首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

非线性光电功能材料研究论文

发布时间:

非线性光电功能材料研究论文

国家重点实验室建立以来,先后有LAP、KTP、双掺杂TGS、KNSBN、KTN、NdPP、NYAB、LT、DKDP、KDP、MHBA、BN等晶体材料的创新性研究工作受到了国际同行的广泛关注,获得了包括国家发明奖一等奖1项、 国家发明奖三等奖3项、国家发明奖四等奖2项、国家科技进步奖二等奖1项、国家科技进步奖三等奖1项在内的多项奖励 。 序号获奖名称主要研究人员获奖时间所获奖励1 人工合成优质高频石英晶体 韩建儒 陈焕矗 2000.1 国家教育部科技进步奖二等奖 2 1999-2000学年度省级三好学生 史伟 2000.6 山东省教育厅 3 实时测定晶体生长固液/液界面和边界层结构的方法和结晶器 于锡玲 2000.8 世界发明家国际协会国际发明金奖 4 功能晶体中缺陷的同步辐射白光形貌术和光学显微术研究 胡小波 王继扬 魏景谦 刘耀岗 刘宏 2000.12 省教育厅理论成果二等奖 5 晶体热效应对高功率端面泵浦Nd:YVO4. Nd:GdVO4激光器的影响研究 刘均海 邵宗书 王长青 祝莉 王继扬 2000.12 省教育厅理论成果一等奖 6 (八六三计划)先进个人 高樟寿 2001.2 国家科学技术部中国人民解放军总装备部 7 全国优秀博士学位论文 史伟 2002 中华人民共和国教育部 国务院学位委员会 8 一种规模化生长激光核聚变用大KDP晶体的新方法-四槽循环动法 高樟寿 鲁智宽 李毅平 王圣来 刘加民 2002.7 教育部科技成果完成者证书 教育部 9 钒酸酸钇(掺钕)单晶生长技术 孟宪林 祝俐 张怀金 董春明 徐炳超 魏景谦王长青 程瑞平 刘训民 2002.9 省科技进步奖二等奖 10 高抗光损伤磷酸钛氧钾晶体和大功率绿光激光器 邵宗书 王继扬 刘均海 刘耀岗 魏景谦 刘恩泉 2002.9 省技术发明奖二等奖 11 山东省科学技术最高奖 蒋民华 2003.3 省长、韩寓群最高 12 电荷转移的对称性与分子的双光子吸收/辐射(荧光、激射)性能关系的研究 王筱梅导师:蒋民华 2003.8 全国优秀博士学位论文 13 半导体发光材料外延工艺与器件制造技术 山东华光光电子有限公司:黄柏标 徐现刚张晓阳 秦晓燕 2003.11 省科技进步奖一等奖 14 硅酸镓镧功能晶体及其电光Q开关器件 孔海宽导师:王继扬 2003.11 第八届“挑战杯” 全国大学生课外学术科技作品竞赛 二等奖 15 用纳米四氧化三钴制备锂电子电池正极材料钴酸锂 孙 洵(第五位) 2003.11 省科学技术进步奖一等奖 16 KDP(DKDP)晶体中散射颗粒的研究 孙询 许心光 房昌水 高樟寿 2003.12 省教育厅自然科学类三等奖 17 具有上转换发光性质的新型有机光功能化合物 方奇 刘志强 崔月芝 蒋民华 2003.12 省教育厅自然科学类一等奖 18 双金属硫氰酸盐配合物晶体的生长和性质研究 王新强 2004.7.16 山东省优秀博士学位论文 19 有机非线性光学材料和有机导体的分子工程及晶体工程 方奇 蒋民华 刘志强 任燕 2004.11 省科学技术奖:自然科学类一等奖 20 国家重点实验室计划先进 国家重点实验室 2004.11 中华人民共和国科学技术部 21 国家重点实验室计划先进个人 蒋民华 2004.11 中华人民共和国科学技术部 22 中国硅酸盐学会第六届青年科技奖 孙询 2005.1 中国硅酸盐学会 23 双金属硫氰酸盐配合物晶体的生长和性质研究 王新强 2005.1 教育部、国务院学位委员会、全国优秀博士学位论文 24 有机硼(Ⅲ)化合物的合成与三阶非线性光学性质 刘志强 2005.11.14 山东省学位委员会、2004年山东省优秀博士学位论文 25 电光聚合物光波导薄膜的制备及其物性研究 秦志辉 2005.11.14 山东省学位委员会 2005年山东省优秀硕士学位论文 26 新型纳米发光材料的制备、表征及发光机理的研究 吕孟凯 2005.11.30 省科学技术奖:自然科学奖三等奖 27 三硼酸铋晶体的生长和非线性光学性能研究 王继扬 2005.11.30 省科学技术奖:自然科学奖三等奖 28 含有硼氮硫杂原子的新型分子基光电功能材料 刘志强等 2005.12 山东高等学校优秀科研成果奖二等奖 29 硅酸镓镧系列单晶的生长和性能研究 袁多荣 2005.12 山东省高等学校优秀科研成果奖二等奖 30 山东省优秀研究生指导教师 房昌水 2006.12.8 山东省学位委员会、山东省教育厅、山东省财政厅 31 Yb及其它稀土元素掺杂四硼酸铝晶体的生长及性质研究 李静 2006.9.20 山东省优秀学位论文、山东省学位委员会、山东省教育厅 32 山东省优秀研究生指导教师 蒋民华 2006.12.8 山东省学位委员会、山东省教育厅、山东省财政厅 33 星型有机氮、硼光电子材料的研制 袁茂森 2006.12 山东省首届研究生优秀科技创新成果奖二等奖 34 求是杰出科技成就集体奖 蒋民华 2007.9.8 香港求是科技基金会 35 半导体纳米材料的制备及发光性质的研究 顾锋导师:吕孟凯 2007.7.5 山东省学位委员会、山东省教育厅2006年山东省优秀博士学位论文 36 新型纳米发光材料的控制合成及其光学性质的研究 周广军 2007.9 山东高等学校优秀科研成果奖三等奖 37 光学级硅酸钾澜晶体生长及其新型电光Q开关 王继扬 2007.12 建筑材料科学技术奖一等奖 38 新型半导体纳米材料控制合成及光电性能 吕孟凯 2007.12.22 上海市科学技术奖二等奖 39 两类硼酸盐激光自倍频晶体生长及激光应用基础研究 王继扬 2008.1.25 自然科学奖 教育部一等奖 40 系列钒酸盐晶体生长和激光应用基础研究 张怀金 2009.01 教育部自然科学奖一等奖 41 新型系列钒酸盐晶体生长及其脉冲能量增强效应研究 于浩海 2009.6.26 山东省优秀学位论文 42 KBBF族深紫外非线性光学晶体的发现、生长和应用 王继扬 2009.12 北京市科学技术奖(第4位)一等奖 43 移动通讯用滤波器关键技术及产业化 王继扬 2009.12 国家科学技术进步二等奖 44 高品质铌酸锂系列晶体生长、后处理技术研究与开发 刘宏 2009.12 建筑材料科学技术奖一等奖 45 第三代(宽禁带)半导体军用电子材料和器件基础研究 胡小波 2009.12 国防科学技术进步奖一等奖 46 基于化学工程原理与方法的纳米材料合成与结构调控 吕孟凯、周广军 2011.1 教育部自然科学奖(2)一等奖 47 硼酸盐激光自倍频晶体制备技术及其小功率绿光激光器件商品化应用 王继杨、张怀金等 2012.12 国家技术发明奖二等奖 资料来自晶体材料国家重点实验室

