数据分析主要就是通过数据去解决企业实际遇到的问题,包括根据数据分析的原因和结果推理以及预测未来进行制定方案、对调研搜集到的各种产品数据的整理、对资料进行分类和汇总等等。主要就是学习Python、R、SAS等编程工具,数据仓库,分布式存储HDOOP,云计算,数据可视化,大数据技术,还可以到九道门数据分析实训官网上去看一些案例,自己做做训练,总之要学习很多东西。
论文中的结果分析写法如下:一般论文中的这部分会用图表简要地列出分析结果( results, findings) ,并围绕主要论点和操作论点来比较分析结果与预期结果之间的差距。完成数据分析以后,就要结合研究目的,即自己提出的论点来解释分析结果。数据分析只是对某个数值作出统计显著性的判断,这个数值和相应的判断,到底具有什么意义,研究者须给出解释。在解释过程中,要选择适当的参照点,比如前人对该问题所持的观点或做法,或同类研究得出的结论,用它们来衬托自已论文结论部分所得出论点的新意和实际意义。论文结果分析后的结论的写法首先要根据分析结果,精练地概括出几条本研究的贡献(contribution)。如上述关于临床路径管理的研究,简要说明“临床路径管理优于现行管理方式”这个主论点已被验证,并列出几个操作论点的验证结果即可。其次,对本研究作自我评价。分析结果要注重客观性,用数据和事实来说话,而结论部分可以渗人主观意见,表达作者对本研究工作的评价。具体内容包括两方面,一是对研究结果适用范围的说明。例如上述关于临床路径管理的研究,是在某个三甲医院调研得出的结果,其他三甲医院是否都适合采用临床路径管理,或者在什么样的条件才能采用,其他级别的医院能否应用等,作者可在此处提出主观看法和判断。评价的另一方面是显示本研究的理论和实际意义,为此,需找出参照点,以便对照说明本研究结果的新意和价值所在。例如《勤劳而不富有》一文中,引用制度经济学现有说法“制度资本在经济增长过程中起到重要支持作用”作为参照点,这个说法解释不了中国的现实,即在交易制度不完善的条件下,十几年的经济连续高速增长。但这个观点却正好衬托了该文结论“人力资本替代制度资本”的新意,显示出研究结果在制度经济学领域的理论价值。教科书或文献中的某种说法,都可用来作为参照点。专业学位论文更注重实际价值。可以选用现有的做法和说法作为参照点,借以显现本研究的实际价值。上述“临床路径管理”的研究,就是用现有管理方式作为参照点。涉及薪酬方案设计或评价指标体系的研究,参照点可以是现行的薪酬方案或评价指标体系。前述“酒店成功的关键在于确保名厨”的研究,很可能业内人员对于酒店发展有不同看法和不同选择,有人主张发展餐饮业务,有人主张发展住宿业务,主张发展餐饮业务的人,有的认为要抓名厨,有的认为要抓内部管理,降低成本。在结果的说明中,要利用这些参照点来说明本研究结果的新意和价值。最后,就作者认为本研究后续值得研究的问题提出建议。建议包括研究中次要的发现及研究的局限之处。
数据源:(是什么)研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况)数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有无修正参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦
请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么)研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况)数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有无修正参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦
论文简介主要是对自己的论文做一个介绍,包括论文的研究方向,研究背景,研究方法和研究结论,并且着重介绍一下研究方法和研究结论。
论文主要内容:一、论文的标题部分标题就是题目或题名,标题需要以最恰当、最简明的词语反映论文中重要的特定内容逻辑组合,论文题目非常重要,必须用心斟酌选定。二、论文的摘要 论文一般应有摘要,它是论文内容不加注释和评论的简短陈述。摘要应该包含以下内容: 1、从事这一研究的目的和重要性 2、研究的主要内容3、完成了哪些工作4、获得的基本结论和研究成果,突出论文的新见解 5、结构或结果的意义三、论文关键词关键词属于主题词中的一类,主题词除关键词外,还包含有单元词、标题词和叙词。关键词是标识文献的主题内容,单未经规范处理的主题词。四、引言又称为前言,属于正片论文的引论部分。写作内容包括:1、研究的理由2、研究目的3、背景4、前人的工作和知识空白5、作用和意义五、正文部分论文的主题,占据论文大部分篇幅。论文所体现的创造性成果或新的研究结果,都将在这一部分得到充分的反映,要求这部分内容一定要充实,论据充分可靠,论证有利,主题明确。 六、参考文献参考文献是文章在研究过程和论文撰写是所参考过的有关文献的目录,参考文献的完整标注是对原作者的尊重。不只在格式上有具体要求,在数量、种类、年份等方面又有相关要求。
导论的目的是通过准确地提出问题或提出疑难而找到论文的主题。在对主题的寻找中,无论如何都应该考虑需要处理的文本篇幅长度。较短的文章总是伴随着较为细小的问题。如果以“黑格尔对康德的批判是什么?”为题写一篇六页的论文,这实在是选了一个糟糕的题目。大多数学生作品的毛病不是因为他选了一个细小的题目,而是一个过于宽泛的题目。一旦找到了一个合适的题目,就不应该畏惧于使用极其明确的措辞。比如,“这篇论文的目的是回答以下问题”。原则上,清晰和透明绝不是文体的弱点。除了准确地提出问题,在某些情形下还应该界定:哪些显而易见的问题或疑难是您明确不想讨论的?
