首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

氧化铝原料车间技术论文参考文献

发布时间:

氧化铝原料车间技术论文参考文献

中州铝厂:烧结法生产线(第一氧化铝厂)第一氧化铝厂控制系统有AB公司、ROCKWELL公司、Honeywell公司;企业与院校协作逐步优化氧化铝各工序操作控制,如料浆制备、沉降分离洗涤系统等。一车间:包括:铝土矿破碎、堆料、取料、输送:目前没有控制系统。二车间:生料磨制、料浆调配:正在上一套控制系统,采用美国AB公司的control logic 5000系统,包括6台原料磨及各倒料泵、调配槽,每两台磨为一套控制器,倒料泵及调配槽为一套控制器,四套控制器连成网。目前安装已经完成,还没有投入使用。三车间:熟料烧成、煤粉制备、熟料中碎、电收尘、风机螺旋:每台大窑上一套独立的控制器,有control logic 5000系列,也有slc 500系列,包括大窑参数的显示、设备的启停,不包括煤磨系统,不包括饲料泵及电收尘的控制,包括部分饲料参数的显示。5、6#煤磨合上一套slc 500系统,对煤磨有关设备进行控制。1—4#煤磨仍然是常规仪表控制。四车间:熟料溶出、赤泥分离、赤泥洗涤:6台溶出磨上了三套control logic 5000控制系统,分离和洗涤仍然是常规仪表控制。五车间:粗液喂料泵、脱硅、叶滤硅渣及**:其中5组6组脱硅分别上了一套control logic 5000控制系统,1-4组脱硅为常规仪表控制,叶滤上了一套control logic 5000控制系统。六车间:碳酸化分解、种子分解、氢铝过滤、母液蒸发:碳分上了一套slc 500控制系统,种分上了一套control logic 5000控制系统,5组6组蒸发分别上了一套TPS系统,1-4组蒸发为常规仪表控制。七车间:平盘过滤、焙烧:三台焙烧及三台平盘上了三套TPS系统。空压车间:石灰炉、二氧化碳站、高压站、低压站:5台石灰炉上了5套控制系统,有control logic 5000系统,也有slc 500系统。中州铝厂:30万吨选矿拜耳法生产线(第二氧化铝厂)选矿拜尔法流程国内首创,2004年初成功投产。在磨浮、高压溶出、赤泥分离洗涤、种分、蒸发工序上了5套TPS系统,另外选矿车间上了一套ABB公司control logic 5000系统,矿浆调配上了一套Honeywell 公司HC900控制系统。目前正在做这些系统的联网工作。供矿:浮选矿法,中州铝厂生产药剂。14套视屏装置监视皮带、圆锥矿碎机。控制系统为ABB公司controllogic5000。原料制备:24套视屏装置监视4台格子磨等,2套模糊控制东大设计院开发(软件复杂),2套模糊控制计控室开发,设计的磨机负荷及矿浆密度参与控制,因引进芬兰的矿浆粒度分析仪不好用(易堵取样管),所以没实现完全模糊控制,计控室以后将改进并进一步优化控制。单管溶出:4个预脱硅槽、2个预脱硅加热槽、3台隔膜泵、9个溶出器、10个自蒸发器、13个加热器。蒸汽从1、2级溶出器底部进入加热,3到9级溶出器利用余热加热,溶出器无搅拌机,溶出器内基本无结巴。13级碱液加热,后3级有结巴。检测控制少。调节阀用上海梁光厂(定位器为韩国YTC),蒸汽用气动调节阀,其他用电动调节阀,电动调节阀有时关不严及阀垫子易泄漏。用放射源料位计测自蒸发器料位。沉降洗涤:沉降槽中自动加中州铝厂生产的絮凝剂,测沉降槽中的泥层厚度用澳大利亚产界面仪(放射源测量,有时不准),底流液用密度计测密度(基本准确),部分阀门有泄漏。计控室以后将改进并进一步优化控制。分解系统;11套视屏装置监视现场设备,FLENDER立式过滤电机,ABB变频器,FISHER调节阀,KROHNE电磁流量计,E+H密度计。蒸发系统:调节阀用FISHER公司产品,原液进口、1效、2效、3闪母液出口流量用调节阀,2-5效用变频泵控制液位,电导仪为ROSEMONT公司产,液位计用EJA差压变送器。焙烧炉:使用煤气作燃料,控制较先进,燃烧站为德国JASPER公司产,检漏阀有时关不严,阀门有腐蚀,压力测量仪表堵塞(需检修清理),烧嘴有时结巴(需检修清理),影响点火。AH仓料位检测用压力传感器,AH皮带称用SHENCK公司产品。用阿牛巴流量计测煤气流量,需检修清理。中州铝厂:特种氧化铝生产线(第三氧化铝厂)中州铝厂根据市场需求开发、生产了高白、细白、干白三大系列十多种特种氧化铝产品,促进了企业的多元化发展。控制系统采用3套浙大中控的JX-300集散控制系统,工厂实行全自动化控制,3套系统通过主干网连网,部分参数网上共享,调度中心网可随时监视生产情况。平果铝厂:纯拜耳法生产线设计规模为年产65万吨精矿、30万吨氧化铝、10万吨电解铝,2003年形成年产85万吨氧化铝的生产规模。引进多个工业发达国家的先进技术和设备,同时拥有我国铝工业的最新科研成果,除矿石及原料堆场、部分输送没实现控制外,在高压溶出、分解、沉降、过滤、叶滤、蒸发和焙烧工段均采用美国FOXBORO公司的I/A集散控制系统,实现了工序的自动控制,每一台操作员站上都可以看到整个氧化铝流程中的工艺参数,受操作权限的限制,操作员只能进行本岗位的操作,对于其它岗位只能观察,并在整个氧化铝生产流程中实现了联网,各控制系统都与分公司OA系统相连接。原料车间:矿石、燃料的堆取及部分输送和矿石均化为人工操作。立式石灰炉:石灰石和焦碳(或煤)皮带称配料(PLC控制、余姚产1台、托利多产1台)、炉体控制(1个炉顶温度、1个炉顶压力、4个预热带温度、4个煅烧带温度、4个冷却带温度、1个排灰温度、1个风机风压力、1个风机风流量,风机电机变频控制,出灰流量由调节阀控制;1期为工控机控制(AB公司PLC),2期为计算机系统控制(I/A系统)。3)化灰机用变频控制调节流量。4)料浆制备:有4组磨(每组1台棒磨机、1台球磨机),控制检测有10台山东潍坊皮带称配料、母液流量计2台(FOXBORO公司产)、2台污水槽用雷达液位计(VEGA产)、6台温度巡检仪(棒及球磨机主电机、轴承、传动系统)、16台润滑油压力表、16个温度测点、16个进出料侧高低压压力继电器等,每组磨控制用1套三菱PLC。通过皮带称下料(石灰石和焦碳或煤)及风机风流量主要控制石灰炉煅烧带温度及冷却带温度,1期炉控制计划改为计算机系统控制(I/A系统),出灰电动阀改为气动阀。因焦碳价高,现主要用煤做燃料,部分检测的炉温较规定的高2℃及有小波动。料浆制备基本实现自动控制,没实现磨机负荷、料浆成分分析控制。溶出车间:无预脱硅工序,主要检测控制有:稀释槽及后槽、溶出前槽、热水槽用5台雷达料位计;新蒸汽及二次蒸汽5台质量流量计(ROSEMONT公司);冷却水用1台差压变送器,20台差压变送器(E+H公司)用于测量分离器、闪蒸槽、冷凝水罐、污水槽的液位;34台压力变送器(FOXBORO公司)用于测量压煮器、脉冲缓冲器、闪蒸槽、蒸汽管道的压力;60台压力表(econosto公司和上仪四厂)用于测量隔膜泵、压煮器、闪蒸槽、冷凝水罐、稀释槽的压力;2台出口冷凝水电导仪(ROSEMONT公司);进脉冲缓冲器及进溶出后槽矿浆3台密度计用Cs137源,脉冲缓冲器6台料位开关用Co60源,第1到11级闪蒸槽料位为Cs137源,第12闪蒸槽料位为Co60源,放射仪表用德国BERTHOLD公司产品;46支铂电阻(上仪十七厂)用于测量压煮器顶及冷凝水、单管冷凝水、二次蒸汽。控制阀有:10台气动碟阀调节阀用于新蒸汽及二次蒸汽流量控制,蒸汽及冷凝水压力和流量控制;12台气动偏心旋转调节阀用于进溶出溶液流量、溶出前槽的液位、闪蒸槽液位、冷凝水罐液位、从赤泥洗液流量、单管冷凝水流量、合格及不合格水槽液位,4台电磁开关阀用于进或出脉冲缓冲器的压缩空气流量。稀释槽液位用变频泵控制,上述控制阀为上仪七厂产。用I/A控制系统。RP分析系统为实验阶段。沉降车间:沉浆槽1组为5个,4个投用1个备用,4台卧式过滤机,4台立式过滤机,主要检测控制有:10支热电阻(川仪十七厂)用于测沉浆槽、粗液槽、**槽和热水槽温度,10台雷达料位计(天津天威公司)用于测沉浆槽、粗液槽、**槽、石灰乳槽、苛化槽和热水槽料位,14台电磁流量计(FOXBORO公司)用于测赤泥浆液、粗液、碱性溶液和热水流量,8块压力表(上仪四厂)用于测赤泥浆液、粗液、碱性溶液压力,5台气动碟阀(上仪七厂)用于控制过滤粗液、碱性溶液和热水流量,5台扭矩变送器用于测耙机扭矩,液位控制用变频泵控制。分解车间:每组分解工序16支热电阻用于测分解槽分解液、热交换器循环水和浆液管出口温度,10台电磁流量计(FOXBORO公司)用于测**、母液、循环水、空压机和真空泵轴封水流量,8台电动调节阀(上仪七厂)控制循环水、蒸汽流量,10台雷达料位计用于测精种槽、母液槽、溢流槽、碱液槽、热水槽和污水槽,1台密度计(Cs137源)测旋流器出口料浆密度,液位、流量控制用变频泵控制。分解系统的控制一般为单回路控制,没将分级的槽控制之间形成联锁控制。蒸发车间:16台差压变送器用于测1到6效、强制效蒸发器、冷凝水罐、闪蒸器液位,4台雷达料位计用于原液槽、合格水槽和污水槽液位,4台气动调节阀用于新蒸汽、1效料浆、2效料浆、6效料浆控制流量,2到6效、强制效蒸发器、原液槽、合格水槽和污水槽液位用变频泵控制,16支热电阻用于测1到6效、强制效蒸发器、冷凝水罐、闪蒸器及蒸汽温度,8台电磁流量计用于测蒸汽、蒸发器的原液和母液、冷凝水流量,2台电导仪用于测冷凝水电导率,3台密度计(Cs137源)测原液、1效出口和强制效出口溶液密度。蒸发系统的控制比较高,强制效蒸发器的出料密度测量不好用,准备拆除此密度计。焙烧车间:16台压力变送器用于测P01、P02、P03、C01、C02、C03、C04、K01、K02、T11、T12、V19、煤气总管、真空泵、过滤的空气、热水泵、滤液泵、浆液泵、高压水泵、污水泵、新蒸汽的压力,6台差压变送器用于测A02、P04的流量,2台阿牛巴流量计用于测煤气流量,8台涡街流量计用于测K01、K02、过滤的压缩空气、新蒸汽的流量,8台电磁流量计用于测K01、K02冷却水、过滤的热水槽新水、氢氧化铝料浆泵出口流量,1台氢氧化铝皮带称(德国SHENCK公司)、1台氧气分析仪(ROSEMOUNT公司)、1台CO分析仪(SATEKNIKAS公司),11支热电偶测温,20支热电阻测温,4台气动调节阀控制过滤的新水和蒸汽,5台雷达液位计用于测母液槽、弱滤液槽、氢氧化铝浆液槽、污水槽液位,主风机电机、过滤的热水槽泵、氢氧化铝料浆泵、真空泵用变频控制。山西铝厂:140万吨混联法生产线一分厂(烧结法、拜耳法原料制备):破碎、堆厂、翻车机、原燃料输送(一车间),化碱、原料磨、饲料机(二车间),卷扬、石灰炉(石灰炉车间),脱硅、压缩机;二分厂(烧结法生产线):煤磨、喂料、烧成、冷却、收尘(三车间),中碎、分离、板式机(四车间),脱硅、串联泵、叶滤机(五车间);洗涤槽、压缩机(洗涤车间);回水、接力泵、放料泵(赤泥车间); 三分厂(拜尔法生产线):老蒸发Ⅰ组Ⅱ组(七车间);四蒸发、原液槽、调配、五蒸发(蒸发车间);仪表空压站、荷兰泵、脱硅、Ⅰ系列Ⅱ系列(八车间)、沉降、絮凝剂、过滤、叶滤; 四分厂(烧结法、拜耳法):种子分解、立盘过滤、袋滤机(种分车间),1#焙烧炉、仪表空压站、平盘过滤机(焙烧一车间),2#3#焙烧炉、平盘过滤机、浓相输送(焙烧二车间),种分过滤、**降温、碳分、砂状碳分(六车间); DCS的应用基本上集中在拜尔法生产部分。烧结法生产部分和其它工序中,目前从过程检测到自动控制的整体水平仍很低,少数工序中检测技术比较成熟,而洗涤、老蒸发等工序由于结疤等问题检测手段与自动化水平均很低;拜耳法生产部分尽管整体上比烧结法高,但在第四蒸发、碱液调配等环节仍存在自动化的空白。整体上看目前基本实现了车间、工序级的自动控制并能正常运行的工序有:空压站、蒸发、分解和碳分、种分、氢氧化铝焙烧;3#熟料窑、高压溶出、两组五蒸发、原料磨采用Foxboro公司的I/A 系统;**制备(φ42m沉降、过滤、叶滤)采用Emerson公司的DeltaV系统;种分、碳分、袋滤机、焙烧炉采用Honeywell公司的TPS与PKS系统。在建的系统有:6#石灰炉系统、全厂调度网络系统等。山西铝厂:扩建80万吨氧化铝厂拜尔法线一车间:原燃料卸车及堆场、石灰烧制、石灰乳制备、第一分析站;二车间:原矿浆磨制、预脱硅、溶出、酸洗系统;三车间:赤泥沉降分离洗涤、赤泥输送、赤泥、灰渣堆场、叶滤;四车间:种子分解、种子过滤及**降温、种母精滤、母液蒸发、第二分析站;五车间:氢氧化铝过滤、氢氧化铝焙烧、氧化铝储运。 2005年建成。以原料磨、蒸发、高压溶出、种子分解、焙烧为核心的五大部分流程全部采用Foxboro公司的I/A 系统。原料输送、石灰窑、氧化铝储运采用AB公司的PLC小系统。石灰窑和焙烧炉燃烧站采用SIEMENS公司S7-300 PLC系统,并分别以PROFIBUS-DP和MODBUS通讯接口方式直接接入DCS。郑州铝厂:联合法郑州铝厂氧化铝生产为拜尔法和烧结法生产工艺生产,控制设备种类较多,检控点12000多个,控制系统为美国Honeywell公司产品:TDC-3000、PKS、PLANTSCAPE SCADA系统,用PLC有三菱、ABB、Honeywell、SIEMENS公司产品。具有分公司、分厂、车间控制室三级网络,通过现场的PLC、DCS、PC、重点岗位、各级调度等互相连接。计量仪表:皮带称:南京华普、申克、托利多公司,效果较好;汽车、火车衡器:托利多公司;焙烧炉天然气:上海横河涡街流量计;水、料浆:上海横河及E+H电磁流量计;风、蒸汽:上海横河涡街流量计、孔板流量计。原燃料堆场和料浆制备的检测和控制一般,压力和温度仪表故障多一些。管道化溶出:矿浆和料浆用密度计测量较好。沉降洗涤及分解的检测和控制一般,料位及流量仪表故障多一些。蒸发系统:调节阀用上海梁光厂(定位器为韩国YTC),原液进口、1效、2效、3闪母液出口流量用调节阀,2-5效用变频泵控制液位,电导仪为ROSEMONT公司产,液位计用EJA差压变送器。焙烧炉:使用天然气作燃料,控制较先进,燃烧站为oilon公司产,检漏阀有时关不严,影响点火。AH仓料位检测用压力传感器,AH皮带称用SHENCK公司产品。一氧化碳和氧气分析仪取样部分易堵,清理频繁。鲁能晋北铝业:Ⅰ期拜尔法规划首先建成拜耳法生产线,再增加浮选法选矿,最后建设烧结法,形成串联法生产。全厂原矿浆磨制(棒、球二段磨)、压煮溶出、拜耳法赤泥(含絮凝剂制备、赤泥外排)、种子分解(含**降温、种子过滤)、母液蒸发、氢氧化铝过滤及焙烧六大DCS系统采用SIMENS公司PCS7系统,原料堆厂、空压站、石灰消化、石灰破碎、氧化铝储运、全厂循环水、水厂7套SIMENS PLC分别就近接入各DCS。全厂所有马达控制单元、变频器、部分电磁阀以PROFIBUS-DP通讯接口方式直接接入DCS。规划全厂设一个中央操作控制室和若干个区域操作控制室,由中央操作控制室与区域操作控制室联网,带动60多个子系统,把指令传达给各区域操作控制室,指导和控制生产的全过程。三门峡开曼铝业:拜耳法全厂原矿浆磨制、压煮溶出、种子分解、母液蒸发、氢氧化铝过滤及焙烧五大DCS系统采用Rockwell公司ControlLogix系统,系统单一,连网方便,但过程仪表特别是部分变送器、执行器等问题较多。国内氧化铝生产企业过程控制应用起步较晚,直至八十年代自动检测和自动控制设备才开始在我国氧化铝生产中逐渐采用。特别是烧结法工序许多都具有高温、高压、易结巴、易磨损、易堵塞等环境,部分工序具有多变量、强藕合、强非线性、难检测的特点,测控仪表水平亟待提高。应逐步采用先进的检测、分析设备和控制管理系统,采用生产目标的过程优化设定技术、智能建模技术、故障诊断与预备技术、生产过程信息集成技术等,达到优化生产控制管理。山东铝厂和郑州铝厂近年与有关单位合作,在原料磨制及配料过程中采用中子活化分析技术,进行生料浆组份的在线分析,取得了较好的应用效果。山西铝厂在蒸发母液环节引进匈牙利FL系列铝酸钠溶液在线分析仪获得成功。一些非接触式的一次检测仪表如红外测温仪、放射性密度计等在国内各大氧化铝厂也获得了较广泛的应用。贵铝、郑铝、焦作未来等企业应用郑州某公司利用吹气法检测原理开发的泥层检测器,在线测量沉降、洗涤自动控制的关键参数—底流密度及各个层的密度、高度,效果良好。近年来,随着计算机网络技术的迅猛发展,国内部分氧化铝厂也加快了全厂网络设施的建设步伐,提高了生产过程的自动化水平和管理效率,取得了较好的经济效益。

