首页

> 期刊发表知识库

首页 期刊发表知识库 问题

核心区是指以病家或病例工作单位

发布时间:

核心区是指以病家或病例工作单位

第一章 总则第一条 为规划建设青岛蓝色硅谷海洋科技创新示范区,通过体制机制创新,激发青岛蓝色硅谷核心区发展活力,根据法律法规和《青岛市人民代表大会常务委员会关于青岛蓝色硅谷核心区开展法定机构试点工作的决定》,结合本市实际,制定本办法。第二条 本办法适用于国家批准设立的青岛蓝色硅谷核心区(以下简称核心区)。第三条 核心区以海洋科技创新为主题,以转变经济发展方式为主线,运用国际视野,突出区域特色,充分发挥市场配置资源的决定性作用,坚持创新驱动、高端发展、开放引领、生态优先、海陆统筹,着力实施重大推进工程、发展海洋新兴产业、完善科技体制机制、创新运营管理模式、优化发展环境,努力建设海洋科技创新高地、海洋文化教育先行区、海洋新兴产业引领区、滨海生态科技新城。第四条 核心区的发展应当遵循科学、创新、改革原则,积极探索建立促进核心区开发建设和产业发展的管理体制机制。统筹推进相关领域的改革工作,发挥政策叠加优势;对国家深化改革、扩大开放的重大举措先行先试;对符合国际惯例和通行规则,符合我市未来发展方向,需要试点探索的制度设计先行先试;对经济社会发展有重要影响,对全市具有重大示范带动作用的体制创新先行先试。第五条 市政府相关部门和即墨市政府应当按照各自职责,在政策实施、体制创新、资金安排、项目布局等方面给予支持。第二章 管理体制第六条 建立决策权、执行权、监督权充分衔接、有效制衡的法人治理结构,并相应设立决策机构、执行机构、监督机构。第七条 设立青岛蓝色硅谷核心区理事会(以下简称蓝谷理事会)。蓝谷理事会是核心区的最高决策机构,负责研究确定核心区的发展战略规划,行使重大事项决策权。  蓝谷理事会主席可以由市政府分管负责人担任。蓝谷理事会成员由市政府相关部门、相关区市政府、驻区重点科研机构和企业的主要负责人以及执行机构、监督机构负责人组成。第八条 设立青岛蓝色硅谷核心区管理局(以下简称蓝谷管理局)。蓝谷管理局是依法承担公共事务管理和公共服务职能,实行企业化管理但不以营利为目的,具有独立法人地位的法定机构,负责核心区的开发建设、运营管理、招商引资、制度创新、综合协调等工作。蓝谷管理局对蓝谷理事会负责。第九条 蓝谷管理局依法履行下列职责:  (一)组织研究制定核心区发展战略、规划政策,按规定程序报蓝谷理事会研究确定后组织实施;  (二)组织研究制定核心区产业布局,编制产业发展指导目录、准入条件等;  (三)组织制定和实施核心区促进海洋科技与高新技术产业发展的有关规则和指引;  (四)负责本办法规定的核心区规划、建设管理等工作,负责土地管理、储备和开发利用工作,承担开发建设投融资任务,负责基础设施、公共服务设施的建设、运营和管理工作;  (五)实施市政府及其有关部门赋予的市级管理权限和事项;  (六)负责核心区内除金融类产业项目以外投资项目(含固定资产投资项目)的审批、核准、备案或者转报管理;  (七)负责核心区招商引资、宣传推广和对外合作与交流工作;  (八)组织制定和实施蓝谷管理局人事、薪酬和绩效管理等制度;  (九)编制年度工作报告向蓝谷理事会报告工作,并定期向社会公布;  (十)负责蓝谷管理局内部审计、监督工作;  (十一)协调、指导有关部门设在核心区的分支机构或者派出机构的工作,协调联系海关、出入境检验检疫以及供电、供热、供气、通信、金融等单位的工作;  (十二)市政府赋予的其他职责。第十条 蓝谷管理局设局长1名,按规定程序任命;根据工作需要设副局长若干名,协助局长工作。副局长由局长提名,按规定程序任命。第十一条 蓝谷管理局应当按照精简高效、机制灵活的原则确定内部机构设置。第十二条 蓝谷管理局可以建立灵活高效的用人机制,合理设置人员岗位、确定人员结构比例、设定人员聘用条件,并按公开招聘程序招聘人员。根据工作需要,可以面向全球引进人才团队和高层次人才。  人员管理可以采用灵活多样的形式,建立灵活高效的薪酬和激励机制。建立与激励机制相对称的经济责任审计、信息披露等约束机制。具体方案提交蓝谷理事会研究确定,对人员规模控制、人事管理、财政经费保障等内容,经蓝谷理事会审议,并提交市有关部门核准后实施。  核心区现有机关事业单位抽调人员,在过渡期内按照双向选择的原则确定岗位。

首都功能核心区控规编制是关系党和国家工作大局、

承重部位

​​健身时我们常常会听到“核心肌群”、“核心训练”“核心区训练”“核心力量”等一系列围绕着核心二字的词语。那么,你真的懂它们真正指代的含义吗?不如让我们一起来看看下面的解释分析。一关于“核心”的界定核心区是指人体的中间环节,是以腰椎—骨盆—髋关节为主体,包括附着在它们周围的肌肉、肌腱及韧带系统。核心区是完成绝大多数技术动作时力量产生和传递的核心区域,是人体动力链的中间环节,只有核心区的稳定性提高了,肢体的活动才能有支撑,才会更协调。核心指的是一条运动链上的最重要的部位,是运动链的发力点,也可以理解为核心区域里也有核心。实际上,我们通常所说的“核心力量训练”是指“核心区力量训练”,“核心稳定性练习”是指“核心区稳定性练习”。二.核心区稳定性练习与核心区力量训练的区别不同的主导肌群核心区周围的所有肌肉都可以称之为核心区稳定性肌肉,例如:膈肌、竖脊肌(腰段)、多裂肌、腰方肌、腹内斜肌、腹横肌以及盆底肌等深层的短小肌肉;核心区力量训练时主要训练的肌肉是:腹直肌、腹外斜肌、竖脊肌、腰大肌等较为浅层的大块肌肉。

