体代谢障碍。精氨酸和瓜氨酸对形成尿素十分重要;胱氨酸摄入不足就会引起胰岛素减少,血糖升高。又如创伤后胱氨酸和精氨酸的需要量大增,如缺乏,即使热能充足仍不能顺利合成蛋白质。总之,氨基酸在人体内通过代谢可以发挥下列一些作用:①合成组织蛋白质;②变成酸、激素、抗体、肌酸等含氨物质;③转变为碳水化合物和脂肪;④氧化成二氧化碳和水及尿素,产生能量。因此,氨基酸在人体中的存在,不仅提供了合成蛋白质的重要原料,而且对于促进生长,进行正常代谢、维持生命提供了物质基础。如果人体缺乏或减少其中某一种,人体的正常生命代谢就会受到障碍,甚至导致各种疾病的发生或生命活动终止。由此可见,氨基酸在人体生命活动中显得多么需要。 二、在食物营养中的地位和作用 人类为了生存必需摄取食物,以维持抗体正常的生理、生化、免疫机能,以及生长发育、新陈代谢等生命活动,食物在体内经过消化、吸收、代谢,促进抗体生长发育、益智健体、抗衰防病、延年益寿的综合过程称为营养。食物中的有效成分称为营养素。 作为构成人体的最基本的物质的蛋白质、脂类、碳水化合物、无机盐(即矿物质,含常量元素和微量元素)、维生素、水和食物纤维,也是人体所需要的营养素。它们在机体内具有各自独特的营养功能,但在代谢过程中又密切联系,共同参加、推动和调节生命活动。机体通过食物与外界联系,保持内在环境的相对恒定,并完成内外环境的统一与平衡。 氨基酸在这些营养素中起什么作用呢? 1.蛋白质在机体内的消化和吸收是通过氨基酸来完成的 作为机体内第一营养要素的蛋白质,它在食物营养中的作用是显而易见的,但它在人体内并不能直接被利用,而是通过变成氨基酸小分子后被利用的。即它在人体的胃肠道内并不直接被人体所吸收,而是在胃肠道中经过多种消化酶的作用,将高分子蛋白质分解为低分子的多肽或氨基酸后,在小肠内被吸收,沿着肝门静脉进入肝脏。一部分氨基酸在肝脏内进行分解或合成蛋白质;另一部分氨基酸继续随血液分布到各个组织器官,任其选用,合成各种特异性的组织蛋白质。在正常情况下,氨基酸进入血液中与其输出速度几乎相等,所以正常人血液中氨基酸含量相当恒定。如以氨基氮计,每百毫升血浆中含量为4~6毫克,每百毫升血球中含量为6.5~9.6毫克。饱餐蛋白质后,大量氨基酸被吸收,血中氨基酸水平暂时升高,经过6~7小时后,含量又恢复正常。说明体内氨基酸代谢处于动态平衡,以血液氨基酸为其平衡枢纽,肝脏是血液氨基酸的重要调节器。因此,食物蛋白质经消化分解为氨基酸后被人体所吸收,抗体利用这些氨基酸再合成自身的蛋白质。人体对蛋白质的需要实际上是对氨基酸的需要。 2.起氮平衡作用 当每日膳食中蛋白质的质和量适宜时,摄入的氮量由粪、尿和皮肤排出的氮量相等,称之为氮的总平衡。实际上是蛋白质和氨基酸之间不断合成与分解之间的平衡。正常人每日食进的蛋白质应保持在一定范围内,突然增减食入量时,机体尚能调节蛋白质的代谢量维持氮平衡。食入过量蛋白质,超出机体调节能力,平衡机制就会被破坏。完全不吃蛋白质,体内组织蛋白依然分解,持续出现负氮平衡,如不及时采取措施纠正,终将导致抗体死亡。 3.转变为糖或脂肪 氨基酸分解代谢所产生的a-酮酸,随着不同特性,循糖或脂的代谢途径进行代谢。a-酮酸可再合成新的氨基酸,或转变为糖或脂肪,或进入三羧循环氧化分解成CO2和H2O,并放出能量。 4.参与构成酶、激素、部分维生素 酶的化学本质是蛋白质(氨基酸分子构成),如淀粉酶、胃蛋白酶、胆碱脂酶、碳酸酐酶、转氨酶等。含氮激素的成分是蛋白质或其衍生物,如生长激素、促甲状腺激素、肾上腺素、胰岛素、促肠液激素等。有的维生素是由氨基酸转变或与蛋白质结合存在。酶、激素、维生素在调节生理机能、催化代谢过程中起着十分重要的作用。 5.人体必需氨基酸的需要量 成人必需氨基酸的需要量约为蛋白质需要量的20%,——37%。 