首页

> 期刊发表知识库

首页 期刊发表知识库 问题

数学建模论文题目怎么写

发布时间:

数学建模论文题目怎么写

论文写作方法一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果二、关键字:3-5个三.问题重述。略四. 模型假设 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 (1)根据题目中条件作出假设 (2)根据题目中要求作出假设 关键性假设不能缺;假设要切合题意五. 模型的建立 (1) 基本模型: 1) 首先要有数学模型:数学公式、方案等 2) 基本模型,要求 完整,正确,简明 (2) 简化模型 1) 要明确说明:简化思想,依据 2) 简化后模型,尽可能完整给出 (3) 模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题, 不追求数学上:高(级)、深(刻)、难(度大)。 u 能用初等方法解决的、就不用高级方法, u 能用简单方法解决的,就不用复杂方法, u 能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 (4)鼓励创新,但要切实,不要离题搞标新立异数模创新可出现在 1建模中,模型本身,简化的好方法、好策略等, 2模型求解中 3结果表示、分析、检验,模型检验 4推广部分 (5)在问题分析推导过程中,需要注意的问题: u 分析:中肯、确切 u 术语:专业、内行;; u 原理、依据:正确、明确, u 表述:简明,关键步骤要列出 u 忌:外行话,专业术语不明确,表述混乱,冗长。六. 模型求解 (1) 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 (2) 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称 (3) 计算过程,中间结果可要可不要的,不要列出。 (4) 设法算出合理的数值结果。七、 结果分析、检验;模型检验及模型修正;结果表示 (1) 最终数值结果的正确性或合理性是第一位的 ; (2) 对数值结果或模拟结果进行必要的检验。结果不正确、不合理、或误差大时,分析原因, 对算法、 计算方法、或模型进行修正、改进; (3) 题目中要求回答的问题,数值结果,结论,须一一列出; (4) 列数据问题:考虑是否需要列出多组数据,或额外数据 对数据进行比较、分析,为各种方案的提出提供依据; (5) 结果表示:要集中,一目了然,直观,便于比较分析 1数值结果表示:精心设计表格;可能的话,用图形图表形式 2求解方案,用图示更好 (6) 必要时对问题解答,作定性或规律性的讨论。最后结论要明确。八.模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。九、参考文献.十、附录 详细的结果,详细的数据表格,可在此列出。 但不要错,错的宁可不列。 主要结果数据,应在正文中列出,不怕重复。 检查答卷的主要三点,把三关: n 模型的正确性、合理性、创新性 n 结果的正确性、合理性 n 文字表述清晰,分析精辟,摘要精彩

奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1:83% A2:09% A3:63% A4:19% A5:72% A6:73% A7:04% A8:49% A9:95% A10:40%B1:81% B2:26% B3:55% B4:95% B5:49% B6:27% C1:69% C2:60% C3:39% C4:84%在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中) 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)…………………………………………………………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:………………………………………………………………………………………………………………………………………3.问题3求解……………………………………………………………………………………商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1=1 && m1<=4 m2=m1+2; while m2<=7 s1=0;vlb=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];vub=[];a=[-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2];%b=[-1020,-4069,-3143,-7830,-4440,-2131,-7830,-0859,-4069,-7279,-0663,-3783,-4027,-0663,-7363,-7978,-9456,-7796,-9323,-3817];b=[-1027,-0825,-7618,-4591,-1203,-2161,-1094,-4121,-7328,-0535,-3921,-7038,-4033,-7418,-4121,-7996,-0290,-7802,-8503,-3827];c=[m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2];[x,lam]=lp(c,a,b,vlb,vub) for i=1:20 s1=s1+x(i)*m1+x(20+i)*m2; end if min_value>s1 min_value=s1; t=x; p=m1; q=m2; end m2=m2+2; end m1=m1+2;endplot(j,x);附录2:图二图三

最重要的是把思路搞清楚

论文(答卷)用白色A4纸,上下左右各留出5厘米的页边距。论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其它汉字一律采用小四号黑色宋体字,行距用单倍行距。论文从正文开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。