核心区是指以病家或病例工作单位多少米

它的体积是2亿亿立方千米,是地球的25万倍,太阳系的中心天体。银河系的一颗中等大小恒星。距离地球5亿千米,直径约1392000千米,从地球到太阳上去步行要走3500多年,就是坐飞机,也要坐20多年。平均密度409克/立方厘米,质量989×10^33克,表面温度5770℃,中心温度84万℃。由里向外分别为太阳核反应区、太阳对流层、太阳大气层。其中心区不停地进行热核反应,所产生的能量以辐射方式向宇宙空间发射。其中二十二亿分之一的能量辐射到地球,成为地球上光和热的主要来源。恒星也有自己的生命史,它们从诞生、成长到衰老,最终走向死亡。它们大小不同,色彩各异,演化的历程也不尽相同。恒星与生命的联系不仅表现在它提供了光和热。实际上构成行星和生命物质的重原子就是在某些恒星生命结束时发生的爆发过程中创造出来的。太阳(SUN)是一颗普通的恒星。[编辑本段]太阳基本物理参数 天文符号:⊙ 体积:地球体积的1 302 500倍 自转周期:25~30天 距最近的恒星间的距离:3光年 宇宙年:225百万年 直径:1 392 000公里(地球直径的109倍) 半径:696000 千米 质量:989×10^30 千克 温度:大约5770℃(表面) 1560万℃ (核心) 总辐射功率:83×10^26 焦耳/秒 平均密度:409 克/立方厘米 日地平均距离:1亿5千万 千米 年龄:约50亿岁 太阳光:到达地球大气上界的太阳辐射能量称为天文太阳辐射量。在地球位于日地平均距离处时,地球大气上界垂直于太阳光线的单位面积在单位时间内所受到的太阳辐射的全谱总能量,称为太阳常数。太阳常数的常用单位为瓦/米2。因观测方法和技术不同,得到的太阳常数值不同。世界气象组织 (WMO)1981年公布的太阳常数值是1368瓦/米2。地球大气上界的太阳辐射光谱的99%以上在波长 15~0微米之间。大约50%的太阳辐射能量在可见光谱区(波长4~76微米),7%在紫外光谱区(波长<4微米),43%在红外光谱区(波长>76微米),最大能量在波长 475微米处。由于太阳辐射波长较地面和大气辐射波长(约3~120微米)小得多,所以通常又称太阳辐射为短波辐射,称地面和大气辐射为 长波辐射。太阳活动和日地距离的变化等会引起地球大气上界太阳辐射能量的变化。 对于人类来说,光辉的太阳无疑是宇宙中最重要的天体。万物生长靠太阳,没有太阳,地球上就不可能有姿态万千的生命现象,当然也不会孕育出作为智能生物的人类。太阳给人们以光明和温暖,它带来了日夜和季节的轮回,左右着地球冷暖的变化,为地球生命提供了各种形式的能源。 在人类历史上,太阳一直是许多人顶礼膜拜的对象。中华民族的先民把自己的祖先炎帝尊为太阳神。而在古希腊神话中,太阳神则是宙斯(万神之王)的儿子。 太阳,这个既令人生畏又受人崇敬的星球,它究竟由什么物质所组成,它的内部结构又是怎样的呢? 其实,太阳只是一颗非常普通的恒星,在广袤浩瀚的繁星世界里,太阳的亮度、大小和物质密度都处于中等水平。只是因为它离地球最近,所以看上去是天空中最大最亮的天体。其它恒星离我们都非常遥远,即使是最近的恒星,也比太阳远27万倍,看上去只是一个闪烁的光点。 组成太阳的物质大多是些普通的气体,其中氢约占3%, 氦约占27%, 其它元素占2%。太阳从中心向外可分为核反应区、辐射区和对流区、太阳大气。太阳的大气层,像地球的大气层一样,可按不同的高度和不同的性质分成各个圈层,即从内向外分为光球、色球和日冕三层。我们平常看到的太阳表面,是太阳大气的最底层,温度约是6000℃。它是不透明的,因此我们不能直接看见太阳内部的结构。但是,天文学家根据物理理论和对太阳表面各种现象的研究,建立了太阳内部结构和物理状态的模型。这一模型也已经被对于其他恒星的研究所证实,至少在大的方面,是可信的。 太阳的核心区域虽然很小,半径只是太阳半径的1/4,但却是太阳那巨大能量的真正源头。太阳核心的温度极高,达1500万℃,压力也极大,使得由氢聚变为氦的热核反应得以发生,从而释放出极大的能量。这些能量再通过辐射层和对流层中物质的传递,才得以传送到达太阳光球的底部,并通过光球向外辐射出去。 太阳光球就是我们平常所看到的太阳圆面,通常所说的太阳半径也是指光球的半径。光球的表面是气态的,其平均密度只有水的几亿分之一,但由于它的厚度达500千米,所以光球是不透明的。光球层的大气中存在着激烈的活动,用望远镜可以看到光球表面有许多密密麻麻的斑点状结构,很象一颗颗米粒,称之为米粒组织。它们极不稳定,一般持续时间仅为5~10分钟,其温度要比光球的平均温度高出300~400℃。目前认为这种米粒组织是光球下面气体的剧烈对流造成的现象。 光球表面另一种著名的活动现象便是太阳黑子。黑子是光球层上的巨大气流旋涡,大多呈现近椭圆形,在明亮的光球背景反衬下显得比较暗黑,但实际上它们的温度高达4000℃左右,倘若能把黑子单独取出,一个大黑子便可以发出相当于满月的光芒。日面上黑子出现的情况不断变化,这种变化反映了太阳辐射能量的变化。太阳黑子的变化存在复杂的周期现象,平均活动周期为2年。 紧贴光球以上的一层大气称为色球层,平时不易被观测到,过去这一区域只是在日全食时才能被看到。当月亮遮掩了光球明亮光辉的一瞬间,人们能发现日轮边缘上有一层玫瑰红的绚丽光彩,那就是色球。色球层厚约8000千米,它的化学组成与光球基本上相同,但色球层内的物质密度和压力要比光球低得多。日常生活中,离热源越远处温度越低,而太阳大气的情况却截然相反,光球顶部接近色球处的温度差不多是4300℃,到了色球顶部温度竟高达几万度,再往上,到了日冕区温度陡然升至上百万度。人们对这种反常增温现象感到疑惑不解,至今也没有找到确切的原因。 在色球上人们还能够看到许多腾起的火焰,这就是天文上所谓的“日珥”。日珥是迅速变化着的活动现象,一次完整的日珥过程一般为几十分钟。同时,日珥的形状也可说是千姿百态,有的如浮云烟雾,有的似飞瀑喷泉,有的好似一弯拱桥,也有的酷似团团草丛,真是不胜枚举。