三、在医疗中的应用 氨基酸在医药上主要用来制备复方氨基酸输液,也用作治疗药物和用于合成多肽药物。目前用作药物的氨基酸有一百几十种,其中包括构成蛋白质的氨基酸有20种和构成非蛋白质的氨基酸有100多种。 由多种氨基酸组成的复方制剂在现代静脉营养输液以及“要素饮食”疗法中占有非常重要的地位,对维持危重病人的营养,抢救患者生命起积极作用,成为现代医疗中不可少的医药品种之一。 谷氨酸、精氨酸、天门冬氨酸、胱氨酸、L-多巴等氨基酸单独作用治疗一些疾病,主要用于治疗肝病疾病、消化道疾病、脑病、心血管病、呼吸道疾病以及用于提高肌肉活力、儿科营养和解毒等。此外氨基酸衍生物在癌症治疗上出现了希望。 四、与衰老的关系 老年人如果体内缺乏蛋白质分解较多而合成减慢。因此一般来说,老年人比青壮年需要蛋白质数量多,而且对蛋氨酸、赖氨酸的需求量也高于青壮年。60岁以上老人每天应摄入70克左右的蛋白质, 而且要求蛋白质所含必需氨基酸种类齐全且配比适当的,这样优质蛋白,延年益寿。 余传隆(中国医药科技出版) 氨基酸与老年健康 美国“发现”号航天飞机把世界上年龄最大的宇航员(77岁)格伦送入太空。这天对老年人来说,称为最伟大的一天,最引人瞩目。暮年再征太空的格伦,他要帮助医学进行科学实验。老人蛋白质分解、人体氨基酸的生物学试验就是一项重要的研究。氨基酸与老人健康,不仅在地球上要研究,在太空的也要研究。因为氨基酸与老年人的寿命、衰老相关太重要了。为什么重要,下面的分述便可知道。 1.老年的生理变化与氨基酸 一般认为人们进入60岁以上是进入了老年。老年的生理与营养状态随着老年的进程而改变。蛋白质在老年人体的变化归纳起来有二:一是合成,合成组织蛋白质及各种活性物质;二是分解,组织蛋白质的分解、产生能量、产生废物。对于生长发育期的婴儿及青少年合成大于分解,因而身体逐渐成长;对于一般成年人是合成等于分解,因而体重相对稳定。对于老年来说,人体衰老的过程中蛋白质代谢以分解为主,合成代谢逐渐缓慢,身体内的蛋白质逐渐被消耗,往往呈负氮平衡。如血红蛋白质合成减少,因此贫血为常患的老年性疾病;由于酶的作用及小肠功能衰退,蛋白质吸收过程中分解不充分,体内肽类增多,游离氨基酸减少。因老年人肾功能低下而影响氨基酸再吸收,因肝功能下降,对肽的利用也减少。近年研究报告,老年人与中青年人给予相同营养条件,但老年人其血浆氨基酸(缬、亮、酪、赖、蛋、丝、丙氨酸)含量减低,特别支链氨基酸(缬、亮、异亮氨酸)显示不足。有人认为,高浓度支链氨基酸有提供合成的作用,当补给支链氨基酸时,能通过产生三磷酸腺苷(ATP)供能源,降低蛋白质分解作用,并通过促进胰岛素分泌量加强蛋白质的合成。现国外已将支链氨基酸用于临床维持氮平衡,促进蛋白质合成。国内已有用于肝病、肾病及儿童的特殊氨基酸。 由于氨基酸的吸收或利用。因老年化而影响到免疫功能,免疫活性的变化也影响其他器官的功能,如感染、癌症、免疫复合病、自身免疫病、淀粉状蛋白变性的发病率在老年均增高,易致衰老病死。 2.氨基酸与长寿 为了促进老年人的健康,如抗衰老、提高身体抵抗力、促进免疫机制的功能,需要食品富含微量元素或糖类。但免疫的物质基础是蛋白质,人体免疫物质没有一样不是由蛋白质组成。如免疫球蛋白、抗体、抗原、补体等,即使白细胞、淋巴细胞与吞噬细胞等细胞内蛋白质的含量也在90%以上。因此人体若不缺乏蛋白质或氨基酸,上述的微量元素与多糖会起作用。如果缺乏,则无论用多少都不起作用。随着营养学与生物化学的进展,新的研究表明补给某种非必需氨基酸虽然人体能够合成,但在严重应激的状态(包括精神紧张、焦虑、思想负担)或某些疾病的情况下容易发生缺乏。如果缺乏,则对人体会发生有害的影响,这些氨基酸称之为条件性必需氨基酸。如牛磺酸、精氨酸和谷氨酰胺。 在正常条件下缺乏必需氨基酸可以减低体液的免疫反应。