论文的概述一般包括哪些包括论据论点所以说论文是不好写的
论文主要内容:一、论文的标题部分标题就是题目或题名,标题需要以最恰当、最简明的词语反映论文中重要的特定内容逻辑组合,论文题目非常重要,必须用心斟酌选定。二、论文的摘要 论文一般应有摘要,它是论文内容不加注释和评论的简短陈述。摘要应该包含以下内容: 1、从事这一研究的目的和重要性 2、研究的主要内容3、完成了哪些工作4、获得的基本结论和研究成果,突出论文的新见解 5、结构或结果的意义三、论文关键词关键词属于主题词中的一类,主题词除关键词外,还包含有单元词、标题词和叙词。关键词是标识文献的主题内容,单未经规范处理的主题词。四、引言又称为前言,属于正片论文的引论部分。写作内容包括:1、研究的理由2、研究目的3、背景4、前人的工作和知识空白5、作用和意义五、正文部分论文的主题,占据论文大部分篇幅。论文所体现的创造性成果或新的研究结果,都将在这一部分得到充分的反映,要求这部分内容一定要充实,论据充分可靠,论证有利,主题明确。 六、参考文献参考文献是文章在研究过程和论文撰写是所参考过的有关文献的目录,参考文献的完整标注是对原作者的尊重。不只在格式上有具体要求,在数量、种类、年份等方面又有相关要求。
首先,我要说明这里的指导并非 常规意义的指导,我这里说的指导是到底应该如何写论文(应该还是很抽象,不过看完就知道了)。迄今为止,我大约也帮忙做了能有上千份的学生论文数据分析部分,包括一部分的整篇论文写作。因为我是做市场研究与数据分析的,擅长的主要工具是spss,不敢说百分百精通spss,但是应付个八九十应该是足够了,很自然的平时就利用下班和业余时间帮学生做一些论文数据分析以及论文写作指导。很多论文的核心部分都包括数据分析,而统计学也应该是所有学科应该学习的一门重要课程,但是恰恰相反,很多学科只是把统计学和数据分析作为一项选修甚至不重要的课程对待,这样导致学生在最后做论文时完全不懂。而在这种情况下,很多学生因为对数据分析的一窍不通,导致论文从开始的设计到后续的数据收集、整理等都会出现问题,最终导致分析出问题。因此,在对数据分析一窍不通的情况下,应该如何从头构建论文及写作呢?很多论文虽然数据分析部分是核心,但是不管哪种论文的写作,都脱离不了论文的框架。因此,具体的过程应该如下:首先是选题,当然很多时候是导师直接给选题,这个没有太多讨论。其次是选题确定后,马上要做的不是想我应该怎么去写作,或者在哪抱怨“哎~~郁闷,完全不知道怎么写嘛”。而是先通过文献查找,看前人在这个选题方面已经做了哪些研究,都是如何做的。通过查找文献找到跟选题有关的资料,然后对这些资料进行整理,整理不需要计较参考文献的结论和数据细节等,而是要把每篇文献的研究目的、采用的研究方法、采用的分析方法整理出来。当然参考文献中的分析方法你可能还完全不懂,但是没关系,你先把这些参考文献中使用的分析方法全部罗列出来,如线性回归、方差分析、均值t检验、logistic回归等,把这些文献中常用的统计方法罗列出来,你需要弄清楚对应关系,即每种分析方法是用来支持和实现什么样的研究目的,以及能够得出什么样的结论,认真阅读文献就能实现这一步。第三.通过上一步,你应该朦胧的知道你选题相关的参考文献中常用的统计方法名称,以及这些统计方法能够帮助实现哪些目的,或者得出什么结论,同时也不会对自己的选题那么恐惧和迷茫了,因为可能你的选题已经有前人做过了,你的论文只是“复制”一遍而已了,我说的复制是重复一遍前人的研究。在这种情况下,可以构思下自己的选题,这一步属于纯理论层面的,你需要将自己的思路具体化,比如要实现什么目的,很自然的需要什么数据分析方法也就能确定了。当然很多论文会预先设计一系列待验证的假设,也是在这一步完成,因为你找到的文献中可能会存在矛盾的结论,可能会存在一些你认为的研究缺陷(文献看多了,自然自己就会有想法出来了),提出自己的一系列假设,能够很清楚的指导后面的数据收集和分析。