稀土掺杂氟化物多波长红外显示材料的研究摘 要本文简单介绍了稀土发光原理、上转换发光材料的大致发展史、红外上转换发光材料的应用以及当前研究现状。以PbF2为基质材料,ErF3为激活剂,YbF3为敏化剂,采用高温固相反应法制备了PbF2: Er,Yb上转换发光材料。重点讨论了制备过程中,制备工艺中的烧结时间、烧结温度对红外激光显示材料发光效果的影响。研究了Er3+/Yb3+发光系统在1064nm激光激发下的荧光光谱和上转换发光的性质。实验表明,在1064nm激光激发下,材料可以发射出绿色和红色荧光,是一种新型的红外激光显示材料。关键字:1064nm 上转换 红外激光显示 Er3+/Yb3+AbstractThis paper simply described the rare earth luminescence mechanism, the development of up-conversion materials and their applications were systematically explained. Present situation of the research on infrared up-conversion luminescence is also presented. PbF2 as matrix, ErY3 as activator and YbF3 as sensitizer were adopted to synthesize PbF2: Er,Yb up-conversion material with high temperature solid-phase reaction. A great emphasize was paid on the factors that effect on the luminescence properties of infrared laser displayed materials such as sinter temperature, time of sinter. The luminescence system of Er3+/Yb3+, their fluorescence spectrum and their character of up-conversion with 1064nm LD as an excitation source were studied. The experimental results that intense green and wed up-conversion emissions were observed under 1064nm LD excitation, which is a new type of infrared laser displayed materials.Key Words: 1064nm Up-conversion Infrared laser displayed materials Er3+/Yb3+目 录摘要Abstract第一章 绪论 11.1 稀土元素的光谱理论简介 11.1.1 稀土元素简介 11.1.2 稀土离子能级 11.1.3 晶体场理论 21.1.4 基质晶格的影响 21.2 上转换发光材料的发展概况 31.3 上转换发光的基本理论 41.3.1 激发态吸收 41.3.2 光子雪崩上转换 41.3.3 能量传递上转换 51.4 敏化机制与掺杂方式 61.4.1 敏化机制 61.4.2 掺杂方式 71.5 上转换发光材料的应用 81.6 本论文研究目的及内容 8第二章 红外激光显示材料的合成与表征 102.1 红外激光显示材料的合成 102.1.1 实验药品 102.1.2 实验仪器 102.1.3 样品的制备 112.2 红外激光显示材料的表征 122.2.1 XRD 122.2.2 荧光光谱 12第三章 结果与讨论 143.1 基质材料的确定 143.2 助熔剂的选择 153.3 烧结时间的确定 153.4 烧结温度的确定 163.5 掺杂浓度的确定 17结 论 21参考文献 22致 谢 23第一章 绪论1.1 稀土元素的光谱理论简介1.1.1 稀土元素简介稀土元素是指周期表中IIIB族,原子序数为21的钪(Sc):39的钇(Y)和原子序数57至71的镧系中的镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),共17个元素[1]。稀土元素的原子具有未充满的受到外界屏蔽的4f和5d电子组态,因此具有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射。稀土化合物发光是基于它们的4f电子在f-f组态之内或f-d组态之间的跃迁。稀土发光材料具有许多优点:(1)与一般元素相比,稀土元素4f电子层构型的特点,使其化合物具有多种荧光特性;(2)稀土元素由于4f电子处于内存轨道,受外层s和P轨道的有效屏蔽,很难受到外部环境的干扰,4f能级差极小,f-f跃迁呈现尖锐的线状光谱,发光的色纯度高;(3)荧光寿命跨越从纳秒到毫秒6个数量级;(4)吸收激发能量的能力强,转换效率高;(5)物理化学性质稳定,可承受大功率的电子束、高能辐射和强紫外光的作用。1.1.2稀土离子能级稀土离子具有4f电子壳层,但在原子和自由离子的状态由于宇称禁戒,不能发生f-f电子跃迁[3&7]。在固体中由于奇次晶场项的作用宇称禁戒被解除,可以产生f-f跃迁,4f轨道的主量子数是4,轨道量子数是3,比其他的s,p,d轨道量子数都大,能级较多。除f-f跃迁外,还有4f-5d,4f-6s,4f-6p电子跃迁。由于5d,6s,6p能级处于更高的能级位置,所以跃迁波长较短,除个别离子外,大多数都在真空紫外区域。由于4f壳层受到5s2,5p6壳层的屏蔽作用,对外场作用的反应不敏感,所以在固体中其能级和光谱都具有原子状态特征。因此,f-f跃迁的光谱为锐线,4f壳层到其他组态的跃迁是带状光谱,因为其他组态是外壳层,受环境影响较大。稀土离子在化合物中一般出现三价状态,在可见和红外光区观察的光谱大都属于4fN组态内的跃迁,在给定组态后确定光谱项的一般方法是利用角动量耦合和泡利原理选出合理的光谱项,但这种方法在电子数多,量子数大时,相当麻烦且容易出错。所以,对稀土离子不太适合。利用群论方法,采用U7>R7>G2>R3群链的分支规则可以方便地给出4fN组态的全部正确的光谱项,通常用大写的英文字母表示光谱项的总轨道角动量的量子数的数目,如S,P,D,F,G,H,I,K,L,M,N,O,Q……分别表示总轨道角动量的量子数为0,1,2,3,4,5,6,7,8,9,10,11,12,……,25+l表示光谱项的多重性,S是总自旋量子数。在光谱学中,用符号2S+1L表示光谱项。1.1.3 晶体场理论晶体场理论认为,当稀土离子掺入到晶体中,受到周围晶格离子的影响时,其能级不同自由离子的情况。这个影响主要来自周围离子产生的静电场,通常称为晶体场[2]。晶体场使离子的能级劈裂和跃迁几率发生变化。稀土离子在固体中形成典型的分立发光中心。在分立发光中心中,参与发光跃迁的电子是形成中心离子本身的电子,电子的跃迁发生在离子本身的能级之间。中心的发光性质主要取决于离子本身,而基质晶格的影响是次要的。稀土离子的4f电子能量比5s,5p轨道高,但是5s,5p轨道在4f轨道的外面,因而5s,5p轨道上的电子对晶体场起屏蔽作用,使4f电子受到晶体场的影响大大减小。稀土离子4f电子受到晶体场的作用远远小于电子之间的库仑作用,也远远小于4f电子的自旋—轨道作用。考虑到电子之间的库仑作用和自旋—轨道作用,4f电子能级用2J+I LJ表示。晶体场将使具有总角动量量子数J的能级分裂,分裂的形式和大小取决于晶体场的强度和对称性。稀土离子4f能级的这种分裂,对周围环境(配位情况、晶场强度、对称性)非常敏感,可作为探针来研究晶体、非晶态材料、有机分子和生物分子中稀土离子所在局部环境的结构,且2J+I LJ能级重心在不同的晶体中大致相同,稀土离子4f电子发光有特征性,因而很容易根据谱线位置辨认是什么稀土离子在发光。1.1.4 基质晶格的影响基质晶格对f→d跃迁的光谱位置有着强烈的影响,另外其对f→f跃迁的影响表现在三个方面:(1)可改变三价稀土离子在晶体场所处位置的对称性,使不同跃迁的谱强度发生明显的变化;(2)可影响某些能级的分裂;(3)某些基质的阴离子团可吸收激发能量并传递给稀土离子而使其发光,即基质中的阴离子团起敏化中心的作用。特别是阴离子团的中心离子(Me)和介于中间的氧离子O2-以及取代基质中阳离子位置的稀土离子(RE)形成一直线,即Me-O-RE接近180°时,基质阴离子团对稀土离子的能量传递最有效。