首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

生命的起源研究进展论文怎么写

发布时间:

生命的起源研究进展论文怎么写

生命主要起源于碳族元素,先看看碳的循环,硅锗属于碳族元素,有半导体的性质,碳族永远处在能源的霸主地位,碳通过光合作用以碳氢化合物的形式周而复始的循环着太阳的能量,同时也演化着生命,生命的起源于物质元素,元素的性质是原子核和核外电子得与失,能量来自太阳能,以硅元素作为核心物质制造的硅氢能催化剂在水中能直接把太阳的能量和其它形式的热能15-100温度转化成化学氢气能,打开了人工制制能源的新途径,化石能源只是个过渡的哺乳期,氢能源将成为人类能源主食,真正的零排放将向我们走来,利用半导体的性质解决光热化学的转化难题,

1.未知。2.外星文明在地球上的试验。3.由无机物进化而来,但是具体过程不清楚。

大概你要的是什么档次的:中专、大专、本科、研究生。请说明!

生命的起源从古至今人们都希望了解地球上的生命是从哪里来的?生命究竟是怎样产生的?这不仅是科学家感兴趣的问题,也是普通人们所感兴趣的问题,它已困扰了人类几千年。由于生命现象的复杂性质,直到上世纪初,生命起源的研究才成为科学研究中的一个重要领域。远古的时候,人类的智力还很低下,认识能力也很有限,对世界上千姿万态、繁茂复杂的生物,特别是对人类自身是从哪里来的,充满了困惑和神秘感。因此,人们把这个大千世界中未知的神秘现象,编成了各种各样的神话和传说。我国古代就有女娲造人的神话故事。也有“白羊化石”、“腐草化茧”、“腐肉生蛆”的说法。由于受到研究手段的限制,人类对于生命起源的研究只是到了近代才形成了科学的认识和方法,并确认了生命活动是物质运动的形式之一,它的物质基础是碳、氢、氧、氮,此外还有少量的硫、钙、磷和其它20几种微量元素,以及由这些元素在地球环境中自发产生的蛋白质、核酸、糖类、脂类、水和无机盐等。其中,蛋白质与核酸是生物体最重要的组成部分,也是区别生命和非生命的基本依据。蛋白质的分子量很大,由几千个或百万个氨基酸分子构成,具有十分复杂的化学结构和空间结构,是一切生命的基础。在生命活动中,蛋白质起着极为重要的作用,如构成生物体的骨架,催化生物化学过程,调节生长、发育、生殖等生理机能。核酸同蛋白质一样,也是生物大分子化合物,基本单元是核苷酸,由磷酸和核糖分子联成长链。核酸有两大类,一种是脱氧核糖核酸,简称DNA,是遗传基因的化学实体,存在于细胞核中,具有特殊的双螺旋结构。另一种叫核糖核酸,简称RNA,存在于细胞质中。因此,生命科学家们力求通过深入了解生命体的分子结构和组成。 现代科学认为,生命的诞生是物质不断运动变化的结果。这一变化分为两个阶段,一是在生命系统诞生之前的“化学进化”阶段,为生命的诞生准备有机材料。二是生命诞生之后,由低级到高级、由简单到复杂的漫长“生物进化”过程。在地球形成之初,原本没有生命,只存在无机物。通过长时间的地球演化,含有甲烷、氨、氢等小分子无机物气体在紫外光、电离辐射、雷电等能量的作用下,逐步生成了有机小分子物质,如核苷酸、氨基酸,使原始的海洋成为一种“原始生命汤”。这个过程,是生命形成漫长历史的第一步,今天已经被科学家用放电实验室重现出来。此后,“原始生命汤”中的这些有机小分子,历经长期的相互作用,在有硫、磷、金属等土壤的适当条件下进行缩合或聚合反应,逐步形成有机高分子物质,如蛋白质、核酸等分子。这是生命诞生历程的第二步。随着海洋中的蛋白质、核酸分子越积越多,浓度增加,在某种情况下,又被分离、凝聚成小滴,并脱离原来的海洋环境,构成可与外界进行简单物质交换的多分子体系。由多分子体系逐步演变,特别是由于蛋白质和核酸的相互作用,最终出现了有原始新陈代谢功能,并且可以进行自我复制的原始微生物——细菌。这一阶段是生命形成过程中最关键、最复杂的一个环节,但是至今科学家们尚未通过科学实验获得验证。遗传基因的生物学原理,发现生命起源之谜在我们生活的这个物质世界中,由各种元素和分子构成的物质实体都具有相对的稳定性,其原因就在于原子内部正、负电荷的相互作用力,总是趋向于保持平衡和相对稳定的状态。这是地球上一切宏观物体可以长久保持稳定状态的物理条件。根据爱因斯坦的质能关系,虽然所有的稳定元素都可以转化为巨大的能量,但是它们都不会“主动”释放出内部的能量。天然核能的释放只存在于少量的带放射性的重元素当中,核物理学研究对此已经做出了充分的证明。物质转化为能量,需要具备一定的条件,在太阳的演化运动中就会将一部分物质质量转化为能量。参与强相互作用的氢核,在太阳的核聚变反应中转变为氦核,消耗一定的质量并释放出巨大的能量。在地球的物理条件下,并不存在自然的核聚变反应能力,作为行星的演化运动,只包含引力作用力、电磁作用力和促使重元素产生放射性衰变的弱作用力。由于构成地球的物质大部分是稳定的元素,因此,引力作用力和电磁作用力,在地球范围内起着主导作用。在我们生活的环境中,原子或分子之间的电磁作用关系总是趋向于保持相对平衡和相对稳定的状态。如果没有外加能量作用,地球表面的各种客体物质不会持续的产生化学反应。按照相同的原理,由于构成生物分子的各种物质都来自于地球表面,它们的生化反应与其它客体物质在微观或宏观上的电磁作用关系也自然具有统一的物理和化学性质。因此在任何生物体内的正、负电荷都必须保持平衡关系,否则这个生物就无法存活。地球上一切宏观物体都是由各种各样的元素构成的,使质子、中子结合为原子核的作用力是强核力,各种原子一旦形成就非常稳定很难被破坏。由原子结合成各类分子或固体物质的作用力是电磁力,电磁力虽然比强核力要小得多,但是分子或固体也是十分稳定的。同样的原理,生物分子的结合力也是电磁力。由于原子内部的电磁作用关系具有天然的相对稳定性,所以维持生命的运动就需要有能量的持续输入,而地球上生物活动的能量来源,主要是太阳对地球表面持续不断的光辐射和少量的地热能。植物通过光合作用吸收了太阳辐射的能量,将其转化为机体内分子间的动能,使生物体始终保持活力进行生长和繁殖。动物将植物作为食物获得生长和生存所需的养分,并且通过吸收氧气在体内进行化学反应获得生命运动所需的能量。生命产生时的这种自然状况,给我们提供了这样一个信息,地球表面的热运动是生命现象产生的必要条件。火山喷发出的大量灰烬在高温的海水中被反复搅拌,空气与水反复融合将地球表面的各种物质反复混合交融在一起,从而使构成生物分子的二十多种元素得以形成必要的联系。虽然我们现在还不能深入地了解在这种条件下的自组织过程是怎样进行的,但是热运动与生命产生的必然联系是非常明确的。让生活在今天的人类难以想象的是,如此有序的生命现象居然产生于自然的混沌之中。自然界的神奇就在于,从表面的无序中自发地蕴藏着有序。虽然地球形成于大约46亿年前,可地壳内依然是不断滚动着的炽热岩浆,地震、火山喷发等地质构造运动,仍然在持续的进行当中。然而与地球不同的是,水星、金星、火星等其它类地行星,都是早在38~40亿年前,就都完成了地质的演化构造运动,固体核表面的地质状况,数十亿年来也没有多大的改变。根据行星演化的一般原理,在地球演化的初期,较重的元素在构成原始行星气团中心的引力作用下向内收缩,由重元素放射性衰变产生的能量将气团加热,地球开始进入化合物的产生阶段,并形成高温的液态岩浆。其它一些较轻的元素在高温环境中被逐渐分离出来,它们主要是碳、氢、氧、氮等元素,这些被分离出来的元素在高温高压环境下又很快结合成一些气体化合物,生成气态水、甲烷、二氧化碳、氨等,此后这些气体构成了原始地球大气圈的主要成分。因此,当地球的温度逐步下降以后由于地表的自然冷却岩石地壳开始形成,在经历一段时间的地质构造运动之后,地球的表面物质运动就会相对稳定下来。但地壳下面仍然是滚动的岩浆,地震和火山喷发还在频繁发生。因此有理由认为,在地球演化的初期就产生了一种抑制地球正常演化的作用力,使地球放缓了演化的进程。那么这种作用力又从何而来呢?它是来自于地球本身还是来自于地球的外部呢?这种作用力来自地球内部,来自水分子的物理运动与各种有机分子化合运动且对地表的降温起到了促进作用,使地球在早期的演化运动中就形成了相对稳定的地壳。同时也奠定了生命运动的物质基础,形成了生命运动与地球整体之间的作用关系。随着地壳的逐步稳定、隔热能力的增强、地表温度的下降、地表水圈的形成,悬浮在大气中的各种有机固体物质和尘埃在降雨作用下,纷纷沉降到地球表面与海水融合在一起。一个生命的摇篮,就在各种物质有序与无序的相互作用中被自发的创造出来。地球表面的这种物理和化学状况,不仅延缓了地球的地质构造运动,同时也为生命运动的产生创造了必要的条件。几十亿年来,地球的地质构造运动、太阳的光辐射和生物活动三者之间复杂的作用关系形成了地球特殊的演化进程,而生命运动始终是地球演化运动的积极推动者,生物活动不仅持续地改造着地质、地貌和大气环境,同时也推动了自身的演化和进化,创建起一个又一个生机勃勃绚丽多彩的大千世界。人类的出现是生命运动最杰出的创造,是无数生物前赴后继的结果。发生在地球上的全部故事,都是由许多复杂条件和偶然性因素构成的,因此善待地球这个唯一的家园也是人类必须要肩负的责任。纵观生命的起源,生命的发站是一个伟大的工程,是一个惊奇的过程。在生命的起源中,每个元素都是不可缺少的一部分,每个元素都发挥着着各自的作用,缺少了任何一种,地球也不会发展到现在的形态。在这些元素中,地球的地质构造运动、太阳的光辐射和生物活动又是各种元素中最关键的、重要的部分。在生命的运动和发展中起到了关键的作用。生命从开的无机物到合成有机物,再到形成简单的生物,逐渐的由低级到高级的演变。经历漫长的演变过程,地球上的生物逐渐开始丰富起来才有了这绚丽的现代世界。