例如色氨酸缺乏的大鼠,其IgG及IgM受体抑制,而当重新加入色氨酸能维持正常的抗体生成;苯丙氨酸和酪氨酸均缺乏,可以抑制大鼠的免疫细胞对肿瘤细胞作出反应;蛋氨酸与胱氨酸的缺乏,还可引起抗体的合成障碍。已证明,氨基酸的平衡也有这种不利作用。因此必需氨基酸在免疫中起着重要的作用,要延长老年人寿命,必须提高免疫力,重视必需氨基酸的供给。当前与寿命相关的正是热门研究的必需氨基酸有: 牛磺酸:人体牛磺酸的来源一是自身合成,二是从膳食中摄取。牛磺酸的生物合成由蛋氨酸经硫化作用转化成胱氨酸,并由胱氨酸合成,其中经过一系列的酶促反应,许多高等动物包括人已失去了合成足够牛磺酸以维持体内牛磺酸整体水平的能力,需从膳食中摄取牛磺酸以满足机体的需要。有报道,牛磺酸在中枢神经系统衰老中的作用;老年期神经系统退行性变化是全身各系统最复杂而深奥的过程之一,中枢神经系统衰老在形态上或生化水平上都有明显的改变,单胺类和氨基酸类神经递质的合成、释放、重吸收及运输机制方面出现增年性变化。脂褐质是衰老过程中具有特征性物质,大脑脂褐质增加是神经衰老变化标志之一,当神经元胞浆蓄积较大量的脂褐质时,细胞核、细胞质受压变形,影响神经元的正常代谢功能。衰老时,组织中脂褐质含量明显增高,而牛磺酸可使下降、且使超氧化物歧化酶(SOD)活性增加,并且能抑制脂质过氧化产物丙二醛(MDA)对低密度脂质蛋白(LDL)的修饰。同时牛磺酸与葡萄糖的反应产物表现出较强抗氧化作用,能够阻止蛋黄卵磷脂氧化成脂质过氧化物,因而有显著抗衰老的作用。 精氨酸:精氨酸虽然不是必需氨基酸,但在严重应激情况下(如发生疾病或受伤)、或当缺乏了精氨酸便不能维持氮平衡与正常生理功能,因此它又是条件性必需氨基酸。最新提出的理论,精氨酸是一氧化氮(NO)与瓜氨酸反应的酶系统代谢途径中的必要物质。NO或内皮细胞衍生的松弛因子的主要生化作用是刺激机体提高吞噬细胞中环鸟苷酸的水平,并能刺激白介素的产生来调节巨噬细胞的吞噬细菌作用。与精氨酸有关的NO酶系统,也在血管的内皮细胞、脑组织与肝脏的枯否(kupffer)细胞中发现,它能导致这些器官与组织的激素分泌、从而起到免疫功能的作用。为了提高老年人的免疫也可用氨基酸注射液。 谷氨酰胺:在正常情况下,它是一非必需氨基酸,但在剧烈运动、受伤、感染等应激情况下,谷氨酰胺的需要量大大超过了机体合成谷氨酰胺的能力,使体内的谷氨酰胺含量降低,而这一降低,便会使蛋白质合成减少、小肠粘膜萎缩及免疫功能低下,因此它又称条件性必需氨基酸。 最近发现肠道是人体中最大的免疫器官,也是人体的第三种屏障。前两种屏障是血脑屏障和胎盘屏障。如果肠内没有营养供应,肠道就会营养不良,使肠道的免疫功能减弱与发生细菌相互移位。动物试验证明若动物用无谷氨酰胺的全静脉输液或要素膳补充营养,则动物小肠的绒毛发生萎缩,肠壁变薄,肠免疫功能降低。在静脉输液中提供2%的谷氨酰酶(约氨基酸总量的25%)对恢复肠绒毛萎缩与免疫功能有显著作用。谷氨酰胺在维持肠粘膜功能中的作用对提高免疫能力有一定作用,特别老年人是不可缺少的。 3、老年人如何科学补充氨基酸 老年人对氨基酸的需要量随年龄增长,机体蛋白质总量下降,一位健康老人蛋白质总量为青壮年的60%~70%。这可能与骨骼肌的减少有关,但不能由此认为老年人蛋白质需要减少。老年人体内以分解代谢为主,胃液及胃蛋白酶分泌减少、胃液酸度下降、对蛋白质消化吸收下降,此外热能摄入低、饮食氮存留下降,所以老人蛋白质需要不比成年人的少。一般在正常膳食时,蛋白质摄入0.7~1.0g/kg体重可维持氮平衡,1.0~1.2g/kg体重可达平衡。据此定出每日蛋白质供给量大致为60~75g,其中1/3为动物性蛋白质。如按蛋白质供热比考虑,以12%~14%为宜。在氨基酸代谢方面研究,提示苏氨酸、色氨酸、蛋氨酸等的需要与青年不同,故必需氨基酸的适宜模

相关百科

热门百科

首页
发表服务