数模论文题目怎么写

论文写作方法一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果二、关键字:3-5个三.问题重述。略四. 模型假设 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 (1)根据题目中条件作出假设 (2)根据题目中要求作出假设 关键性假设不能缺;假设要切合题意五. 模型的建立 (1) 基本模型: 1) 首先要有数学模型:数学公式、方案等 2) 基本模型,要求 完整,正确,简明 (2) 简化模型 1) 要明确说明:简化思想,依据 2) 简化后模型,尽可能完整给出 (3) 模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题, 不追求数学上:高(级)、深(刻)、难(度大)。 u 能用初等方法解决的、就不用高级方法, u 能用简单方法解决的,就不用复杂方法, u 能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 (4)鼓励创新,但要切实,不要离题搞标新立异数模创新可出现在 1建模中,模型本身,简化的好方法、好策略等, 2模型求解中 3结果表示、分析、检验,模型检验 4推广部分 (5)在问题分析推导过程中,需要注意的问题: u 分析:中肯、确切 u 术语:专业、内行;; u 原理、依据:正确、明确, u 表述:简明,关键步骤要列出 u 忌:外行话,专业术语不明确,表述混乱,冗长。六. 模型求解 (1) 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 (2) 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称 (3) 计算过程,中间结果可要可不要的,不要列出。 (4) 设法算出合理的数值结果。七、 结果分析、检验;模型检验及模型修正;结果表示 (1) 最终数值结果的正确性或合理性是第一位的 ; (2) 对数值结果或模拟结果进行必要的检验。结果不正确、不合理、或误差大时,分析原因, 对算法、 计算方法、或模型进行修正、改进; (3) 题目中要求回答的问题,数值结果,结论,须一一列出; (4) 列数据问题:考虑是否需要列出多组数据,或额外数据 对数据进行比较、分析,为各种方案的提出提供依据; (5) 结果表示:要集中,一目了然,直观,便于比较分析 1数值结果表示:精心设计表格;可能的话,用图形图表形式 2求解方案,用图示更好 (6) 必要时对问题解答,作定性或规律性的讨论。最后结论要明确。八.模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。九、参考文献.十、附录 详细的结果,详细的数据表格,可在此列出。 但不要错,错的宁可不列。 主要结果数据,应在正文中列出,不怕重复。 检查答卷的主要三点,把三关: n 模型的正确性、合理性、创新性 n 结果的正确性、合理性 n 文字表述清晰,分析精辟,摘要精彩

全国大学生数学建模竞赛论文格式规范   本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。   论文用白色A4纸单面打印;上下左右各留出至少5厘米的页边距;从左侧装订。   论文第一页为承诺书,具体内容和格式见本规范第二页。   论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。   论文题目和摘要写在论文第三页上,从第四页开始是论文正文。   论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。   论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。   论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。   提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。   引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:  [编号] 作者,书名,出版地:出版社,出版年。  参考文献中期刊杂志论文的表述方式为:  [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。  参考文献中网上资源的表述方式为:  [编号] 作者,资源标题,网址,访问时间(年月日)。   在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。   本规范的解释权属于全国大学生数学建模竞赛组委会。  [注]  赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。  全国大学生数学建模竞赛组委会  2009年3月16日修订  数学建模论文一般结构  1摘要 (单独成页)  主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)  作用:了解文件重要性,对文件有大致认识  最佳页副:页面2/3。  2、问题重述和分析  3、问题假设  假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。  作假设的两个原则:  ① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。  ② 贴近原则:贴近实际。  以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。  4、符号说明 (4可以合并)  5、模型建立与求解(重要程度 :60%以上)  6、模型检验(误差一般指均方误差)  7、结果分析 (7可以合并)  8、模型的进一步讨论 或 模型的推广  9、模型优缺点  10、参考文件  11、附件(结果千万不能放在附件中)  论文最佳页面数:15-21页   论文结构一  题目  摘要  问题的重述  合理假设  符号约定  问题的分析  模型的建立与求解  模型的评价与推广  1、误差分析  2、模型的改进与推广  对XXXX切实可行的建议和意见:  ……  ……  ……  参考文献  附录   数学建模论文一般格式   摘要  (主要理解、主要方法、主要结果、主要特点)  或(背景、目标、方法、结果、结论、建议)   问题重述与分析   问题假设   符号说明   模型建立与求解   模型检验   结果分析   模型的进一步讨论   模型优缺点  优秀论文要点:   语言精练、有逻辑性、书写有条理   文字与图形相结合,使内容直观、清晰、明了、容易理解   切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章   对论文中所引用或用到的知识、软件要清晰地予以说明。   在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去  各步骤解释  摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)  作用:了解文件重要性,对文件有大致认识  最佳页副:页面2/3  问题重述与分析: 一向导、对题意的理解、   建模的创造性  创造性是灵魂,文章要有闪光点。  好创意、好想法应当既在人意料之外,又在人  意料之中。  新颖性(独特性)与合理性皆备。  误区之一:数学用得越高深,越有创造性。  解决问题是第一原则,最合适的方法是最好的方法。  误区之二:创造性主要体现在建模与求解上。  创造性可以体现在建模的各个环节上,并且可以有多种表现形式。  误区之三:好创意来自于灵感,可遇不可求。  好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。   表达的清晰性  好的文章 = 好的内容 + 好的表达   替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。   写好摘要,包括:建模主要方法、主要结果,模型主要优点。   专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。   适当采用图表,增加可读性。