研究生命起源论文

生命起源是一个亘古未解之谜,地球上的生命产生于何时何地?是怎样产生的?千百年来,人们在破解这一谜底之时,遇到了不少陷井,同时也见到了前所未有的光明。生命起源之说,第一个谜是生命起源的时间问题。第二个是生命起源的方式问题,生命是怎样起源的?它在什么地方起源的? 从古至今,有很多说法来解释生命起源的问题。如西方的创世说,中国的盘古开天地说等。但直到十九世纪,伴随着达尔文《物种起源》一书的问世,生物科学发生了前所未有的大变革,同时也为人类揭示生命起源这一千古之谜带来了一丝曙光,这就是现代的化学进化论。生命起源的化学进化论首先在1953年首先得到了一位美国的学者米勒的证实,米勒描述的生命起源的事件应该是什么样子的呢?那就是在早期,地球上因为它含有大量的还原性的原始大气圈,比如说甲烷、氨气、水、氢气,还有原始的海洋,当早期地球上闪电作用把这些气体聚合成多种氨基酸,而这多种氨基酸,在常温常压下,它可能在局部浓缩,再进一步演化成蛋白质和其他的多糖类、以及高分子脂类,在一定的时候有可能孕发成生命,这就是米勒描述的生命进化的过程。 地球上的生命也许就产生在距今38亿年到40亿年之间,但是我们应该清醒的明白,我们距离揭开生命起源这一亘古之谜,还有一段遥远的科学历程。从无机物到有机物,到有机化合物到有机生命体的演化,同时还具有很多的偶然性,并不是有这种环境,有这种形成条件,它就能产生生命。有人曾经比喻说,这些无机物好像一个垃圾堆里面什么都有,塑料、塑料瓶子、铁,废弃金属、油,而生命,一个单细胞,就像一辆精美的奔驰车,在一阵台风过后,这些垃圾组装成了一个奔驰车。因此我们可以想像,这个生命起源的过程是非常非常地艰难。因此,也许我们在这个蓝色的星球,是生命的惟一的乐园,因此请保护我们的地球,珍惜地球上的生命,我们不能奢望地球上第二次的生命起源。 生命起源之说,第一个谜是生命的时间,起源的时间问题。在中世纪的西方,人们对《圣经》的上帝造人的故事是深信不疑的,在1650年,一位爱尔兰大主教根据圣经上所描述的,计算出上帝创世的确切时间是公元前4004年,而另一位牧师甚至把创世时间更加精确地计算到公元前4004年10月23号上午九点钟。也就是说,生命起源距今的话,是六千年前,这当然不是真的,而真的是什么呢?真的就是用科学的回答,科学是怎么回答这个生命起源的时间呢?那就是说用化石,是保存在岩石中的化石来回答。我们知道,生物死亡后,它们的遗迹在适当的条件下,就保存在岩石之中,我们把它们称作化石。地质历史中形成的岩层,就像一部编年史书,地球生物的演化历史,就深深埋藏在这些岩石之中,年代越久远的生物化石,就保存在岩层的最底层。 迄今为止,我们发现了最古老的生物化石是来自澳大利亚西部,距今约三十五亿年前的岩石,这些化石类似于现在的蓝藻,它是一些原始的生命,是肉眼看不见的。它的大小只有几个微米,到几十个微米,因此我们可以说,生命起源它不晚于三十五亿年。同时我们知道地球的形成年龄大约在46亿年前,有这两个数据我们就可以看到生命起源的年龄,大致可以界定在46亿年到35亿年之间。今天,随着科学的发展,地质学家认为,在地球形成的早期,地球受到了大量的小行星和陨石的撞击,它是不适合生命的生存。与其说当时地球上有生命,还不如说它在毁灭生命,因此地球上生命起源的时间,它不早于40亿年。另外,在格陵兰的38.5亿年的岩石中发现了碳,这个碳的话,我们知道,碳分两种,一个无机碳,一个有机碳。另外,这个碳的话,它有重碳和轻碳之分,因此我们可以根据这个碳之中的轻碳和重碳之比,就来可以推测这些碳的来源。科学家根据碳的同位素分析,推测这些碳它是有机碳,是来源于生物体。也就是说,这样我们把生命起源的时间大大缩短了,也就是在距今40亿年到38亿年之间,自从地球上生命起源之后,一直到现在45亿年,就是生生不息的生命演化史。 二十世纪四十年代以来,人类用天体物理的手段,在地球之外探测了近百种有机分子,像甲醛,氨基酸等等。其中两种天体可以与地球上的生命有关,它可能给地球带来生命或者有机分子,一个是彗星,一个是陨石。我们知道这两颗天体里边它含有大量的有机分子,比如我们把一些彗星称为脏雪球。它们不仅含有固态的水,还有氨基酸,铁类,乙醇、嘌呤、嘧啶等有机化合物,生命有可能在彗星上产生而带到地球上。或者在彗星和陨石撞击地球时,由这些有机分子经过一系列的合成而产生新的生命。当然这种胚种论也存在着不同的观念,它有两种致命的弱点,一个是生命是否能在宇宙中进行长期的迁移?还能不能够存活?我们知道天体之间的距离是以光年为计算的,天体之间交流可能需要成千上万年,从一个星球到了另外一个星球。那在这种真空里面,暴露在这种大量的宇宙射线之中,活的生命它是不是在千万年中还能够继续萌发呢?这是一个最大的问题,第二个从无机分子到有机化合物的过程,这种过程,比如说彗星上我们看到有机小分子形成,在地球上也能够形成,这是不用置疑的。 1859年,伴随着达尔文《物种起源》一书的问世,生物科学发生了前所未有的大变革,同时也为人类揭示生命起源这一千古之谜带来了一丝曙光,这就是现代的化学进化论。生命起源的化学进化论首先在1953年首先得到了一位美国的学者米勒的证实,既然你说地球早期温度都是比较高,又充满了很多还原性气体,还有水,那么我就把这些气体,把水放在一个瓶子里面,看看它是不能产生生命,或者产生有机化合物。米勒在1953年把氨气、氢气,还有水、一氧化碳放在一个密封的瓶子里面,在瓶子里面两头插上金属棒,完了通上电源,通过这个类似于闪电的作用,确实在几天之后产生了大量的氨基酸。那么就是说在地球上面,在闪电下,在常温下,也能成为无机分子,合成有机分子。我们知道,你氨基酸的话,是组成蛋白质的最重要的物质,可以说,组成生命起源最重要的物质。因此,米勒描述的生命起源的事件应该是什么样子的呢?那就是在早期,地球上因为它含有大量的还原性的原始大气圈,比如说甲烷、氨气、有水、有氢气,还有原始的海洋,当早期地球上闪电作用把这些气体聚合成多种氨基酸,而这多种氨基酸,在常温常压下,它可能在局部浓缩,再进一步演化成蛋白质,蛋白质和其他的多糖类,以及高分子脂类,在一定的时候有可能孕发成生命,这就是米勒描述的生命进化的过程。

