首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

关于不等式毕业论文

发布时间:

关于不等式毕业论文

论文研究般较宽泛领域看定性研究与定量研究;取材面看实证研究(实际调查案例析基础)与文献归纳等;析手看归纳、演绎与比较析等等要看专业专业运用研究

关于不等式论文范文资料

数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。关键词:创新能力;数学建模;研究性学习。《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力。其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:现实原型问题数学模型数学抽象简化原则演算推理现实原型问题的解数学模型的解反映性原则返回解释列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。四、培养学生的其他能力,完善数学建模思想。由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:(1)理解实际问题的能力;(2)洞察能力,即关于抓住系统要点的能力;(3)抽象分析问题的能力;(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;(5)运用数学知识的能力;(6)通过实际加以检验的能力。只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。例2:解方程组x+y+z=1 (1)x2+y2+z2=1/3 (2)x3+y3+z3=1/9 (3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根t3-t2+1/3t-1/27=0 (4)函数模型:由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)平面解析模型方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

教案中对每个课题或每个课时的教学内容,教学步骤的安排, 教学 方法 的选择,板书设计,教具或现代化教学手段的应用,各个教学步骤教学环节的时间分配等等,都要经过周密考虑,精心设计而确定下来,体现着很强的计划性。接下来是我为大家整理的基本不等式教案 范文 ,希望大家喜欢!

基本不等式教案范文一

【教学目标】

1、知识与技能目标

(1)掌握基本不等式 ,认识其运算结构;

(2)了解基本不等式的几何意义及代数意义;

(3)能够利用基本不等式求简单的最值。

2、过程与方法目标

(1)经历由几何图形抽象出基本不等式的过程;

(2)体验数形结合思想。

3、情感、态度和价值观目标

(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;

(2)体会多角度探索、解决问题。

【能力培养】

培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。

【教学重点】

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程。

【教学难点】

基本不等式 等号成立条件。

【教学方法】

教师启发引导与学生自主探索相结合

【教学工具】

课件辅助教学、实物演示实验

【教学流程】

SHAPE MERGEFORMAT

【教学过程设计】

创设情景,引入新课

如图是在北京召开的第24届国际数学家大会的会标, 这是根据赵爽弦图而设计的。用课前折好的赵爽弦图示范,比较 4个直角三角形的面积和与大正方形的面积,你会得到怎样的相 等和不等关系?

赵爽弦图

1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。

设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。

当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。

2.得到结论:一般的,如果

3.思考证明:你能给出它的证明吗?

证明:因为

所以, ,即

4.基本不等式

1)特别的,如果a>0,b>0,我们用分别代替a、b ,可得 ,通常我们把上式写作:

2)从不等式的性质推导基本不等式

用分析法证明:

要证 (1)

只要证 (2)

要证(2),只要证 a+b- 0 (3)

要证(3),只要证 ( - ) (4)

显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。

3)理解基本不等式 的几何意义

基本不等式教案范文二

课题:3.4.3基本不等式 的应用(二) 科目:数学 教学对象:高二(290)学生 课时:1课时 提供者:刘和安 单位: 姚安一中 一、教学内容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络.数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实.?

根据本节课的教学内容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助.? 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题;

(二)能力目标:让学生探究用基本不等式解决实际问题

(三)情感、态度和价值观目标:

通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数 学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;? 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应用,真正地把不等式作为刻画现实世界中不等关系的工具.通过实际问题的分析解决,让学生去体会基本不等式所具有的广泛的实用价值,同时,也让学生去感受数学的应用价值,从而激发学生去热爱数学、研究数学.而不是觉得数学只是一门枯燥无味的推理学科.在解决实际问题的过程中,既要求学生能用数学的眼光、观点去看待现实生活中的许多问题,又会涉及与函数、方程、三角等许多数学本身的知识与方法的处理 四、教学策略选择与设计 1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;?

2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;?

3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣.?? 五、教学重点及难点 教学重点:1.构建基本不等式解决函数的值域、最值问题.?

2.让学生探究用基本不等式解决实际问题;?

教学难点:1.让学生探究用基本不等式解决实际问题;?

2.基本不等式应用时等号成立条件的考查;?

六、教学过程 教师活动 学生活动 设计意图 (一)导入新课

(二)推进新课

已知 ,若ab为常数k,那么a+b的值如何变化??