在我国还是采用电解铝的方式进行铝的生产,通过电解槽进行生产!

现在一般用拜耳法

氧化铝制备及应用专利技术1、α型晶体结构为主体的氧化铝被膜制造方法、α型晶体结构为主体的氧化铝被膜和含该被膜 2、α型氧化铝粉末的制造方法 3、α-氧化铝粉末的制造方法及其由该方法得到的α-氧化铝粉末 4、α-氧化铝粉末及其生产方法 5、α-氧化铝粉末及其制造方法 6、α-氧化铝及其制造方法 7、α-氧化铝粒料的制备方法 8、α-氧化铝纳米粉的制备方法 9、α-氧化铝细粉及其制造方法 10、α一氧化铝粉末的制造方法 11、β-氧化铝的制备方法 12、γ-氧化铝的制备方法 13、θ-氧化铝就地涂覆的整体式催化剂载体 14、拜尔法联合生产氧化铝和铝酸钙水泥的方法 15、拜尔法生产氧化铝过程中红泥水悬浮液的流体化工艺 16、拜尔法生产氧化铝强化溶出的方法 17、半透明氧化铝烧结体及其生产 18、不同整比性vo_2纳米粉体的合成.caj 19、超纯纳米级氧化铝粉体的制备方法 20、超高纯超细氧化铝粉体制备方法 21、超微细高纯氧化铝的制备方法 22、尺寸可控、形态松散的超细氧化铝粉体材料的制备技术 23、尺寸可控纳米、亚微米级氧化铝粉的制备方法 24、处理富含氧化铝一水合物铝土矿的改进方法 25、处理铝土矿生产氧化铝的方法 26、醇铝气相法制取纳米高纯氧化铝的方法 27、醇铝水解法制备高纯超细氧化铝粉体技术 28、从低品位含铝矿石中提取氧化铝的方法 29、从废钒触媒中提取五氧化二钒.caj 30、从废钒催化剂中回收精制五氧化二钒的试验研究.caj 31、从废钒催化剂中回收五氧化二钒.caj 32、从废旧氧化锌压敏电阻片中提取及制备氧化钴.caj 33、从粉煤灰提氧化铝和生成β-cs胶凝材料法 34、从苛性母液制备含水合氧化铝的晶体的方法 35、从铝基含镍废渣中回收氧化铝的方法 36、从铝土矿生产氧化铝的改进方法 37、从氧化铝生产过程的循环母液中萃取镓的工艺 38、大孔径α--氧化铝及其制法和应用 39、单晶氧化铝瓷高强度气体放电灯管 40、单晶氧化铝瓷高强度气体放电灯管 2 41、单晶氧化铝颗粒的制造方法 42、氮化二铬-氧化铝复合材料及其制备方法 43、低玻粉用α-氧化铝粉 44、低密度大孔容球形氧化铝的制备工艺 45、低纳超细α型氧化铝的制造方法 46、低碳烷氧基铝水解制备氧化铝方法 47、低碳烷氧基铝水解制备氧化铝方法的改进 48、低温烧结的99氧化铝陶瓷及其制造方法和用途 49、电镀氧化铝的新工艺 50、电子陶瓷流延成型专用α-氧化铝粉 51、多孔阳极氧化铝膜的自润滑处理方法 52、二氧化钒薄膜的光学特性及应用前景.caj 53、复合氧化铝的制备方法 54、改良盐析法制备亚微米氧化铝工艺方法 55、改性的α氧化铝颗粒 56、改性溶胶-凝胶氧化铝 57、高纯超细氧化铝粉体的制备方法 58、高纯超细氧化铝生产工艺及装置 59、高纯纳米级氧化铝的制备方法 60、高纯纳米氧化铝纤维粉体制备方法 61、高纯氧化铝的制备方法 62、高纯氧化铝粉体的制备方法 63、高铝硅比烧结法生产氧化铝工艺 64、高挠曲强度烧结氧化铝制品及其制备工艺 65、高强度氧化铝 氧化锆 铝酸镧复相陶瓷及制备方法 66、高热稳定性氧化铝及其制备方法 67、高四方相氧化锆-氧化铝复合粉料及其制备方法 68、高温下保持高比表面氧化铝及其制备方法 69、高压放电灯用发光容器及多晶透明氧化铝烧结体的制造方法 70、隔板式氧化铝风动溜槽卸料装置 71、工业化用层析氧化铝 72、硅改性的氧化铝及制备与在负载茂金属催化剂中的应用 73、硅增强的新型结晶氧化铝 74、含工业氧化铝废渣的提纯方法 75、含锂氧化铝的生产工艺 76、含铝酸钙的物料提取氧化铝工艺 77、含铁铝土矿生产氧化铝工艺 78、回收废钯 氧化铝催化剂中金属钯的方法 79、回收氧化铝和二氧化硅的方法 80、活性氧化铝的制备方法 81、减少拜耳法三水合氧化铝中的杂质 82、将硅渣开发为助洗剂的氧化铝生产工艺 83、胶冻切割成型法生产高性能氧化铝系陶瓷基片的生产工艺 84、净化氧化铝粉末的方法和设备 85、具有拟薄水铝石结构的氧化硅-氧化铝及其制备方法 86、具有氧化铪与氧化铝合成介电层的电容器及其制造方法 87、利用粉煤灰和石灰石联合生产氧化铝和水泥的方法 88、利用高岭岩(土)生产超纯氧化铝的工艺 89、利用铝型材厂工业污泥制备活性氧化铝的方法 90、连续种子搅拌分解生产砂状氧化铝工艺 91、两组份烧结法氧化铝制备工艺 92、磷化铝熏蒸残渣的无害化处理并回收氧化铝的方法 93、铝生产电解槽中氧化铝成份的精确调节方法 94、铝酸钠碳酸化法制备活性氧化铝的方法 95、纳米尺寸的均匀介孔氧化铝球分离剂的合成方法 96、纳米级氧化铝的生产工艺 97、纳米添加氧化铝陶瓷的改性方法 98、纳米氧化铝材料的制造方法 99、纳米氧化铝粉的电弧喷涂反应合成系统及其制备方法 100、纳米氧化铝浆组合物及其制备方法 101、纳米氧化铝胶体功能陶瓷涂料生产方法 102、纳米氧化铝铜基体触头材料 103、拟薄水铝石和γ-氧化铝的制备方法 104、片状氧化铝 105、强发光氧化铝模板及制法 106、强化烧结法氧化铝生产工艺 107、强化脱硅及溶出氧化铝的生产方法 108、热解生产的氧化铝 109、溶胶、凝胶法制备超细氧化铝工艺方法 110、溶胶-凝胶氧化铝磨粒 111、砂状氧化铝分解新工艺 112、烧结α-氧化铝 聚偏氟乙烯共混中空纤维膜的制法及制品 113、烧结法精液制取砂状氧化铝的方法 114、烧结法生产氧化铝提高熟料氧化铝溶出率的方法 115、烧结法氧化铝生产工艺的熟料制备方法 116、烧结法氧化铝生产过程中赤泥分离方法 117、生产低碱氧化铝的方法、由该方法生产的低碱氧化铝以及生产陶瓷的方法 118、生产硅藻土助滤剂及回收硫酸铝和氧化铝的方法 119、石灰一拜耳法处理一水型铝土矿生产氧化铝的工艺 120、水合氧化铝的制备方法 121、塑胶地砖表面涂布氧化铝的方法 122、酸析法氧化铝改进工艺 123、随氧化铝加料量变化即时调整铝电解槽能量平衡的方法 124、隧道窑烧结生产氧化铝的方法及专用隧道窑 125、碳酸化分解生产砂状氧化铝工艺 126、碳酸化分解生产氧化铝工艺 127、提高氧化铝生产中蒸发效率的方法 128、天然铝矾土矿用于制备精细氧化铝陶瓷的方法 129、铁铝复合矿生产生铁及提取氧化铝的铝酸钙渣工艺 130、通过化学气相淀积产生的增强氧化铝层 131、透光多晶氧化铝 132、透光性氧化铝陶瓷及其制造方法、高压放电灯用发光容器、造粒粉末和成形体 133、透明的多晶氧化铝 134、微球状γ-氧化铝的制备方法 135、无搅拌情况下分解铝酸钠溶液制造氧化铝的方法和设备 136、稀土补强氧化铝系陶瓷复合材料及其生产方法 137、细粒状活性氧化铝的制备方法 138、亚球形氧化铝粉末、其制备方法及应用 139、亚微米高纯透明氧化铝陶瓷材料的制备方法 140、烟气干法净化中氧化铝量的均匀分配方法及装置 141、盐酸联碱法生产氧化铝工艺 142、阳极氧化铝模板中一维硅纳米结构的制备方法 143、氧化锆增韧氧化铝陶瓷纺织瓷件的制造方法 144、氧化铬及氧化铝合成介电层及其制造方法 145、氧化铝焙烧工序的余热利用方法 146、氧化铝薄膜的制备方法 147、氧化铝超浓相输送滤沙装置 148、氧化铝赤泥洗涤直接加热及分解板式换热工艺 149、氧化铝的常压低温溶出生产方法 150、氧化铝的生产方法 151、氧化铝废水处理后得到的再生水回用方法 152、氧化铝废水处理系统的污泥处置新工艺 153、氧化铝高压釜溶出系统的排料及填料装置 154、氧化铝高压釜溶出系统的闪蒸器注水方法 155、氧化铝高压釜溶出系统的稀释槽乏汽排放装置 156、氧化铝颗粒及其生产方法 157、氧化铝矿浆制备的二段磨磨矿--分级工艺 158、氧化铝纳米纤维的制备方法 159、氧化铝生产分解分级新工艺 160、氧化铝生产烧结法赤泥分离方法 161、氧化铝生产烧结法赤泥分离设备 162、氧化铝生产中产生的废物的加工方法 163、氧化铝生产中浮游物处理方法 164、氧化铝生产中卸泥辊的刮泥装置 165、氧化铝输送过程中气流隔断及杂质清除装置 166、氧化铝熟料烧结回转窑智能控制方法 167、氧化铝陶瓷及其制备方法 168、氧化铝涂覆的碳化硅晶须-氧化铝 169、氧化铝系多相复合结构陶瓷材料及其生产方法 170、氧化铝细粒的制备方法 171、氧化铝下料秤下料静态逻辑控制器 172、氧化铝载钌的制备方法和使醇氧化的方法 173、一水型铝土矿石灰拜耳法生产氧化铝工艺 174、一水硬铝石型铝土矿精矿生产氧化铝方法 175、一种fe基氧化铝复合材料铝电解惰性阳极及其制备方法 176、一种mcm-41 氧化铝复合材料的制备方法 177、一种α-氧化铝载体及其制备方法 178、一种拜尔法生产氧化铝的方法 179、一种拜尔法生产氧化铝的原矿浆制备方法 180、一种表面包膜氧化铝的纳米二氧化钛颗粒的制备方法 181、一种掺铒 铒、镱共掺氧化铝光波导放大器的制备方法 182、一种大孔氧化铝载体及其制备方法1 183、一种大孔氧化铝载体及其制备方法 2 184、一种氮氧化铝镁 氮化硼复相耐火材料及其制备工艺 185、一种分离氧化铝蒸发母液中碳酸钠的方法 186、一种高比表面积氧化铝 187、一种高烧结活性氧化铝粉体的制备方法 188、一种高性能低成本氧化铝复合微晶陶瓷的制备方法 189、一种含锂的球形氧化铝 190、一种含氧化硅-氧化铝的加氢裂化催化剂 191、一种含有改性纳米级氧化铝的半合成烃类转化催化剂 192、一种活性氧化铝催化剂及其制备方法和应用 193、一种活性氧化铝的制备方法 194、一种基于多孔氧化铝模板纳米掩膜法制备纳米材料阵列体系的方法 195、一种晶种分解生产砂状氧化铝的方法 196、一种利用粉煤灰制备氧化铝联产水泥熟料的方法 197、一种连续碳分生产砂状氧化铝的方法 198、一种联合法生产氧化铝降低拜耳法精液αk的方法 199、一种铝电解用硼化钛/氧化铝阴极涂层及制备方法 200、一种纳米晶添加氧化铝陶瓷材料及低温液相烧结方法 201、一种纳米孔氧化铝模板的生产工艺 202、一种偏铝酸钠-二氧化碳法制备活性氧化铝的方法 203、一种球形氧化铝颗粒的制备方法 204、一种烧结法生产砂状氧化铝的方法 205、一种生产超微细氧化铝粉的方法 206、一种生产含有少量氧化钠的氧化铝的方法 207、一种生产氧化铝的粗液脱硅方法 208、一种生产氧化铝的方法 209、一种生产氧化铝工艺过程的补碱方法 210、一种生产氧化铝新工艺 211、一种吸附用活性氧化铝球生产方法 212、一种形态松散的纳米、亚微米级高纯氧化铝的制备方法 213、一种盐析法生产氧化铝及氧化铝微粉的工艺方法 214、一种氧化铝的制备方法1 215、一种氧化铝的制备方法 2 216、一种氧化铝镀膜的方法 217、一种氧化铝基陶瓷复合材料的制备方法 218、一种氧化铝及其制备方法 219、一种氧化铝及其制备方法和用途 220、一种氧化铝-金刚石复合材料的制备方法 221、一种氧化铝蜡吸附剂的再生方法 222、一种氧化铝弥散强化铜引线框架材料及制备方法 223、一种氧化铝磨损指数测定仪 224、一种氧化铝纳米纤维的制备方法 225、一种氧化铝溶出料浆分离赤泥的方法 226、一种氧化铝生产过程中补碱的方法 227、一种氧化铝陶瓷的制备方法 228、一种氧化铝吸附剂的制备方法 229、一种氧化铝载体的制备方法1 230、一种氧化铝载体的制备方法 2 231、一种氧化铝载体及其制备方法 232、一种一水型铝土矿生产氧化铝的母液处理方法 233、一种以湿化学法为基础的氧化铝空心球的制备方法 234、一种用铝土矿提纯氧化铝的方法 235、一种制备高纯超细活性氧化铝的方法 236、一种制备高纯氧化铝的方法 237、一种制备耐高温高表面积氧化铝及含铝复合氧化物的方法 238、一种制备轻质高强氧化铝空心球陶瓷的制备方法 239、一种制备小粒径氧化铝粉的方法 240、一种制备氧化铝载体的方法 241、一种制造高纯超细氧化铝粉的方法 242、一种制造氧化铝提炼厂用的助滤剂的改进方法 243、一种作催化剂载体用的纳米级氧化铝及其制备方法 244、一种作催化剂载体用氧化铝的制备方法 245、以磷化铝制备活性氧化铝的方法 246、应用拜尔法从含-水合物的铝土矿连续生产氧化铝的工艺 247、用冰晶石——氧化铝熔盐电解法生产精铝的方法 248、用铒离子注入勃姆石方法制备掺铒氧化铝光波导薄膜 249、用废铝灰生产氧化铝的方法 250、用浮选法生产再生氧化铝的工艺 251、用高硫铝土矿生产氧化铝的除硫方法 252、用铝电解废弃物制取再生氟化盐、氧化铝的装置 253、用凝胶注模法制备用于齿科修复的氧化铝预制块 254、用氧化铝生产中的副产品钠硅渣生产洗涤用4a沸石的方法 255、用于半导体处理设备中的抗卤素的阳极氧化铝 256、用于改进氧化铝工艺特性的进料处理 257、用于合成二甲醚的改性氧化铝催化剂 258、用于微波诱导氧化工艺的改性氧化铝催化剂的制备方法 259、用于氧化铝生产过程中加入石灰的方法 260、用于制备碳纳米管的氧化铝载体金属氧化物催化剂及其制备方法 261、用再生氧化铝电解法生产铝锭的工艺 262、用在半导体处理设备中的抗卤素的阳极氧化铝 263、用蒸汽流化反应器生产α型氧化铝的方法 264、由分解铝酸钠溶液生产氧化铝的工艺和装置 265、由含少量反应性硅石的三水铝土矿生产氧化铝 266、由氢氧化铝制备氧化铝的方法 267、油墨用氧化铝的制造方法 268、有序多孔阳极氧化铝模板的制备方法 269、预防加热管结垢提高氧化铝厂蒸发效率和节能的方法 270、在两种状态引入晶种以生产大颗粒氧化铝的工艺 271、在氧化铝陶瓷上进行金刚石薄膜定向生长的方法 272、直流电弧矿热炉生产氧化铝空心球的方法 273、制备α-氧化铝粉末的方法 274、制备α-氧化铝粒子的方法 275、制备α-氧化铝粒子的方法 2 276、制备无定形、催化活性氧化硅-氧化铝的方法 277、制取氧化铝过程中的赤泥分离技术 278、制造可控制钠含量和颗粒尺寸的三水氧化铝的方法 279、种含氧化硅-氧化铝的加氢裂化催化剂 280、自支撑有序通孔氧化铝膜的制备方法 281、综合利用煤矸石生产氧化铝和电解铝 282、最终冷却无水氧化铝的方法 本光盘详细地阐述了每个项目的技术领域、现有市场产品技术分析、新产品发明的市场背景、新产品制作的主要技术原理、实现该产品的生产工艺过程、原料配方、具体实施例、以及该项目的研制单位名称、通信地址、研制时间等。是不可多得的技术开发,企业生产的技术汇编资料。 全文资料光盘是计算机专用数据光盘,在Windows操作系统运行环境下,可以直接打开、阅读、打印。为您的企业参与市场产品开发提供第一手宝贵资料。