天文学家根据形态变化规模的大小和变化速度的快慢将日珥分成宁静日珥、活动日珥和爆发日珥三大类。最为壮观的要属爆发日珥,本来宁静或活动的日珥,有时会突然"怒火冲天",把气体物质拼命往上抛射,然后回转着返回太阳表面,形成一个环状,所以又称环状日珥。 在日全食时的短暂瞬间,常常可以看到太阳周围除了绚丽的色球外,还有一大片白里透蓝,柔和美丽的晕光,这就是太阳大气的最外层—— 日冕。日冕的范围在色球之上,一直延伸到好几个太阳半径的地方。日冕里的物质更加稀薄,它还会有向外膨胀运动,并使得热电离气体粒子连续地从太阳向外流出而形成太阳风。 太阳看起来很平静,实际上无时无刻不在发生剧烈的活动。太阳表面和大气层中的活动现象,诸如太阳黑子、耀斑和日冕物质喷发等,会使太阳风大大增强,造成许多地球物理现象——例如极光增多、大气电离层和地磁的变化。太阳活动和太阳风的增强还会严重干扰地球上无线电通讯及航天设备的正常工作,使卫星上的精密电子仪器遭受损害,地面电力控制网络发生混乱,甚至可能对航天飞机和空间站中宇航员的生命构成威胁。因此,监测太阳活动和太阳风的强度,适时作出"空间气象"预报,越来越显得重要。 在银河系内一千多亿颗恒星中,太阳只是普通的一员,它位于银河系的对称平面附近,距离银河系中心约26000光年,在银道面以北约26光年, 它一方面绕着银心以每秒250公里的速度旋转,另一方面又相对于周围恒星以每秒7公里的速度朝着织女星附近方向运动。 太阳的年龄约为46亿年,它还可以继续燃烧约50亿年。在其存在的最后阶段,太阳中的氦将转变成重元素,太阳的体积也将开始不断膨胀,直至将地球吞没。在经过一亿年的红巨星阶段后,太阳将突然坍缩成一颗白矮星--所有恒星存在的最后阶段。再经历几万亿年,它将最终完全冷却,然后慢慢地消失在黑暗里。[编辑本段]万物之源——太阳 清晨,当太阳从漫天红霞中喷薄而出,把万丈金光洒向大地,一种蓬勃向上的激情,就会油然而生。看到这个充满生机的世界,人们不能不热爱和赞美赐予我们生命和力量的万物主宰——太阳。 中华民族的先民把自己的祖先炎帝尊为太阳神。而在绚丽多彩的希腊神话中,太阳神被称为“阿波罗”。他右手握着七弦琴,左手托着象征太阳的金球,让光明普照大地,把温暖送到人间,是万民景仰的神灵。在天文学中,太阳的符号“⊙”和我们的象形字“日”十分相似,它象征着宇宙之卵。 太阳的质量相当于地球质量的33万多倍,体积大约是地球的130万倍,半径约为70万公里,是地球半径的109倍多。虽然如此,她在宇宙中也只是一个普通的恒星。 太阳的内部,从里向外,由核反应区、辐射区、对流区三个层次组成。[编辑本段]万物生长靠太阳 太阳每时每刻都在向地球传送着光和热,有了太阳光,地球上的植物才能进行光合作用。植物的叶子大多数是绿色的,因为它们含有叶绿素。叶绿素只有利用太阳光的能量,才能合成种种物质,这个过程就叫光合作用。据计算,整个世界的绿色植物每天可以产生约4亿吨的蛋白质、碳水化合物和脂肪,与此同时,还能向空气中释放出近5亿吨的氧,为人和动物提供了充足的食物和氧气。[编辑本段]太阳-巨大的核能火炉 太阳核心释放的能量向外扩散,使得太阳表面温度大约达到6000℃,就像一个高温气体组成的海洋。大部分太阳能以热和光的形式向四周辐射开去。太阳这个巨大的"核能火炉"已经稳定地"燃烧"了50亿年目前它正处于壮年,要再过50亿年它才会燃尽自己的核燃料那时,它可能膨胀成一个巨大的红色星体。[编辑本段]太阳黑子 通过一般的光学望远镜观测太阳,观测到的是光球层的活动。在光球上常常可以看到很多黑色斑点,它们叫做“太阳黑子”。太阳黑子在日面上的大小、多少、位置和形态等,每天都不同。太阳黑子是光球层物质剧烈运动而形成的局部强磁场区域,也是光球层活动的重要标志。长期观测太阳黑子就会发现,有的年份黑子多,有的年份黑子少,有时甚至几天,几十天日面上都没有黑子。天文学家们早就注意到,太阳黑子从最多或最少的年份到下一次最多或最少的年份,大约相隔11年。也就是说,太阳黑子有平均11的活动周期,这也是整个太阳的活动周期。天文学家把太阳黑子最多的年份称之为“太阳活动峰年”,把太阳黑子最少的年份称之为“太阳活动宁静年”。[编辑本段]太阳的内部结构 太阳的内部主要可以分为三层,核心区,辐射区和对流区 太阳的能量来源于其核心部分 太阳的核心温度高达1500万摄氏度,压力相当于2500亿个大气压。核心区的气体被极度压缩至水密度的150倍。在这里发生着核聚变,每秒钟有七亿吨的氢被转化成氦。在这过程中,约有五百万吨的净能量被释放(大概相当于38600亿亿兆焦耳,386后面26个0)。聚变产生的能量通过对流和辐射过程向外传送。核心产生的能量需要通过几百万年才能到达表面。 辐射区包在核心区外面 这一层的气体也处在高温高压状态下(但低于核心区),粒子间的频繁碰撞,使得在核心区产生的能量经过很久(几百万年)才能穿过这一层到达对流区。 辐射区的外面是对流区 能量在对流区的传递要比辐射区快的多这一层中的大量气体以对流的方式向外输送能量(有点像烧开水,被加热的部分向上升,冷却了的部分向下降)对流产生的气泡一样的结构就是我们在太阳大气的光球层中看到的"米粒组织"。 太阳是自己发光发热的炽热的气体星球。它表面的温度约6000℃,中心温度高达1500万℃。太阳的半径约为696000公里,约是地球半径的109倍。它的质量为989×10^27吨,约是地球的332000倍。太阳的平均密度为4克每立方厘米,约为地球密度的1/4。太阳与我们地球的平均距离约5亿公里。 太阳是银河系中的一颗普通恒星,位于银道面之北的猎户座旋臂上,距银心约3~8万光年,它以每秒250公里的速度绕银心转动,公转一周约需5亿年。太阳也在自转,其周期在日面赤道带约25天;两极区约为35天。 通过对太阳光谱的分析,得知太阳的化学成分与地球几乎相同,只是比例有所差异。太阳上最丰富的元素是氢,其次是氦,还有碳、氮、氧和各种金属。[编辑本段]太阳的结构 太阳的结构从里向外主要分为:中心为热核反应区,核心之外是辐射层,辐射层外为对流层,对流层之外是太阳大气层。 