若a+b为常数s,那么ab的值如何变化?

老师用投影仪给出本节课的第一组问题

(1)求函数y=2x2+ (x>0)的最小值.?

(2)求函数y=x2+ (x>0)的最小值.?

(3)求函数y=3x2-2x3(0

(4)求函数y=x(1-x2)(0

(5)设a>0,b>0,且a2+ =1,求 的最大值.?

(三)合作探究 我们来考虑运用正数的算术平均数与几何平均数之间的关系来解答这些问题.根据函数最值的含义,我们不难发现若平均值不等式的某一端为常数,则当等号能够取到时,这个常数即为另一端的一个最值. ?

(四)例题精析?

【例】某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m3,深为 3 m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少??

当且仅当a=b时,a+b就有最小值为2k.?

当且仅当a=b时,ab就有最大值 (或ab有 最大值 ).?

学生完成

留五分钟的时间让学生思考,合作交流

(根据学生完成的典型情况,找五位学生到黑板板演,然后老师根据学生到黑板板演的完成情况再一次作点评)?

学生思考、回答,

基本不等式教案范文三

一、教材背景分析

1.教材的地位和作用

本节内容是在系统的复习了不等关系和不等式性质,掌握了不等式性质的基础上展开的。教材通过赵爽弦图回顾基本不等式,在代数证明的基础上,通过“探究”引导学生回顾基本不等式的几何意义,并给出在解决函数最值和实际问题中应用,在知识体系中起着承上启下的作用;从知识的应用价值上看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法(如数形结合、抽象归纳、演绎推理、分析法证明等)在各种不等式的研究中均有着广泛的应用;从内容的人文价值上看,基本不等式的探究、推导和应用需要学生观察、分析、猜想、归纳和概括等,有助于培养学生思维能力和探索精神,是培养学生数形结合意识和提高数学能力的良好载体.

本节是复习课,不仅应让学生进一步理解概念,还要掌握应用基本不等式求最值,体会基本不等式在实际生活中的指导作用。

2.学情分析

在认知上,学生已经掌握了不等式的基本性质,并能够根据不等式的性质进行数、式的大小比较,也具备了一定的平面几何的基本知识. 如何让学生再认识“基本”二字,是本节学习的前提. 事实上,该不等式反映了实数的两种基本运算(即加法和乘法)所引出的大小变化,这一本质不仅反映在其代数结构上,而且也有几何意义,由此而生发出的问题在训练学生的代数推理能力和几何直观能力上都发挥了良好的作用. 因此,必须从基本不等式的代数结构和几何意义两方面入手,才能让学生深刻理解它的本质.

另外,在用基本不等式解决最值时,学生往往容易忽视基本不等式使用的前提条件和等号成立的条件,因此,在教学过程中,应借助辨误的方式让学生充分领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用.

3、教学重难点:

教学重点:用数形结合的思想理解基本不等式,并从不同角度回顾和探索基本不等式的证明过程;用基本不等式解决一些简单的最值问题.

教学难点:回顾在几何背景下抽象出基本不等式的过程;基本不等式中等号成立的条件;应用基本不等式解决实际问题.

二、教学目标

1、利用“赵爽弦图”回顾重要不等式、基本不等式,再利用教材中的“探究”回顾基本不等式的几何意义,通过基本不等式的回顾,进一步让学生体会和感悟形数统一的思想方法;

2、通过对教材“探究”再探究,引导学生拓展基本不等式,体会基本不等式的应用;

3、通过对教材中例题的变式教学,让学生体会和感悟应用基本不等式求最值应该注意的问题,解决基本不等式在实际中的应用;

4、利用电脑屏幕的情景,激发学生学习数学的热情,进一步培养学生的数学应用能力;

5、通过学生自主构建知识网络结构图,深化对基本不等式的理解。

三、教学对策

本节作为基本不等式的复习课,一是借助弦图和几何画板演示,让学生回顾基本不等式的概念形成过程,体验基本不等式模型的观察、分析、猜想和概括等系列思维活动过程,复习基本不等式的代数结构特征,体会数学 抽象思维 的方法;二是通过基本不等式的证明方法的探索和不同角度的欣赏,学生能用文字语言、符号语言和图形语言表述基本不等式的结构特点,归纳得出基本不等式中等号成立的条件及其使用条件,进一步体会数形结合的思想方法;三是要引导学生用基本不等式解决常见的最值和实际问题,进一步体验数学建模的过程;

四、教学过程

(一)温故知新,回顾基本不等式.