这个题不好写“如果地球上没有生命”本身就有问题,现(事)实与理想的完美冲突!哪我就反其道而为之吧!希望你不要见笑。 生命何时、何处、特别是怎样起源的问题,是现代自然科学尚未完全解决的重大问题,是人们关注和争论的焦点。历史上对这个问题也存在着多种臆测和假说,并有很多争议。随着认识的不断深入和各种不同的证据的发现,人们对生命起源的问题有了更深入的研究,第一个阶段,从无机小分子生成有机小分子的阶段,即生命起源的化学进化过程是在原始的地球条件下进行的,这一过程教材中已有叙述,这里不再重复。需要着重指出的是米勒的模拟实验。在这个实验中,一个盛有水溶液的烧瓶代表原始的海洋,其上部球型空间里含有氢气、氨气、甲烷和水蒸汽等“还原性大气”。米勒先给烧瓶加热,使水蒸汽在管中循环,接着他通过两个电极放电产生电火花,模拟原始天空的闪电,以激发密封装置中的不同气体发生化学反应,而球型空间下部连通的冷凝管让反应后的产物和水蒸汽冷却形成液体,又流回底部的烧瓶,即模拟降雨的过程。经过一周持续不断的实验和循环之后。米勒分析其化学成分时发现,其中含有包括5种氨基酸和不同有机酸在内的各种新的有机化合物,同时还形成了氰氢酸,而氰氢酸可以合成腺嘌呤,腺嘌呤是组成核苷酸的基本单位。米勒的实验试图向人们证实,生命起源的第一步,从无机小分子物质形成有机小分子物质,在原始地球的条件下是完全可能实现的。第二个阶段,从有机小分子物质生成生物大分子物质。这一过程是在原始海洋中发生的,即氨基酸、核苷酸等有机小分子物质,经过长期积累,相互作用,在适当条件下(如黏土的吸附作用),通过缩合作用或聚合作用形成了原始的蛋白质分子和核酸分子。第三个阶段,从生物大分子物质组成多分子体系。这一过程是怎样形成的呢?前苏联学者奥巴林提出了团聚体假说,他通过实验表明,将蛋白质、多肽、核酸和多糖等放在合适的溶液中,它们能自动地浓缩聚集为分散的球状小滴,这些小滴就是团聚体。奥巴林等人认为,团聚体可以表现出合成、分解、生长、生殖等生命现象。例如,团聚体具有类似于膜那样的边界,其内部的化学特征显著地区别于外部的溶液环境。团聚体能从外部溶液中吸入某些分子作为反应物,还能在酶的催化作用下发生特定的生化反应,反应的产物也能从团聚体中释放出去。另外,有的学者还提出了微球体和脂球体等其他的一些假说,以解释有机高分子物质形成多分子体系的过程。图7团聚体简单代谢示意图第四个阶段,有机多分子体系演变为原始生命。这一阶段是在原始的海洋中形成的,是生命起源过程中最复杂和最有决定意义的阶段。目前,人们还不能在实验室里验证这一过程.生命的起源与演化是和宇宙的起源与演化密切相关的。生命的构成元素如碳、氢、氧、氮、磷、硫等是来自“大爆炸”后元素的演化。资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化的产物。在星际演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等可能形成于星际尘埃或凝聚的星云中,接着在行星表面的一定条件下产生了象多肽、多聚核苷酸等生物高分子。通过若干前生物演化的过渡形式最终在地球上形成了最原始的生物系统,即具有原始细胞结构的生命。至此,生物学的演化开始,直到今天地球上产生了无数复杂的生命形式。38亿年前,地球上形成了稳定的陆块,各种证据表明液态的水圈是热的,甚至是沸腾的。现生的一些极端嗜热的古细菌和甲烷菌可能最接近于地球上最古老的生命形式,其代谢方式可能是化学无机自养。澳大利亚西部瓦拉伍那群中35亿年前的微生物可能是地球上最早的生命证据。原始地壳的出现,标志着地球由天文行星时代进入地质发展时代,具有原始细胞结构的生命也开始逐渐形成。但是在很长的时间内尚无较多的生物出现,一直到距今5.4亿年前的寒武纪,带壳的后生动物才大量出现,故把寒武纪以后的地质时代称为显生宙。首先,生命起源之说,第一个谜是生命的时间,起源的时间问题。在中世纪的西方,人们对《圣经》的上帝造人的故事是深信不疑的。在1650年,一位爱尔兰大主教根据圣经上所描述的,计算出上帝创世的确切时间是公元前4004年,而另一位牧师甚至把创世时间更加精确地计算到公元前4004年10月23号上午九点钟。也就是说,生命起源距今是六千年前,这当然不是真的,而真的是什么呢?真的就是用科学的回答,科学是怎么回答这个生命起源的时间呢?那就是说用化石,是保存在岩石中的化石来回答。我们知道,生物死亡后,它们的遗迹在适当的条件下,就保存在岩石之中,我们把它们称作化石。地质历史中形成的岩层,就像一部编年史书,地球生物的演化历史,就深深埋藏在这些岩石之中,年代越久远的生物化石,就保存在岩层的最底层。迄今为止,我们发现了最古老的生物化石是来自澳大利亚西部,距今约三十五亿年前的岩石,这些化石类似于现在的蓝藻,它们是一些原始的生命,是肉眼看不见的。它的大小只有几个微米,到几十个微米。因此我们可以说,生命起源它不晚于三十五亿年。同时我们知道地球的形成年龄大约在46亿年前,有这两个数据我们就可以看到生命起源的年龄,大致可以界定在46亿年到35亿年之间。今天,随着科学的发展,地质学家认为,在地球形成的早期,地球受到了大量的小行星和陨石的撞击,它是不适合生命的生存。与其说当时地球上有生命,还不如说它在毁灭生命,因此地球上生命起源的时间,它不早于40亿年。另外,在格陵兰的38.5亿年的岩石中发现了碳,这个碳的话,我们知道,碳分两种,一个无机碳、一个有机碳。另外,这个碳的话,它有重碳和轻碳之分,因此我们可以根据这个碳之中的轻碳和重碳之比,就来可以推测这些碳的来源。科学家根据碳的同位素分析,推测这些碳它是有机碳,是来源于生物体。也就是说,这样我们把生命起源的时间大大缩短了,也就是在距今40亿年到38亿年之间,自从地球上生命起源之后,一直到现在45亿年,就是生生不息的生命演化史。1859年,伴随着达尔文《物种起源》一书的问世,生物科学发生了前所未有的大变革,同时也为人类揭示生命起源这一千古之谜带来了一丝曙光,这就是现代的化学进化论。生命起源的化学进化论首先在1953年首先得到了一位美国的学者米勒的证实,既然你说地球早期温度都是比较高,又充满了很多还原性气体,还有水,那么我就把这些气体,把水放在一个瓶子里面,看看它是不能产生生命,或者产生有机化合物。米勒在1953年把氨气、氢气,还有水、一氧化碳放在一个密封的瓶子里面,在瓶子里面两头插上金属棒,完了通上电源,通过这个类似于闪电的作用,确实在几天之后产生了大量的氨基酸。那么就是说在地球上面,在闪电下,在常温下,也能成为无机分子,合成有机分子。我们知道,你氨基酸的话,是组成蛋白质的最重要的物质,可以说,组成生命起源最重要的物质。因此,米勒描述的生命起源的事件应该是什么样子的呢?那就是在早期,地球上因为它含有大量的还原性的原始大气圈,比如说甲烷、氨气、有水、有氢气,还有原始的海洋,当早期地球上闪电作用把这些气体聚合成多种氨基酸,而这多种氨基酸,在常温常压下,它可能在局部浓缩,再进一步演化成蛋白质,蛋白质和其他的多糖类,以及高分子脂类,在一定的时候有可能孕发成生命,这就是米勒描述的生命进化的过程。但是这种温暖水池说,也遇到一些问题,其中有两个问题,第一个问题是现在地质学家认为,地球早期大气圈它并不是含有大量的还原性气体,它是含有大量的二氧化碳和氮气,比米勒的这个气体多一些惰性。在闪电的情况下,你并不能形成大量的氨基酸。第二个,温暖的水池在地球早期并不能长期形成,为什么呢?因为当时地球早期,刚才说过它有大量的陨石、流星,还加上地球本身的放射性,温度很高,你这个温暖水池一旦生命产生了,一个陨星过来,温度在瞬间之内可能达到上千度、甚至几千度,生命已经绝灭了,只能再来一次生命的起源。但是我们现在就这么想,现今的地球上是不是有温度比较高,还有还原性气体,还有生物存在呢?那么,有两件工作可以说具有划时代的意义,一个是1967年美国学者布莱克,在黄石公园的热泉中发现了大量嗜热生物,我们知道蛋白质一般的话超过六十度,就会凝固的,煮鸡蛋六十度七十度以上鸡蛋就熟了,但是生物,是不是在六十度以上还能够生活呢?在以前是不敢想的。现代生物学家,他通过生物分子学的研究,他把热泉中的一些嗜热古细菌,跟现在的普通细菌进行了基因的对比,发现它们基因的相同点,不超过60%。那么就是说这些古细菌它们含有非常多的古老的基因,也就是说,它们很有可能就是生命起源时候的这种类型。应该说,生命起源我们研究生命起源它最好的证据,还是在地球上,40亿年到38亿年间的岩石和化石所包含的信息。但是,经过40亿年的变化,地球已经面目全非,现在的地球即使你有40亿年到38亿年的岩石,它也进入了大量的变种,信息也几乎全无。因此我们把目光不要局限在只是在地球上,如果说生命是宇宙之中一个普遍的现象的话,除了地球之外的其他天体上,是否也有类似于地球早期的这样的环境呢?如果有的话,也许能为研究生命起源打开新的窗户,我们第一个目标是什么地方呢?不是火星是月球,现在地质学家认为,月球是40亿年前,一颗大的行星撞击地球,而从地球上迸发出去。形成了当今的月球,这个时间正好是40亿年,如果地球上有生命起源的话,我们在月球上看看,那不就是解决这个问题了吗。在中国的古代神话中有嫦娥奔月的这个说法,月球上有月桂、有月兔,还有浪漫的爱情故事,但是二十世纪六十年代到七十年代,随着前苏联和美国的宇航员登陆的成功,这个神话彻底破灭了,月球其实是一个没有生命,没有水,没有氧气,不适合生命生存的荒漠的星体。那么我们第二个目标是什么呢?第二个目标是火星,因为火星也许在40亿年以前,有着跟地球类似的经历,火星的物质成分跟地球非常近似,它的轨道也跟地球非常近似,那么火星上是不是有生命呢?我们到火星上去干什么呢?我们寻找生命起源,要从哪几点入手呢?一般来说是三点,第一个在火星上寻找是不是有活的生命?如果有活的生命,那好了。那生命的话,可能真是在宇宙中起源的,或者地球上的生物也许来自火星,或者来自其他的彗星。第二个我们寻找液态水,因为我们知道,水是万物之源,水是生命之源。现在地球上我们所理解的生命形式是离不开水的,所以寻找液态水也是非常重要的一个指标。第三个寻找与生命有关的化合物,如果我们现在没有活的生物的话,过去有没有呢?过去的生物是不是形成了一些化合物?它是不是以化石的形式保存在这些岩石之中呢?所以我们到火星上寻找生命,抱着三个目的。1957年美国的海盗号航天器发回到地球的信息时,火星上没有生命,没有液态水的存在,它是一个荒芜干渴的红色的星球。但是人类并没有气馁,20世纪90年代,美国宇航局加大了对火星的探测力度,通过火星探测者号、火星拓荒者号航天器和哈博望远镜得到的图片,和其他的有关天体物理的信息资料显示,火星上过去很可能有过液态水的存在。一些航天资料显示,火星上有类似于像我们发生大洪水山前的冲积扇的构造,还有水、河道、像地球上干涸的河床的河道,还有水侵蚀岩石的痕迹。另外还有非常特别的一点,在火星的两极,发现了类似于地球上冻土解冻的情况,这是我们的航天资料。那么我们对火星的研究,那就束手无策了吗?现在至少在现阶段并不是,我们有来自火星上的陨石,非常幸运,在1984年,人们在南极的冰盖上面,发现了一颗陨石,这个陨石拿回来以后呢,对它进行它的元素和做气体化学分析,发现这个陨石呢,它的气体它的同位素,跟火星上非常类似。所以他们认为这个陨石是来自火星,这个陨石是在一万年前,掉在冰盖上,南极的冰盖上。通过这个陨石的放射性同位素年龄测定呢,这个陨石40亿年,距现在有40亿年左右,正好跟地球上生命起源的年龄是一样的。那么几十年来,科学家通过了大量研究这个陨石,一些研究者认为,这个陨石上含有了生命的迹象,有哪几个方面的证据呢?有三个,第一个这个陨石里面含有数种沉积矿物,因为沉积矿物它是有水的情况下形成的,所以科学家从中推断,火星上可能有水,特别这些矿物里面有一种是磁铁矿物。他认为这种磁铁矿,它只能由生命的形式存在,这是第一个证据。第二个,在这个陨石的表面通过化学分析,获得了多种多环的芳香烃,他认为这种多环的芳香烃的话,与生命的形式有关。第三个它是通过扫描电镜仔细观察,发现了形态非常类似细菌的生物化石。这化石并不是很大,只有几百个纳米,因此,在1996年,美国宇航局向全世界宣布,在40亿年前火星上曾经有过生命,当然这是一家之言。这颗陨石里面,这个有关生命存在的信息是不是真的呢?当然有很多学者对这些证据提出了置疑。第一个就拿磁铁矿来说,你认为只能由生命生存,我同意,你认为这个沉积矿物它也是由生命生存,我也同意。它是生命有水的形式下才能沉积,我也同意。但是你要知道这个陨石是在南极的冰盖上找到的,那冰全是水,你在陨石撞击冰盖的时候,可能有很多的水溶化了,陨石撞击这个地球的时候,它可能形成很多裂隙,如果有液态水,溶化的水,从这个裂隙进去的话,那不也可能形成一个自身的沉积矿物吗?另外你认为这个磁铁矿,你也可能,有人认为磁铁矿的话,也并不是说是生命特有的,在其他物质条件下也可以形成,所以第一条证据的话,就有很多科学家认为它占不住。第二就是多环芳香烃的问题,同样你看像南极冰盖,你是零下40度,或者50度也好,也有大量的菌藻的生存,它是不是污染的呢?现在的污染,也许是一万年以前污染的呢。所以这条证据的话,你也不能说是一个非常可靠的证据,百分之百的证据。第三个证据,特别是第三个证据它更加靠不住,就是把陨石把它劈开,你看见这些所谓的细菌的化石,这些化石,第一个它太小,它的直径的话只有几十个纳米,我们知道,你像一个铁的原子核的话,它可能就有0.6个纳米,所以你这个,所谓生物化石它的直径的话,它可能就是几百个,甚至由上千个原子核组成。所以这基本的话,在现在我们理解的这个具有细胞膜包裹的原始细胞最小形态是不可想象的。所以这个有关陨石上生命的存在,或者火星上生命的存在,还需要继续的研究。我们所观察的第三个天体,就是木星的卫星,特别是第二个卫星,叫木卫二,它的大小跟地球直径非常类似,在1997年美国的伽利略号航天器对木卫二进行了观察,他们发现在木卫二表面的话,有大量的裂痕存在,并且是多起的裂痕,通过天体物理学的方法研究,这个星球其实全是由水组成的,这个水是固态的冰,变成了固态的冰,我们从这些很多很多的裂隙可以看起来,多起裂痕看起来,这个星球也许在过去或者某个时候,某几个时候,这个水曾经溶化过。也就是说,它曾经有液态水的存在,有液态水存在,它是不是也有生命的存在呢?但是这个还是一个未知数,我们需要更进一步的研究。总之,随着航天科技和其他相关技术的进一步发展,地外生命的探索,为我们研究生命的起源开辟了一个新的途径。但无论怎么样生命起源的过程的话,这三个过程是跑不了:第一个是从无机物到有机小分子,这种过程,比如说你一氧化碳、二氧化碳、水、氢气、氨气、甲烷,这些东西你合成有机小分子,像氨基酸、嘌呤、啶、核苷酸、高能化合物、肪酸、有卟呤等这些东西,这个过程是跑不掉的,因为地球生命的起源的话,你从无机界到有机界,所以这个过程。一个过程是不管在什么地方,在海底也好,在热泉里面,在火星上或者在木卫二,都跑不了这个过程,所以研究生命起源的过程的话,是第一个。第二个呢,它是有机小分子到有机大分子这个形式,就是刚才说的氨基酸嘌呤嘧啶这个东西,有机大分子像蛋白质多糖,核酸这个过程,因为蛋白质是组成生物体的主要的物质,还有多糖、糖类、都是组成很多细胞的这个骨架,细胞壁的主要成分,还有核酸、这是遗传物质,所以这个过程的话,也是跑不掉的。第三个这些生物的大分子,演化到原始单细胞的生命,这也是跑不掉的。一个原始的单细胞,外面有一个膜包裹,里面有遗传物质,要进行新陈代谢的交换。所以生命起源的过程其实可以简单地分成这三个过程:对这三个过程我们现在做到哪一步呢?我们还有什么没解决的呢?第一个我们看看从无机物到有机小分子这个过程,其实这个过程的话,在热泉中,在深海的海底“黑烟囱”中,还是在实验室中,我们都能够合成这个米勒的实验就是一个最经典的实验,它就是把无机物合成了有机小分子。第二个过程,我们再看看,第二个过程是有机小分子,到有机大分子这个过程,这个过程的话,其实在热泉,像海底热泉口,还有陆地上,像黄石公园,我们国家云南的热泉都有这种过程,因为这个温度很高,它有机物在里面的话它可以进行热聚合脱水反应,能形成蛋白质,我们在实验室里面,这个过程也是可以重复的,所以生命起源的第二个过程也不是难的事情。最难的是生命起源的第三个过程,就是生物大分子到原始单细胞这个过程,可以说这个过程是迄今为止科学家们研究上遇到最大的难题。也是无机生命到生命,无机化合物到有机生命不可跨越的一个鸿沟,这个过程包括哪几部分呢?换句话说,我们要研究生物大分子,到原始单细胞生命,要从几个部分来入手呢?第一个我们要研究自我遗传系统,一个遗传系统,就是能自我复制的生物大分子这个系统的建立,DNA、RNA这种系统的建立。它怎么建立的?它怎么合成的?它们怎么有遗传的功能?第二个,蛋白质的合成,它要纳入到自我复制系统的控制,这是什么意思呢?就是它新陈代谢,它是能量和物质在细胞内的交换,接受太阳光、接受化学能,产生有机物,再用这有机物分解而产生能量,这个能量像一个马达一样,来运转这个细胞,是这个过程。这个过程也是非常难的一个过程,第三个过程,生物膜系统的形成,也就是说比如说像细胞壁、细胞膜,生物膜的系统,为什么重要呢?因为我们知道无机界是没有隔离的,没有这种隔离,只有在生物里面它有一个膜跟外界隔离,同时这个膜也不是绝对隔离,而是跟外面进行物质的交换。它有一些小的空隙,所以这个生物膜系统也是一个非常精密的生物机构,所以在生命起源之中这三个阶段或者三个步骤缺一不可,也是非常难的三个步骤。迄今为止,我们把生命起源可以描述成这样子的:在40亿年前的地球上,由无机分子合成的有机小分子,它聚集在热泉口,或者火山口附近的热水中,通过聚合反应,形成了生物的大分子,这些大分子进行自我复制,自我选择,进而通过分子的自我组织,并自我复制和变异,从而形成核酸和活性蛋白质,同时分隔结构同步产生,最后在基因的控制下的代谢反应,为基因的复制和蛋白质的合成提供能量,这样一个由生物膜包裹着的具有能自我复制的原始细胞,就在地球上产生了。这个原始细胞可能是异养的,或者是化学自养的,它可能类似于现代生物在热泉附近的嗜热古细菌,这个描述短短几百字,就把生命起源的过程描述过来了。但它有四个无法逾越的鸿沟,一个是自我选择,因为你组成生物大分子或者RNA,DNA,它这些分子都是非常有限的几种分子。在无机条件下,或者在闪电情况下、或者在热水中,它形成很多这样的分子,这些分子怎么能自我选择,能合成DNA,RNA,能把其他的大分子抛弃掉,这个过程的话,我们并不知道它,为什么这样子?第二个是自我复制,DNA,RNA它自己能够复制,能够为下一代遗传下去,这个过程我们也并不知道。第三个是分隔结构,就是细胞膜,比如细胞膜、或者细胞内部的膜结构,这个过程我们也不是很清楚,它怎么形成的?像磷脂、精细的生物结构怎么形成的,我们也并不是很清楚。另外是一个新陈代谢的问题,你怎么先是吸收外面的能量,这个过程我们并没有解决,但不管怎么样这种热泉中生命起源假说的话,它确实有很多有利证据的支持,特别是近年来,它取得了一系列最重要的进展。我们知道,热泉中含有大量的一氧化碳、硫化氢和硫化金属矿物,特别是黄铁矿物和硫,一方面硫化铁和硫,有新陈代谢的出现。硫化铁是一种非常重要的催化剂,很多化学反应在它的表面或者说在它的晶体骨架里,进行得非常非常的顺利,一些重要化合物已在在热泉中被发现。例如一种活性物质,像硫化脂就发现在热泉之中,它与一种非常重要的化合物,一些复合物非常类似,这种化合物提供了能量新陈代谢的一种途径。所以说这个新陈代谢的途径的话,可能跟热泉中的黄铁矿和硫,以及它们的聚合物有一定的关系。另一方面,遗传物质核糖核酸,RNA的出现的话,与硫化脂和硫的化学过程有着非常密切的关系。而脱氧核糖核酸,DNA它还可以直接用RNA脱氧演变而来。还有另一个的话,像黄铁矿的聚合物,就是这个热泉口中的这个黄铁矿的聚合物的话。其实,存在于很多重要的生化酶的中心,那些生化酶的话,可能就产生于含有大量的硫热泉之中。由此看来,地球上的生命也许就产生在距今38亿年到40亿年间这些充满硫磺味的热水池或者软泥之中。但是我们应该清醒的明白,我们距离揭开生命起源这一亘古之谜,还有一段遥远的科学历程。从无机物到有机物,到有机化合物到有机生命体的演化,同时还具有很多的偶然性,并不是有这种环境,有这种形成条件,它就能产生生命。有人曾经比喻说,这些无机物好像一个垃圾堆里面什么都有,塑料、塑料瓶子、铁,废弃金属、油,而生命,一个单细胞,就像一辆精美的奔驰车,在一阵台风过后,这些垃圾组装成了一个奔驰车。因此我们可以想像,这个生命起源的过程是非常非常地艰难。因此,也许我们在这个蓝色的星球,是生命的惟一的乐园,因此请保护我们的地球,珍惜地球上的生命,我们不能奢望地球上第二次的生命起源,谢谢大家。