从核物理学理论推知,太阳中心是热核反应区。太阳中心区占整个太阳半径的1/4,约为整个太阳质量的一半以上。这表明太阳中心区的物质密度非常高。每立方厘米可达160克。太阳在自身强大重力吸引下,太阳中心区处于高密度、高温和高压状态。是太阳巨大能量的发祥地。 太阳中心区产生的能量的传递主要靠辐射形式。太阳中心区之外就是辐射层,辐射层的范围是从热核中心区顶部的25个太阳半径向外到86个太阳半径,这里的温度、密度和压力都是从内向外递减。从体积来说,辐射层占整个太阳体积的绝大部分。 太阳内部能量向外传播除辐射,还有对流过程。即从太阳86个太阳半径向外到达太阳大气层的底部,这一区间叫对流层。这一层气体性质变化很大,很不稳定,形成明显的上下对流运动。这是太阳内部结构的最外层。太阳对流层外是太阳大气层。太阳大气层从里向外又可分光球、色球和日冕。我们看到耀眼的太阳,就是太阳大气层中光球发出的强烈的可见光。光球层位于对流层之外,属太阳大气层中的最低层或最里层,光球层的厚度约500公里,与约70万公里的太阳半径相比,好似人的皮肤和肌肉之比。我们说太阳表现的平均温度约6000摄氏度,指的就是这一层。光球之外便是色球。平时由于地球大气把强烈的光球可见散射开,色球便被淹没在蓝天之中。只有在日全食的时候才有机会直接饱览色球红艳的姿容。太阳色球是充满磁场的等离子体层,厚约2500公里。其温度从里向外增加,与光球顶衔接的部分约4500摄氏度,到外层达几万摄氏度。密度则随高度增加而减低。整个色球层的结构不均匀,由于磁场的不稳定性,太阳高层大气经常产生爆发活动,产生耀斑现象。 日冕是太阳大气的最外层。日冕中的物质也是等离子体,它的密度比色球层更低,而它的温度反比色球层高,可达上百万摄氏度。日全食时在日面周围看到放射状的非常明亮的银白色光芒即是日冕。[编辑本段]太阳的能量 地球上除原子能和火山、地震以外,太阳能是一切能量的总源泉。那么,整个地球接收的有多少呢?太阳发射出大的能量呢?科学家们设想在地球大气层外放一个测量太阳总辐射能量的仪器,在每平方厘米的面积上,每分钟接收的太阳总辐射能量为24焦。这个数值叫太阳常数。如果将太阳常数乘上以日地平均距离作半径的球面面积,这就得到太阳在每分钟发出的总能量,这个能量约为每分钟273×10^28焦。(太阳每秒辐射到太空的热量相当于一亿亿吨煤炭完全燃烧产生热量的总和,相当于一个具有5200万亿亿马力的发动机的功率。太阳表面每平方米面积就相当于一个85000马力的动力站。)而地球上仅接收到这些能量的22亿分之一。太阳每年送给地球的能量相当于100亿亿度电的能量。太阳能取之不尽,用之不竭,又无污染,是最理想的能源。[编辑本段]太阳耀斑 太阳耀斑是一种最剧烈的太阳活动。一般认为发生在色球层中,所以也叫“色球爆发”。其主要观测特征是,日面上(常在黑子群上空)突然出现迅速发展的亮斑闪耀,其寿命仅在几分钟到几十分钟之间,亮度上升迅速,下降较慢。特别是在太阳活动峰年,耀斑出现频繁且强度变强。 别看它只是一个亮点,一旦出现,简直是一次惊天动地的大爆发。这一增亮释放的能量相当于10万至100万次强火山爆发的总能量,或相当于上百亿枚百吨级氢弹的爆炸;而一次较大的耀斑爆发,在一二十分钟内可释放10~25焦耳的巨大能量, 除了日面局部突然增亮的现象外,耀斑更主要表现在从射电波段直到X射线的辐射通量的突然增强;耀斑所发射的辐射种类繁多,除可见光外,有紫外线、X射线和伽玛射线,有红外线和射电辐射,还有冲击波和高能粒子流,甚至有能量特高的宇宙射线。 耀斑对地球空间环境造成很大影响。太阳色球层中一声爆炸,地球大气层即刻出现缭绕余音。耀斑爆发时,发出大量的高能粒子到达地球轨道附近时,将会严重危及宇宙飞行器内的宇航员和仪器的安全。当耀斑辐射来到地球附近时,与大气分子发生剧烈碰撞,破坏电离层,使它失去反射无线电电波的功能。无线电通信尤其是短波通信,以及电视台、电台广播,会受到干扰甚至中断。耀斑发射的高能带电粒子流与地球高层大气作用,产生极光,并干扰地球磁场而引起磁暴。 此外,耀斑对气象和水文等方面也有着不同程度的直接或间接影响。正因为如此,人们对耀斑爆发的探测和预报的关切程度与日俱增,正在努力揭开耀斑迷宫的奥秘。 传说,第二次世界大战时,有一天,德国前线战事吃紧,后方德军司令部报务员布鲁克正在繁忙地操纵无线电台,传达命令。突然,耳机里的声音没有了。他检查机器,电台完整无损;拨动旋钮,改变频率,仍然无济于事。结果,前线推动联系,像群龙无首似的陷入一片混乱,战役以失败而告终。布鲁克因此受到军事法庭判处死刑。他仰天呼喊“冤枉!冤枉!” 后来查清,这次无线电中断,“罪魁祸首”是耀斑。布鲁克的死,实在冤枉。他的死,在于人们当时对耀斑还不了解。[编辑本段]光斑(谱斑) 太阳光球层上比周围更明亮的斑状组织。用天文望远镜对它观测时,常常可以发现:在光球层的表面有的明亮有的深暗。这种明暗斑点是由于这里的温度高低不同而形成的,比较深暗的斑点叫做“太阳黑子”,比较明亮的斑点叫做“光斑”。光斑常在太阳表面的边缘“表演”,却很少在太阳表面的中心区露面。因为太阳表面中心区的辐射属于光球层的较深气层,而边缘的光主要来源光球层较高部位,所以,光斑比太阳表面高些,可以算得上是光球层上的“高原”。 光斑也是太阳上一种强烈风暴,天文学家把它戏称为“高原风暴”。不过,与乌云翻滚,大雨滂沱,狂风卷地百草折的地面风暴相比,“高原风暴”的性格要温和得多。光斑的亮度只比宁静光球层略强一些,一般只大10%;温度比宁静光球层高300℃。许多光斑与太阳黑子还结下不解之缘,常常环绕在太阳黑子周围“表演”。少部分光斑与太阳黑子无关,活跃在70°高纬区域,面积比较小,光斑平均寿命约为15天,较大的光斑寿命可达三个月。 光斑不仅出现在光球层上,色球层上也有它活动的场所。当它在色球层上“表演”时,活动的位置与在光球层上露面时大致吻合。不过,出现在色球层上的不叫“光斑”,而叫“谱斑”。