情景引入:

【投影显示】赵爽弦图。

问题1、请同学们重温“赵爽弦图”,比较正方形ABCD的面积S和里面的四个小三角形面积之和S’的大小,看可以得到怎样的不等关系?

(通过对“赵爽弦图”的观察,使学生由形识数,从几何图形中得到重要不等式的代数形式:

当且仅当,a=b时,取得等号。)

问题3、那么在使用基本不等式时,对实数a、b有什么要求呢?

( )

下面请大家打开课本第98页,看探究中的图3.4-3。

问题5、让D点动起来,请大家指出等号成立的条件.

链接1:几何画板—赵爽弦图

基本不等式教案范文相关 文章 :

1. 基本不等式教学反思(5篇)

2. 基本不等式教学反思【3篇】

3. 基本不等式教学反思范文

4. 数学基本不等式教学反思范文

5. 基本不等式教学反思

6. 七年级数学《整式的加减》教案范文

7. 初中七年级下册《实数》教案优质范文五篇

8. 高中数学基本不等式教学设计

9. 七年级上册数学《整式的加减》教案精选范文五篇

10. 高考数学基本不等式专项练习题附答案

关于不等式论文范文写作

教案中对每个课题或每个课时的教学内容,教学步骤的安排, 教学 方法 的选择,板书设计,教具或现代化教学手段的应用,各个教学步骤教学环节的时间分配等等,都要经过周密考虑,精心设计而确定下来,体现着很强的计划性。接下来是我为大家整理的基本不等式教案 范文 ,希望大家喜欢!

基本不等式教案范文一

【教学目标】

1、知识与技能目标

(1)掌握基本不等式 ,认识其运算结构;

(2)了解基本不等式的几何意义及代数意义;

(3)能够利用基本不等式求简单的最值。

2、过程与方法目标

(1)经历由几何图形抽象出基本不等式的过程;

(2)体验数形结合思想。

3、情感、态度和价值观目标

(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;

(2)体会多角度探索、解决问题。

【能力培养】

培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。

【教学重点】

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程。

【教学难点】

基本不等式 等号成立条件。

【教学方法】

教师启发引导与学生自主探索相结合

【教学工具】

课件辅助教学、实物演示实验

【教学流程】

SHAPE MERGEFORMAT

【教学过程设计】

创设情景,引入新课

如图是在北京召开的第24届国际数学家大会的会标, 这是根据赵爽弦图而设计的。用课前折好的赵爽弦图示范,比较 4个直角三角形的面积和与大正方形的面积,你会得到怎样的相 等和不等关系?

赵爽弦图

1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。

设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。

当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。

2.得到结论:一般的,如果

3.思考证明:你能给出它的证明吗?

证明:因为

所以, ,即

4.基本不等式

1)特别的,如果a>0,b>0,我们用分别代替a、b ,可得 ,通常我们把上式写作:

2)从不等式的性质推导基本不等式

用分析法证明:

要证 (1)

只要证 (2)

要证(2),只要证 a+b- 0 (3)

要证(3),只要证 ( - ) (4)

显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。

3)理解基本不等式 的几何意义

基本不等式教案范文二

课题:3.4.3基本不等式 的应用(二) 科目:数学 教学对象:高二(290)学生 课时:1课时 提供者:刘和安 单位: 姚安一中 一、教学内容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络.数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实.?

根据本节课的教学内容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助.? 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题;

(二)能力目标:让学生探究用基本不等式解决实际问题

(三)情感、态度和价值观目标:

通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数 学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;? 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应用,真正地把不等式作为刻画现实世界中不等关系的工具.通过实际问题的分析解决,让学生去体会基本不等式所具有的广泛的实用价值,同时,也让学生去感受数学的应用价值,从而激发学生去热爱数学、研究数学.而不是觉得数学只是一门枯燥无味的推理学科.在解决实际问题的过程中,既要求学生能用数学的眼光、观点去看待现实生活中的许多问题,又会涉及与函数、方程、三角等许多数学本身的知识与方法的处理 四、教学策略选择与设计 1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;?

2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;?

3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣.?? 五、教学重点及难点 教学重点:1.构建基本不等式解决函数的值域、最值问题.?