第四.选题、假设还有研究方法这些经过前面几步都能确定了,接下来就是要考虑具体研究和收集数据的环节了。这个环节最重要的也是首要的是弄清楚你的数据应该是什么类型的,通过哪种方法来获取。其实也容易了,因为前面你已经确定了统计分析方法,而每种方法有它特定的数据类型要求,比如是分类数据(如性别、民族、年级等)、比如连续性数据(如年龄、身高、体重、温度、长度、距离等)。分类数据简单通俗点的理解就是这些数字本身是没有意义的,是人为赋予它一定的含义,这些数据之间不存在连续性,且加减乘除没有意义,而连续性数据是数据本身有意义,且能够进行一些加减乘除运算。确定了所需要的数据类型,就大致能够知道在数据收集时,应该注意的问题。比如一份问卷调查,其中应该如何设计问题也就大致清楚了,通常问卷设计时就要考虑两种数据类型的问题,因为不同的选项设计会导致不同的数据类型。如你设计一个问题的答案选项是“有/没有”、“是/否”这种是属于分类数据,如果你的答案选项是李克特量表式“非常满意----非常不满意”这种,在处理时可以按照分类数据,只能统计出一些百分比,也可能将其按照连续数据如12345打分形式,这样可以求均值,可以做很多其他多元统计分析。因此这一步确定数据类型很关键,如果数据类型弄错的话,则收集的数据完全无用。第五.具体收集数据过程,不细说了,收集回来之后 就是数据的录入。记住一定要录入原始的数据,而不是经过加减整理汇总后的数据。数据录入格式也是有要求的,一般大致同样的情况下,都是一行代表一个个案或者一份问卷的数据,而一列对应表示的是问卷中的一个问题,即变量。因此数据录入完成后,应该是有多少样本数据,就有多少行,数据中包含多少个指标,那就有多少列。第六.这一步才是你应该开始头疼的数据分析不会了怎么办。因为到这里才开始是数据的具体分析过程了。不会怎么办,前面已经知道了分析方法,这种情况,只有找本教材,然后找对应的方法介绍学习即可,或者实在不行找人指导,找人帮忙等等。最后。分析完成后,开始整篇论文的写作。PS:还要强调一点,现在的高校导师都存在一些问题,因为我接触了那么多学生,他们的认为观点就是“我的统计检验结果不显著怎么办,那不就是说我的研究没有意义么?我的假设都是错的?”“我的结论跟前人的结果不一致啊,看来我的又错了”,这两种观点明显是错的:一、数据的来源对象发生了变化,谁规定的结论必须跟前人一致;二、请问爱迪生发明灯泡的前999次失败是没有意义么?科学研究本来就是一个证伪的过程,一次次证伪来接近真相。三、如果你的假设一定是正确的,那不需要数据验证,你可以去帮助警察破案了,因为你认为你的假设一定是对的,那破案多简单的,假设一下就好了。但是很显然,很多导师并没有把这些正确的观点传达给学生。
论文主要内容:一、论文的标题部分标题就是题目或题名,标题需要以最恰当、最简明的词语反映论文中重要的特定内容逻辑组合,论文题目非常重要,必须用心斟酌选定。二、论文的摘要 论文一般应有摘要,它是论文内容不加注释和评论的简短陈述。摘要应该包含以下内容: 1、从事这一研究的目的和重要性 2、研究的主要内容3、完成了哪些工作4、获得的基本结论和研究成果,突出论文的新见解 5、结构或结果的意义三、论文关键词关键词属于主题词中的一类,主题词除关键词外,还包含有单元词、标题词和叙词。关键词是标识文献的主题内容,单未经规范处理的主题词。四、引言又称为前言,属于正片论文的引论部分。写作内容包括:1、研究的理由2、研究目的3、背景4、前人的工作和知识空白5、作用和意义五、正文部分论文的主题,占据论文大部分篇幅。论文所体现的创造性成果或新的研究结果,都将在这一部分得到充分的反映,要求这部分内容一定要充实,论据充分可靠,论证有利,主题明确。 六、参考文献参考文献是文章在研究过程和论文撰写是所参考过的有关文献的目录,参考文献的完整标注是对原作者的尊重。不只在格式上有具体要求,在数量、种类、年份等方面又有相关要求。