1.未知。2.外星文明在地球上的试验。3.由无机物进化而来,但是具体过程不清楚。

生命主要起源于碳族元素,先看看碳的循环,硅锗属于碳族元素,有半导体的性质,碳族永远处在能源的霸主地位,碳通过光合作用以碳氢化合物的形式周而复始的循环着太阳的能量,同时也演化着生命,生命的起源于物质元素,元素的性质是原子核和核外电子得与失,能量来自太阳能,以硅元素作为核心物质制造的硅氢能催化剂在水中能直接把太阳的能量和其它形式的热能15-100温度转化成化学氢气能,打开了人工制制能源的新途径,化石能源只是个过渡的哺乳期,氢能源将成为人类能源主食,真正的零排放将向我们走来,利用半导体的性质解决光热化学的转化难题,

宇宙生命的研究进展论文

宇宙就是天地万物的总称。宇宙一词最早出现于战国时代尸校的《尸子》一书中。尸佼认为:“上下四方曰宇,往古来今曰宙。”这样,我们可以知道“宇”是表示空间,“宙”是表示时间。空间和时间的概念,随着历史的演进而逐渐发展。宇宙的界限,随着天文学的进步而逐渐扩大。我们的祖先由于受条件的限制,只能用眼睛观测大地万物,因而错误地认为宇宙是有边界的,所以人们常说“近在眼前,远在天边”。虽然先祖关于宇宙边界的认识有失偏颇,但他们在2300多年前就巧妙地把时间和空间结合在一起,这一点是值得肯定的。而欧洲在中古以前,还是把空间与时间割裂开来的。关于宇宙的思想,我们的祖先要比当时的西方人丰富得多。随着科学技术的发展,观测工具日益先进,人们对宇宙的认识逐步加深,从太阳到太阳系,再扩展到银河系,河外星系、星系团、总星系。现已能观测到200多亿光年的宇宙深处,这个范围内包含了10亿个以上的星系。“物理宇宙”即从物理现象上进行解释的宇宙。它在空间上是无边无沿的,在时间上是无始无终的,部分为人们所见,即“观测到的宇宙”,大部分是人们的观测所不能及的。宇宙分为凝聚结构宇宙与耗散结构宇宙,凝聚结构的宇宙是无生命的宇宙,那时的宇宙是一个巨大的黑洞,所有的物质能量都向宇宙的核心收缩,慢慢的凝聚成一个巨大的物质能量团。这时的宇宙中的物质(质量体)转化成能量的速度远远的小于能量转化成物质的速度,所以宇宙便凝聚成一个超巨物质能量团。宇宙的这种状态并不能长久维持,当宇宙收缩到一定的程度后,由于其内部的温度与压强的升高,物质转化成能量的速度慢慢的变快,而能量转化成物质的速度慢慢的变慢,当这种变化到了一个临界点后,整个宇宙便发生逆转,逐渐物质转化成能量的速度远远的大于能量的速度,整个宇宙开始急剧澎涨,达到一定的程度后,宇宙便发生大爆炸,于是宇宙便开始释放与辐射能量,这便是耗散宇宙的开始,耗散宇宙便是生命宇宙。因此,宇宙是散则生,聚则死;而生命是聚则生,散则死。宇宙与生命是如此的辨证统一的。在以地球为中心的40万亿公里的范围内,没有第二个可供人类生存的星球了