2.让学生探究用基本不等式解决实际问题;?

教学难点:1.让学生探究用基本不等式解决实际问题;?

2.基本不等式应用时等号成立条件的考查;?

六、教学过程 教师活动 学生活动 设计意图 (一)导入新课

(二)推进新课

已知 ,若ab为常数k,那么a+b的值如何变化??

若a+b为常数s,那么ab的值如何变化?

老师用投影仪给出本节课的第一组问题

(1)求函数y=2x2+ (x>0)的最小值.?

(2)求函数y=x2+ (x>0)的最小值.?

(3)求函数y=3x2-2x3(0

(4)求函数y=x(1-x2)(0

(5)设a>0,b>0,且a2+ =1,求 的最大值.?

(三)合作探究 我们来考虑运用正数的算术平均数与几何平均数之间的关系来解答这些问题.根据函数最值的含义,我们不难发现若平均值不等式的某一端为常数,则当等号能够取到时,这个常数即为另一端的一个最值. ?

(四)例题精析?

【例】某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m3,深为 3 m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少??

当且仅当a=b时,a+b就有最小值为2k.?

当且仅当a=b时,ab就有最大值 (或ab有 最大值 ).?

学生完成

留五分钟的时间让学生思考,合作交流

(根据学生完成的典型情况,找五位学生到黑板板演,然后老师根据学生到黑板板演的完成情况再一次作点评)?

学生思考、回答,

基本不等式教案范文三

一、教材背景分析

1.教材的地位和作用

本节内容是在系统的复习了不等关系和不等式性质,掌握了不等式性质的基础上展开的。教材通过赵爽弦图回顾基本不等式,在代数证明的基础上,通过“探究”引导学生回顾基本不等式的几何意义,并给出在解决函数最值和实际问题中应用,在知识体系中起着承上启下的作用;从知识的应用价值上看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法(如数形结合、抽象归纳、演绎推理、分析法证明等)在各种不等式的研究中均有着广泛的应用;从内容的人文价值上看,基本不等式的探究、推导和应用需要学生观察、分析、猜想、归纳和概括等,有助于培养学生思维能力和探索精神,是培养学生数形结合意识和提高数学能力的良好载体.

本节是复习课,不仅应让学生进一步理解概念,还要掌握应用基本不等式求最值,体会基本不等式在实际生活中的指导作用。

2.学情分析

在认知上,学生已经掌握了不等式的基本性质,并能够根据不等式的性质进行数、式的大小比较,也具备了一定的平面几何的基本知识. 如何让学生再认识“基本”二字,是本节学习的前提. 事实上,该不等式反映了实数的两种基本运算(即加法和乘法)所引出的大小变化,这一本质不仅反映在其代数结构上,而且也有几何意义,由此而生发出的问题在训练学生的代数推理能力和几何直观能力上都发挥了良好的作用. 因此,必须从基本不等式的代数结构和几何意义两方面入手,才能让学生深刻理解它的本质.

另外,在用基本不等式解决最值时,学生往往容易忽视基本不等式使用的前提条件和等号成立的条件,因此,在教学过程中,应借助辨误的方式让学生充分领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用.

3、教学重难点:

教学重点:用数形结合的思想理解基本不等式,并从不同角度回顾和探索基本不等式的证明过程;用基本不等式解决一些简单的最值问题.

教学难点:回顾在几何背景下抽象出基本不等式的过程;基本不等式中等号成立的条件;应用基本不等式解决实际问题.

二、教学目标

1、利用“赵爽弦图”回顾重要不等式、基本不等式,再利用教材中的“探究”回顾基本不等式的几何意义,通过基本不等式的回顾,进一步让学生体会和感悟形数统一的思想方法;

2、通过对教材“探究”再探究,引导学生拓展基本不等式,体会基本不等式的应用;

3、通过对教材中例题的变式教学,让学生体会和感悟应用基本不等式求最值应该注意的问题,解决基本不等式在实际中的应用;

4、利用电脑屏幕的情景,激发学生学习数学的热情,进一步培养学生的数学应用能力;

5、通过学生自主构建知识网络结构图,深化对基本不等式的理解。

三、教学对策

本节作为基本不等式的复习课,一是借助弦图和几何画板演示,让学生回顾基本不等式的概念形成过程,体验基本不等式模型的观察、分析、猜想和概括等系列思维活动过程,复习基本不等式的代数结构特征,体会数学 抽象思维 的方法;二是通过基本不等式的证明方法的探索和不同角度的欣赏,学生能用文字语言、符号语言和图形语言表述基本不等式的结构特点,归纳得出基本不等式中等号成立的条件及其使用条件,进一步体会数形结合的思想方法;三是要引导学生用基本不等式解决常见的最值和实际问题,进一步体验数学建模的过程;

四、教学过程

(一)温故知新,回顾基本不等式.