氧化铝生产技术相关论文参考文献

如温度、时间、酸液浓度,当用到4mol/L盐酸、浸出温度满足100℃、时间满足120min,氧化铝的浸出率最高可达71%。

排盐过滤机滤进料温度是多少40~50℃排盐过滤机滤进料温度是40~50℃, 有机滤布与无机滤布的优缺点表现如下,无机滤布的优点在于过滤性能好,阻力小,化学稳定性好,耐高温,不吸潮和价格便宜等优点。缺点是除尘效率比天然和合成纤维低且纤维挠性差,不耐磨,易断裂。工作温度330°C以上。有机滤布的优点是透气性好、阻力小、容量大、过滤效率高,粉尘易于清除,耐酸,耐腐蚀性好。缺点工作温度不超100°C。查看更多问一问提供内容有用分享排盐过滤机滤进料温度是多少 - 问一问1个回答回答时间:2022年12月26日最佳回答:您好,90℃,排盐过滤机滤进料温度是90℃。高温过滤机使用的材质,PVDF的耐高温性要强一点,至少可以耐250摄氏度的高温,而PP耐高...问一问排盐过滤机滤进料温度是多少 - 问一问1个回答回答时间:2022年12月26日最佳回答:您好,很高兴为您解答。排盐过滤机滤进料温度是多少?亲亲您好,小编正在为您解答,小编的回复:一般来说都是20~80摄氏度。希望...问一问大家还在搜冷滤点的测定方法水处理的盐箱加盐标准离心滤油机加盐水后油变坏酒类过滤机工作温度是多少度压滤机入料浓度要求冷滤点测定的意义水盐滤过率自来水过滤器耐多少温度活性炭过滤器入口进料盐水温度在35℃~55℃之间 - 极搜搜活性炭过滤器入口进料盐水温度在35℃~55℃之间A.正确B.错误 【正确答案】A极搜搜过滤器加热温度控制在275℃~285℃ - 豆丁网2012年6月19日不锈钢碟片的尺寸为φ12in(1in=25.4mm),过滤网孔径一般在20~ 30μm,过滤器加热温度控制在275~285。,熔体管。熔体管的作用是将挤出机、...豆丁网汽车 机滤 工作 温度 是多少? - 百度知道7个回答回答时间:2015年11月17日最佳回答:正常的工作温度上限值一般都超过100℃。以国产轿车为例,发动机正常工作温度是:上海桑塔纳90℃~105℃、一汽捷达85℃~115℃、富康...百度知道滤油机过滤工业用油最适宜油温是多少 - 知乎2021年12月31日就通常意义来说离心滤油机温度在60~70摄氏度之间是较为合适的。 以上就是关于滤油机油温的介绍,根据上述介绍来控制油温的变化,从而合理的...知乎...是否需要温度?常温可以过滤么?如需温度,温度多少过滤效果最佳?求解...2个回答回答时间:2017年10月14日最佳回答:一般温度控制在90 - 150之间,具体看工况是否需要脱水或者白土火星最优条件来选择百度知道鱼缸过滤器的工作温度大约多少度 - 百度知道1个回答回答时间:2015年2月9日最佳回答:生化过滤主要靠的是硝化细菌,硝化菌最佳工作温度是22-26度左右,低于15度基本上没啥效果了,低于10度硝化菌就不工作了。百度知道大家还在搜除盐水温度要求压滤机进料压力离心式滤油机加盐水比例制冷机盐水浓度温度对照表全自动无网排渣机头温度过滤油温多少度合适单缸柴油机空气滤芯怎样加油汽油机环境温度是多少汽车 机滤 工作 温度 是多少? - 百度知道1个回答回答时间:2019年12月5日最佳回答:机滤外部大约在80-120度(一般的80-90最高)机滤内部就不知道了 应该与机油温度一致(大约低一点)不要说什么管路 管路在发动机...百度知道有经验的人简述机械过滤设备的技术参数1. 设备的技术参数 1、进水浊度:10--20mg/L; 2、出水浊度:2--5mg/L; 3、结构:单层、双层; 4、设计压力(MPa):2. 设备的过滤原理 设备的工作流程一般可以分为过滤、反冲洗和正洗这三个阶段,过滤的时候原水由进水管进入设备内部,上布水器将进入过滤器的水均匀分布昆山昌瑞空调净化技术有限公司压滤机进料尿温度超过几度将停止进料? - 百度知道1个回答回答时间:2020年6月13日最佳回答:就相对需要调整进料压力来适应,而不是停机。但是,到底到多少温度才停机,得看编程人员怎么选择的了。百度知道压滤机压榨水温一般保持多高 - 问一问1个回答回答时间:2022年3月9日最佳回答:压滤机压榨水温一般保持在45度到55度之间就可以 压滤机利用一种特殊的过滤介质,对对象施加一定的压力,使得液体渗析出来的一种机械...问一问滤油机过滤汽轮机油温度设定到多少度除水份 - 百度知道2个回答回答时间:2017年8月14日最佳回答:但是任何机械,任何人类的产品长期高温工作都是不可取的,工作温度的选取一定要符合含水量情况以及要求的过滤效率、过滤时间。就通常...百度知道大家还在搜油坊用食用油过滤机板式滤油机液压油油水分离过滤机压滤机滤布一般多少目食用油滤油机哪种好离心滤油机加盐水后油变坏离心滤油机滤油不清酒类过滤机工作温度是多少度纯PP滤壳过滤器工作温度可以到达多少? - 百度知道2个回答回答时间:2018年7月18日最佳回答:纯PP滤壳过滤器工作温度需要控制在90度以下。温度过高会有不可预判的危险。百度知道真空滤油机滤油温度多少合适 - 新闻中心 - cdruiccn的站点对于流量为500L/min至1000L/min的大流量真空滤油机,滤油温度需要55℃至65℃,其电加热的配电功率应为...cdruic.cn柴油机尾气颗粒过滤器入口温度原始值多少度 - 百度知道1个回答回答时间:2022年12月16日最佳回答:柴油机排气温度一般小于500℃,特别是一些在城市工况运行的公交车的排气温度甚至在300℃以下。颗粒过滤器主要是微粒氧化,而微粒氧化...百度知道耐高温过滤器的稳定工作温度2021年9月1日工作最高温度一般不超过:350℃(frsi)耐高温空气过滤器:http://www.chinafil.com/info....洁斐然大家还在搜真空滤油机原理图水盐滤过率自来水过滤器耐多少温度滤油机真空泵温度为什么会高离心过滤油机温度要求多高滤油机真空泵温度一般多久度高温压榨温度是多少离心式滤油机的使用方法一种氧化铝生产用排盐系统的制作方法1. 本实用新型涉及氧化铝生产技术领域,尤其涉及一种氧化铝生产用排盐系统。 背景技术:2. 目前,氧化铝生产中排盐的方法有三种,强制效排盐、补片碱排盐、侧流苛化排盐,前两种都是要提高铝酸钠溶液中的氧化钠浓度,降低盐在铝3. 因为强制效出料和补片碱后的铝酸钠溶液粘度高,一般盐析出时粒度又比较细、固含低。现有排盐系统中盐在过滤时,过滤出的盐滤饼在立盘过滤机X技术压滤机都有哪些保养事项?1. 调试正常的压滤机方可进料工作,每班工作前要对整机作全面检查。机械压紧传动部件及减速箱必须加足润滑油;液压压紧复查油箱贮油量及液压站工作压力2. 禁止在滤板少于规定数量的情况厂开机工作,以免损坏机件。加料前检查滤板排列情况,滤布不能有折叠现象,防止发生较大渗漏;卸饼后滤板一定要紧靠压紧排列整齐。3. 待一切正常后方可压紧滤板加压过滤,过滤压力和过滤温度必须在规定范围之内,过滤压力过高会引起渗漏,过滤温度过高塑料滤板易变形,加料时悬浮液要浓度均匀。不得有佛山市南海创帆金属制品厂氧化铝生产流程工艺及各种泵应用分析 - 百度文库3页发布时间: 2022年01月26日排盐过滤机滤 液及盐分离沉降槽溢流进强碱液槽,部分送各化学清洗用碱点和分解化学清洗槽,部分返回第三级闪蒸,第三级闪蒸出料 送调配.蒸发...百度文库文献检索——检索结果级过滤,滤液送至碱液储罐储存;然后将碱液输送至脱硫循环池,与含硫烟气逆流接触循环脱硫,当脱硫循环池中料浆pH达到5~7时将料浆送至杂盐过滤...www.e-library.com.cnPET涤纶过滤布耐酸碱吗?涤纶滤布耐温度多少度?2022年4月7日“京达”品牌美塔斯芳纶针刺毡除尘布袋的突出特点是具有良好的耐热性,可在250℃温度下持续使用1000小时,...知乎精馏塔设计中进料温度怎么确定 - 盖德问答 - 化工人互助...2018年8月4日朋友们,在设计 精馏塔 过程中,知道进料组成,一般怎么确定进料温度。 还有精馏塔的塔压与塔顶温度又是怎么确定的。 我做的盖德化工网拜尔法氧化铝生产技术1. 先进的氧化铝生产技术 公司采用拜尔法生产氧化铝。主要工艺设备集成了目前国内外最新技术于一身。采取的主要工艺设备技术有:两段磨加水力旋流器分级工艺、预脱硅2. 铝土矿储运及破碎 铝土矿由矿山粗破碎后用卡车运入厂内并取样分析化学成分。进厂铝土矿先经过筛分破碎机进行细破,细破矿石粒度025mm,然后通过皮带3. 段闭路一段开路两段磨矿系统。一段为棒磨,二段为球磨。共四组磨矿系统,每组各包括一台棒磨机、一台球磨机和一组旋流器。其中水力装配图网请问这题的泡点温度怎么确定?就是进料温度多少请问...1. 工艺条件 有一泡点物料,P=16.5kg/cm2, F=100kgmol/hr;物料组分和组成如下:2. 设计要求 试设计蒸馏塔,将C3和C4分离;塔顶物料要求butane浓度小于0.1%,塔釜物料要求propane浓度小于0.1%;海川化工论坛日本3R滤油机3R超滤油机超滤油机滤油机蓝迈过滤器2022年10月6日价格:¥3.00发货地:河北 廊坊资质已核查生产销售过滤器等,还有更多最新的专业产品参数、实时报价、优质商品批发、供应厂家等信息廊坊蓝迈过滤器材有限公司大家还在搜冷液进料q值的计算公式离心式滤油机加盐水比例制冷机盐水浓度温度对照表滤油的最佳温度是多少板框滤油机的油温温度是多少滤油温度温度升高对过滤有利底滤鱼缸加热温度调到多少【供应带式污泥压滤机滤带】价格 - 厂家 - 中国供应商2022年2月2日6、过滤料液的温度小于额定温度,一般<100℃,料液中不得混有易堵塞进料口的杂物和坚硬物,以免损坏滤布。 7、料液、洗涤水等阀门请按操作程...中国供应商...风电滤芯 聚结滤芯 分离滤芯 滤油机滤油车 - 卅亚过滤产品描述:煤油油水分离滤芯P.4-1422油液聚结过滤器滤芯简介∶在航空航天的燃料油种类中,主要是汽油和航空煤油...卅亚过滤真空过滤 - 百度百科科普中国·科学百科参与审阅真空过滤是根据在同一压力(真空度)下,油与水的汽化温度不同(水的汽化温度低于油的汽化温度)的原理工作的,据此原理做成真空滤油机。内容简介 真空过滤是应用最...内容简介原理基本过程百度百科发动机油温度多少正常 发动机油温度高是什么原因导致2022年1月2日以上就是汽车编辑给朋友们简单介绍的机油温度有多正常,汽车正常的机油温度是多少?所以不用担...太平洋汽车网机油温度多少正常(EA888发动机机油温度130正常吗...2022年10月9日机器过滤器被堵塞 更换机油时,机器滤清器也应一起更换。如果长时间不更换,会直接导致机滤堵塞,失去拦截机油中杂质的功能。此时机油会直接从旁通...www.ruons.com氧化铝工艺讲座 - 道客巴巴2018年1月31日·工艺流程图(见下页)·主要技术指标:立盘过滤机进料温度50~55℃;滤饼含附液率≤20%;母液浮游物含量≤2 g/L;种子过滤进料固含~500g...道客阅读

以盐酸为溶剂,氯化钠为助溶剂,对粉煤灰絮凝剂聚合氯化铝的制备工艺进行了研究。本论文采用微波萃取法,代替以往的酸溶浸提法提取铝,研究盐酸浓度、微波功率、粉煤灰与氯化钠的质量比、微波加热时间和微波聚合时间这五个工艺参数对聚合氯化铝产品性能的影响,通过比较氧化铝的含量、盐基度的大小、氧化铝的浸出率确定最佳的工艺参数。结果表明,液体絮凝剂中氧化铝的含量在3%-10%之间;盐基度在40%-90%之间;氧化铝的溶出率在20%-80%之间。制备絮凝剂的最佳工艺条件为:盐酸浓度6mol/L,微波功率280W,粉煤灰/氯化钠的质量比为100/12,微波热解时间10min,微波聚合时间120min。本实验所制备的絮凝剂pH为3.8的黄色液体,用红外光谱仪测定在最佳条件下制备的絮凝剂,结果表明:根据特征峰可以得出絮凝剂存在Al-OH和H-OH基团,满足聚合氯化铝的分子构成。本论文用所制备的絮凝剂处理甲基橙废水,通过比较PH、絮凝剂投加量、助凝剂添加量、絮凝温度、絮凝时间、搅拌时间和搅拌强度这几个工艺参数对絮凝效果的影响,考察絮凝剂处理废水的能力,确定处理甲基橙废水的最佳工艺条件。絮凝工艺最佳的条件为: pH为7.0,絮凝温度为15℃,投加量为50ml/L,絮凝时间1h,慢搅拌速度85r/min,搅拌时间4min、助凝剂投加量为40g/L。在此条件下,甲基橙废水的脱色率达到95%以上,CODcr去除率高达76%以上。由此可见,所制备的粉煤灰絮凝剂聚合氯化铝,性能较好,具有广泛的应用前景。展开 关键词:粉煤灰 ; 微波 ; 絮凝剂 ; 聚合氯化铝 ; 甲基橙废水作者:王海霞导师:何海宾中国图书馆分类法:X791学位授予单位:西华大学学位授予日期:2013学科专业:动力机械及工程学科代码:080703正文语种:中文全部来源相似文献参考文献知网数据声明:本站提供的数据(包含且不限于数据中的文字、图片、视频)仅用于学术研究,严禁用于任何以商业为目标的传播。

絮凝剂中的氧化铝的浸出率:20%-80%之间。液体絮凝剂中氧化铝的含量在3%-10%之间;盐基度在40%-90%之间;氧化铝的溶出率在20%-80%之间。

氧化铝论文的参考文献

氧化铝是一种无机物,化学式Al2O3,是一种高硬度的化合物,熔点为2054℃,沸点为2980℃,在高温下可电离的离子晶体,常用于制造耐火材料。工业氧化铝是由铝矾土(Al2O3·3H2O)和硬水铝石制备的,对于纯度要求高的Al2O3,一般用化学方法制备。Al2O3有许多同质异晶体,已知的有10多种,主要有3种晶型,即α-Al2O3、β-Al2O3、γ-Al2O3。其中结构不同性质也不同,在1300℃以上的高温时几乎完全转化为α-Al2O3。

★把握升浪起点 ●2006年以来,全球大宗商品的牛市进入加速上扬的阶段,与铜、锌的优异表现相比,铝价的涨幅略有落后。在经过长时期的低迷后,国内电解铝行业的转折已成定局,相应地电解铝上市公司股价表现较为出色。●预测未来两到三年内全球氧化铝产能将出现过剩,目前氧化铝价格基本见顶,2007年后将以逐步回落为主。●由于中国电解铝产业政策的变化,全球电解铝供求关系正逐渐改善,2006年国际电解铝供应将可能出现略为偏紧的局面;到2007年下半年,由于国内需求的强劲增长,电解铝行业将出现大面积短缺,而我国将可能从电解铝净出口国变为净进口国。●电解铝—氧化铝价差扩大的趋势使得电解铝行业成为有色中最有潜力的品种。●电解铝行业的投资机会在于:一、氧化铝或电力成本的优势;二、产业链较长的公司;三、规模的扩张。