1.2 上转换发光材料的发展概况发光是物体内部以某种方式吸收的能量转换为光辐射的过程。发光学的内容包括物体发光的条件、过程和规律,发光材料与器件的设计原理、制备方法和应用,以及光和物质的相互作用等基本物理现象。发光物理及其材料科学在信息、能源、材料、航天航空、生命科学和环境科学技术中的应用必将促进光电子产业的迅猛发展,这对全球的信息高速公路的建设以及国家经济和科技的发展起着举足轻重的推动作用。三价镧系稀土离子具有极丰富的电子能谱,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,在适当波长的激光的激发下可以产生众多的激光谱线,可从红外光谱区扩展到紫外光谱区。因此,稀土离子发光研究一直备受人们的关注。60年代末,Auzel在钨酸镱钠玻璃中意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+稀土离子在红外光激发下可发出可见光,并提出了“上转换发光”的观点[5&4]。所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。其特点是激发光光子能量低于发射光子的能量,这是违反Stokes定律的。因此上转换发光又称为“反Stokes发光”。从七十年代开始,上转换的研究转移到单频激光上转换。到了八十年代由于半导体激光器泵浦源的发展及开发可见光激光器的需求,使其得到快速发展。特别是近年来随着激光技术和激光材料的进一步发展,频率上转换在紧凑型可见激光器、光纤放大器等领域的巨大应用潜力更激起广大科学工作者的兴趣,把上转换发光的研究推向高潮,并取得了突破性实用化的进展。随着频率上转换材料研究的深入和激光技术的发展,人们在考虑拓宽其应用领域和将已有的研究成果转换成高科技产品。1996年在CLEO会议上,Downing与Macfarlanc等人合作提出了三色三维显示方法,双频上转换三维立体显示被评为1996年物理学最新成就之一,这种显示方法不仅可以再现各种实物的立体图像,而且可以随心所欲的显示各类经计算机处理的高速动态立体图像,具有全固化、实物化、高分辨、可靠性高、运行速度快等优点[15]。上转换发光材料的另一项很有意义的应用就是荧光防伪或安全识别,这是一个应用前景极其广阔的新兴研究方向。由于在一种红外光激发下,发出多条可见光谱线且各条谱线的相对强度比较灵敏地依赖于上转换材料的基质材料与材料的制作工艺,因而仿造难、保密强、防伪效果非常可靠。目前,研究的稀土离子主要集中在Nd3+,Er3+,Ho3+,Tm3+和Pr3+等三价阳离子。Yb3+离子由于其特有的能级特性,是一种最常用的敏化离子。一般来说,要制备高效的上转换材料,首先要寻找合适的基质材料,当前研究的上转换材料多达上百种,有玻璃、陶瓷、多晶粉末和单晶。其化合物可分为:(1)氟化物;(2)氧化物;(3)卤氧化物;(4)硫氧化物;(5)硫化物等。迄今为止,上转换发光研究取得了很大的进展,人们已在氟化物玻璃、氟氧化物玻璃及多种晶体中得到了不同掺杂稀土离子的蓝绿上转换荧光。1.3 上转换发光的基本理论通过多光子机制把长波辐射转换成短波辐射称为上转换,其特点是吸收光子的能量低于发射光子的能量[2&8]。稀土离子上转换发光是基于稀土离子4f电子能级间的跃迁产生的。由于4f外壳层电子对4f电子的屏蔽作用,使得4f电子态间的跃迁受基质的影响很小,每种稀土离子都有其确定的能级位置,不同稀土离子的上转换发光过程不同。目前可以把上转过程归结于三种形式:激发态吸收、光子雪崩和能量传递上转换。1.3.1激发态吸收激发态吸收(Excited Stated Absorption简写为ESA)是上转换发光中的最基本过程,如图1-1所示。首先,发光中心处于基态能级E0的电子吸收一个ω1的光子,跃迁到中间亚稳态E1上,E1上的电子又吸收一个ω2光子,跃迁到高能级E2上,当处于能级E2上的电子向基态跃迁时,就发射一个高能光子。图1-1 上转换的激发态吸收过程1.3.2 光子雪崩上转换光子雪崩上转换发光于1979年在LaCl3∶Pr3+材料中首次发现。1997年,N. Rakov等报道了在掺Er3+氟化物玻璃中也出现了雪崩上转换。由于它可以作为上转换激光器的激发机制,而引起了人们的广泛的注意。“光子雪崩”过程是激发态吸收和能量传输相结合的过程,如图1-2所示,一个四能级系统,Mo、M1、M2分别为基态和中间亚稳态,E为发射光子的高能级。激发光对应于M1→E的共振吸收。虽然激发光光子能量同基态吸收不共振,但总会有少量的基态电子被激发到E与M2之间,而后弛豫到M2上。M2上的电子和其他离子的基态电子发生能量传输I,产生两个位于M1的电子。一个M1的电子在吸收一个ω1的光子后激发到高能级E。而E能级的电子又与其他离子的基态相互作用,产生能量传输II,则产生三个为位于M1的电子,如此循环,E能级上的电子数量像雪崩一样急剧地增加。当E能级的电子向基态跃迁时,就发出能量为ω的高能光子。此过程就为上转换的“光子雪崩”过程。图1-2 光子雪崩上转换1.3.3能量传递上转换能量转移(Energy Transfer,简写成ET)是两个能量相近的激发态离子通过非辐射过程藕合,一个回到低能态,把能量转移给另一个离子,使之跃迁到更高的能态。图1-3列出了发生能量传递的几种可能途径:(a)是最普通的一种能量传递方式,处于激发态的施主离子把能量传给处于激发态的受主离子,使受主离子跃迁到更高的激发态去;(b)过程称为多步连续能量传递,在这一过程中,只有施主离子可以吸收入射光子的能量,处于激发态的施主离子与处于基态的受主离子间通过第一步能量传递,把受主离子跃迁到中间态,然后再通过第二步能量传递把受主离子激发到更高的激发态;(c)过程可命名为交叉弛豫能量传递(Cross Relaxation Up-conversion,简称CR),这种能量传递通常发生在相同离子间,在这个过程中,两个相同的离子通过能量传递,使一个离子跃迁到更高的激发态,而另一个离子弛豫到较低的激发态或基态上去;(d)过程为合作发光过程的原理图,两个激发态的稀土离子不通过第三个离子的参与而直接发光,他的一个明显的特征是没有与发射光子能量匹配的能级,这是一种奇特的上转换发光现象;(e)过程为合作敏化上转换,两个处于激发态的稀土离子同时跃迁到基态,而使受主离子跃迁到较高的能态。(a)普通能量传递 (b)多步连续能量传递(c)交叉弛豫能量传递 (d)合作发光能量传递(e)合作敏化上转换能量传递图1-3 几种能量传递过程的示意图稀土离子的上转换发光都是多光子过程,在多光子过程中,激发光的强度与上转换荧光的强度有如下关系:Itamin ∝ Iexcitationn其中Itamin表示上转换荧光强度,Iexcitation表示激发光强度,在双对数坐标下,上转换荧光的强度与激发光的强度的曲线为一直线,其斜率即为上转换过程所需的光子数n,这个关系是确定上转换过程是几光子过程的有效方法。1.4 敏化机制与掺杂方式1.4.1 敏化机制通过敏化作用提高稀土离子上转换发光效率是常用的一种方法[9]。其实质是敏化离子吸收激发能并把能量传递给激活离子,实现激活离子高能级的粒子数布居,从而提高激活离子的转换效率,这个过程可以表述如下:Dexc+A→D+AexcD表示施主离子,A是受主离子,下标“exc”表示该离子处于激发态。Yb3+离子由于特有的能级结构,是最常用的也是最主要的一种敏化离子。(1)直接上转换敏化对与稀土激活中心(如Er3+,Tm3+,Ho3+)和敏化中心Yb3+共掺的发光材料,由于Yb3+的2F5/2能级在910-1000nm均有较强吸收,吸收波长与高功率红外半导体激光器的波长相匹配。若用激光直接激发敏化中心Yb3+,通过Yb3+离子对激活中心的多步能量传递,可再将稀土激活中心激发至高能级而产生上转换荧光,这类过程会导致上转换荧光明显增强,称之为直接上转换敏化。图1-4以Yb3+/Tm3+共掺杂为例给出了该激发过程的示意图。图1-4 直接上转换敏化(2)间接上转换敏化由于Yb3+离子对910-1000 nm间泵浦激光吸收很大,泵浦激光的穿透深度非常小,因此虽然在表面的直接上转换敏化能极大的提高上转换效率,但它却无法应用到上转换光纤系统中。针对这种情况,国际上与1995-1996年首次提出了“间接上转换敏化”方法[7]。间接上转换敏化的模型首先在Tm3+/Yb3+双掺杂体系中提出的:当激活中心为Tm3+时,如果激发波长与Tm3+的3H6→3H4吸收共振,激活中心Tm3+就被激发至3H4能级,随后处于3H4能级的Tm3+离子与位于2F5/2能级的Yb3+离子发生能量传递,使Yb3+离子的2F5/2能级上有一定的粒子数布居。