情景引入:

【投影显示】赵爽弦图。

问题1、请同学们重温“赵爽弦图”,比较正方形ABCD的面积S和里面的四个小三角形面积之和S’的大小,看可以得到怎样的不等关系?

(通过对“赵爽弦图”的观察,使学生由形识数,从几何图形中得到重要不等式的代数形式:

当且仅当,a=b时,取得等号。)

问题3、那么在使用基本不等式时,对实数a、b有什么要求呢?

( )

下面请大家打开课本第98页,看探究中的图3.4-3。

问题5、让D点动起来,请大家指出等号成立的条件.

链接1:几何画板—赵爽弦图

基本不等式教案范文相关 文章 :

1. 基本不等式教学反思(5篇)

2. 基本不等式教学反思【3篇】

3. 基本不等式教学反思范文

4. 数学基本不等式教学反思范文

5. 基本不等式教学反思

6. 七年级数学《整式的加减》教案范文

7. 初中七年级下册《实数》教案优质范文五篇

8. 高中数学基本不等式教学设计

9. 七年级上册数学《整式的加减》教案精选范文五篇

10. 高考数学基本不等式专项练习题附答案

随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。

一、高等数学在地方高等职业教育中遇到的问题及解决办法

(一)数学师资力量短缺,教师学历偏低

地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。

(二)学生对数学课重要性认识不够,学习热情不高

目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。

(三)高等数学课程设置不合理,教学与实际应用脱节

由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。

二、总结

高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。

一、网络教育高等数学的现状分析

1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。

2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。

二、网络教育高等数学的教学初探

教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:

1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。

2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。

不等式的证明毕业论文

微积分 Calculus 矩阵 Matrix 不等式 Inequality 证明 prove一题多解 Multiple Solutions for a title

论文研究般较宽泛领域看定性研究与定量研究;取材面看实证研究(实际调查案例析基础)与文献归纳等;析手看归纳、演绎与比较析等等要看专业专业运用研究

春风又绿江南岸,明月何时照我还?

[1] 熊斌. Schur不等式和H�lder不等式及其应用[J]. 数学通讯, 2005,(15) [2] 段志强. 一个不等式的妙用[J]. 数学通讯, 2004,(17) [3] 赵国松, 张晓东. 一个Cordon型不等式[J]. 许昌学院学报, 2004,(05) [4] 刘宁超. of multiply from i=1 to n (ai+bi) ≥{n~1/[ multiply from i=1 to n (ai)] +n~1/[multiply from i=1 to n (bi)]}~n的证明推广及应用[J]. 阜阳师范学院学报(自然科学版), 1997,(03) [5] 佟成军. 一个不等式的加强及证明[J]. 数学通讯, 2006,(07) [6] 曾峰. 一个不等式的证明及应用[J]. 中学课程辅导(初二版), 2005,(02) [7] 黄长风. 联想证明不等式[J]. 数学教学研究, 2005,(03) [8] 李歆. 不等式a~2+b~2≥2ab的几个推论及应用[J]. 中学生数学, 2005,(05) [9] 方辉. 浅谈哥西不等式的应用[J]. 黄山学院学报, 1997,(01) [10] 孔小波, 孙文迪. 权方和不等式的改进及其姊妹不等式[J]. 数学通报, 2008,(11)

贝塞尔不等式毕业论文

如下:

1、均值不等式:均值不等式,又称为平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。

2、伯努利不等式:对任意的正整数n>1,以及任意的x>-1,有证明:采用数学归纳法:n=1时,不等式明显成立,我们假设当n=k-1时,不等式成立。

3、绝对值不等式公式:在不等式应用中,经常涉及质量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或绝对值。它们都是通过非负数来度量的。公式:||a|-|b|| ≤|a±b|≤|a|+|b|。