全国氧化铝学术会议论文集

出版专著(英文)1.书名: Reliabilities of Consecutive-k Systems出版时间:2000年, 作者:Gerard J. Chang, Lirong Cui & Frank K.Hwang出版社:Kluwer Academic PublishersISBN: 0-7923-6661-1;2.书名: Proceedings of the 4th International Conference on Quality and Reliability (ICQR2005) 出版时间:2005年,编辑: Lirong Cui,Albert H. C. Tsang, & Min Xie, 出版社:Beijing Institute of Technology Press,SBN: 7-81045-742-X代表性论文(按时间先后排序)[1] Lirong Cui, Alan G Hawkes, “Availability of a series system with spares”, Microelectron. & Reliability. Vol.34 No.6. p1057-1068, 1994. (SCI )[2] Lirong Cui, Alan G. Hawkes & Assad Jalali, “The increasing failure rate property of consecutive k-out-of-n”, Probability in the Engineering & Informational Sciences, 9, p217-225, 1995.[3] Chang, G.J., Cui L.R., & Hwang, F.K., “Reliabilities for (n,f,k) systems”, Statistics & Probability Letters. 43:(3) p237-242, 1999. (SCI)[4] Chang, G.J., Cui L.R., & Hwang, F.K., “New comparisons in Birnbaum importance for the consecutive-k-out-of-n system”, Probability in the Engineering & Informational Sciences. 13:p187-192, 1999 & 14:(3) p405-405, 2000. (SCI )[5] Hwang, F.K., Cui, L.R.,Chang, J.C., et al. “‘Comments on reliability and component importance of a consecutive-k-out-of-n system’ by Zuo”, Microelectron. & Reliability. 40:(6) p1061-1063, 2000. (SCI )[6] Xie, M., Preuss, W. and Cui, L.R. “Error analysis of some integration procedures for renewal equation and convolution integrals”, Journal of Statistical Computation and Simulation, Vol. 73, p59-70, 2003. (SCI )[7] Cui, L.R. and Xie, M. Availability analysis of periodically inspected systems with random walk model. Journal of Applied Probability, 38 (4): , (SCI )[8] Lirong Cui & Min Xie. “Some normal approximations for renewal function of large Weibull shape parameter”. To: Communications in Statistics---Simulation & Computation. 2003, Vol. 32, No.1, p1-16. (SCI和EI )[9] Lirong Cui. “The IFR property for consecutive-k-out-of-n:F system” Statistics & Probability Letters. Vol. 59, 4, p405-414, 2002. (SCI )[10] Lirong Cui, H.T.Loh & M. Xie. “Sequential inspection strategy for multiplesystems under availability requirement”. European Journal of Operational Research. Vol. 155, No. 1, 2004 (May), p170-177. (SCI )[11] Lirong Cui, Way Kuo and Min Xie, “On -out-of- System and its Reliability,” Third International Conference on Mathematical Methods in Reliability methodology and practice, June 17-20, 2002, p173-176. Trondheim, Norway.[12] Lirong Cui, Way Kuo, H.T. Loh & M. Xie, “Optimal Allocation of Minimal and Perfect Repairs under Resource Constraints”, IEEE Transactions on Reliability. Vol.53. No.2, June, p193-199, 2004. (SCI 和EI)[13] Lirong Cui, M. Xie and H.T. Loh. “Inspection schemes for general system”. IIE Transactions,Vol.36, No.9, September, p817-825, 2004. (SCI )[14] 沈剑波,李金林,崔利荣,“导弹储存可用性模型与分析”, 导弹与航天运载技术,No.2, p30-34, 2004.[15] Lirong Cui & Jinlin Li, Availability for a Repairable System with Finite Repairs, Proceedings of the 2004 Asian International Workshop (AIWARM 2004) on Advanced Reliability Modeling, World Scientific , p97-100.[16] 沈剑波,李金林,崔利荣,“导弹可用度模型与分析”, 导弹与航天运载技术,No.6, p27-30, 2004.[17] 沈剑波,李金林,崔利荣,“导弹储存维修性统计分析”, 系统工程与电子技术,Vol. 26, No.11, p1731-1735, 2004.[18] Lirong Cui, Analysis of Bullwhip Effect for Two-Level Supply Chain with Multi-distributed Centers, Journal of Systems Science and Information, Vol. 2, No. 4, p707-711, 2004,[19] Assad Jalali, A.G. Hawkes, Lirong Cui & Frank K. Hwang, “The Optimal Consecutive-k-out-of-n:G Line for ”, Journal of Statistical Planning and Inference Vol.128. No.1, p281-287, 2005, (SCI )[20] Lirong Cui & Min Xie, Availability of a periodically inspected system with random repair or replacement times, Journal of Statistical Planning and Inference Vol.131. No.1, p89-100, 2005, (SCI )[21] Lirong Cui & M Xie, On a generalized k-out-of-n system and its reliability, International Journal of Systems Science, 2005, 36(5), p267-274. (SCI )[22] 曹光祥,李金林,崔利荣. 标准体系的使用期的模型与分析,数理统计与管理,2005年 第二期,p73-78.[23] 崔利荣,赵先,李金林,有限马尔可夫链嵌入方法的最新进展, 全国第七届可靠性学术会议论文集,p34-42, 清华大学出版社出版,2005年。[24] 曹光祥,李金林,崔利荣, 李俊峰. 标准体系的比例型寿命使用期模型与分析,数理统计与管理,2006年 25卷第1期, P27-31.[25] 杨海生,崔利荣,Consecutive- -out-of- :F和Consecutive- -out-of- :F线性系统的可靠性,数理统计与管理,2006年 25卷第3期, P321-328.[26] Lirong Cui & Haijun, Li, Opportunistic Maintenance for Multi-Component Shock Model, Mathematical Method of Operations Research, 2006, 63, p493-511. (SCI )[27] lirong Cui, Way Kuo, Jinlin Li & Min Xie, On the dual Reliability systems of and , Statistics and Probability Letters, 2006, 76:1081-1088. (SCI )[28] Zhihua Zheng, Lirong Cui & Alan G. Hawkes, A study on a Single –unit Markov repairable system with repair time omission, IEEE Transactions on Reliability, 2006,Vol. 2, p182-188. (SCI )[29] Lun Ran, Lirong Cui and M. Xie, Some Analytical and Numerical Bounds on the Renewal Function, Communications in Statistics: Theory and Methods, 2006, Vol. 35 Issue 10, p1815-1827; (SCI )[30] Yanlan Guo, Lirong Cui, Jinlin Li, Song Gao, Reliabilities for and Systems, Communications in Statistics: Theory and Methods, 2006, Vol. 35 Issue 10, p1779-1789, 11p; (SCI )[31] Lirong Cui & Haijun Li, Coherent systems of components with multivariate phase type life distributions, Reliability Engineering & System Safety, Volume 92, Issue 3, March 2007, Pages 300-307 (SCI)[32] Xueli Gao, Lirong Cui, Jinlin Li, Analysis for Joint Importance of Components in Coherent System, European Journal of Operational Research. 2007 (182) p282-299. (SCI & EI).[33] 赵先, 崔利荣, 有限马尔可夫链嵌入法在系统失效率计算中的应用, 北京理工大学学报(自然版)2006 Vol.26 No.9 P.843-846.[34] 李岳,崔利荣, 服从单向单交叉并行链优先约束的可靠性系统测试优化,系统工程与电子技术,2007年2月,第29卷第2期,p323-328.[35] Lirong Cui, Xian Zhao & Jinlin Li, A Study on Some System Safety Models, European Safety and Reliability Conference - ESREL 2006, Estoril, Portugal p1607-1610.[36] Xian Zhao, Lirong Cui, Way Kuo, Reliability For Sparsely Connected Consecutive- Systems, IEEE Transactions on Reliability (SCI & EI),2007, No 3. p516-524.[37] 冉伦,郑治华,崔利荣, 马尔可夫可修系统新故障时间分布研究,兵工学报, 2007年第28卷第5期 P594-597. (EI)[38] Lirong Cui, Haijun Li, Markov Repairable Systems with History-Dependent Up and Down States, Stochastic models (SCI) 2007, 23:665-681.[39] Zhihua Zheng, Lirong Cui and Song Gao, A Study on a Single-unit Markov Repairable System with omitted failures, European Safety and Reliability Conference - ESREL 2007, Norway,2007, June. 25-27, p1893-1897.[40] Lirong Cui & Alan G. Hawkes, A Note on the Proof for the Optimal Consecutive-k-out-of-n:G Line for n<=2k, Journal of Statistical Planning and Inference, 2008, 138, p1516-1520. (SCI).[41] Z.W. Bao, H.Y. Li, L.R. Cui, A Study on Optimal Inspection Strategies of Reliability Systems with Parallel-Chain Precedence Constraints under Failure States, Advanced Materials Research , 2008, Vol. 44-46, p787–794; (EI ).[42] Xian Zhao, Lirong Cui. Defect pattern recognition on nano/micro integrated circuits wafer. The 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Jan, 2008, p519–523; (EI).[43] 赵先, 崔利荣. 基于模型的圆形边界识别方法. 北京理工大学学报(自然科学版), 2008年第28卷第09期, p843-846; (EI).[44] Zhihua Zheng, Li-rong Cui, Haijun Li, Availability of Semi-Markov Repairable Systems with History-Dependent Up and Down States. Proceedings of the 3rd Asian International Workshop, Taipei, Taiwan, Oct, 2008, p186–193.[45] 王金铎, 鲍智文, 崔利荣. 我国电解铝用阳极与阴极炭块市场需求预测. 数理统计与管理, 2008年第27卷第2期, p313–318.[46]贾旭杰,崔利荣,胡敏, 基于Copula的武器装备系统供应链可靠性研究, 兵工学报, 2008年第29卷增刊,p1-4.[47] Zhao Xian, Cui Lirong. On the accelerated scan finite Markov chain imbedding approach. IEEE Transactions on Reliability. (将于2009年6月正式出版,SCI和EI收录).录用;[48] 赵先,崔利荣,李亚南, 线形 系统和 系统的可靠度计算新方法,数理统计与管理, 录用。[49] 赵先,崔利荣. 线形Consecutive-(1,2) or (2,1)-out-of-(m,n):F系统可靠度研究. 北京理工大学学报(自然科学版),录用。[50] Zhihua Zheng, Lirong Cui, A study on a parallel repairable system with omitted failures, Journal of Beijing Institute of Technology, 录用。