然后处于激发态2F5/2的Yb3+离子再与Tm3+进行能量传递,实现Tm3+的1G4能级的粒子数布居,这样就通过Tm3+→Yb3+→Tm3+献的能量过程间接地把Tm3+离子激发到了更高能级1G4。从而导致了Tm3+离子的蓝色上转换荧光。图1-5给出了间接上转换敏化的示意图。考虑到稀土离子的敏化作用与前述的上转换机理,在实现上转换发光的掺杂方式通常要考虑如下几点:(1)敏化离子在激发波长处有较大的吸收截面和较高的掺杂浓度;(2)敏化离子与激活离子之间有较大的能量传递几率;(3)激活离子中间能级有较长的寿命。图1-5 间接上转换敏化1.4.2 掺杂方式表1-1给出了当前研究比较多的掺杂体系,表中同时列出了某一掺杂体系对应的激发波长、基质材料、敏化机制等。表1-1 常见的掺杂体系稀土离子组合 激发波长 基质材料 敏化机制单掺杂 Er3+ 980nm ZrO2纳米晶体 —Nd3+ 576nm ZnO–SiO2–B2O3 —Tm3+ 660nm AlF3/CaF2/BaF2/YF3 —双掺杂 Yb3+:Er3+ 980nm Ca3Al2Ge3O12玻璃 直接敏化Yb3+:Ho3+ 980nm YVO4 直接敏化Yb3+:Tm3+ 800nm 氟氧化物玻璃 间接敏化Yb3+:Tb3+ 1064nm 硅sol–gel玻璃 合作敏化Yb3+:Eu3+ 973nm 硅sol–gel玻璃 合作敏化Yb3+:Pr3+ 1064nm LnF3/ZnF2/SrF2 BaF2/GaF2/NaF 直接敏化Nd3+:Pr3+ 796nm ZrF4基玻璃 直接敏化三掺杂 Yb3+: Nd3+ :Tm3+ 800nm ZrF4基玻璃 间接敏化Yb3+: Nd3+ :Ho3+ 800nm ZrF4基玻璃 间接敏化Yb3+: Er3+ :Tm3+ 980nm PbF2:CdF2玻璃 直接敏化1.5 上转换发光材料的应用稀土掺杂的基质材料在波长较长的红外光激发下,可发出波长较短的红、绿、蓝、紫等可见光。通常情况下,上转换可见光包含多个波带,每个波带有多条光谱线,这些谱线的不同强度组合可合成不同颜色的可见光[7]。掺杂离子、基质材料、样品制备条件的改变,都会引起各荧光带的相对强度变化,不同样品具有独特的谱线强度分布与色比关系(我们定义上转换荧光光谱中各荧光波段中的峰值相对强度比称为色比,通常以某以一波段的峰值强度为标准)。因而上转换发光材料可应用到荧光防伪或安全识别上来。上转换发光材料在荧光防伪或安全识别应用上的一个研究重点是制备上转换效率高,具有特色的防伪材料,实现上转换荧光防伪材料能够以配比控制色比;也就是通过调整稀土离子种类、浓度以及基质材料的种类、结构和配比,达到控制色比关系。1.6 本论文研究目的及内容Nd:YAG激光器发出1064nm的激光,在激光打孔、激光焊接、激光核聚变等领域具有广泛的应用价值,是最常用的激光波段。然而,由于人眼对1064nm的红外光不可见,因此,需要采用对1064nm激光响应的红外激光显示材料制备的显示卡进行调准和校正。本论文采用氟化物作为基质,掺杂稀土离子,通过配方和工艺研究,制备对1064nm响应的红外激光显示材料。研究组分配比、烧结温度、气氛和时间等对粉体性能的影响。并采用XRD和荧光光谱分析等测试手段对粉体进行表征。确定最佳烧结温度、组分配比,最终获得对1064nm具有优异红外转换性能的红外激光显示材料。第二章 红外激光显示材料的合成与表征经过多年研究,红外响应发光材料取得了很大进展,现已实现了氟化物玻璃、氟氧化物玻璃、及多种晶体中不同稀土离子掺杂的蓝绿上转换荧光。然而上转换荧光的效率距离实际实用还有很大的差距,尤其是蓝光,其效率更低。因此,寻找新的红外激光显示材料仍在研究之中,本文主要研究对1064nm响应的发光材料。本章研究了双掺杂Er3+/Yb3+不同基质材料的蓝绿上转换荧光,得到了发光效果较好的稀土掺杂氟化物的红外激光显示材料,得到了一些有意义的研究结果。2.1 红外激光显示材料的合成2.1.1 实验药品(1)合成材料所用的化学试剂主要有:LaF3,BaF2,Na2SiF6,NaF,氢氟酸,浓硝酸等。稀土化合物为Er2O3、Yb2O3,纯度在4N以上。(2)ErF3、YbF3的配制制备Yb3+/Er3+共掺氟化物的红外激光显示材料使用的ErF3,YbF3是在实验室合成的。实验采用稀土氧化物,称取适量的Er2O3,Yb2O3放在烧杯1和烧杯2中,滴加稍微过量的硝酸(浓度约为8mol/L),置于恒温加热磁力搅拌器上搅拌,直至烧杯1中出现粉红色溶液、烧杯2中出现无色溶液停止。其化学反应如下:Er2O3+6HNO3→2Er(NO3)3+3H2OYb2O3+6HNO3→2Yb(NO3)3+3H2O再往烧杯1和烧杯2中分别都加入氢氟酸,烧杯1中生成粉红色ErF3沉淀,烧杯2中生成白色絮状YbF3沉淀,其化学反应如下:Er(NO3)3+3HF→ErF3↓+3HNO3Yb(NO3)3+3HF→YbF3↓+3HNO3生成的ErF3、YbF3沉淀使用循环水式多用真空泵进行分离,并多次使用蒸馏水进行洗涤,将从溶液中分离得到的沉淀倒入烧杯放入电热恒温干燥箱,在100℃条件下保温12小时,得到了实验所需的ErF3、YbF3,装入广口瓶中备用。2.1.2 实验仪器SH23-2恒温加热磁力搅拌器(上海梅颖浦仪器仪表制造有限公司)PL 203电子分析天平(梅特勒一托多利仪器上海有限公司)202-0AB型电热恒温干燥箱(天津市泰斯特仪器有限公司)SHB-111型循环水式多用真空泵(郑州长城科工贸有限公司)WGY-10型荧光分光光度计(天津市港东科技发展有限公司)DXJ-2000型晶体分析仪(丹东方圆仪器有限公司)1064nm半导体激光器(长春新产业光电技术有限公司)4-13型箱式电阻炉(沈阳市节能电炉厂)2.1.3 样品的制备(1)实验方法本实验样品制备方法是:以稀土化合物YbF3、ErF3,基质氟化物为原料,引入适量的助熔剂,采用高温固相法合成红外激光显示材料。高温固相法是将高纯度的发光基质和激活剂、辅助激活剂以及助熔剂一起,经微粉化后机械混合均匀,在较高温下进行固相反应,冷却后粉碎、筛分即得到样品[8]。这种固体原料混合物以固态形式直接参与反应的固相反应法是制备多晶粉末红外激光显示材料最为广泛使用的方法。在室温下固体一般并不相互反应,高温固相反应的过程分为产物成核和生长两部分,晶核的生成一般是比较困难的,因为在成核过程中,原料的晶格结构和原子排列必须作出很大调整,甚至重新排列。显然,这种调整和重排要消耗很多能量。因而,固相反应只能在高温下发生,而且一般情况下反应速度很慢。根据Wagner反应机理可知,影响固体反应速度的三种重要因素有:①反应固体之间的接触面积及其表面积;②产物相的成核速度;③离子通过各物相特别是通过产物相时的扩散速度。而任何固体的表面积均随其颗粒度的减小而急剧增加,因此,在固态反应中,将反应物充分研磨是非常必要的[6]。而同时由于在反应过程中在不同反应物与产物相之间的不同界面处可能形成的物相组成是不同的,因此可能导致产物组成的不均匀,所以固态反应需要进行多次研磨以使产物组成均匀。另外,如果体系存在气相和液相,往往能够帮助物质输运,在固相反应中起到重要作用,因此在固相反应法制备发光材料时往往加入适量助熔剂。在有助熔剂存在的情况下,高温固相反应的传质过程可通过蒸发-凝聚、扩散和粘滞流动等多种机制进行。(2)实验步骤根据配方中各组分的摩尔百分含量(表3-1,表3-2,表3-3中给出了实验所需主要样品的成分与掺杂稀土离子浓度),准确计算各试剂的质量,使用电子天平精确称量后,把原料置于玛瑙研钵中研磨均匀后装入陶瓷坩埚中(粉体敦实后大概占坩埚体积的1/3),再放入电阻炉中保温一段时间。冷却之后即得到了实验所述的红外激光显示材料样品。图2-1为实验流程图:图2-1 实验流程图2.2 红外激光显示材料的表征2.2.1 XRDX射线衍射分析是当今研究晶体精细结构、物相分析、晶粒集合和取向等问题的最有效的方法之一[10&9]。通常采用粉末状晶体或多晶体为试样的X射线衍射分析被称为粉末法X射线衍射分析。1967年,Hugo M.Rietveld鉴于计算机处理大量数据的能力,在粉末中子衍射结构分析中,提出了全粉末衍射图最小二乘拟合结构修正法。1977年,Malmros等人把这个方法引入X射线粉末衍射分析中,从此Rietveld分析法的研究开始迅速发展起来[16&10]。本实验采用丹东方圆仪器有限公司生产的DXJ-2000型晶体分析仪对粉末样品进行数据采集,主要测试参数为:Cu靶Kα线,管压45kV,管流35Ma,狭缝DSlmm、RS0.3mm.、SS1 mm,扫描速度10度/min(普通扫描)、0.02度/min(步进扫描),通过测试明确所制备的材料是否形成特定晶体结构的晶相,也可以简单判断随着掺杂量的增加,是否在基质中有第二相形成或者掺杂的物质同基质一起形成固溶体。