4、二项式展开式:二项展开式是依据二项式定理对(a+b)n进行展开得到的式子,由艾萨克·牛顿于1664-1665年间提出。二项展开式是高考的一个重要考点。

在二项式展开式中,二项式系数是一些特殊的组合数,与术语“系数”是有区别的。二项式系数最大的项是中间项,而系数最大的项却不一定是中间项。

傅立叶级数总结傅立叶(Fourier, Jean Baptiste Joseph, 1768-1830)法国数学家,物理学家.1768年3月21日生于欧塞尔, 1830年5月16日卒于巴黎.9岁父母双亡,被当地教堂收养 .12岁由一主教送入地方军事学校读书.17岁(1785)回乡教数学,1794到巴黎,成为高等师范学校的首批学员, 次年到巴黎综合工科学校执教.1798年随拿破仑远征埃及时任军中文书和埃及研究院秘书,1801年回国后任伊泽尔 省地方长官.1817年当选为科学院院士,1822年任该院终身秘书,后又任法兰西学院终身秘书和理工科大学校务委 员会主席.主要贡献是在研究热的传播时创立了一套数学理论.1807年向巴黎科学院呈交《热的传播》论文,推导 出著名的热传导方程,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示 ,从而提出任一函数都可以展成三角函数的无穷级数.1822 年在代表作《热的分析理论》中解决了热在非均匀加热的 固体中分布传播问题,成为分析学在物理中应用的最早例证之一,对19世纪数学和理论物理学的发展产生深远影响 .傅立叶级数(即三角级数),傅立叶分析等理论均由此创始.其它贡献有:最早使用定积分符号,改进了代数方 程符号法则的证法和实根个数的判别法等. 欧拉的故事1707年4月15日,莱昂哈德·欧拉诞生在瑞士巴塞尔城的近郊.父亲是位基督教的教长,喜爱数学,是欧拉的启蒙老师.欧拉幼年聪明好学他父亲希望他"子承父业",但欧拉却不热衷于宗教.1720年,13岁的欧拉进入了巴塞尔大学,学习神学,医学,东方语言.由于他非常勤奋,显露出很高的才能,受到该大学著名数学家约翰·伯努利教授的赏识.伯努利教授决定单独教他数学,这样一来,欧拉同约翰·伯努利的两个儿子尼古拉·伯努利和丹尼尔·伯努利结成了好朋友.这里要特别说明的是,伯努利家族是个数学家庭,祖孙四代共出了十位数学家.欧拉16岁大学毕业,获得硕士学位.在伯努利家庭的影响下,欧拉决心以数学为终生的事业.他18岁开始发表论文,十九岁发表了关于船桅的论文,荣获巴黎科学院奖金.以后,他几乎连年获奖,奖金成了他的的固定收入.欧拉大学毕业后,经丹尼尔·伯努利的推荐,应沙皇叶卡特琳娜一世女王之约,来到俄国的首都彼得堡.在他十六岁时担任了彼得堡科学院的数学教授.在沙皇时代,生活条件较差,加上欧拉夜以继日的工作,研究,终于在1735年,得了眼病,导致右眼失明.1741年,欧拉因普鲁士国王的邀请到柏林科学院供职兼任物理数学所所长.1759年,欧拉成为柏林科学院的领导人.1741~1766年这四分之一世纪间,欧拉精神虽不是十分愉快,但他正值壮年黄金时代,为柏林与圣彼保这两个科学院提交了几百篇论文.特别是,他成功地将数学应用于各种实际科学与技术领域,为普鲁士王国解决了大量社会实际问题.欧拉59岁时,因沙皇女王叶卡特琳娜二世诚恳地聘请,欧拉重回彼得堡.在一次研究计算慧星轨道的新方法时,旧病复发,导致仅有的左眼失明.灾难接踵而至,1771年彼得堡一场大火,次欧拉的藏书及大量研究成果都化为灰烬.接二连的打击,并没有使欧拉丧失斗志,他发誓要把损失夺回来.眼睛看不见,他就口述,由他儿子记录,继续写作.欧拉凭着他惊人的记忆力和心算能力,一直没有间断研究,时间长达十七年之久.欧拉对数学的贡献是巨大的.1748年在瑞士洛桑出版了《无穷小分析引论》,这是第一部沟通微积分与初等数学的分析学著作.1755年发表了《微分学原理》,1768年~1774年发表了《积分学原理》,这对牛顿和莱布尼茨的微积分与傅立叶级数理论的发展起了巨大的推动作用.1774年发表了《寻求具有某种极大或极小性质的曲线的技巧》一书,使变分法作为一个新的数学分支诞生了.