在有恰当条件前提下,生命的构成要件能够自发的聚合到一起,它们也确实这样出现过。这就是自然生成理论,或者叫做自然发生说。当然,这其中很多细节我们仍然不得而知,而且我们没有完全了解它的出现过程。或者说它能够产生的频率如何。 世界上的各大宗教在生命怎么产生这个问题上有着不同的说法,不出所料的是,他们都援引各种超自然神祇的神通之力来解释。但那些说法和赋予色彩包装的故事却不能让我们大多数人完全信服。“生命是怎么萌芽的”是最夺人眼球的问题之一,也是科学界一直探究的课题。 户谷友则(Tomonori TOTANI)是被这个课题吸引的科学家之一,时任东京大学的天文学教授,他撰写了一篇论文题目为《膨胀宇宙中生命的出现》,发表在自然科学报告网站。户谷教授的论文很大程度上依赖于一些概念。第一个就是宇宙的亘古 历史 以及体积大小,它怎么样随时间推移而膨胀,以及那些可能事件是如何发生的。其次就是RNA;论文中具体写道关于核苷酸链要有多长才能“进行一次自我复制”。 户谷教授的论文,和所有自然发生说的研究一样,都着眼于地球上最基本的生命构成要件——RNA,或者叫做核糖核酸。DNA设定的规则决定着个体生命的形态,而DNA比RNA要复杂很多。 即便如此,RNA也并不简单,以它的重要性而言,超过了太空中已知的所有化学原料或者是在行星、月球表面的发现的化学分子。但它的复杂性不如DNA,这也是为什么它更可能通过自然形成。另外在进化论学界还有一种学说认为虽然DNA搭载了构建有机生命体的指令,但是DNA基因序列的转录是由RNA来调节管理的。这被称作以RNA为基础的进化论,这一理论认为RNA受达尔文自然选择学说的影响同样是可遗传的。以下是一些RNA与DNA表象背后的理论依据。双链RNA。RNA是一串化学物质,学名核苷酸。一些研究表明,要完成被称作“生命存在”的自我复制之前,核苷酸链需要有至少40-100个核苷酸的长度才能进行。 随着时间推移,足够多的核苷酸能够形成一链以满足这个长度要求。但还有一个问题存在,宇宙中的生命是否有足够的时间来完成这个过程?不过既然我们能活到今天,这个答案显然是正面的,对吗? 稍等!根据这篇新论文的通讯新闻稿,“…目前的估计表明,40-100个核苷酸长度这个神奇的数字在我们可观测的宇宙空间内是不可能存在的。” 这里的关键词是“可观测的宇宙”。 “不过,还有很多宇宙空间在我们可观测范围之外,”户谷教授说到。“当代宇宙学一致认为宇宙空间经历过一个时期的急速膨胀,并且催生出了广阔的扩张区域,这超出了我们能够直接观测到的边界之外。把这一部份巨大的空间因素计入自然发生模型中,在很大程度上增加了生命出现的机率。” 根据户谷教授的论文所述,我们的宇宙中“很可能包含超过10100个类似太阳的恒星,”而可观测宇宙范围内仅仅包含大约1022个恒星。我们知道生命至少出现过一次,所以自然发生出现一次也不是不可能的,虽然这个机率极其渺茫。 根据统计数据,可观测宇宙空间内的物质总量应该只可能产生20个核苷酸长度的RNA,远低于40-100这个数字。但是因为宇宙急速膨胀,还有很大部分我们无法观测到。自从宇宙大爆炸以来,射出来的光要想到达我们这里实在是太远了。 当宇宙学家们把可观测宇宙内恒星数量与无法观测宇宙内的恒星数量相加,结果可以得到10100个类太阳恒星。这就意味着还有很多物质同在这个空间,所以靠自然创造出足够长度的RNA就不仅仅是可能,而是十有八九的机会,甚至是毋庸置疑的。 在户谷教授的论文中,他阐述了尚在调查中的基本关系:“这里,我们推导出一组定量关系,它介乎二者之间,其一是要成为第一个生物聚合物所要求的最小RNA长度/分钟;其二是通过随机增加单体而期望形成具备如此长度和活性的RNA所需要的宇宙大小。”这是不是让人一头雾水?以下是一个更有利于梳理的总结。 整个宇宙比可观测部分要大很多,有可能包含了10100个类太阳恒星。将类地行星上出现RNA非有机产物的可能性比作1或者个体的话,那么最小核苷酸长度则肯定会小于约20个核苷酸,这比一开始说的最小40个核苷酸长度要小得多。 但是科学家们认为仅仅20个核苷酸长度的RNA不可能完成自我复制,至少从我们作为地球生命观察者的角度来看不会。就像户谷教授在论文中提到的那样:“至此,如果未来在地球上发现起源不同的地外有机物,它就可以说明有一个未知的机制在起作用,它使核苷酸聚合起来的速度比随机统计的过程要快得多。” 那么这个机制是什么? 我们无法得知,但这却会是个转折点,有信仰的人们能够插话进来说一句:“当然是上帝了”。 户谷教授的研究绝不是要提供一个标准答案。但是就像许许多多的科研工作那样,他们帮助我们重新审视问题,并且邀请更多人来加入这项研究。 “正如这个研究领域里的许多同行一样,驱使我前进的同样是好奇心和求知欲。”户谷教授说。 “我在宇宙学领域的长期工作经历结合了最近RNA化学的调查研究,促使我认识到宇宙从一个非有机(无生命)状态到成为一个有机生命体,之间的经历一定存在一个合理的解释。这让我很激动,同时我希望这方面的研究能够解开生命起源之谜。” 作者:AnonymityFY:Patrick 转载还请取得授权,并注意保持完整性和注明出处

是谁兰化一中的?人类探索太空历史记录太多了,我只简要的帮你归纳: 1957年10月4日发射了人类历史上第一颗人造卫星:斯普特尼克. 1961年4月12日,苏联成功地发射了世界上第一艘载人飞船“东方”1号,乘坐这艘飞船的航天员是加加林。 1963年6月16日世界上第一位女航天员是苏联的捷列什科娃乘“东方”6号进入太空,在轨道上运行了70小时50分钟,绕地球48圈。 1965年3月18日 苏联发射了“上升2号”飞船,该飞船有两名航天员,别列亚耶夫空军上校和列昂诺夫空军中校。列昂诺夫在舱外空间环境中行走了12分钟,成为太空行走第一人。 1967年4月24日,苏联航天员科马罗夫(Komarov)因飞船在再入过程中降落伞失灵,飞船坠毁而身亡,成为世界上第一位在执行太空飞行任务时献身的航天员。 1968年12月21日,美国的土星5号火箭发射升空,它携带的阿波罗8号飞船乘坐着3名航天员。在12月24日上午,机组抵达了月球轨道并进入环绕月球的轨道运动。这是人类第一次环绕月球飞行。 1969年1月14日,苏联发射载人飞船联盟4号,1月16日与联盟5号对接成功,这是世界上第一次实现两艘飞船在太空对接飞行。 1969年7月16日,美国阿波罗11号飞船离开地球,飞往月球。7月20日,美国东部时间晚上10点56分,在着陆约6小时后,航天员阿姆斯特朗钻出登月舱,下到月球表面。 1970年4月15日 阿波罗13号机组到达月球的远边,距离月球表面254公里,距离地球400171公里,创下了航天员太空飞行最远的纪录。 1970年6月1日,苏联发射了联盟9号飞船,机组人员2名,目的是研究长期无重力飞行对机组的效应。该飞船在太空飞行17天16小时58分55秒,于6月19日返回地面,成为在太空飞行时间最长的飞船。 1971年4月19日,苏联发射了世界上第一座空间站“礼炮”1号,开辟了载人航天的新领域。“礼炮”1号重18425公斤,运行到1971年10月11日。 运行时间最长的空间站 1981年4月12日,第一架航天飞机“哥伦比亚”号在卡纳维拉尔角肯尼迪航天中心发射成功,揭开了航天史上新的一页。 1984年7月25日,苏联女航天员萨维茨卡娅走“礼炮”7号空间站的舱门,进行了3小时35分钟的太空行走,成为世界上第一位进行太空行走的女航天员。 2003年10月15日,“神舟”五号发射升天后,在太空飞行了21小时23分,顺利返回神州大地,是中国第一个载人进入太空,圆了中国人的愿望,还圆了400多年前明朝人万户想乘上火箭升空的梦想 2004年10月24日,苏联/俄罗斯的航天员在太空共飞行了16858.71人/天。是世界上太空飞行时间最长的国家。 2005年7月4日,深度撞击号将要发射出一个重372公斤(820-lbs)的0铜质撞击舱,以每小时37,015公里(23,000 mph)的速度,撞击进入坦普尔1号彗星的岩石和冰的彗核。这是人类探测器首次撞击彗星,一是破解生命起源之谜,二是为了防止2036年阿波菲斯撞击地球而做试验。 2006年07月17日 21:15 美国发现号航天飞机在佛罗里达州肯尼迪航天中心成功着陆。 2007年9月14日日本探月卫星“月亮女神”号发射升空,主要任务是观测月球表面地形、研究元素分布等,日本研究人员称,这是日本2025年建立载人太空站第一步。 2008年印度计划探测火星 2010年发现号航天飞机将废止,之后航天飞机将不再造,升级为空天飞机,安全性能大大提高。 2010年,国际空间站将建成,总重量423吨,长108米,宽88米。有6个实验室,33个标准有效载荷柜,可载6至7人。这将是最大的空间站。 2012年人类计划在月球拟建基地。 2026年美国计划把人类送入火星。 ......

宇宙的探索是很有意思,很有意义的。真的。我觉得如果我们老师留这个,我一定会很认真的完成的。你为什么却···真让人看不到希望!

抗生素研究进展论文怎么写

医学论文浅谈合理使用抗生素

无论是身处学校还是步入社会,大家最不陌生的就是论文了吧,论文是我们对某个问题进行深入研究的文章。那么问题来了,到底应如何写一篇优秀的论文呢?下面是我为大家整理的医学论文浅谈合理使用抗生素,欢迎阅读,希望大家能够喜欢。

随着人们生活水平的提高,人们对健康的要求也越来越高。在选用抗生素时,往往走入误区,认为药物越贵越好,越新越好,然而不正确的使用,更加重了耐药细菌的急剧增长。另一方面由于抗生素在临床上应用量大、品种多、更新快、各类药品之间相互关系复杂,联合用药日趋增多,预防用药日趋广泛。因此临床上抗菌药物的不良反应发生率及耐药性仍逐年上升势头。在这种社会环境下,合理使用抗生素显得尤为重要。

1、合理使用抗生素的基本原则

合理使用抗生素的临床药理概念为安全有效使用抗生素,即在安全的前提下确保有效,这就是合理使用抗生素的基本原则。

2、如何合理使用抗生素

2.1确定病原菌

尽早从患者的感染部位、血液等取样培养分离致病菌,并进行药物敏感试验,有针对性的选择抗生素。

2.2抗生素的选择

抗生素使用合理与否,关系到治疗的成败。在选择用药时,必须考虑以下几点.