光电材料性能研究论文设计思路

这个你算问对人了,我是在橡树论文网找到王老师的,他每天都会为我指导。

我这里有很多材料,欢迎来537寻找!

非线性光学有光论文题目

【摘要】体育科学横跨自然科学与社会科学两大门类,具有极强的综合性特征,有其独特的研究对象和科学方法,体育科研论文的写作亦有自己的特点与要求。本文仅就体育科研论文的文章结构、基本格式以及内容与要求作一探讨。【关键词】科研论文;文章结构;基本格式;内容与要求OntheBasicStructureandFormofSportsScienceThesis【Keywords】Thesis;StructureandForm;ContentandRequirement***1前言从事体育科学研究活动,必须具备多学科的知识、多方面的能力和科学的方法。体育科技写作,不仅是体育工作者应具备的知识和能力,而且是必须把握的一种具体的科研方法。因为,一切体育科学研究之成果最后大都以科研论文这种书面表达形式,经科技信息载体传播于世的。体育科研成果如不能最后写成科技作品(论文),公布于众,那么一切个人的科学见解和观点,一切创造和发明,都不可能得到传播和利用,产生应有的社会效益,而只能是研究者头脑里的一些思维活动罢了,世人是无法知晓的,如然,也就失去了科学研究的意义了。诚然,人们衡量体育科研论文质量的标准主要取决于其理论和实践价值的大小,然而,论文所反映的研究成果能否迅速的向社会传播并准确的被人们所理解则取决于论文写作水平的高低。这表明,一篇高质量的体育科研论文要求其内容和形式的统一。随着体育科学的迅速发展,科技信息量与日俱增,据报道,目前全世界体育期刊已达5000余种,每年问世的体育科技文献约25000—30000篇,平均天天有80余篇。体育科研成果的传播、贮存与利用,引起了人们的高度重视,借助于现代科技工具——计算机对体育科技成果、信息进行贮存、检索,使之迅速地传播与利用,已成为一种先进的传播交流手段。微机贮存与检索,要求体育科技学术期刊编排实现规范化,而期刊编排规范化首先要求论文写作的规范化。要实现体育科研论文写作的规范化,就必须了解体育科技写作知识,把握其写作方法和技巧。笔者因职业之原故,拜读体育科研论文原稿颇多,从研读原稿论文感到许多科研论文的选题和所研究的内容颇有价值,但论文写作不符合期刊编排规范化和科研论文撰写的要求。其中最为普遍的突出的问题是文章结构层次混乱、写作格式极不统一(尤其是理论型和实验型的“定量化”研究论文)。这不仅给编者和读者熟悉和理解论文之精髓增加了难度,也直接影响了体育科研成果的传播、贮存和利用。体育科技写作,作为一种科研方法,涉及的知识结构内容颇多,不同文体的体育科技作品有不同的写作要求。本文仅对体育科研论文的文章结构和基本撰写格式的内容与要求作一探讨。2体育科研论文的文章结构根据写作目的的不同、研究对象和方法的差别,体育科研论文大致分为两类,一类是学位论文,一类是学术论文。学位论文,是体育院校的学生或体育科研院(所)研究人员旨在取得学位而写作的论文。如学士论文、硕士论文、博士论文。学术论文,是广大体育工作者在体育实践中为研究和解决某一问题而写作的论文。目前,体育科学技术、理论研究的新成果大部分都是以学术论文的形式发表在体育科技学术刊物上。由于研究对象和方法的差别,学术论文又分为两种类型,即理论型论文和实验型论文。虽然体育科研论文的种类很多,构成的形式多样,但就其文章的主体结构有它的基本型,即序论、本论、结论的三段式。2。1序论部分的写作内容与要求序论,是论文的开头、引子,好比一出长剧的序幕,要有吸引力。通常以引言、导言、绪言、前言等小标题冠之,也可以不冠以任何小标题。该部分的写作内容主要有三个方面:①介绍课题研究的背景材料,前人的工作和现在的知识空白;②研究的理由、目的,理论依据和实验基础,预期结果及其在相关领域里的地位、作用和意义;③交待课题研究的范围、任务。这一部分要写得简明扼要,在整篇文章中它所占的比例要小。具体要求是背景材料的介绍要准确、具体,紧扣课题;研究的说明要实事求是,对作用意义不可夸大和自我评价;任务的交待应具体、明确。2。2本论部分的写作内容与要求本论也称正论,它是体育科研论文的主体,课题的“创造性”主要在这一部分表达出来,它反映了论文所建立的学术理论、采用的技术路线和研究方法达到的水平,简言之,本论水平决定了整个论文的水平。