1选题。选择一个合适的题目是你毕业论文最后通过与否的关键,题目是否有新意、是否研究价值等都是我们需要考虑的问题。这里需要提醒大家一点,题目不是越新越好,很多同学一味的求新,结果资料缺乏最后论文无法进行下去,我们选题前必须要衡量是否能完成这个毕业论文,这是首要前提。2查找资料。确定好选题,接下来我们就要以选题为关键词查阅资料,主要网站有中国知网、万方论文网、紫金论文网、维普论文网等。有些题目可能比较偏、比较新,资料很缺乏,那我们就必须扩大关键词,相关的资料也可以查找。3撰写开题报告。开题报告是毕业论文的必要环节,主要要回答几个问题:为什么要选这个题目?目前国内外对此课题研究到什么程度?你打算怎么研究这个课题?跟“我是谁、我来自哪里、我要到哪里去”有点像。4撰写论文。开题报告通过后,就需要正式写论文了。根据开题报告的大纲,我们谋篇布局,一边写作,一边继续充实资料,有的毕业论文可能还需要调研,从而获取一手的数据资料。开题报告的大纲可以根据实际写作的走向适时调整,调整的范围不大都是可以的。5修改定稿。完成初稿后提交导师,导师根据写作情况会提出很多修改意见,修改完成,直到导师同意定稿,毕业论文写作就完成了。后续盲审通过答辩即可。
你还是自己多去看看汉斯出版社官网上的文献吧,多看看你就不会不知道怎么写了
如何利用数据分析工具,对自己的文章进行诊断
论文,简单的理解是为了阐述一个观点,就一件事和情况,发表自己的意见。(学术论文除外) 论文,在语言上要求有论点,论心,以及支持论点的一些材料等。 学术论文,一般是在某个学术方面做的研究课题,而总结发表的一些文章
事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。他在 大数据时代一书中说,以前,一旦完成了收集数据的目的之后,数据就会被认为已经没有用处了。比如,在飞机降落之后,票价数据就没有用了;一个网络检索命令完成之后,这项指令也已进入过去时。但如今,数据已经成为一种商业资本,可以创造新的经济利益。 数据能够成为一种资本,与移动互联网有密切关系。随着智能手机、平板电脑等移动数码产品的“白菜化”,Wi-Fi信号覆盖的无孔不入,越来越多的人不再有“在线时间”和“不在线时间”之分,只要他们愿意,便可几乎24小时一刻不停地挂在线上;在线交易、在线支付、在线注册等网络服务的普及固然方便了用户,却也让人们更加依赖网络,依赖五花八门的网上平台。 而随着科技的进步,以往需要几盒软盘或一张光盘保存的信息,如今只需一片指甲盖大小的芯片,即可全部储存而且绰绰有余;以往需要电脑、显示器、读卡器等专门设备才能读取的数码信息载体,如今或许只需一部智能手机和一个免费下载的APP第三方应用程序,便可将数据一览无余。 大数据时代的科技进步,让人们身上更多看似平常的东西成为“移动数据库”,如带有存储芯片的第二代银行卡、信用卡,带有芯片读取功能的新型护照、驾驶证、社保卡、图书证,等等。在一些发达国家,官方为了信息录入方便,还不断将多种“移动数据库”的功能组合成一体。 数字化时代使得信息搜集、归纳和分析变得越来越方便,传统的随机抽样被“所有数据的汇拢”所取代,基于随机抽样而变得重要的一些属性,如抽样的精确性、逻辑思辨和推理判断能力,就变得不那么重要,尽可能汇集所有数据,并根据这些数据得出趋势和结论才至为关键。简单说,以往的思维决断模式是基于“为什么”,而在“大数据时代”,则已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此,将更精确,更有预见性。 不过,一些学者指出,由于“大数据”理论过于依靠数据的汇集,那么一旦数据本身有问题,在“只问有什么,不问为什么”的模式下,就很可能出现“灾难性大数据”,即因为数据本身的问题,而做出错误的预测和决策。(如能帮到你,望您采纳!!谢谢!!)