专著(Book Chapter)(*通讯作者)27、Ma, J.*; Yu, F.; Ma, B. Y., “Single-walled carbon nanotubes: different-diameters, different properties, and different applications”, Carbon Nanotubes Synthesis, Properties and Applications, NOVA Science Publishers, 2012.论文:26、Ma, J.; Wang, J. N., Purification of single-walled carbon nanotubes by a highly efficient and nondestructive approach, Chem. Mater., 2008, 20, 2895-2902. (SCI, I.F. 8.2)25、Ma, J.; Wang, J. N., Preparation of water-dispersible single-walled carbon nanotubes by freeze-smashing and application as a catalyst support for fuel cells,J. Mater. Chem., 2010, 27, 5742-5747.(SCI, I.F. 6.1)24、Ma, J.; Wang, J. N., Large-diameter and water-dispersible single-walled carbon nanotubes: Synthesis, characterization and applications, J. Mater. Chem., 2009, 19, 3033-3041.( SCI, I.F.6.1)23、Yu, F, Wu, Y. Q.,Ma, J*, Influence of the pore structure and surface chemistry on adsorption of ethylbenzene, xylene isomers by KOH-activated multi-walled carbon nanotubes. J. Hazard.Mater., 2012, DOI: 10.1016/j.jhazmat.2012.07.059.(SCI, I.F. 3.9)22、Yu, F, Chen J. H, Chen L, Huai J, Gong W. Y., Yuan Z. W., Wang J. H., Ma, J*, Magnetic carbon nanotube synthesized by Fenton's reagent method and their potential application for the removal of azo dye from aqueous solution, J. Colloid Interface Sci., 2012, 378(3), 175-183(SCI, I.F. 3.1)21、Yu, F, Chen J. H, Yang, M. X., Li, F. L., Su, C., Yuan, Z. W., Yu, L. L., Zhou, L., Jin, L., Ma, J*, A facile one-pot method to synthesis low-cost magnetic carbon nanotubes and the application of dye removal, New J. Chem., 2012, 36 (10), 1940-1943 (SCI, I.F. 2.9)20、Ma, J*.; Yuan Z. W, Chen, J. H, Diameter-dependent thermal-oxidative stability of single-walled carbon nanotubes synthesized by a floating catalytic chemical vapor deposition method, Appl. Surf. Sci., 2011, 257, 10471-10476(SCI, I.F. 2.103)19、Yu, F, Wu, Y. Q., Ma, J*, Adsorption of lead on multi-walled carbon nanotubes with different outer diameters and oxygen contents:kinetics, isotherms and thermodynamics. J. Environ. Sci., 2012.( SCI, I.F. 1.660)18、Yu, F, Yang, M. X., Li, F. L., Su, C., Ma, B. Y., Yuan, Z. W., Chen, J. H., Ma, J*, The growth mechanism of single-walled carbon nanotubes with a controlled diameter, Physica E, 2012, 44: 2032–2040(SCI, I.F. 1.532)17、Ma, J.; Wang, J. N., Control of the diameters of single walled carbon nanotubes and related nano-chemistry and nano-biology, Front. Mater. Sci., 2010, 4, 17-28.(特邀综述)16、Wu, Z. P.; Wang, J. N.; Ma, J., Methanol-mediated growth of carbon nanotubes, Carbon, 2008, 47, 324-327. (SCI, I.F. 5.378)15、Yu, F; Ma, J.; Wu, Y. Q., Adsorption of toluene, ethylbenzene and m-xylene on multi-walled carbon nanotubes with different oxygen contents from aqueous solutions, J. Hazard.Mater.,2011, 192(3), 1370-1379 (SCI, I.F. 4.173) 14、Niu, J. J.; Xie, J.; Su, L. F.;Ma, J., An approach to carbon nanotubes with high surface area and large pore volume, Micropor. Mesopor. Mat., 2007, 100, 1-5. (SCI, I.F. 3.285)13、Yu, F; Ma, J.; Wu, Y. Q., Adsorption of toluene, ethylbenzene and xylene isomers on multi-walled carbon nanotubes oxidized by different concentration of NaOCl, Front. Environ. Sci. En., 2012, 6(3): 320–329 (SCI, I.F. 0.754)12、Wu, Z. P.; Xu, Q. F.; Wang, J. N.; Ma, J., Preparation of large area double-walled carbon nanotube macro-films with self-cleaning properties, J. Mater. Sci. Technol., 2010, 26, 20-26. (SCI, I.F. 0.759)11、马杰,虞琳琳,金路,袁志文,陈君红,改性碳纳米管原始样品吸附亚甲基蓝染料性能研究,环境化学,2012, 31(5), 646-65210、于飞,周露,杨明轩,陈君红,袁志文,马杰,柔性碳纳米管透明导电薄膜国内外研究进展,功能材料,2012,43 (15): 1969-19759、金路,高振威,怀静,张雪,郭文瑞,周露,陈君红,袁志文,汤宇航,栾敬帅,范海波,马杰,二氧化钛纳米管阵列的制备工艺对其光催化性能的影响,功能材料,20128、周露,陈君红,袁志文,马杰,芬顿试剂法制备磁性碳纳米管及其吸附亚甲基蓝的性能研究, 环境化学,2012, 31(5), 669-6767、马杰, 吴玉程, 电沉积法制备Cu/Al2O3纳米复合材料及其光吸收特性研究, 复合材料学报, 2006, 23, 21-24.6、马杰, 吴玉程, 李广海, 化学沉积Co-Fe-P纳米涂层结构与磁学性能研究, 金属功能材料, 2004, 01:6-10.5、虞琳琳,马杰,袁志文,虞晓敏,陈君红,次氯酸钠改性磁性碳纳米管吸附剂的制备及吸附性能研究,水处理技术,2011,37(10) 21-254、吴玉程,马杰,张立德,氧化铝有序阵列模板制备工艺研究及应用,中国有色金属学报,2005,74,680-6873、吴玉程,马杰,多孔阳极氧化铝模板的制备及其光学特性研究,功能材料与器件学报, 2005, 11, 440-4442、吴玉程,叶敏,马杰,处理工艺对阳极氧化铝模板光学性能的影响,材料热处理学报, 2006, 27(1): 13-16.1、吴玉程,叶敏,解挺,马杰,电沉积二氧化钛功能薄膜的制备与组织转变研究,人工晶体学报,2006,35(3):612-616.会议:5、Ma, J.; Yuan, Z. W.; Chen, J. H., Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multi-walled carbon nanotubes. 244th ACS National Meeting & Exposition. Philadelphia, USA, 2012. (Poster presentation)4、Ma, J.; Yuan, Z. W.; Chen, J. H., Green-chemical synthesis of a novel magnetic multiwalled carbon nanotube/iron oxide hybrid as methyl orange adsorbent. International Conference on Nanoscience & Technology, China, 2011.3、Ma, J.; Yuan, Z. W.; Chen, J. H., Removal of methyl orange from aqueous solutions by novel magnetic multiwalled carbon nanotube/iron oxide hybrids, Annual World Conference on Carbon (Carbon 2011), China, 2011.2、周露,马杰*,袁志文,陈君红, 芬顿试剂法制备磁性碳纳米管及其吸附亚甲基蓝的性能研究, 第六届全国环境大会,上海,20111、马杰,虞琳琳,袁志文,陈君红*,改性碳纳米管原始样品吸附亚甲基蓝染料性能研究,第六届全国环境大会,上海,2011