实际上,光斑与谱斑是同一个整体,只是因为它们的“住所”高度不同而已,这就好比是一幢楼房,光斑住在楼下,谱斑住在楼上。[编辑本段]米粒组织 米粒组织是太阳光球层上的一种日面结构。呈多角形小颗粒形状,得用天文望远镜才能观测到。米粒组织的温度比米粒间区域的温度约高300℃,因此,显得比较明亮易见。虽说它们是小颗粒,实际的直径也有1000公里--2000公里。 明亮的米粒组织很可能是从对流层上升到光球的热气团,不随时间变化且均匀分布,且呈现激烈的起伏运动。米粒组织上升到一定的高度时,很快就会变冷,并马上沿着上升热气流之间的空隙处下降;寿命也非常短暂,来去匆匆,从产生到消失,几乎比地球大气层中的云消烟散还要快,平均寿命只有几分钟,此外,近年来发现的超米粒组织,其尺度达3万公里左右,寿命约为20小时。 有趣的是,在老的米粒组织消逝的同时,新的米粒组织又在原来位置上很快地出现,这种连续现象就像我们日常所见到的沸腾米粥上不断地上下翻腾的热气泡。[编辑本段]太阳相关数据 日冕:厚度数百万千米 温度:大约2000000℃ 色球层:厚度2000~3000千米 温度5000℃~10000℃ 光球层:厚度400千米 温度5000~8000℃ 日核:温度达15000000℃[编辑本段]太阳发光原因 组成的物质 核聚变,以电磁波的形式发射 体积是地球的130万倍,太阳系的中心天体。银河系的一颗普通恒星。与地球平均距离14960万千米,直径139万千米,平均密度409克/厘米^3,质量989×10^33克,表面温度5770开,中心温度1500万开。由里向外分别为太阳核反应区、太阳对流层、太阳大气层。其中心区不停地进行热核反应,所产生的能量以辐射方式向宇宙空间发射。其中二十二亿分之一的能量辐射到地球,成为地球上光和热的主要来源。恒星也有自己的生命史,它们从诞生、成长到衰老,最终走向死亡。它们大小不同,色彩各异,演化的历程也不尽相同。恒星与生命的联系不仅表现在它提供了光和热。实际上构成行星和生命物质的重原子就是在某些恒星生命结束时发生的爆发过程中创造出来的。 详解: 太阳(Sun)是一颗普通的恒星,目前在赫-罗图上度过了主序生涯的一半左右。它是一个质量为1亿亿亿吨(约为地球质量的33万倍)、直径2万km(约为地球直径的109倍)的热气体(严格说是等离子体)球。其平均密度为水的4倍,但这一平均密度隐含着很宽的密度范围,从超高密的核心到稀薄的外层。 作为一颗恒星太阳,其总体外观性质是,光度为383亿亿亿瓦,绝对星等为8,他是一颗黄色G2型矮星,有效温度等于开氏5800度。太阳与在轨道上绕它公转的地球的平均距离为149597870km(005光秒或1天文单位)。按质量计,它的物质构成是71%的氢、26%的氦和少量重元素。太阳圆面在天空的角直径为32角分,与从地球所见的月球的角直径很接近,是一个奇妙的巧合(太阳直径约为月球的400倍而离我们的距离恰是地月距离的400倍),使日食看起来特别壮观。由于太阳比其他恒星离我们近得多,其视星等达到-8,成为地球上看到最明亮的天体。太阳每4天自转一周(平均周期;赤道比高纬度自转得快),每2亿年绕银河系中心公转一周。太阳因自转而呈轻微扁平状,与完美球形相差001%,相当于赤道半径与极半径相差6km(地球这一差值为21km,月球为9km,木星9000km,土星5500km)。差异虽然很小,但测量这一扁平性却很重要,因为任何稍大一点的扁平程度(哪怕是005%)将改变太阳引力对水星轨道的影响,而使根据水星近日点进动对广义相对论所做的检验成为不可信。 半径: 696295 千米 质量: 989×10^30 千克 温度: 5800 ℃ (表面) 1560万℃ (核心) 总辐射功率: 83×10^26 焦耳/秒 平均密度: 409 克/立方厘米 日地平均距离: 1亿5千万 千米 年龄: 约50亿年 到达地球大气上界的太阳辐射能量称为天文太阳辐射量。在地球位于日地平均距离处时,地球大气上界垂直于太阳光线的单位面积在单位时间内所受到的太阳辐射的全谱总能量,称为太阳常数。太阳常数的常用单位为瓦/米2。因观测方法和技术不同,得到的太阳常数值不同。世界气象组织 (WMO)1981年公布的太阳常数值是1368瓦/米2。地球大气上界的太阳辐射光谱的99%以上在波长 15~0微米之间。大约50%的太阳辐射能量在可见光谱区(波长4~76微米),7%在紫外光谱区(波长<4微米),43%在红外光谱区(波长>76微米),最大能量在波长 475微米处。由于太阳辐射波长较地面和大气辐射波长(约3~120微米)小得多,所以通常又称太阳辐射为短波辐射,称地面和大气辐射为 长波辐射。太阳活动和日地距离的变化等会引起地球大气上界太阳辐射能量的变化。 【太阳常用数据表】 太阳质量 = 9891×10^33克 日地距离: 日地平均距离 (天文单位) = 49597870×1011 米(1亿5千万公里) 日地最远距离 = 5210×10^11 米 日地最近距离 = 4710×10^11 米 太阳常数 f = 97 卡·厘米^2·分^-1 太阳半径 R = 696265 公里 太阳表面积 = 087×1012 平方公里 太阳体积 = 412×1018 立方公里 太阳平均密度 = 409 克·厘米^3 太阳表面有效温度 = 5770 K 自转会合周期: 赤道=9天 极区=1天 光谱型: G2V 目视星等 = -74 等 绝对目视星等 = 83 等 热星等 =--82 等 绝对热星等 = 75 等 太阳表面重力加速度 = 74×104 厘米/秒^2 (为地球表面重力加速度的9倍) 太阳表面脱离速度 = 618 公里/秒 太阳中心温度:5×107 K 太阳中心密度:160 ·厘米^3 地球附近太阳风的速度: 450公里/秒 太阳运动速度 (方向α=18h07m,δ=+30°) = 7 公里/秒 太阳主要化学成分:氢(71%)、氮(27%),氧、碳、氮、氖;硅、铁等 太阳年龄 ~ 5×109 年 太阳活动周期 = 04 年