比较效果研究通过全面分析病人特征数据和疗效数据,然后比较多种干预措施的有效性,可以找到针对特定病人的最佳治疗途径。临床决策支持系统临床决策支持系统可以提高工作效率和诊疗质量。目前的临床决策支持系统分析医生输入的条目,比较其与医学指引不同的地方,从而提醒医生防止潜在的错误,如药物不良反应。通过部署这些系统,医疗服务提供方可以降低医疗事故率和索赔数,尤其是那些临床错误引起的医疗事故。在美国Metropolitan儿科重症病房的研究中,两个月内,临床决策支持系统就削减了40%的药品不良反应事件数量。
帮你写,就这样。这样的记叙文通过一件较为完整的事情来表现一个人,要求事情具体、生动,因此我们要选择能够表现人物的最典型的事件,选择自己印象最深、最能使自己感动的事情来写,要求这个事件表现的是这个人物最典型的特征,或者这个人的多个特征在这个事件中慢慢呈现出来。
医院数据资源目录体系根据国家卫计委、省市相关医院信息化建设标准规范,梳理医院各生产业务系统元数据标准、数据交换标准等。主要包括数据分类和归类管理、数据质量标准制订和修订、数据资源目录的管理、数据与业务应用之间的映射关系管理、业务变更和新增业务需求时数据的整合与设计、医院数据总体规划、数据全生命周期的管理、数据管理规范的制订和修订等。医院数据整合交换平台建设医院数据整合交换平台,将HIS、CIS、LIS、医院运营绩效、人力资源等业务系统数据按照统一数据交换标准,整合到医院数据整合平台,打断各业务系统消息壁垒、解决数据分散存储不能进行综合分析利用的问题。为建设医院综合信息应用数据仓库,全面、深层次进行数据分析利用打下坚实基础。医院数据质量控制系统为医院决策支持系统提供良好的数据分析和数据挖掘环境,通过建设医院数据质量控制平台,解决在医院数据整合中会牵涉到医院各方面的信息系统如HIS\RIS\PASC\HR\物流等,医院的信息系统建设时间阔度较长,各业务系统建设标准规范不一致等问题造成的数据质量问题。医院综合信息应用数据仓库医院决策支持系统应用应建立面向主题的卫生统计数据仓库,并在此基础上实现统计数据的综合分析利用。医院数据仓库应采用星型模式或雪花型模式建模,在满足目前业务需求的基础上,设计高效灵活的数据模型。在分析技术上,由于医院数据指标较多,维度复杂,基于RDBMS的ROLAP技术相比MOLAP技术,更适合于医院数据仓库的建设。同时,医院数据的分析还应结合信息技术和数理统计理论,对海量统计数据进行挖掘,提升业务数据价值。医院决策支持系统医院决策支持系统通过采用规范的多形式业务视图聚合不同的业务信息,基于不同的业务访问维度和信息抽取形成主题化表述,结合前端的多样展现格式和BI工具,利用多维分析、在线自主分析、数据挖掘、预警预测、智能文档、多媒体终端展示等技术,实现灵活、快捷、易操作的业务信息访问及展示。 以上信息来自亿信华辰-医疗行业解决方案