化工原理精馏技术论文参考文献

毕业设计(论文)任务书设计(论文)题目:年处理量1.0万吨甲苯-水混合液的填料塔的设计函授站: 专业: 化工工艺 班级:xx学生: xx 指导教师:1.设计(论文)的主要任务及目标 塔设计计算:a塔工艺计算(物料和能量衡算)b 塔及塔板主要工艺尺寸的设计计算⑶ 对苯精馏塔的流体力学验算⑷ 相关辅助设备选型与计算⑸ 设计结果及分析讨论2.设计(论文)的基本要求和内容⑴ 论文内容符合毕业设计撰写规范。⑵ 数据可靠、真实,具有一定的代表性。⑶ 计算过程细化、符合规范要求。⑷ 要求论文图纸包括:生产工艺流程控制图、塔的部分装配图、X-Y图、塔板负荷性能图。3.主要参考文献⑴陆美娟.《化工原理》.化学工业出版社.2001年1月第1版⑵冯伯华.《化学工程手册》第1、2、3、6卷.化学工业出版社.1989年10月第1版 ⑶包丕琴.《华工原理课程设计指导书》.北京化工大学化工原理教研室.1997年4月⑷陈洪钫.《化工分离过程》.化学工业出版社.1995年5月第1版⑸陈钟秀.《化工热力学》.化学工业出版社.1993年11月第1关键词:回流比、精馏、泡点进料、设备、试差 目 录前言........................................(7)第1章 精馏方案的说明.......................(7)第1.1节 操作压力............................(7)第1.2节 进料状态............................(8)第1.3节 采用强制回流(冷回流)...............(8)第1.4节 塔釜加热方式、加热介质..............(8)第1.5节 塔顶冷凝方式、冷却介质..............(8)第1.6节 流程说明............................(8)第1.7节 筛板塔的特性........................(9)第1.8节 生产性质及用途......................(9)第1.9节 安全与环保..........................(11)第2章 烯烃加氢饱和单元分析.................(12)第2.1节 反应机理及影响因素分析第2.2节 物料平衡第2.3节 能量平衡第3章 精馏塔设计计算.......................(12)第3.1节塔的工艺计算.......................(12)第3.2节塔和塔板主要工艺尺寸的设计计算.....(25)第4章 塔的流体力学验算.....................(31)第4.1节校核................................(31)第4.2节负荷性能图计算......................(34)第5章 辅助设备选型计算.....................(39)第5.1节换热器的计算选型....................(39)第5.2节 管道尺寸的确定.....................(44)第5.3节 原料槽、成品槽的确定................(45)第6章 设计结果概要及分析讨论...............(45)第6.1节数据要求............................(45)第6.2节设计特点............................(46)第6.3节 存在的问题.........................(46)参考文献....................................(47)符号说明.....................................(48)附录1.......................................(52)附录2.......................................(52)附录3.......................................(52)附录4.......................................(52)前言本论文是针对工业生产中苯-甲苯溶液这一二元物系中进行苯的提纯精馏方案,根据给出的原料性质及组成、产品性质及组成,对精馏塔进行设计和物料衡算。通过设计核算及试差等计算初步确定精馏塔的进料、塔顶、塔底操作条件及物料组成。同时对精馏塔的基本结构包括塔的主要尺寸进行了计算和选型,对塔顶冷凝器、塔底再沸器、相关管道尺寸及储罐等进行了计算和选型。在计算设计过程中参考了有关《化工原理》、《化学工程手册》、《冷换设备工艺计算手册》、《炼油设备基础知识》、《石油加工单元过程原理》等方面的资料,为精馏塔的设计计算提供了技术支持和保证。通过对精馏塔进行设计和物料衡算等方面的计算,进一步加深了对化工原理、石油加工单元过程原理等的理解深度,开阔了视野,提高了计算、绘图、计算机的使用等方面的知识和能力,为今后在工作中进一步发挥作用打下了良好的基础。第1章 精馏方案的说明本精馏方案适用于工业生产中苯-甲苯溶液二元物系中进行苯的提纯。精馏塔苯塔的产品要求纯度很高,达99.9%以上,而且要求塔顶、塔底产品同时合格,以及两塔顶温度变化很窄(0.02℃),普通的精馏温度控制远远达不到这个要求。故在实际生产过程控制中只有采用灵敏板控制才能达到要求。故苯塔采用温差控制。第1.1节 操作压力精馏操作在常压下进行,因为苯沸点低,适合于在常压下操作而不需要进行减压操作或加压操作。同时苯物系在高温下不易发生分解、聚合等变质反应且为液体(不是混合气体)。所以,不必要用加压减压或减压精馏。另一方面,加压或减压精馏能量消耗大,在常压下能操作的物系一般不用加压或减压精馏。第1.2节 进料状态进料状态直接影响到进料线(q线)、操作线和平衡关系的相对位置,对整个塔的热量衡算也有很大的影响。和泡点进料相比:若采用冷进料,在分离要求一定的条件下所需理论板数少,不需预热器,但塔釜热负荷(一般需采用直接蒸汽加热)从总热量看基本平衡,但进料温度波动较大,操作不易控制;若采用露点进料,则在分离要求一定的条件下,所需理论板数多,进料前预热器负荷大,能耗大,同时精馏段与提馏段上升蒸汽量变化较大,操作不易控制,受外界条件影响大。泡点进料介于二者之间,最大的优点在于受外界干扰小,塔内精馏段、提馏段上升蒸汽量变化较小,便于设计、制造和操作控制。第1.3节 采用强制回流(冷回流)采用冷回流的目的是为了便于控制回流比,回流方式对回流温度直接影响。第1.4节 塔釜加热方式、加热介质塔釜采用列管式换热器作为再沸器间接加热方式,加热介质为水蒸汽。第1.5节 塔顶冷凝方式、冷却介质塔顶采用列管式冷凝冷却器,冷却介质用冷却水。第1.6节 流程说明由于上游装置没有后加氢单元,所以在重整反应过程中生成的烯烃会带到本装置原料中, 烯烃的存在,会导致苯、甲苯产品的酸洗比色不合格,因此必须进行烯烃的加氢饱和。本装置流程包括烯烃加氢反应单元和精馏单元两部分。烯烃加氢反应单元:原料经过进料泵加压后进入换热器E101与反应生成油交换热量后,进入加热炉L101进行加热,再进入反应器R101,经过烯烃饱和加氢反应后进入热交换器E101冷却后,进入油气分离器V101,油进入精馏原料中间罐。本精馏方案采用节能型强制回流进行流程设计,并附有在恒定进料量、进料组成和一定分离要求下的自动控制系统以保证正常操作。精馏过程:30OC原料液从原料罐经进料泵进入原料换热器E102再经原料预热器进行预热进一步预热至泡点(97.65OC,加热介质为水蒸汽),温度升至约97.65oC,从进料口进入精馏塔T101进行精馏,塔顶气温度为81.52oC部分冷凝后的气液混合物进入塔顶冷却器(冷却介质为冷却水),冷凝后的物料进入回流罐V102,然后再通过回流泵,将料液一部分作为回流也打入塔顶,另一部分作为塔顶产品经产品冷却器进入产品储罐V103,再经产品泵P104/AB输送产品。塔釜内液体一部分进入再沸器E103,经水蒸汽加热后,回流至塔釜,另一部分与原料换热器换热后排入甲苯储罐。在整个流程中,所有的泵出口都装有压力表,所有的储槽都装有放空阀,以保证储槽内保持常压。第1.7节 筛板塔的特性筛板塔是最早使用的板式塔之一,它的主要优点:(1)结构简单,易于加工,造价为泡罩塔的60%左右,为浮阀塔的80%左右;(2)在相同条件下,生产能力比泡罩塔大20%-40%;(3)塔板效率较高,比泡罩塔高15%左右,但稍低于浮阀塔;(4)气体压力降较小,每板压力降比泡罩塔约低30%左右。筛板塔的缺点是:小孔筛板易堵塞,不适宜处理脏的、粘性大的和带固体粒子的料液。第1.8节 生产性质及用途1.8.1 苯的性质及用途苯是一种易燃、易挥发、有毒的无色透明液体,易燃带有特殊芳香气味的液体。分子式C6H6,相对分子量78.11,相对密度0.8794(20℃),熔点5.51℃,沸点80.1℃,闪点-10.11℃(闭杯),自燃点562.22℃,蒸气密度2.77kg/m3,蒸气压13.33kPa(26.1 ℃), 标准比重为0.829。蒸气与空气混合物爆炸限1.4%~8.0%。不溶于水,与乙醇、氯仿、乙醚、二硫化碳、四氯化碳、冰醋酸、丙酮、油混溶。遇热、明火易燃烧、爆炸。能与氧化剂,如五氟化溴、氯气、三氧化铬、高氯酸、硝酰、氧气、臭氧、过氯酸盐、(三氯化铝+过氯酸氟)、(硫酸+高锰酸盐)、过氧化钾、(高氯酸铝+乙酸)、过氧化钠发生剧烈反应,不能与乙硼烷共存。苯是致癌物之一。苯是染料、塑料、合成树脂、合成纤维、药物和农药等的重要原料,也可用作动力燃料及涂料、橡胶、胶水等溶剂。质量标准:见表1-1。表1-1 纯苯质量标准(GB/T2283-93)项目 指标 特级 一级 二级 三级外观 室温(18~25℃)下透明液体,不深于每1000mL水中含有0.003g重铬酸钾溶液的颜色密度(20℃)/kg/m3沸程/℃大气压下(80.1℃)酸洗比色溴价/(g/100mL)结晶点/℃二硫化碳/(gBr/100mL)噻吩/(g/100mL) 876~880中性实验 中性水分 室温(18~20℃)下目测无可见不溶水1.8.2 甲苯的性质甲苯有强烈的芳香气味,无色有折射力的易挥发液体,气味似苯。分子式C7H8,相对分子质量92.130,相对密度0.866(20℃/4℃),熔点-95~-94.5℃,沸点110.4℃,闪点4.44℃(闭杯),自燃点480℃,蒸气密度3.14 kg/m3,蒸气压4.89kPa(30℃) 比重D 4℃20℃、0.866,,蒸气与空气混合物的爆炸极限为1.27%~7%。几乎不溶于水,与乙醇、氯仿、乙醚、丙酮、冰醋酸、二硫化碳混溶。遇热、明火或氧化剂易着火。