2.2.1首先要掌握抗生素的抗菌谱各种抗生素都有不同的作用特点,因此所选的药物的抗菌谱务必使其与所感染的微生物相适应,否则就无的放矢,既浪费钱财,又延误病情。

2.2.2抗生素疗效与不良反应的轻重权衡:大多数抗生素都或多或少地有一些与治疗目的无关的副作用或其他不良反应,以一般来说,应尽可能选择对病人有益无害或益多害少的药物,因此在用药时必须严格掌握药物的适应症,防止滥用药物。比如肾功能减退应避免使用主要经肾排泄的而对肾脏有损害的抗菌药物;肝功能减退应避免使用主要经肝代谢而对肝脏有损害的抗菌药物;对新生儿、儿童、孕妇和哺乳期妇女等特殊人群应选用安全的抗菌药物。

2.2.3联合用药联合用药可能使原有药物作用增加,称为协同作用;也可能使原有药物作用减弱,称为拮抗作用。提高治疗效应,减弱毒副反应是联合用药的目的,反之,治疗效应降低,毒副反应加大,会对患者产生有害反应。目前,一般将抗生素分为四大类型,第一类为繁殖期杀菌药(Ⅰ),如β-内酰胺类抗生素,第二类为静止期杀菌药(Ⅱ),如氨基甙类、多粘菌素类抗生素等,第三类为快速抑菌药(Ⅲ),如四环素、大环内酯类,第四类为慢速抑菌药(Ⅳ),如磺胺类药物等。联合使用上述抗生素时,可产生协同(Ⅰ+Ⅱ)、拮抗(Ⅰ+Ⅲ)、相加(Ⅲ+Ⅳ)、无关和相加(Ⅰ+Ⅳ)四种效果,为达到联合用药的目的,需根据抗菌药物的作用性质进行恰当的配伍。

总的说来在使用抗生素时应严格掌握适应症,凡属可用可不用者尽量不用,而且除考虑抗生素的抗菌作用的针对性外,还必须掌握药物的不良反应,体内过程与疗效关系。其中发热原因不明者不宜采用抗生素;病毒性感染的疾病不用抗生素;尽量避免抗生素的外用(如皮肤)。严格控制预防用抗生素的范围在下列情况下可预防治疗:风湿热病人,定期采用青霉素G,以消灭咽部溶血性链球菌,防止风湿复发;

风湿性或先天性心脏病进行手术前后用青霉素G或其它适当的抗生素,以防止亚急性细菌性心内膜炎的发生;感染灶切除时,依据病菌的敏感性而选用适当的抗生素;战伤或复合外伤后,采用青霉素G或四环素族以防止气性坏疽;结肠手术前采用新霉素等作肠道准备;严重烧伤后,在植皮前应用青霉素G消灭创面的溶血性链球菌感染。

1.合理使用抗生素,在临床药理学的概念,合理使用抗生素的有效使用抗生素,即在安全的前提下,确保有效的基本原则,这个基本原则是合理使用抗生素。

2.如何合理使用抗生素

2.1确定致病菌尽快从感染部位,病人的血液样本隔离和文化致病菌及药敏试验,选用抗生素。

2.2抗生素的使用,抗生素的选择合理与否,关系到治疗的成败。在选择用药时,必须考虑以下几点。

2.2.1必须首先掌握抗生素广谱抗生素有不同的特点,因此选择药物的抗菌谱必须符合与微生物感染,或无的放矢,浪费钱,延误病情。

抗生素的作用

2.2.2优先事项和不良反应:大多数抗生素都或多或少有一些副作用和治疗目的无关的或其他不良反应,在一般情况下,应尽量选择少有害或无害的药物福利患者的药物在世界,必须严格控制药物的适应症,防止药物滥用。例如,肾功能受损,应避免使用抗菌药物主要经肾脏排泄,肾功能损害,肝功能不全,原发性肝代谢和抗菌药物对肝脏的损害,应避免使用抗菌药物对新生儿,儿童,孕妇和哺乳期妇女等特殊人群应选择安全。

2.2.3联合治疗药物,可能会增加协同效应,也可能使原药的效果减弱,称为拮抗作用。提高治疗效果,降低不良反应相结合,其目的,而不是减少,治疗效果,增加的毒性和副作用,有不良反应的患者。

目前,抗生素分为四种类型

第一种类型的生殖期的杀菌药物(Ⅰ),如β内酰胺类抗生素

第二类的静态杀菌剂(Ⅱ),如氨基糖苷类,多粘菌素抗生素

第三种(三)四个元素环,大环内酯类

第四类慢速抑菌(IV),如磺胺类药物快速抑制药物,如。抗生素的结合使用,可以产生协同作用(Ⅰ+Ⅱ),拮抗剂(I+III),和(Ⅲ+Ⅳ),独立的和添加剂(Ⅰ+Ⅳ)4种效果,要达到的目的的组合,需要适当配伍,根据抗菌药物的`属性。

一般来说,抗生素的使用应严格掌握适应症,所有可能会或可能不会有尽可能不,除了要考虑有针对性的抗生素的抗菌作用,它是要把握药物不良反应,药代动力学之间的关系性和有效性。不明原因的发热不应该使用抗生素,病毒性感染不用抗生素,尽量避免外用抗生素(如皮肤)。

预防性抗生素预防和治疗范围严格控制在以下情况:风湿热患者,经常使用的青霉素G,为了消灭溶血性链球菌咽,防止风湿病复发;风湿性或先天性心脏疾病,术前,术后用青霉素G或其它适当的抗生素,以防止亚急性细菌性心内膜炎发生感染病灶切除术,选用适当的抗生素对细菌的敏感性;伤口或复合外伤,青霉素G或四环素,以防止气性坏疽;结肠手术前新霉素肠道准备;严重烧伤后,应用青霉素G消灭溶血性链球菌感染的皮肤伤口。

对症用药

抗生素的使用要依据抗生素的适应症进行选用,主要选用原则如下:

①根据病原菌的种类、感染性疾病的临床症状和药物的抗菌谱来选择合适的抗生素。

②根据感染部位和药动学来选择抗生素。抗生素在体内要发挥杀菌或者抑菌作用,必须在靶组织内达到有效的药物浓度,所以根据抗生素在感染部位的浓度高低、维持时间等方面进行选用。

③根据患者的生理、病理和免疫状况来选药,因为上述因素会影响到药物的作用。不同的患者应用的抗生素有所区别。妊娠期和哺乳期妇女要避免应用导致畸形和影响新生儿发育的药物。

剂量及疗程

抗菌药物应用的剂量与给药次数要适当,疗程要足够;剂量过小或者疗程过短会影响疗效还能导致细菌容易产生耐药性,剂量过大或者疗程过程不但导致浪费还引起不良反应。

预防性用药

抗生素的预防性应用约占抗生素使用量的40%左右,而实际上有应用价值的占少数,错误的使用抗生素用于病毒性感染甚至会引起耐药性产生或者发生继发性感染。所以,要严格预防性抗生素的应用,以下几种情况可预防性应用抗生素:采用苄星青霉素、青霉素V等清除咽喉部及其他部位的溶血性链球菌防治风湿热的发作;在流行性脑脊髓膜炎流行时,可用磺胺嘧啶口服做预防性用药;风湿性或者先天性心脏病患者进行口腔、尿路手术前,用青霉素等预防感染性心内膜炎发生;外伤、战伤、闭塞性脉管炎患者在行截肢手术时,可用青霉素预防气性坏疽;结肠手术前用甲硝唑、庆大霉素预防厌氧菌感染。

联合应用

联合用药的目的是提高疾病治疗效果,减少细菌耐药性,同时减少不良反应发生,扩大抗菌范围。但是,要严格掌握联合应用抗生素的指征,如单一抗生素不能控制的混合型感染,如腹部脏器损伤导致的腹膜炎;单一抗生素不能控制的严重感染,如脓毒症、败血症等严重感染;应用单一抗生素不易渗入到的感染部位,如结核感染等;病原体尚没有确定的重型感染等,如果长时间治疗,病原体可能导致耐药发生,要联合用药。具体联用原则可参考相关书籍或文献,或遵医嘱。

扩展资料:

主要分类

按照其化学结构,抗生素可以分为:喹诺酮类抗生素、β-内酰胺类抗生素、大环内酯类、氨基糖苷类抗生素等。

而按照其用途,抗生素可以分为抗细菌抗生素、抗真菌抗生素、抗肿瘤抗生素、抗病毒抗生素、畜用抗生素、农用抗生素及其他微生物药物(如麦角菌产生的具有药理活性的麦角碱类,有收缩子宫的作用)等。

根据其种类的不同,抗生素的生产有多种方式,如青霉素由微生物发酵法进行生物合成,磺胺、喹诺酮类等,可用化学合成法生产;还有半合成抗生素,是将生物合成法制得的抗生素用化学、生物或生化方法进行分子结构改造而制成的各种衍生物。

作用机制

抗生素产生杀菌作用主要有4种机制,即:抑制细菌细胞壁的合成、与细胞膜相互作用、干扰蛋白质的合成以及抑制核酸的复制和转录。

抑制细胞壁的合成

细菌的细胞壁主要由多糖、蛋白质和类脂类构成,具有维持形态、抵抗渗透压变化、允许物质通过的重要功能。因此,抑制细胞壁的合成会导致细菌细胞破裂死亡;而哺乳动物的细胞因为没有细胞壁,所以不受这些药物的影响。

这一作用的达成依赖于细菌细胞壁的一种蛋白,通常称为青霉素结合蛋白(PBPs),β内酰胺类抗生素能和这种蛋白结合从而抑制细胞壁的合成,所以PBPs也是这类药物的作用靶点。以这种方式作用的抗菌药物包括青霉素类和头孢菌素类,但是频繁的使用会导致细菌的抗药性增强。

与细胞膜相互作用

一些抗菌素与细胞的细胞膜相互作用而影响膜的渗透性,使菌体内盐类离子、蛋白质、核酸和氨基酸等重要物质外漏,这对细胞具有致命的作用。但细菌细胞膜与人体细胞膜基本结构有若干相似之处,因此该类抗生素对人有一定的毒性。以这种方式作用的抗生素有多粘菌素和短杆菌素。