太阳是太阳系的中心天体,是太阳系里唯一的一颗恒星,也是离地球最近的一颗恒星。太阳是一颗中等质量的充满活力的壮年星,它处于银河系内,位于距银心约10千秒差距的悬臂内,银道面以北约8秒差距处。太阳的直径为2万千米,是地球的109倍。太阳的体积为141亿亿立方千米,是地球的130万倍。太阳的质量近2000亿亿亿吨,是地球的33万倍,它集中了太阳系865%的质量,是个绝对至高无上的“国王”。太阳是个炽热的气体星球,没有固体的星体或核心。太阳从中心到边缘可分为核反应区、辐射区、对流区和大气层。太阳能量的99%是由中心的核反应区的热核反应产生的。太阳中心的密度和温度极高,它发生着由氢聚变为氦的热核反应,而该反应足以维持100亿年,因此太阳目前正处于中年期。太阳大气的主要成分是氢(质量约占71%)与氦(质量约占27%)。

最新疫情高中低三个风险等级地区划分标准一、什么是高中低风险区域1、高风险区域:指的是该地区新冠肺炎病例有超过50例,且十四天内有聚集性疫情出现。2、中风险地区:14天内有新增加新冠确诊病例,且累计新冠确诊病例不超过50病例;共合计确诊病例已超过50例,14天内未出现聚集性疫情。3、低风险地区:目前没有确诊的病例,或是连续14天没有新增加确诊病例。第二、风险地区划分标准1、地域:以街道、乡镇作为基本单位。2、时间:以新冠最长潜伏期14天作为基本单位。3、疫情:总计多少病例、有无发生聚集性疫情。总而言之,疫情高中低风险地区划分标准是依照一个街道或社区在14天之内有没有新冠肺炎的确诊病例、有多少病例,从而划分高中低这三个风险等级,且具体划分标准还应该按照新冠疫情的趋势,进行适当调整。三、怎么应对1、高风险地区实行“内防扩散、外防输出、严格管控”的政策,持续竭尽全力做好进出管控工作。如高风险区疫情得到有效控制后,再有序的扩大复工范围。2、中风险地区实行“外防输入,内防扩散”的战略,可尽快有序的恢复正常生产生活。相关人员可先有序返岗,进行指导用工企业严格做好疫情防护工作,可以同步推进疫情防控和企业复工。3、对于低风险地区实行严防输入、统筹兼顾的策略,取消道路的的限行措施,并且全面恢复正常的生活秩序。疫情高中低风险等级区域健康码颜色说明一、三种健康码颜色绿色的健康码表示在体温检测显示无异常并做好防护的状况下,能正常的通行;黄色健康码则表示需要持码者实行居家隔离,从而进行医学观察;最后红色健康码代表持码者要实行集中隔离,即需要到指定隔离点进行集中隔离。二、健康码颜色转变健康码的三种颜色会依照持码人出入的疫情高中低风险地区而变颜色。1、持绿色健康码者在没有特殊情况下进去低风险地区,健康码不会变颜色,即显示正常的绿色;如果持有绿码人员进入到中或高风险地区后,待够一个钟,并且手机能够正常的接收到通讯漫游信息,那么健康码便自动变颜色,由原来的绿码转变为黄码或者是红码。2、持有黄码或红码的人进入到低风险区域后,只要打开手机就能够自行记录抵达低风险区域时间,等到隔离14天以后并且持码人没有变成密切接触者或者是新冠病例,那么健康码能自行变回正常的绿码。3、若持健康码者变成密接者或是确诊的病例,经持码人自己把信息上报给赋码公司平台,那么赋码平台就会将持码者的绿色健康码变成红色。4、倘若持码人员确诊为病例和疑似病例,那么从康复出院当天开始28天后,赋码公司平台会把持码人员的红色健康码转为绿色健康码;对于密切接触者,从接触病例那日开始到28天后,若是没有变成病例,那么由平台将红色的健康码变换为绿色健康码。但大家要知道不同区域的健康码可能有差异,多留意自己所在区域需要使用的健康码。除此之外,疫情高中低风险地区划分并非一成不变的,所以大家要根据自己所住地区的疫情时势,调整自己的行程,减少新冠肺炎疾病的感染几率。