全无机钙钛矿(CsPbX3,X=Cl,Br,I)纳米棒(NRs)不仅保留了其固有的优点,如高的光致发光量子产率和宽波长可调性,而且还具有优异的光物理性质,包括其极强的多光子吸收(MPA)。然而,CsPbX3-NRs的光谱动力学和MPA特性还没有得到充分的研究。

近期,来自深圳大学的研究者报道了CsPb(Br0.8Cl0.2)3,CsPbr3和CsPb(Br0.85I0.15)3NRs的飞秒光谱动力学特性,包括它们对热载流子冷却、双激子寿命和双激子结合能的影响。有趣的是,虽然这三种钙钛矿型NRs的直径和长度相似,但它们的非线性光学性质却有显著差异,其中CsPb(Br0.85I0.15)3的MPA截面最大。此外,还研究了CsPb(Br0.8Cl0.2)3和CsPbBr3-NRs的多光子激发受激发射。 这项工作表明CsPbX3(X=Cl,Br,I)NRs是 探索 其在不同光电器件中应用的理想候选材料 。相关论文题目以“Spectral Dynamics and Multiphoton Absorption Properties of All-Inorganic Perovskite Nanorods”发表在The Journal of Physical Chemistry Letters 期刊上。

论文链接:

此外,据报道,与立方晶体相比半导体可以强的一维量子限制作用,可以更有效地放大其多光子吸收(MPA)。据报道,使用CsPbBr3 NRs作为激发介质的激发,没有针对多光子激发的工作,与单光子激发相比,它在生物成像应用中可以提供更大的穿透深度和更高的空间分辨率。在研究多光子激发之前,必须先考虑钙钛矿的形状或/和组成对其MPA的影响。尽管以前的文献已经证明了具有立方和二维几何形状的不同钙钛矿型的MPA特性取得了显着进步,但仍缺乏对一维NR对应物的相关研究,必须加以解决。深入了解半导体中典型载流子动力学过程的起源,影响因素和寿命,包括辐射跃迁和非辐射跃迁,对于拓宽它们的相关应用至关重要。

图1。描述(a)CsPb(Br0.8Cl0.2)3NRs,(b)CsPbr3 NRs和(c)CsPb(Br0.85I0.15)3NRs原子分辨率的TEM图像。(d)CsPb(Br0.8Cl0.2)3NRs,(e)CsPbr3 NRs和(f)CsPb(Br0.85I0.15)3NRs的HR-TEM图像。

图2。(a)CsPb(Br0.8Cl0.2)3,(b)CsPbr3和(c)CsPb(Br0.85I0.15)3NRs在350 nm激发下的早期延时二维fs-TA光谱。(d)CsPb(Br0.8Cl0.2)3、(e)CsPbr3和(f) CsPb(Br0.85I0.15)3NRs的载体冷却工艺。通过对早期ps时间尺度上光谱演化数据提取的GSB进行拟合,得到了相应的冷却时间值。

图3。(a)CsPb(Br0.8Cl0.2)3,(b)CsPbr3和(c)CsPb(Br0.85I0.15)3NRs固体薄膜在400 nm激发下的泵浦强度依赖的PL光谱。插图显示了光致发光强度与泵浦强度和发射图像的关系图。(d)CsPb(Br0.8Cl0.2)3,(e)CsPbr3和(f)CsPb(Br0.85I0.15)3NRs固体薄膜在800nm激发下的光致发光谱。插图显示PL强度图与泵浦光强度和发射图像的对比。

(文:爱新觉罗星)

一、比较好写的材料科学论文题目:1、表面活性剂在纳米材料科学中的应用2、高分辨透射X射线三维成像在材料科学中的应用3、“面向新世纪材料科学与工程专业建设与人才培养的综合改革与实践”实践教学改革报告4、提高材料科学与工程专业毕业设计质量的探索与实践5、材料科学与工程专业实验教学改革与实践6、激光技术在材料科学中的应用7、材料科学与工程专业平台课程材料物理性能本科生教学改革的探讨8、量子化学计算方法在材料科学领域的初步应用9、材料科学与工程专业的工程教育实践10、嵌入原子方法理论及其在材料科学中的应用11、现代球墨铸铁的诞生,应用及技术发展趋势:20世纪材料科学最重大的技术进 ?12、表面处理技术现状及其在材料科学中的应用13、固态组合化学及其在材料科学中的应用14、核辐射技术及其在材料科学领域的应用15、分形论在材料科学中的应用16、材料科学与工程专业实验教学的改革17、材料科学与工程实践教学体系的建立与实施18、仿地成岩的新一代胶凝材料——凝石——自然科学、材料科学与循环经济的新焦点19、无机新材料研究与材料科学20、材料科学与工程导论课程双语教学实践初探二、材料科学毕业论文题目推荐:1、试论材料科学与工程的内涵与研究方法2、材料科学中的介电谱技术3、材料科学与工程课程实验教学改革思路4、基于材料科学和材料加工有机结合的新型实验课程体系5、材料科学与工程专业实验教学体系的改革6、材料科学的一个新生长点——生态材料学7、体视学在材料科学研究中的进展与展望8、材料科学:材料实验——管线钢落锤撕裂试验方法的建立、应用及发展9、复合材料科学与工程10、材料科学专业研究应用型人才培养模式的改革与探索11、金相学史话(6):电子显微镜在材料科学中的应用12、材料科学与工程专业实践教学环节的现状与对策13、X射线吸收精细结构谱在材料科学中的应用14、电子理论在材料科学中的应用15、“材料科学基础”课程的教学改革与实践16、材料科学与工程学院课程教学团队建设的措施与成效17、计算机在材料科学中的应用18、材料科学中的计算机模拟19、材料科学数据库的发展现状20、材料科学与工程专业材料概论双语教学探讨三、大学材料科学论文题目大全集:1、智能材料———材料科学发展新趋势2、材料科学与工程专业学生实践创新能力的培养3、材料科学与工程专业教学改革与发展设想4、材料科学中的分子动力学模拟研究进展5、三维原子探针及其在材料科学研究中的应用6、计算机模拟技术在材料科学中的应用7、二十一世纪初的材料科学技术8、材料科学数据库的研究现状及其发展趋势9、材料科学与工程虚拟仿真实验教学中心的建设10、分子模拟软件CERIUS2及其在材料科学中的应用11、材料科学与工程专业本科生生产实习的改革与实践12、人工神经网络在材料科学研究中的应用13、材料科学基础的教学改革与实践14、美国和欧洲的材料科学与工程教育(一)15、人工神经网络在材料科学中的应用与展望16、材料科学与工程专业的实践教学改革与实践17、研究型教学在“材料科学基础”课程的实践与思考18、应用型本科《材料科学基础》课程建设与改革19、面向未来的材料科学与工程专业教学改革与实践20、材料科学基础课程教学改革与实践四、最新材料科学论文选题参考:1、磁控溅射技术及其在材料科学中的应用2、材料科学与工程专业教学平台实验室综合实验课程改革初探3、发展生物质材料与生物质材料科学4、扫描电子显微镜及其在材料科学中的应用5、分子动力学模拟及其在材料科学中的应用6、材料科学与工程实验教学示范中心建设的思考与实践7、纳米材料科学中的谱学研究8、现代球墨铸铁的诞生、应用及技术发展趋势--20世纪材料科学最重大的技术进展之一9、电子背散射衍射在材料科学研究中的应用10、材料科学与工程实验教学中心的改革与实践11、材料科学与工程专业的课程体系和实验教学体系建设12、面向21世纪的材料科学与工程本科教育13、选择合适审稿人提高刊物学术质量--《武汉理工大学学报-材料科学版》(英文版)遴选审稿人的体会14、材料科学中的分形15、材料科学与工程专业应用型人才培养的思考16、材料科学与工程专业平台实验室建设与管理17、材料化学课程的内容设置及其与材料科学的关系18、《材料科学基础》综合设计型实验教学的探索19、材料科学中的分形理论应用进展20、材料科学技术的生长点五、大学生优秀材料科学论文题目:1、溶胶—凝胶工艺在材料科学中的应用2、材料科学与工程专业实验课程体系的改革3、第一原理方法在材料科学中的应用4、多孔材料引论——材料科学与工程系列5、跨世纪材料科学技术的若干热点问题6、跨世纪材料科学技术的若干热点问题(摘要)7、跨世纪材料科学技术的若干热点问题8、均恒强磁场在材料科学中的应用9、大材料专业“材料科学基础”课程的教改认识与实践10、固体力学与材料科学交缘的几个新课题11、现代扫描电镜的发展及其在材料科学中的应用12、论材料科学的理论基础13、材料科学中的点击化学14、分形理论及其在材料科学中的应用15、稳恒强磁场技术的发展及其在材料科学中的应用16、纳米压痕技术在材料科学中的应用17、电子背散射衍射技术及其在材料科学中的应用18、基于ESI数据库的材料科学领域文献计量分析研究19、非线性光学晶体材料科学20、光化学基本原理与光子学材料科学