干扰蛋白质的合成

干扰蛋白质的合成意味着细胞存活所必需的酶不能被合成。以这种方式作用的抗生素包括福霉素(放线菌素)类、氨基糖苷类、四环素类和氯霉素。蛋白质的合成是在核糖体上进行的,其核糖体由由50S和30S两个亚基组成。

其中,氨基糖苷类和四环素类抗生素作用于30S亚基,而氯霉素、大环内酯类、林可霉素类等主要作用于50S亚基,抑制蛋白质合成的起始反应、肽链延长过程和终止反应。

抑制核酸复制和转录

抑制核酸的转录和复制,可以抑制细菌核酸的功能,进而阻止细胞分裂和/或所需酶的合成。以这种方式作用的抗生素包括萘啶酸和二氯基吖啶,利福平等。

你好,论小儿抗生素的合理应用——提纲【论文关键词】 小儿;抗生素;合理使用 【论文摘要】 抗生素的不合理使用已受到社会的广泛关注,不合理使用抗生素对小儿危害极大,本文从抗生素不合理使用的表现、不良后果、合理使用原则、常见病抗生素的合理应用、小儿不宜使用的抗生素几方面进行了详细地阐述。 【论文】1、临床抗生素不合理使用的表现2 、滥用的不良后果 3 、合理使用抗生素的原则4 、常见病抗生素的合理使用5 、小儿不宜使用的抗生素【结论】总之选择抗生素时要全面考虑患儿的感染情况、生理状态、病理状态,合理选用药物的品种、使用剂量、用药时间以及给药途径。有效控制感染,减少药物不良反应,防止人体内菌群失调,减少耐药性的产生。 【参考文献】基本就这些,你可以在次基础上修改完成。

要写毕业论文的话就要去查文献啦,目前国内最常用的就是CNKI和维普咯。像楼上说的是挺多的,但是不好作为毕业论文里引用,因为只要是引用就一定要带上参考文献,否则不好通过哦。既然要写论文,肯定是在学校啦,现在的高校一般都买有那两个数据库的,多看看就好

抗生素发展简介抗生素分为天然品和人工合成品,前者由微生物产生,后者是对天然抗生素进行结构改造获得的部分合成产品。 1981年我国第四次全国抗生素学术会议指出,近些年来在抗生素的作用对象方面,除了抗菌以外,在抗肿瘤,抗病毒,抗原虫、寄生虫和昆虫等领域也有较快发展。有些抗生素具有抑制某些特异酶的功能,另外一些抗生素则具有其他的生物活性或生理活性的作用。鉴于“抗菌素”早已越出了抗菌范围,继续使用抗菌素这一名词已不能适应专业的进一步发展,也不符合实际情况了。因此,会议决定将抗菌素正式更名为抗生素。 抗生素分类根据抗生素的化学结构和临床用途,可将抗生素分为β—内酰胺类、氨基糖苷类、大环内酯类、林可霉素类、四环素类、氯霉素类以及其他主要抗细菌的抗生素、抗真菌抗生素、抗肿瘤抗生素、具有免疫抑制作用的抗生素十大类。 编辑本段药品发现抗生很早以前,人们就发现某些微生物对另外一些微生物的生长繁 抗生素分子式殖有抑制作用,把这种现象称为抗生。随着科学的发展,人们终于揭示出抗生现象的本质,从某些微生物体内找到了具有抗生作用的物质,并把这种物质称为抗生素,如青霉菌产生的青霉素,灰色链丝菌产生的链霉素都有明显的抗菌作用。所以人们把由某些微生物在生活过程中产生的,对某些其他病原微生物具有抑制或杀灭作用的一类化学物质称为抗生素。 抗菌由于最初发现的一些抗生素主要对细菌有杀灭作用,所以一度将抗生素称为抗菌素。但是随着抗生素的不断发展,陆续出现了抗病毒、抗衣原体、抗支原体,甚至抗肿瘤的抗生素也纷纷发现并用于临床,显然称为抗菌素就不妥,还是称为抗生素更符合实际了。抗肿瘤(antineoplastic) 抗生素的出现,说明微生物产生的化学物质除了原先所说的抑制或杀灭某些病原微生物的作用之外,还具有抑制癌细胞的增殖或代谢的作用,因此现代抗生素的定义应当为:由某些微生物产生的化学物质,能抑制微生物和其他细胞增殖的物质叫做抗生素。 细菌“导弹”有望代替抗生素细菌之间相互拼杀所用的微小蛋白质“导弹”有望在不久的将来代替治疗疾病所用的抗生素。研究该项技术的一个美国研究所希望能够首先在治疗动物(如猪和鸡)的常见病方面取得突破。同时这个研究所也发现用这种蛋白质“导弹”能够在食品无菌包装和保存方面做出突破。由于人体血原对抗生素的反应存在一定的危险,这种物质的使用能够降低医学的危险性,且使用后没有后遗物。 编辑本段抗生素杀菌作用主要有4种机制抑制细菌细胞壁的合成抑制细胞壁的合成会导致细菌细胞破裂死亡,以这种方式作用的抗菌药物包括青霉素类和头孢菌素类,哺乳动物的细胞没有细胞壁,不受这些药物的影响。 与细胞膜相互作用一些抗菌素与细胞的细胞膜相互作用而影响膜的渗透性,这对细胞具有致命的作用。以这种方式作用的抗生素有多粘菌素和短杆菌素。 干扰蛋白质的合成干扰蛋白质的合成意味着细胞存活所必需的酶不能被合成。干扰蛋白质合成的抗生素包括福霉素(放线菌素)类、氨基糖苷类、四环素类和氯霉素。 抑制核酸的转录和复制抑制核酸的功能阻止了细胞分裂和/或所需酶的合成。以这种方式作用的抗生素包括萘啶酸和二氯基吖啶。 编辑本段药品使用、误区及不良反应使用临床应用抗生素时必须考虑以下几个基本原则: (一)严格掌握适应证凡属可用可不用的尽量不用,而且除考虑抗生素的抗菌作用的针对性外,还必须掌握药物的不良反应和体内过程与疗效的关系。 (二)发热原因不明者不宜采用抗生素除病情危重且高度怀疑为细菌感染者外,发热原因不明者不宜用抗生素,因抗生素用后常使致病微生物不易检出,且使临床表现不典型,影响临床确诊,延误治疗。 (三)病毒性或估计为病毒性感染的疾病不用抗生素抗生素对各种病毒性感染并无疗效,对麻疹、腮腺炎、伤风、流感等患者给予抗生素治疗是无害无益的。咽峡炎、上呼吸道感染者90%以上由病毒所引起,因此除能肯定为细菌感染者外,一般不采用抗生素。 (四)皮肤、粘膜局部尽量避免反应应用抗生素因用后易发生过敏反应且易导致耐药菌的产生。因此,除主要供局部用的抗生素如新霉素、杆菌肽外,其它抗生素特别是青霉素G的局部应用尽量避免。在眼粘膜及皮肤烧伤时应用抗生素要选择告辞适合的时期和合适的剂量。 (五)严格控制预防用抗生素的范围在下列情况下可采用预防治疗: 1.风湿热病人,定期采用青霉素G,以消灭咽部溶血链球菌,防止风湿热复发。 2.风湿性或先天性心脏病进行手术前后用青霉素G或其它适当的抗生素,以防止亚急性细菌性心内膜炎的发生。 3.感染灶切除时,依治病菌的敏感性而选用适当的抗生素。 4.战伤或复合外伤后,采用青霉素G或四环素族以防止气性坏疽。 5.结肠手术前采用卡那霉素,新霉素等作肠道准备。 6.严重烧伤后,在植皮前应用青霉素G消灭创面的溶血性链球菌感染。或按创面细菌和药敏结果采用适当的抗生素防止败血症的发生。 7.慢性支气管炎及支气扩张症患者,可在冬季预防性应用抗生素(限于门诊)。 8.颅脑术前1天应用抗生素,可预防感染。 (六)强调综合治疗的重要性在应用抗生素治疗感染性疾病的过程中,应充分认识到人体防御机制的重要性,不能过分依赖抗生素的功效而忽视了人体内在的因素,当人体免疫球蛋白的质量和数量不足、细胞免疫功能低下,或吞噬细胞性能与质量不足时,抗生素治疗则难以秦效。因此,在应用抗生素的同进应尽最大努力使病人全身状况得到改善;采取各种综合措施,以提高机体低抗能力,如降低病人过高的体温;注意饮食和休息;纠正水、电解质和碱平衡失调;改善微循环;补充血容量;以及处理原发性疾病和局部病灶等。 连续使用抗生素不宜超过一周 如果超量使用抗生素药物,很容易导致女性患上霉菌性阴道炎。武警总医院妇产科王黎娜主任解释说,阴道炎的产生并不完全由于个人卫生没做好,过量服用抗生素也一样可能导致阴部炎症产生。事实上,抗生素的副作用之一就是破坏体内细菌群落的平衡。 美国曾经有一项调查显示:使用一种强力抗生素超过一周,女性中会有近一半的人发生霉菌感染。其实,健康女性的阴道本来就有“自洁”的能力,阴道中存在一种乳酸杆菌,可以始终保持阴道内环境呈适度酸性,这样,习惯生长在碱性环境中的霉菌,正常情况下,在这里就不能生存。但长期使用抗生素,会使阴道中的乳酸菌受抑制,失去对霉菌的拮抗作用,扰乱阴道的自然生态平衡,改变阴道的微环境,从而使细菌病原体迅速繁殖,导致霉菌性阴道炎的发生。 目前,一些女性在药物的使用上盲目追求高档次,往往迷信进口抗生素,造成小感冒引发严重的真菌、霉菌感染。对此,王主任提示广大女性朋友,一定要避免长期、大量使用抗生素药物,尤其是广谱抗生素更应少用,如果根据病情必须使用抗生素,建议连续使用不宜超过一周。另外,一旦感染阴道炎,一定要到正规的大医院就诊,一般情况下,根据医生指导,坚持合理用药,病情很快就会好转。[1] 药品误区目前,市面上大多数妇科药品仍含有甲硝唑、克霉唑类抗生素,过多使用这类药品的直接后果就是使病菌产生耐药性,破坏阴道菌群间的制约关系,导致真菌生长旺盛,有炎症的女性会使治疗周期不断延长,不断增加药品剂量,疾病得不到有效治疗。 不良反应与用药目的无关的由药物引起的机体反应称为不良反应。其包括:副作用、毒性反应、后遗反应、过敏反应、致畸、致癌,致突变作用等。副作用属药物固有反应,正常量出现较轻微。毒性反应指药物引起的生理生化机能异常和结构的病理变化,严重程度随剂量增加或疗程延长而增加。抗生素的毒性反应临床较多见,如及时停药可缓解和恢复,但亦可造成严重后果。主要有以下几方面: ①神经系统毒性反应;氨基糖甙类损害第八对脑神经,引起耳鸣、眩晕、耳聋;大剂量青霉素G或半合成青霉素或引起神经肌肉阻滞,表现为呼吸抑制甚至呼吸骤停。氯霉素、环丝氨酸引起精神病反应等。 ②造血系统毒性反应;氯霉素可引起再障性贫血;氯霉素、氨苄青霉素、链霉素、新生霉素等有时可引起粒细胞缺乏症。庆大霉素、卡那霉素、先锋霉素Ⅳ、Ⅴ、Ⅵ可引起白细胞减少,头孢菌素类偶致红细胞或白细胞,血小板减少、嗜酸性细胞增加。 ③肝、肾毒性反应:妥布霉素偶可致转氨酶升高,多数头孢菌素类大剂量可致转氨酶、碱性磷酸脂酶Ⅰ和Ⅱ、多粘菌素类、氨基甙类及磺胺药可引起肾小管损害。 ④胃肠道反应:口服抗生素后可引起胃部不适,如恶心、呕吐、上腹饱胀及食欲减退等。四环素类中尤以金霉素、强力霉素、二甲四环素显著。大环内脂类中以红霉素类最重,麦迪霉素、螺旋霉素较轻。四环素类和利福平偶可致胃溃疡。 ⑤抗生素可致菌群失调,引起维生素B族和K缺乏;也可引起二重感染,如伪膜性肠炎、急性出血肠炎、念珠菌感染等。林可霉素和氯林可霉素引起的伪膜性肠炎最多见,其次是先锋霉素Ⅳ和Ⅴ。急性出血性肠炎主要由半合成青霉素引起,以氨苄青霉素引起的机会最多。另外,长期口服大剂量新霉素和应用卡那霉素引起肠粘膜退行性变,导致吸收不良综合症,使婴儿腹泻和长期体重不增,应预重视。少数人用抗生素后引起肛门瘙痒及肛周糜烂,停药后症状可消失。 ⑥抗生素的过敏反应一般分为过敏性休克、血清病型反应、药热、皮疹、血管神经性水肿和变态反应性心肌损害等。 ⑦抗生素后遗效应是指停药后的后遗生物效应,如链毒素引起的永久性耳聋。许多化疗药可引起"三致"作用。利福平的致畸率为4.3%,氯霉素、灰黄霉素和某些抗肿瘤抗生素有致突变和致癌作用等。