一、低中高风险等级划分标准  1、低风险:无确诊病例或连续14天无新增确诊病例;  2、中风险:14天内有新增确诊病例,累计确诊病例不超过50例,或累计确诊病例超过50例,14天内未发生聚集性疫情;  3、高风险:累计病例超过50例,14天内有聚集性疫情发生。  二、低中高风险地区防控策略  据国家卫生健康委官网发布的新型冠状病毒肺炎防控方案(第五版),根据《中华人民共和国传染病防治法》《突发公共卫生事件应急条例》等法律法规,实施分区分级精准防控。以县(区)为单位,依据人口、发病情况综合研判,科学划分疫情风险等级,明确分级分类的防控策略。  低风险地区:实施“外防输入”策略。加强疫情严重地区以及高风险地区流入人员的跟踪管理,做好健康监测和服务。医疗机构加强发热门诊病例监测、发现、报告,疾控机构及时开展流行病学调查和密切接触者追踪管理。督促指导城乡社区、机关、企事业单位等严格落实社区防控措施,做好环境卫生整治,公众防病知识和防护技能普及等工作。  中风险地区:实施“外防输入、内防扩散”策略。在采取低风险地区各项措施的基础上,做好医疗救治、疾病防控相关人员、物资、场所等方面的准备,对病例密切接触者进行隔离医学观察和管理。以学校班级、楼房单元、工厂工作间、工作场所办公室等为最小单位,以病例发现、流行病学调查和疫情分析为线索,合理确定防控管理的场所和人员,实施针对性防控措施。无确诊病例的乡镇、街道、城乡社区可参照低风险地区采取防控措施。  高风险地区: 实施“内防扩散、外防输出、严格管控”策略。在采取中风险地区各项措施的基础上,停止聚集性活动,依法按程序审批后可实行区域交通管控。以县域为单位,全面排查发热患者,及时收治和管理疑似病例、确诊病例和无症状感染者,对密切接触者实行隔离医学观察。对发生社区传播或聚集性疫情的城市居民小区(农村自然村)的相关场所进行消毒,采取限制人员聚集、进出等管控措施。