我也不是很清楚的啊

非晶合金的功能性研究进展论文

非晶态材料是目前材料科学中广泛研究的一个新领域,也是一种发展迅速的新型材料。所谓的“非晶态”,是相对晶态而言的,是物质的另一种结构状态。它不像晶态那样是原子的有序结构,而是一种长程无序,短程有序的结构,有点类似金属液体的结构。一些合金的非晶态赋予了它比晶态更优异的物理化学性能,使得非晶态材料的研究受到广泛关注。 在非晶态合金中不存在晶态合金中所存在的晶界、位错、扭曲等缺陷,使得其具有优异的机械、物理和化学性能,同时也使得非晶态合金展现出强大的生命力。 1、在机械性能方面,非晶态合金具有高强度、高硬度、高耐磨性、高疲劳抗力、屈服时完全塑性、无加工硬化现象。 非晶态合金具有极高的断裂强度和屈服强度,如非晶态Fe基合金(Fe80P15C5,Fe72Ni8 P15C7)屈服强度在2000~3000MPa,断裂强度约3000MPa,最高达4000MPa,可以用于制作飞机起落架。还可以通过改变成分及控制制备工艺条件等改善其力学性能,以获得超高强度的合金。对于金属材料,通常是高强度、高硬度而较脆,而非晶合金则两者兼顾,它们不仅强度高,硬度高,而且韧性也较好。 非晶态合金在变形时无加工硬化现象。低温时的塑性变形为不均匀变形,而高温时显示出均匀的粘滞性流动。非晶态金属的动态性能也很好,它有高的疲劳寿命和良好的断裂韧性。和非金属玻璃的脆性断裂不同,它的断裂是通过高度局域化的切变变形实现的。许多非晶态金属玻璃带,即使将它们对折,也不会产生裂纹。 2、在化学性能方面,非晶态合金具有较好的耐腐蚀。 由于没有晶粒和晶界,非晶态合金比晶态金属更加耐腐蚀,非晶态耐蚀合金不仅在一般情况下不发生局部腐蚀,而且对于在特殊条件下诱发的点蚀与缝隙腐蚀也能抑制其发展。利用非晶态合金耐腐蚀的优点,可以制造耐蚀管道、电池电极、海底电缆屏蔽、磁分离介质及化学工业的催化剂,目前都已达到了实用阶段,非晶态合金的耐蚀性还可用于长期在泥沙、水流中工作的水轮机上,将大大提高其使用寿命,减少维修费用。 3、在物理性能方面,非晶态合金具有良好的磁学性能以及光学性能。 非晶态合金具具有磁导率和饱和磁感应强度高,矫顽力和损耗低的特点。非晶态合金的磁性能实际上是迄今为止非晶态合金最主要的应用领域。目前,作为软磁材料的非晶合金带材已经实现产业化,并获得了广泛应用。在传统电力工业中,非晶软磁合金正逐渐取代硅钢片,使配电变压器的空载损耗降低60%~80% ,大大节约了能源消耗。 金属材料的光学性能受原子的电子状态所支配,某些非晶态金属由于其特殊的电子状态而具有十分优异的对太阳光能的吸收能力。所以利用某些非晶态材料能够制造出相当理想的高效率的太阳能吸收器,目前应用较多的是非晶态材料为非晶硅。非晶硅太阳电池的应用市场有2个方面:一个是弱光电池市场,如计算器、手表等荧光下工作的微功耗电子产品;二是电源及功率应用领域,如太阳能收音机、太阳帽、庭园灯、微波中继站、航空航海信号灯、气象监测及光伏水泵、户用电源等。 可见,非晶态合金具有优良的性能,在受到广泛研究的同时,也是渐渐用到我们生活的方方面面。但是主要还是集中在磁性材料这一块的应用最广。1、 非晶合金带材在软磁材料中的应用 优异的磁学性能使非晶合金成为当今软磁材料的首选材料,同时磁性材料是迄今为止非晶合金应用最成功的领域。在传统电力工业中,非晶软磁合金带材正逐渐取代硅钢片,是铁基非晶合金除了居里温度与饱和磁感外,铁基非晶合金的各项性能(抗拉强度、硬度、最大磁导率、激磁功率密度等等)都大大优于冷轧硅钢片,尤其是矫顽力大大小于冷轧硅钢片,使得其磁致损耗远低于冷轧硅钢片,这就使得非晶铁心电机的效率大大提高。 2、块体非晶合金的应用 块体非晶合金,又称为大块非晶合金,因其尺寸较大,打破了带状非晶合金和非晶粉末的尺寸限制,可以方便地制成各种机械零件,做为结构材料大规模使用,因而成为目前非晶合金领域研究最热的方向。 例如非晶钢,与传统钢材相比,大块非晶钢性能优异:其屈服强度是传统高强钢的2~3倍,在室温下不具有铁磁性,热稳定性高(玻璃转变温度接近于或高于900K),抗海水腐蚀能力强,因而可以用作未来海军舟见船韵表面防护。由无磁非晶钢所制造的船体,在反探测、抗打击能力方面具有传统钢材无法比拟的优势。 还有轻量化结构材料,铝基非晶合金、镁基非晶合金等低密度材料,强度和硬度都大大超过普通钢铁的材料。 更或者是在一些高档用品中的使用,由块体非晶合金制造的高尔夫球头、滑雪板、棒球棒、滑冰用具有良好的强度,抗塑性变形能力。 3、 其他 非晶态合金对某些化学反应具有明显的催化作用,可以用作化工催化剂;某些非晶态合金通过化学反应可以吸收和放出氢,可以用作储氢材料 非晶合金因弹性极限大大高于普通晶态合金,加上优良的抗疲劳性能、高屈服强度等优点,成为精密仪器弹簧的首选材料 非晶态合金有着如此优良的性能,可以在很多领域带来巨大的改变,但是同样也存在着一些问题。非晶态合金带材厚度宽度有限,产品尺寸受到限制。许多非晶态合金在500℃以下发生晶化,使得工作温度有限,产品稳定性有限制。同时产品的生产成本费用也是一大问题。