遇明火或与(硫酸+硝酸)、四氧化二氮、高氯酸银、三氟化溴、六氟化铀等物质反应能引起爆炸。流速过快(超过3m/s)有产生和积聚静电危险。甲苯可用氯化、硝化、磺化、氧化及还原等方法之前染料、医药、香料等中间体及炸药、精糖。由于甲苯的结晶点很低,故可用作航空燃料及内燃机燃料的添加剂。质量标准:见表1-2。表1-2 甲苯质量标准(GB/T2284-93)项目 指标 特级 一级 二级外观 室温(18~25℃)下透明液体,不深于每1000mL水中含有0.003g重铬酸钾溶液的颜色密度(20℃)/(kg/m3) 沸程/℃大气压下(110.6℃)酸洗比色溴价/(gBr/100mL) 863~868中性实验 中性水分 室温(18~20℃)下目测无可见不溶水第1.9 安全与环保1.9.1 安全注意事项苯类产品是易燃、易爆、有毒的无色透明液体,其蒸汽与空气混合能形成爆炸性混合物,因此,应特别注意防火,强化安全措施。(1)不准有明火和火花,设备必须密封,以减少苯蒸汽挥发散发入容器中,设备的放散管应通入大气,其管口用细金属网遮蔽,使贮槽或蒸馏设备中的苯类产品不致因散出蒸汽回火而引起燃烧,厂房应设有良好的通风设备,防止苯类蒸汽的聚集。(2)所有金属结构应按规定在几个地点上接地,为防止液体自由下落而引起静电荷的产生,将引入贮槽中所有管道均应安装到接近贮槽的底部,电动机应放在单独的厂房内。(3)应设有泡沫灭火器和蒸汽灭火装置,不能用水灭火。(4)工人进入贮槽或设备进行清扫或修理前,油必须全部放空,所有管道均需切断,设备应用水蒸汽彻底清扫后才允许进入并注意通风,检修人员没有动火证严禁在生产区域内动火。(5)进入生产区域或生产无关人员,不得乱动设备和计量仪表等。(6)及时清除设备管线泄漏情况,严防中毒着火、爆炸等事故的发生。(7)泄漏应急处理迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用活性炭或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,抑制蒸发。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。1.9.2 环境保护认真执行环境保护方针、政策、坚持污染防治设施与生产装置同时设计、同时施工、同时投产。现将“三废”治理措施分析述如下:(1)废水:各设备间接冷却水回收用于炼焦车间熄焦用,工艺产品分离水送往生化装置进行处理。设备冲洗水经初步沉淀和油水分离后送入生化处理。(2)废气:水凝气体回收引入列管户前燃烧,产品贮槽加水喷淋装置和氮密封措施,防止挥发污染大气环境。(3)废渣:生产过程中生产的废渣送往回收工段作为原料使用。定期检测个生产岗位苯含量和生产下水中各污染均含量,严防超标现象的发生。第2章 烯烃加氢饱和单元分析2.1 反应机理及影响因素分析 (1)反应机理单烯烃 CnH2n+H2→CnH2n+2双烯烃 CnH2n-2+2H2→CnH2n+2环烯烃 烯烃的加氢饱和反应也为耗氢和放热反应。(2) 烯烃的加氢饱和反应过程的影响因素烯烃的加氢饱和反应过程的影响因素除催化剂性能外,主要有原料性质、反应温度、反应压力、氢油比和空速等。①原料性质加工烯烃含量较高的原料时,需要较高的反应苛刻度(即较高的反应压力和反应温度,较低的反应空速)。此外一定要注意原料油罐的惰性气体保护,最好是直接进装置,避免中间与空气接触发生氧化生成胶质,导致催化剂失活加快。 ②反应温度反应温度通常是指催化剂床层平均温度。烯烃的加氢饱和反应是一种放热反应,提高反应温度不利于加氢反应的化学平衡,但能明显提高化学反应速度,提高精制深度。过高的反应温度会促进加氢裂化副反应的发生,使产品液体收率下降,导致催化剂上积炭速率加快,降低催化剂使用寿命;反应温度过低,不能保证将杂质除净。在很高温度下,烯烃饱和度有一个明显的限制,结果使在高温操作比低温操作的产品中有更多的残存烯烃,当原料中有明显的轻组分,使用新催化剂时硫化氢与烯烃反应生成醇,在较低温度下操作可避免硫醇的生成。根据催化剂活性和原料油中的烯烃含量,一般预加氢的反应温度为150~180℃。随着运转时间的延长,逐步提高反应温度,以补偿催化剂的活性降低。③反应压力当要求一定的产品质量时,压力的选择主要是考虑催化剂的使用寿命和原料油中的烯烃含量。一般而言,压力愈高,催化剂操作周期愈长;原料油烯烃含量愈高,选择操作压力也愈高。提高反应压力将促进加氢反应速度,增加精制深度,并可保持催化剂的活性。但压力过高会促进加氢裂解反应,使产品总液收下降,同时过高的反应压力会增加投资及运转费用。④氢油比所谓氢油比是反映标准状态时,氢气流量与进料量的比值。可用H2/HC表示。提高氢油比,不仅有利于加氢反应的进行,并能防止结焦,起到保护催化剂的作用。但是,在原料油进料一定的情况下,氢油比过大会减少原料油与催化剂接触时间,反而对加氢反应不利,导致精制深度下降,产品质量下降,同时也增大了系统压降和压缩机负荷,操作费用增加。⑤空速空速指单位(质量或体积)催化剂在单位时间内处理的原料量,简写为h-1 。空速分为质量空速和体积空速。常用体积空速(LHSV),它的倒数相当于反应接触时间,称为假接触时间。因此空速的大小意味着原料与催化剂接触时间的长短。空速过大,即单位催化剂处理的原料量越多,其接触时间应越短,影响了精制深度;空速过小增加了加氢裂解反应,使产品液收率下降,运转周期缩短,降低了装置的处理量。2.2 物料平衡表2-1烯烃加氢反应单元物料数据 单位:吨/日入 方 出 方原料油 43.2 精馏进料 42.32氢气 0.52 损失 1.40 合计 43.72 合计 43.722.3 能量平衡(以加热炉为例)2.3.1 原料进出加热炉数据 原料进出加热炉数据见表2-2。 表2-2 原料进出加热炉数据入 方(80℃) 出 方(160℃)单位项目 组成 数据 焓值 热量 单位项目 组成 数据 焓值 热量 m% Kcal/kg wkcal m% Kcal/kg wkcal原料油 苯 0.7 130 16.38 原料油 苯 0.7 154 19.40 甲苯 0.3 128 6.912 甲苯 0.3 158 8.532 烯烃 烯烃 氢气 540 1.170 氢气 1090 2.362合计 24.462 合计 30.294注:原料中烯烃含量很少在计算过程中可忽略不计。2.3.2 加热炉热平衡 由表2-2可以知道,原料油经过加热炉后,热量增加值为:5.832wkcal/t.加热炉需要燃烧瓦斯进行提供。加热炉用瓦斯组成见表2-3。表2-3 加热炉用瓦斯组成及焓值计算表 成份组成 体积热值 分析数据 焓值1 氢气 2650 44.91 1190.1152 氧气 0 11.73 03 氮气 0 40.56 04 二氧化碳 0.02 05 一氧化碳 3018 0 06 甲烷 8529 1.61 137.31697 乙烷 15186 0.48 72.89288 乙烯 14204 0.42 59.65689 丙烷 21742 0.05 10.87110 丙烯 20638 0.07 14.446611 异丁烷 26100 0.03 7.8312 正丁烷 28281 0.03 8.484313 正丁烯 27160 0.02 5.43214 异丁烯 27160 0.01 2.71615 反丁烯 27160 0.02 5.43216 顺丁烯 27160 0.01 2.71617 碳五以上 34818 0.03 10.4454 合计 100 1528.3548第七章 参考文献1 化工原理》上下册.化学工业出版社.2006年5月第3版2 冯伯华.《化学工程手册》第1、2、3、6卷.化学工业出版社.1989年10月第1版3 包丕琴.《华工原理课程设计指导书》.北京化工大学化工原理教研室.1997年4月4 陈洪钫.《化工分离过程》,化学工业出版社,1995年5月第1版5 陈钟秀.《化工热力学》.化学工业出版社.1993年11月第1版6 沈复等.《石油加工单元过程原理》上下册.中国石化出版社.2004年8月第1版7.刘巍等.《冷换设备工艺计算手册》.中国石化出版社.2003年9月第1版8.马秉骞主编.《炼油设备基础知识》中国石化出版社.2003年1月第1版9.周志成等.《石油化工仪表自动化》中国石化出版社.1994年5月第1版10.田顾慧.《化工设备》中国石化出版社.1996年6月第1版11.沈复 李阳初.《石油加工单元过程原理》中国石化出版社.2004年8月第1版12.陆美娟.《化工原理》化学工业出版社. 2006年1月第10版符号说明A换热面积m2Aa 鼓泡区面积m2Af 降液管横截面积m2An 有效传质区面积m2Ao 筛孔面积m2AT塔横截面积m2A 质量分率-C 负荷系数-CP 比热KJ/Kg.OC(KJ/Kg.K)D 塔顶产品流率Kmol/h(Kg/h)Dg 公称直径mDT塔径mD 管内径 mmd1 管外径 mmdo 孔径 mmdm 管平均直径mmE 液流收缩系数-ET全塔板效率-ev 雾沫夹带量Kg液体/Kg气体F 进料流率 Kmol/h(Kg/h)H 塔高mHL板上清夜层高度mmHT板间距 mHd降液管内清夜层高度mHD塔顶空间高度 mHB塔底空间高度 mhd 气体通过干板压降mho 降液管下沿到塔板间距离mhow 溢流堰上液头高 mhp 气体通过塔扳压降mhr 液体通过降液管的压降mhw 溢流堰高度mhσ液体表面张力引起的压降mKo 以内壁为基准的总传热系数Kcal/m2.H.oCK稳定系数L 液体流量 Kmol/h(Kg/h,m3/h)lW溢流堰堰长ms 冷却剂质量流量 Kg/hN 实际塔板数 -NT 理论塔板数 -Nt 换热器总管数 -N 开孔数Q 换热器热负荷 WR 回流比 -Rmim 最小回流比 -Rsi 换热管内垢阻系数 m2•h•oC/Kcalr 气化潜热 KJ/KgTc 临界温度 KT 孔间距 mmTp 板厚度 mmua 以鼓泡区面积为基准的气速 m/suf 液泛气速 m/sun 空塔气速 m/suo 以筛孔面积为基准的气速 m/suow 漏液点气速 m/sV 塔内上升气体流量 Kmol/h(Kg/h,m3/h)W 塔釜采出液体量 Kmol/h(Kg/h)Wc 边缘区宽度 m(mm)Wd 降液管宽度 m(mm)Ws 塔板入口安定区宽度 m(mm)Ws’ 塔板出口安定区宽度 m(mm)X 液相摩尔分率 -Y 气相摩尔分率 -A 相对挥发度 -Ai 以内壁为基准的传热膜系数 Kcal/m2•h•oCAo 以外壁为基准的传热膜系数 Kcal/m2•h•oCβ 充气系数 -σ 表面张力 dyn/cm2ρL 液相密度 Kg/m3ρv(g) 气相密度 Kg/m3μ 粘度 Cp 开孔率 -Ф 装料系数 -τ 停留时间 sλ