核心区是指以病家或病例工作单位多少米半径范围的区域

一、低中高风险等级划分标准  1、低风险:无确诊病例或连续14天无新增确诊病例;  2、中风险:14天内有新增确诊病例,累计确诊病例不超过50例,或累计确诊病例超过50例,14天内未发生聚集性疫情;  3、高风险:累计病例超过50例,14天内有聚集性疫情发生。  二、低中高风险地区防控策略  据国家卫生健康委官网发布的新型冠状病毒肺炎防控方案(第五版),根据《中华人民共和国传染病防治法》《突发公共卫生事件应急条例》等法律法规,实施分区分级精准防控。以县(区)为单位,依据人口、发病情况综合研判,科学划分疫情风险等级,明确分级分类的防控策略。  低风险地区:实施“外防输入”策略。加强疫情严重地区以及高风险地区流入人员的跟踪管理,做好健康监测和服务。医疗机构加强发热门诊病例监测、发现、报告,疾控机构及时开展流行病学调查和密切接触者追踪管理。督促指导城乡社区、机关、企事业单位等严格落实社区防控措施,做好环境卫生整治,公众防病知识和防护技能普及等工作。  中风险地区:实施“外防输入、内防扩散”策略。在采取低风险地区各项措施的基础上,做好医疗救治、疾病防控相关人员、物资、场所等方面的准备,对病例密切接触者进行隔离医学观察和管理。以学校班级、楼房单元、工厂工作间、工作场所办公室等为最小单位,以病例发现、流行病学调查和疫情分析为线索,合理确定防控管理的场所和人员,实施针对性防控措施。无确诊病例的乡镇、街道、城乡社区可参照低风险地区采取防控措施。  高风险地区: 实施“内防扩散、外防输出、严格管控”策略。在采取中风险地区各项措施的基础上,停止聚集性活动,依法按程序审批后可实行区域交通管控。以县域为单位,全面排查发热患者,及时收治和管理疑似病例、确诊病例和无症状感染者,对密切接触者实行隔离医学观察。对发生社区传播或聚集性疫情的城市居民小区(农村自然村)的相关场所进行消毒,采取限制人员聚集、进出等管控措施。

就是梁和柱子的交汇区域一般这里的强度要求比较高,还有专门的构造要求

以你所在的位置或某指定位置为圆心,以50米为半径画圆圈,圆圈范围内的区域。

半径50米的圆形内部区域。

sci是指什么病

SCI是美国《科学引文索引》的英文简称,其全称为:Science Citation Index,,创刊于1961年,它是根据现代情报学家加菲尔德(Engene Garfield) 1953年提出的引文思想而创立的。时至今日加菲尔德仍是SCI主编之一。SCI是由 ISI( Institute for Scientific Information I)美国科学情报所出版。现为双月刊。ISI除了出版SCI外,还有联机型据 SCISEARCH。ISTP(Index to Scientific &Technical Proceeding)也由其出版。  SCI是一部国际性的检索刊物,包括有:自然科学、生物、医学、农业、技术和行为科学等,主要侧重基础科学。所选用的刊物来源于94个类、40多个国家、SO多种文字,这些国家主要有美国、英国、荷兰、德国、俄罗斯、法国、日本、加拿大等,也收录一定数量的中国刊物。

SCI全称是科学引文索引。它是一个世界上较权威的科技文献检索系统,为学术界科研、文献发表提供参考。美国《科学引文索引》(Science Citation Index, 简称 SCI )于1957 年由美国科学信息研究所在美国费城创办,是由美国科学信息研究所1961 年创办出版的引文数据库。SCI是国际公认的进行科学统计与科学评价的主要检索工具,它通过统计大量的引文,然后得出某期刊某论文在某学科内的影响因子、被引频次、即时指数等量化指标来对期刊、论文等进行排行。被引频次高,说明该论文在它所研究的领域里产生了巨大的影响,被国际同行重视,学术水平高。它不仅是一部重要的检索工具书,而且也是科学研究成果评价的一项重要依据。它已成为目前国际上最具权威性的、用于基础研究和应用基础研究成果的重要评价体系。它是评价一个国家、一个科学研究机构、一所高等学校、一本期刊,乃至一个研究人员学术水平的重要指标之一。扩展资料SCI收录的期刊文章的特点有:1、SCI所收录期刊的内容主要涉及数、理、化、农、林、医、生物等基础科学研究领域,选用刊物来源于40多个国家,50多种文字,其中主要的国家有美国、英国、荷兰、德国、俄罗斯、法国、日本、加拿大等,也收录部分中国(包括港澳台)刊物。2、SCI收录的论文主要来自于自然科学的基础研究领域。3、被SCI收录的文献具有较高的学术水平和较广泛的影响能力。参考资料来源:百度百科-SCI

S T P P Sci 科学杂志的一个分类吧

一、SCI SCI即《科学引文索引》(Science Citation Index),是由美国科学信息研究所(Institute for Scientific Information 简称ISI)创建的,收录文献的作者、题目、源期刊、摘要、关键词,不仅可以从文献引证的角度评估文章的学术价值,还可以迅速方便地组建研究课题的参考文献网络。SCI创刊于1961年。经过40年的发展完善,已从开始时单一的印刷型发展成为功能强大的电子化、集成化、网络化的大型多学科、综合性检索系统。 SCI从来源期刊数量划分为SCI和SCI-E。SCI指来源刊为3500多种的SCI印刷版和SCI光盘版(SCI Compact Disc Edition, 简称SCI CDE),SCI-E(SCI Expanded)是SCI的扩展库,收录了5600多种来源期刊,可通过国际联机或因特网进行检索。SCI涵盖学科超过100个,主要涉及农业、生物及环境科学;工程技术及应用科学;医学与生命科学;物理及化学;行为科学。

中国典型病例大全是核心期刊

中华麻醉学杂志,临床麻醉学杂志 新青年麻醉论坛

目前国内有7大核心期刊(或来源期刊)遴选体系:北京大学图书馆“中文核心期刊”、南京大学“中文社会科学引文索引(CSSCI)来源期刊”、中国科学技术信息研究所“中国科技论文统计源期刊”(又称“中国科技核心期刊”)、中国社会科学院文献信息中心“中国人文社会科学核心期刊”、中国科学院文献情报中心“中国科学引文数据库(CSCD)来源期刊”、中国人文社会科学学报学会“中国人文社科学报核心期刊”以及万方数据股份有限公司正在建设中的“中国核心期刊遴选数据库”。

中华医学麻醉brain research

相关百科

热门百科

首页
发表服务