欧拉还是复变函数论的先驱者.他在数论研究上也卓有功绩的.如著名的哥德巴赫猜想,就是他在1742年与哥德巴赫的通讯中,引深生发提出来的.1770年失明后欧拉,口述写了《代数学完整引论》,成为欧洲几代人的教科书.欧拉在概率论,微分几何,代数拓扑学等方面都有重大贡献,欧拉在初等数学的算术,代数,几何,三角学上的创见与成就更是比比皆是,不胜枚举.根据已经出版的欧拉书信与手稿集来看,其中数学所占的比例为40%,位居首位.从这些手稿中可以发现,欧拉成就最鲜明的特点是:他把数学研究之手伸入自然与社会的深层.他不仅是杰出的数学家,而且是理论联系实际的巨匠.他着眼实践,在社会与科学需要的推动下从事数学研究,反过来,又用数学理论促进各门自然科学的发展.还有一点值得一提的是,欧拉对数学符号的创立及推广的贡献.比如用 e 表示自然对数的底,用 i 表示,用 f(x) 作为函数的符号,π虽不是欧拉首先提出的,但是在欧拉倡导下推广普及的.同时,欧拉非常重视人才,奖掖后生.法国著名的数学家拉格朗日就是在欧拉的提拔之下,一举成名.瑞士的埃米尔·费尔曼是这样评价欧拉的:欧拉不仅是历史上最有成就的数学家,而且也是历来最博学的人之一……其声望而言,堪与伽利略,牛顿和爱因斯坦齐名.傅立叶级数最初应用在天文学中,这是由于太阳系的行星运动是周期性,欧拉于1729年解行星问题时就得出了这方面的一些结果,到1829年狄里赫莱第一次论证了傅立叶级数收敛的充分条件.一,问题的提出非正弦周期函数:矩形波不同频率正弦波逐个叠加二,三角级数及三角函数系的正交性正弦函数是一种常见的而简单的函数,例如描述简谐振动的函数y=Asin(t+)就是一个以为周期的正弦函数.其中y表示动点的位置,t表示时间,A为振幅,为角频率,为初相.在实际问题中,除了正弦函数外,还回遇到非正弦函数,它们反映了叫复杂的周期运动.例如电子技术中常用的周期为的矩形波.具体的说将周期为T的周期函数用一系列以T为周期的正弦函数组成的级数来表示,记为(1)其中都是常数.将周期函数按上述方式展开,它的物理意义是很明显的,这就是把一个比较复杂的周期运动看成许多不同运动 的叠加,为了 以后讨论方便起见,我们将正弦函数按三角公式变形得并令则(1)式右端的级数就可以写成(2)一般的,型如(2)的式的级数叫三角级数,其中都是常数.如同讨论幂级数是一样,我们必须讨论三角级数(2)的收敛问题,以及给定周期为2的周期函数如何把 它展开成三角级数(2)为此,我们首先介绍三角函数系的正交性.所谓三角函数系(3)在区间上正交,就是指在三角函数系(3)中任何不同的两个函数的乘积在区间上的积分等于零,即以上等式,都可以通过计算定积分来验证,现将第四式验证如下利用三角学中积化合差的公式当kn时,有其余不证.在三角函数系(3)中,两个相同函数的乘积在区间上的积分不等于零,即三,函数展开成傅立叶级数1.若以为周期的函数可展为三角函数,即, (4)我们假设上式可以逐项积分.先求,对上式从到逐项积分:根据三角函数(3)的正交性,等式右除第一项,其余都为零,所以于是得其次求用乘(4)式两端,再从到逐项积分,我们得到根据三角函数系(3)的正交性等式右端除k=n的一项处,其余各项均为零,所以于是得如果(5)式的积分都存在,这时它们的系数叫函数的傅立叶系数,将这些系数代入(4)式右,所得的三角级数叫做傅立叶级数.2.(Diriclilet收敛定理) 设是周期为的周期函数,如果它满足:⑴ 在一个周期内连续或只有有限个第一类间断点⑵ 在一个周期内至多只有有限个极值点,则的傅立叶级数收敛,且当是的连续点时,级数收敛于;当是的间断点时,级数收敛于Diriclilet收敛定理的证明:贝塞尔不等式设函数在区间上是连续的或至多有有限个第一类间断点.而是任意一个"n次"三角多项式,式中是常数.现在要来确定这些常数,使得平方平均偏差为最小.