应用化学开题报告

论文题目:苯-氯苯分离过程连续精馏塔的工艺设计

一 文献综述与调研报告 :(阐述课题研究的现状及发展趋势,本课题研究的意义和价值、参考文献)

1. 课题的背景

设计是工程建设的灵魂,对工程建设起着主导和决定性的作用,决定着工业现代化的水平。工程设计是科研成果转化为现实生产力的桥梁和纽带,工业科研成果只有通过设计,才能转化为现实的工业化生产力。化工设计是一项政策性很强的工作,它涉及政治、经济、技术、环保、法规等诸多方面,而且还会涉及多专业及多学科的交叉、综合和相互协调,是集体性的劳动。先进的设计思想、科学的设计方法和优秀的设计作品是工程设计人员应坚持的设计方向和追求的目标。在化工设计中,化工单元设备的设计是整个化工过程和装置设计的核心和基础,并贯穿于设计过程的始终,因此作为化工类的本科生,熟练掌握化工单元设备的设计方法是十分重要的。

精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛应用。精馏过程在能量剂的驱动下(有时加质量剂),使气、液两相多次直接接触和分离,利用液相混合物中各组分挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。该过程是同时进行传质、传热的过程。

本次设计任务为设计一定处理量的精馏塔,实现苯-氯苯的分离。鉴于设计任务的处理量不大,苯-氯苯体系比较易于分离,待处理料液清洁的特点,设计决定选用筛板塔。本课程设计的主要内容是过程的物料衡算、热量衡算,工艺计算,结构设计和校核。限于作者的水平,设计中难免有不足和谬误之处,恳请老师和读者批评指正。

筛板塔是生产中最常用的板式塔之一。板式塔具有结构简单,制造和维修方便,生产能力大,塔板压降小,板效率较高等优点。其早在1832年问世,长期以来,一直被误以为操作范围狭窄,筛孔容易堵塞而收到冷遇。但是筛孔板结构结构简单,造价低廉,在经济上有很大的吸引力。因此,从20世纪50年代以来,许多研究者对筛孔板塔重新进行了研究。研究结果表明,造成筛板塔操作范围狭窄的原因是设计不良(主要是设计点偏低、容易漏液),而设计良好的筛板塔是具有足够宽的操作范围的。至于筛孔容易堵塞的问题,可采用大孔径筛板一得到圆满的解决。

20世纪60年代初,美国精馏研究公司(FRI)又以工业的规模,使用不同物系,在不同操作压强下,广泛地改变了筛孔直径、开孔率、堰高等结构参数,对筛板塔进行了系统研究。这些研究成果,使筛板塔的设计更加完美善,其中关于大孔径筛板的设计方法属于专利。国内对大孔径筛板也做过某些研究。

FRI研究工作表明,设计良好的筛板是一种效率高、生产能力大的塔板,对筛板的推广应用起了很大的促进作用,目前,筛板已发展成为应用最广的通用塔板。在我国,筛板的应用也日益普通。

可以说,筛板精馏塔是一种传统的精馏塔。早期由于设计方面的原因,曾一度被工业生产所忽视。但由于计算技术的发展,设计水平的提高,筛板塔越来越受到厂家的关注和使用,其优点是设备简单,操作简便,维修方便,制造成本低。

2. 课题研究的现状及发展趋势

气-液传质设备主要分为板式塔和填料塔两大类。精馏操作既可采用板式塔,也可采用填料塔,板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。板式塔在工业上最早使用的是泡罩塔(1813年)、筛板塔(1832年),其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。目前从国内外实际使用情况看,主要的塔板类型为筛板塔、浮阀塔及泡罩塔,而前者使用尤为广泛。

筛板塔是板式塔的一种,其设计意图是一方面使汽液两相在塔板上充分接触,以减小传质阻力,另一方面是在总体上使两相保持逆流流动,而在塔板上使两相呈均匀的错流接触,以获得更大的传质推动力。其内装若干层水平塔板,板上有许多小孔,形状如筛;并装有溢流管或没有溢流管。操作时,液体由塔顶进入,经溢流管(一部分经筛孔)逐板下降,并在板上积存液层。气体(或蒸气)由塔底进入,经筛孔上升穿过液层,鼓泡而出,因而两相可以充分接触,并相互作用。泡沫式接触气液传质过程的一种形式,性能优于泡罩塔。为克服筛板安装水平要求过高的困难,发展了环流筛板;克服筛板在低负荷下出现漏液现象,设计了板下带盘的筛板;减轻筛板上雾沫夹带缩短板间距,制造出板上带挡的的筛板和突孔式筛板和用斜的增泡台代替进口堰,塔板上开设气体导向缝的林德筛板。筛板塔普遍用作H2S-H2O双温交换过程的冷、热塔,应用于蒸馏、吸收和除尘等。

筛板塔是传质过程常用的塔设备,它的主要优点有:

(1) 结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右。

(2)处理能力大,比同塔径的泡罩塔可增加10~15%。

(3)塔板效率高,比泡罩塔高15%左右。

(4) 压降较低,每板压力比泡罩塔约低30%左右。

筛板塔的缺点是:

(1)塔板安装的水平度要求较高,否则气液接触不匀。

(2) 操作弹性较小(约2~3)。

(3)小孔筛板容易堵塞。

目前应用比较广泛的是林德筛板,它由美国联合碳化物公司的林德子公司开发 ,最早应用于要求低压降的空分装置的精馏塔 ,1963 年后开始应用于乙苯-苯乙烯等精馏装置中。20 世纪70 年代有多家公司的120余台减压蒸馏塔采用了林德筛板,其中超过5.0 m 塔径的就有45 台,最大的塔径为11.5 m。林德筛板在普通筛板上有2 点重要改进:一是在降液管液体出口处将塔板向上凸起,二是在塔板上增设了百叶窗导向孔(国内称之为导向筛板)。这种改进增大了有效鼓泡面积,使塔板操作由鼓泡型变为喷射型,在降低液面梯度的同时使气体分布均匀,从而使干板压降减小、雾沫夹带减少、传质效率提高。目前,国内已有10余套装置使用了中运行林德筛板。

精馏是应用最广的传质分离操作,其广泛应用促使其技术已相当成熟,但是技术的成熟并不意味着今后不再需要发展而停滞不前。成熟技术的发展往往要花费更大的精力,但由于其应用的广泛,每一个进步,哪怕是微小的,也会带来巨大的经济效益。正因为如此,蒸馏的研究仍受到广泛的重视,不断取得进展。

提高精馏过程的热力学效率、节省能耗是一贯受到重视的研究领域,分离序列的合成,在用热集成概念和夹点分析方法开发节能的分离过程和优化换热网络,在具体分离过程中合理地应用热泵、多效精馏、中间再沸器和中间冷凝器等实现节能,一直是得到广泛重视的活跃的研究领域。

对于普通精馏难以(或不能)分离的物料,开发萃取精馏和恒沸精馏的分离工艺,将精馏与反应结合开发反应精馏也是个值得重视的研究领域,这对于拓宽精馏的应用范围,提高经济效益有较大意义。

随着精细化工的发展,间歇精馏应用也更加广泛,其研究也得到了应有的重视。开发各种新的操作模式,对于节省能耗和缩短操作时间有明显的效果。塔中持液量的间歇精馏膜模拟计算研究有一定进展,对于设计和指导操作有较大意义。

为开发更可靠的效率和压降等的模型,当前应强调实测数据,尤其是工业规模的测试数据,这是建立和验证模型的基础。六七十年代,美国精馏研究公司等进行了一系列工业规模试验,取得了十分有价值的实测数据,为各种模型的建立和现象认识的深化奠定了重要基础。

精馏的研究工作一直十分活跃,而且不断取得成果。在各种新分离方法得到不断开发和取得工业应用之际,在石油、天然气、石油化工、医药和农产品化学等工业中所起的重要作用不会改变,作为主要分离方法的地位不会动摇。正如费尔在1987年国际精馏会议上指出的:“如果混合物可以应用精馏分离,那么经济上可能有吸引力的方法是精馏。”随着科学技术和工业生产水平的提高,精馏的应用天地十分广阔,重要的通过不断努力,使其技术水平得到进一步提高,使其日趋完善。

3 课题研究的意义和价值

本设计采用连续精馏分离苯-氯苯二元混合物的方法。连续精馏塔在常压下操作,被分离的苯-氯苯二元混合物由连续精馏塔中部进入塔内,以一定得回流比由连续精馏塔的塔顶采出含量合格的苯,由塔底采出氯苯,其中氯苯纯度不低于99.5%。

高径比很大的设备称为塔器。塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。常见的可在塔设备中完成的单元操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却与回收,气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。

在化工或炼油厂中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各个方面都有重大的影响。据有关资料报道,塔设备的投资费用占整个工艺设备投资费用的较大比例。因此,塔设备的设计和研究,受到化工炼油等行业的`极大重视。

作为主要用于传质过程的塔设备,首先必须使气(汽)液两相充分接触,以获得较高的传质效率。此外,为了满足工业生产的需要,塔设备还得考虑下列各项传质效率。此外,为了满足工业生产的需要,塔设备还得考虑下列各项要求:

(1)生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液或液泛等破坏正常操作的现象。

(2)操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大的波动时,仍能在较高的传质效率下进行稳定的操作。并且塔设备应保证能长期连续操作。

(3)流体流动的阻力小。即流体通过塔设备的压力降小。这将大大节省生产中的动力消耗,以及降低经常操作费用。对于减压蒸馏操作,较大的压力降还使系统无法维持必要的真空度。

(4)结构简单、材料耗用量小、制造和安装容易。这可以减少基建过程中的投资费用。

(5)耐腐蚀和不易堵塞,方便操作、调节和检修。

事实上,对于现有的任何一种塔型,都不可能完全满足上述所有要求,仅是在某些方面具有独到之处。

根据设计任务书,此设计的塔型为筛板塔。筛板塔是很早出现的一种板式塔。五十年代起对筛板塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,筛板塔具有下列优点:生产能力大20-40%,塔板效率高10-15%,压力降低30-50%,而且结构简单,塔盘造价减少40%左右,安装、维修都较容易。从而一反长期的冷落状况,获得了广泛应用。近年来对筛板塔盘的研究还在发展,出现了大孔径筛板(孔径可达20-25mm),导向筛板等多种形式。

筛板塔盘上分为筛孔区、无孔区、溢流堰及降液管等几部分。工业塔常用的筛孔孔径为3-8mm,按正三角形排列,空间距与孔径的比为2.5-5。近年来有大孔径(10-25mm)筛板的,它具有制造容易,不易堵塞等优点,只是漏夜点低,操作弹性小。

该课题使理论教学与实际应用相结合,有助于提高处理实际问题的能力。通过对该课题的研究,可以加深对精馏过程基本原理的理解,熟练筛板精馏塔的工艺设计方法,培养设计能力。

该过程构造简单,造价低廉,具有足够操作弹性,且具有较强的工程使用价值。该过程的推广和普及,将加速我国工业生产过程节能技术的进步,带动一大批的相关技术和产业的发展。

参考文献:

[1] 蒋维钧,雷良恒,刘茂林.化工原理(下册) [M].北京:清华大学出版社,1993,264-340

[2] 陈敏恒,从德滋,方图南,齐鸣斋.化工原理(下册)[M].北京:化学工业出版社,2006,49-104

[3] 柴诚敬等。化工原理课程设计[M].天津:天津科学技术出版社,1994,75-109

[4] 吴俊生,邵惠鹤.精馏设计、操作和控制[M].北京:中国石化出版社,1997,3-4

[5] 史贤林,田恒水,张平.化工原理实验[M].上海:华东理工大学出版社,2005,121-122

[6] 刘兴高.精馏过程的建模、优化与控制[M].北京:科学出版社,2007,1-2

[7] 林爱娇,王良恩,邱挺,黄诗煌,李南芳,邓友娥. 甲醛吸收塔填料层高度的计算[M]. 福州:福州大学学报(自然科学版)1996年2月,第24卷第1期

[8]董谊仁,张剑慈.填料塔液体再分布器的设计[M].化工生产与技术,1998年第3期

[9] 张前程, 简丽.填料吸收塔中适宜液气比的确定[M]. 内蒙古工业大学学报,第20卷,第1期

[10] 李忠玉,徐松. 吸收塔填料层高度的解析计算[M].化工设计,1998 年第 5 期

[11] 董谊仁,侯章德.现代填料塔技术(三)填料塔气体再分布器和其他塔内件[M].化工生产与技术,1996年第四期

[12] Torbjgrn Pettersen, Andrew Argo,Richard D. Noble, Carl A. Koval,Design of combined membrane and distillation processes[M]. Separations Technology 6 (1996) 175-187

相关百科

热门百科

首页
发表服务