中国研发的千吨级非晶带材生产线成功喷出了220毫米宽的带材,还成功的实现了在线自动卷取,在项目的实施过程中,突出了工程化和配套化,这标志着中国在非晶材料的研究和生产方面都达到了国际先进的水平。另外,中国在非晶带材产业化关键技术、非晶配电变压器铁芯制造技术、非晶丝材制备技术、非晶铁芯应用开发技术等方面也取得了突破性的进展。在国际上,许多国家也都投入了巨额的资金来发展这种非晶态合金产业。

非晶态合金是一种高新技术的材料,也被称为是跨世纪具有新型功能的材料。它是电力、电子、计算机、通讯等高新技术领域的关键材料,具有卓越的物理、化学和力学性能。它的市场需求量将会非常的大,产业化前景也将会非常的广阔。

应用最广的非晶金属是非晶态软磁合金,有铁基、钴基、铁镍基和铁钴镍基等合金。铁基非晶合金如铁硅合金,具有高饱和磁通密度、低铁损、低密度和价廉等优点,是制造航空变压器较理想的铁芯材料;铁硅硼合金具有高电阻和极低铁损,容易形成低剩磁状态,其脉冲磁特性明显优于晶状硅钢和玻莫合金,是制造脉冲变压器的铁芯材料。铁基非晶合金还具有很高的磁致伸缩效应和高的电阻率,其非晶条带有利于制成快速响应的传感器,因此是一种新型传感器材料。钴基非晶合金的磁通密度和磁导率高,热稳定性好,同时还具有较高的耐磨性和耐蚀性,是一种性能优良的磁头材料。由于其没有晶界,所以用其制成的磁头可避免尖部脱落,磁头与磁带的摩擦噪音也比一般磁头小,音响效果好,且使用寿命长。

知研光电材料杂志

学光杂志,AFM全称Atomic Force Microscope,AM全称为:Advanced Materials。

AFM即原子力显微镜,它是继扫描隧道显微镜(Scanning Tunneling Microscope)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵。

现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医药研究和科研院所各种纳米相关学科的研究实验等领域中。

Advanced Materials是工程与计算大学科、材料与化学大领域(包含材料化学,材料物理,生物材料,纳米材料,光电材料,金属材料,无机非金属材料,电子材料等等非常多的子学科,以及非常大量与材料相关的研究领域)的顶尖期刊,在国际材料领域科研界上享誉盛名。

其他:

AFM优点:

原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。

AFM原理:

当原子间距离减小到一定程度以后,原子间的作用力将迅速上升。因此,由显微探针受力的大小就可以直接换算出样品表面的高度,从而获得样品表面形貌的信息。

以上内容参考:Advanced Materials-百度百科

化工专业!通信专业!我是这个学校的!详细谈925882231 专业介绍化工与材料学科群简介: 化工与材料学科群涵盖武汉工程大学(原名武汉化工学院)的特色专业,该校拥有化学工程与工艺、应用化学、生物化工、材料物理、材料学、材料加工工程、高分子化学与物理等10个相关硕士点。化学工程与工艺被确定为湖北省独立学院首批立项建设的重点培育本科专业。武昌校区拥有湖北省等离子体化学与新材料重点实验室、湖北省新型反应器与绿色化学工艺重点实验室、药物仿真网络实验室、新型环保与医用材料工程技术研究中心等多个实验室。国家发改委核准中国石化(武汉)80万吨乙烯项目,总投资约147亿元。武汉化工新城环保评议已经通过了国家环保总局检测,将带来1000亿-2000亿元的市场,吸纳10.5万人就业。高分子材料与工程专业(理工)本专业旨在培养具备高分子材料成型加工和改性、高分子材料合成研究与设计、新材料产品开发和技术管理等能力的高级应用型人才。学生毕业后可到有关研究院所、各类材料制造行业从事产品开发、产品设计、生产管理等工作。优势:主办高校省级品牌专业,我院武昌校区有“湖北省等离子体化学与新材料重点实验室”、“磷资源开发利用教育部工程研究中心(筹)”等7个重点实验室。材料成型及控制工程专业(塑料成型与模具设计方向 理工)本专业旨在培养具备金属材料、高分子材料成型加工原理的基础知识与应用能力,能够从事材料成型加工领域里的设备设计、实验研究、模具设计和产品开发等方面的高级应用型人才。学生毕业后可到有关研究院所、各类制造行业从事设备开发、产品设计、生产管理等工作。优势:主办高校省级重点学科,对应有多个硕士点,学生考研非常便利。我院在主办高校择优选聘了副教授职称或硕士学位以上的优秀教师担任该专业的主讲教师。材料物理专业(光电材料与元器件方向 理工)本专业旨在培养具备材料科学基本理论和基本知识,掌握光电子材料与元器件以及纳米材料制备与测试等基本技能的高级应用型人才。学生毕业后可到有关科研院所、各类电子材料制造行业从事光电子材料与元器件设计与开发、纳米材料研究与生产、工艺控制等工作。优势:主办高校湖北省“楚天学者”特聘教授设岗学科,我院武昌校区建有湖北省等离子体化学与新材料重点实验室。制药工程专业(理工)本专业旨在培养具有现代化学基础、药物合成及生物制药技术、制药工程能力的高级应用型人才。学生毕业后能在医药、农药、精细化工等企业、研究院(所)、经营管理部门,从事医药及化工产品的生产、研究开发、经营和管理工作。优势:主办高校省级品牌专业,专业主干课“制药工艺设计”为其国家级精品课程,药物仿真网络实验室建在我院主校区。药物制剂专业(理工)本专业培养理工兼备、医工渗透,适应能力强的复合型药物制剂高级应用型人才和执业药师。学生毕业后能在中外独资或合资的制药公司、医药研究院和设计院等部门从事药品商贸、药检、日化等相关工作。优势:主办高校校级品牌专业,湖北省第一个具有工科特色的药物制剂专业。仪器设备达到国内先进水平的专业实验室建在学院主校区。化学工程与工艺专业(理工)本专业旨在培养能系统掌握化工生产的基本原理、生产工艺过程与设备的基础理论知识、生产过程的设计与原理,能在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面工作的高级应用型人才。优势:主办高校省级品牌专业,国家级特色专业,已立项建设博士点。该专业也是我院被批准的湖北省独立学院第一批立项建设的重点培育本科专业。武昌校区建有湖北省新型反应器与绿色化学工艺重点实验室等研究基地。在 “兴发杯”湖北省第二届普通高校大学生化学实验技能竞赛上,我院学子获得了优异成绩。应用化工技术专业(专 理工)本专业旨在培养以化学为基础,具有系统、扎实的专业基础理论、基本知识和基本技能,具有广泛的专业知识和较强的适应性,掌握对化工新产品、新工艺、新设备、新技术基本应用的化工专门人才。机电与通信学科群简介: 该学科群涵盖我

《光电工程》就不错刊名: 光电工程 Opto-Electronic Engineering主办: 中国科学院光电技术研究所;中国光学学会周期: 月刊出版地:四川省成都市语种: 中文;开本: 大16开ISSN: 1003-501XCN: 51-1346/O4历史沿革:现用刊名:光电工程曾用刊名:光学工程创刊时间:1974该刊被以下数据库收录:CBST 科学技术文献速报(日)(2009)中国科学引文数据库(CSCD—2008)核心期刊:中文核心期刊(2008)中文核心期刊(2004)中文核心期刊(2000)期刊荣誉:Caj-cd规范获奖期刊

相关百科

热门百科

首页
发表服务