为此目的,我们先计算这个偏差的显表达式,因为容易得到其中是函数f(x)的傅立叶系数.而积分其中右端第二个积分中的被积函数是下面这些形式的函数的线性组合由于三角函数的正交性,它们在区间上的积分都为零,故得于是就有若在等式的右端同时加减如下的和则它又可以写成由此可见,当最后和式的各项为零时,即当时,为最小由于,于是推知这就是著名的贝塞尔不等式由于收敛级数的通项当n无限增大时趋近于零即以为周期的函数的Fourier级数的部分和将Euler-Fourier公式带入上式当时,由三角函数的积化和差公式,有而当时,若将右端理解位的极限,则等式依然成立.因此,上式对任意都是正确的.这样,就把部分和转化为积分形式,这个积分称为Dirichlet积分,是研究Fourier级数敛散性的重要工具.将积分区间分成和,稍加整理,就得到了Dirichlet积分的惯用形式.由前面的三角函数关系式,有,因此,对任意给定的函数,有,这样,若记则的Fourier级数是否收敛于某个就等价于极限是否存在且等于零.推论1(局部性原理) 可积且绝对可积函数f(x)的Fourier级数在x处是否收敛只与f(x)在区间上的性质有关,这里是一个任意小的正常数.证 由于对任意的,在可积且绝对可积,由Riemann引理,因此,若将的积分区间分成和两部分,则由积分和极限的性质,当时的敛散性显然只与有关,而这个积分只涉及f(x)在区间上的性质.推论2 设函数在区间可积,则成立由以上推论告诉我们,如果能找到适当的,使得对于充分小的定数,有,则f(x)Fourier级数必定收敛于这个在绝对可积,就可以由Riemann引理导出上面的结果.例1 已知,求⑴ 设的周期为,将展开为傅立叶级数;⑵ 证明解 ⑴从而有 ⑵ 令,有令,有注:利用周期函数的定积分性质,有3,正弦级数和余弦级数当为奇函数时,是奇函数,是偶函数,故(5)即知奇函数的傅立叶级数是含有正弦项的正弦级数(6)当为偶函数时,是偶函数是奇函数故(7)即知偶函数的 傅立叶级数是只含有常数项和余弦项的余弦级数(8)例2 将函数分别展开成正弦级数和余弦级数.解 先求正弦级数.为此对函数进行奇延拓.按公式(5)有将求得的代入(6)得在端点及处级数的和显然为零,它不代表原来函数的值再求余弦级数.为此对进行偶延拓.按公式(7)有将所求得的代入余弦级数(8)得4.若的周期为,则有,其中 (只需作变量代换,由2可得)5.当为奇函数时,,其中当为偶函数时,,其中6.当定义在上时要先对进行奇偶延拓,再周期延拓可将展开成正弦级数或余弦级数.小结:函数展为傅立叶级数的问题本来是由分解周期函数为谐波引出的,对非周期函数,甚至只是定义在上的函数,当它在上满足狄氏条件时,它的傅立叶级数在上收敛,而且由于其各项都有周期,故在上都收敛,其和函数是上的以为周期的函数.在之外与一般是不同的.但是,如果把定义在上的函数按周期延拓到数轴所有点上去,得到一个以为周期的新的函数,并且仍用表示这个新的函数,那么在整个数轴上就应有展开式:,若是的连续点,上式左边即是.傅立叶级数,作为一种函数的解析表达式,消除了初等函数和用几个式子联合分段表达的函数之间的界限——他们都融合成为一类无穷多项表达式了.这里,第一次用一个正交函数系中的函数作为函数项级数的项去表达一个函数,把函数在一个完备的正交函数系中进行分解是近代数学中一项很有意义的发展.

谐波部分不在工作区域范围内。不影响。

谐波是指在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中, 由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载, 出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。 至于傅里叶级数的原理,这个我也不能说的太清楚,所以就不跟楼主说。

相关百科

热门百科

首页
发表服务