研究生学位论文进展怎么写

本科毕业设计(论文)中期检查表指导教师: 职称: 所在院(系): 教研室(研究室): 题 目 10t桥式起重机总体设计学生姓名专业班级学号一、选题质量:(主要从以下四个方面填写:1、选题是否符合专业培养目标,能否体现综合训练要求;2、题目难易程度;3、题目工作量;4、题目与生产、科研、经济、社会、文化及实验室建设等实际的结合程度) 1、本题目符合机械设计专业的培养目标,能够充分锻炼和培养分析问题和实际操作能力,能够体现综合训练的要求;2、本题目难易适中,符合本科毕业设计要求;3、本题目工作量适中,能在规定的时间内完成; 4、所选题目10t桥式起重机总体的设计与实际贴合比较紧密,在实际的应用中比较广泛。在设计过程中,对机器的零件的设计和计算对我来说是以往所学知识的总结和应用,所以能够满足综合训练的要求二、开题报告完成情况:根据自己在各方面资料的收集和整理,通过对可行性的分析,结合老师给的题目的选择,我完成了这次设计的选题。在选题结束之后,通过自己认真查阅相关的资料,最后结合本身的实际情况和设计的时间任务完成了开题报告。三、阶段性成果:1、通过对10t桥式起重机的了解,再加上老师对我们的讲解,算是对10t桥式起重机有了一个大概的了解。前期阶段主要是对有关于10t桥式起重机的各方面的文献和资料进行搜集,为设计以后的设计做了必要的准备。 2、中期阶段主要是依据参考资料,从上面找到一些关于关于10t桥式起重机的信息,首先对其零部件有了大致的了解,其次是已有了大概的设计方法,并开始了一些基本的结构设计。3、正在进行装配图的CAD画图和设计说明书。四、存在主要问题:由于这是我第一次单独进行10t桥式起重机总体设计,所以刚开始进展的并不是很顺利。而我对这方面的知识掌握比较少,所以需要在图书馆和网上查找更多的相关资料,对有关起重机的知识进行更深入的了解。不过我坚信,只要自己努力和在指导老师的指引下,我能把各方面的问题逐个击破,最终顺利完成毕业设计。五、指导教师对学生在毕业实习中,劳动、学习纪律及毕业设计(论文)进展等方面的评语指导教师: (签名) 年 月 日

把自己论文的完成程度,主要的标题写清楚就可以了

研究生学位论文撰写格式规范

1 内容要求

1.1 题目

题目应恰当、准确地反映本课题的研究内容。学位论文的中文题目应不超过25字,并且不设副标题。

1.2 论文正文字数

理工科硕士学位论文应在一万字以上,理工科博士论文应在三万字以上,文科硕士学位论文应在三万字以上,文科博士学位论文应在六万字以上。

1.3 中、英文摘要与关键词

1.3.1 中、英文摘要

摘要是论文内容的简要陈述,是一篇具有独立性和完整性的短文。摘要应包括本论文的基本研究内容、研究方法、创造性成果及其理论与实际意义。摘要中不宜使用公式、图表,不标注引用文献编号。避免将摘要写成目录式的内容介绍。

摘要的字数(以汉字计),硕士学位论文一般为500~1000字,博士学位论文为1000~2000字,均以能将规定内容阐述清楚为原则。摘要页不需写出论文题目。英文摘要与中文摘要的内容应完全一致,在语法、用词上应准确无误。

1.3.2 关键词

关键词是供检索用的主题词条,应采用能覆盖论文主要内容的通用技术词条。关键词一般列3~5个,按词条的外延层次从大到小排列。

1.4 论文正文

论文正文包括绪论、论文主体及结论等部分。

1.4.1 绪论

绪论一般作为第1章。绪论应包括:本研究课题的学术背景及其理论与实际意义;国内外文献综述;相关领域的研究进展及成果、存在的不足或待深入研究的问题;本研究课题的.来源及主要研究内容。

1.4.2 论文主体

论文主体是学位论文的主要部分,应该结构合理,层次清楚,重点突出,文字简练、通顺。论文主体的内容应包括以下各方面:

本研究内容的总体方案设计与选择论证;本研究内容各部分(包括硬件与软件)的设计计算;本研究内容试验方案设计的可行性、有效性以及试验数据处理及分析;本研究内容的理论分析。

对本研究内容及成果应进行较全面、客观的理论阐述,应着重指出本研究内容中的创新、改进与实际应用之处。理论分析中,应将他人研究成果单独书写,并注明出处,不得将其与本人提出的理论分析混淆在一起。

管理和人文学科的论文应包括对研究问题的论述及系统分析,比较研究,模型或方案设计,案例论证或实证分析,模型运行的结果分析或建议、改进措施等。

自然科学的论文应推理正确,结论明确,无科学性错误。

论文主体各章后应有一节“本章小结”。

1.4.3 结论

学位论文的结论作为论文正文的最后一章单独排写,但不加章号。

结论是对整个论文主要成果的总结。在结论中应明确指出本研究内容的创造性成果或创新点理论(含新见解、新观点),对其应用前景和社会、经济价值等加以预测和评价,并指出今后进一步在本研究方向进行研究工作的展望与设想。结论内容一般在2000字以内。

1.5 参考文献

博士学位论文的参考文献数一般应不少于100篇,其中外文文献一般不少于总数的1/2;硕士学位论文的参考文献一般应不少于40篇,其中外文文献一般不少于20篇。参考文献中近五年的文献数一般应不少于总数的1/3,并应有近两年的参考文献。

教材、产品说明书、各类标准、各种报纸上刊登的文章及未公开发表的研究报告(著名的内部报告如PB、AD报告及著名大公司的企业技术报告等除外)等通常不宜作为参考文献引用。

引用网上参考文献时,应注明该文献的准确网页地址,网上参考文献不包含在上述规定的文献数量之内。

1.6 攻读学位期间发表的学术论文

学位论文后应列出研究生在攻读学位期间发表的与学位论文内容相关的学术论文(含已录用,并有录用通知书的学术论文。录用通知书中应明确说明论文的发表卷、期号。)。攻读学位期间所获得的科研成果可单做一项列出。与学位论文无关的学术论文不宜在此列出。我校对硕士、博士生在攻读学位期间发表学术论文的要求见《哈尔滨师范大学学位授予工作细则》。

1.7 致谢

对导师和给予指导或协助完成学位论文工作的组织和个人表示感谢。内容应简洁明了、实事求是。

2 打印要求

研究生学位论文一律要求在计算机上输入、编排与打印。

论文版芯大小一般应为145mm×210mm(包括页眉及页码则为145mm×230mm),页码在版芯下边线之下隔行居中放置;摘要、目录、物理量名称及符号表等文前部分的页码用罗马数字单独编排,正文以后的页码用阿拉伯数字编排。

博士、硕士学位论文的扉页、摘要、目录、图题及表题等,都要求用中、英文两种文字给出,编排上中文在前。

博士学位论文一律要求双面打印,扉页、目录、摘要、正文、参考文献、附录、攻读博士学位期间发表的学术论文、原创性声明和使用授权书、致谢、索引需从奇数页开始打印(中英文扉页、中英文摘要、目录正反面打印)。

硕士学位论文单面打印。中文扉页、英文扉页、目录、中文摘要、英文摘要、正文、参考文献、附录、攻读硕士学位期间发表的学术论文、原创性声明和使用授权书、致谢、索引都需另起一页打印。

正文中每章节的最后一页空白处不得多于当页版面的3/5。

硕士学位论文的封皮均采用 (230克,靛蓝色云彩皮纹纸);博士学位论文的封皮均采用 (230克,红色云彩皮纹纸)。 除封皮外,其他纸张均采用(70克,白色A4纸)。

2.1 页面设置:要求每页33行×33字

2.2 字体、字号:

章标题:中文小2号黑体, 西文小2号Times New Roman;

节标题:中文小3号黑体, 西文小3号Times New Roman;

条标题:中文4号黑体, 西文4号Times New Roman;

款、项标题:中文小4号黑体, 西文小4号Times New Roman;

正 文:中文小4号宋体,西文小4号Times New Roman

表1层次代号及说明

名称

理科示例

文科示例

说 明

第1章□□……□

第一章 □□……□

章序及章名居中排

1.1└┘□□……□

一、└┘□□……□

题序顶格书写,与标题间空一格,下面阐述内容另起一段

1、毕业设计(论文)工作任务的进展情况。2、提交开题报告,参加开题答辩。(已完成)3、编写调查问卷,进行调研活动。(已完成)4、撰写论文初稿。(已完成)5、修改论文初稿,完成正稿。(进行中)已经认真写好开题报告,并在规定日期交给老师。

相关百科

热门百科

首页
发表服务