楼主你好,数学建模论文一般分为以下几个部分:  首先是摘要,这个是全文的概述,里面包括这个模型的主题,以及几个需要解决问题的总体答案,比如对模型结果的阐述,或者对原来的安排评价是否合理等等。另外摘要最好控制在word一页内(小四宋体),不要太多。  下面是论文的主体:   问题重述  主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了。   模型假设  对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。   符号说明  将你要建立的模型中的一些参量用符号代替表示。   模型建立  这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法   问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)  利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。   模型改进  解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。   参考文献  最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。  如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。  如果楼主需要看论文样式的话,推荐一个网站:    这是北京航空航天大学的数学建模网站,里面包括了该学校从92年开始到09年的各届论文,里面不乏一些比较好的论文,楼主如果需要参考样式的话,可以看看这些论文。  最后祝楼主好运。

网上查,有步骤的。

数学建模优秀论文题目

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。目录背景数学数学建模数学建模应用数学建模的意义数学建模应用数学模型过程模型准备模型假设模型建立模型求解模型分析模型检验模型应用起源进入西方国家大学在中国大学生数学建模竞赛全国大学生数学建模竞赛全国大学生数学建模竞赛章程(2008年)第四届全国大学生数学建模竞赛国际大学生数学建模竞赛数学建模资料竞赛参考书国内教材、丛书国外参考书(中译本)专业性参考书数学建模题目两项题四项题数学建模相关数学建模的意义数学建模经验和体会最新进展数学建模应当掌握的十类算法背景 数学 数学建模 数学建模应用数学建模的意义 数学建模 应用数学模型过程 模型准备 模型假设 模型建立 模型求解 模型分析 模型检验 模型应用起源 进入西方国家大学 在中国大学生数学建模竞赛 全国大学生数学建模竞赛 全国大学生数学建模竞赛章程(2008年) 第四届全国大学生数学建模竞赛 国际大学生数学建模竞赛数学建模资料 竞赛参考书 国内教材、丛书 国外参考书(中译本) 专业性参考书数学建模题目 两项题 四项题数学建模相关 数学建模的意义 数学建模经验和体会最新进展数学建模应当掌握的十类算法展开 编辑本段背景数学  近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。数学建模  数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。   不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。数学建模应用  数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。编辑本段数学建模的意义数学建模  数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。   数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。   我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。   数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。应用数学模型  应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的一个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple,Mathematica,Matlab甚至排版软件等。

题目随便找都行,主要是证明的观点,你比如说三点确定一个平面,六个人中要么至少有三个人相互认识要么至少有三个人相互之间不认识之类的啊,一般数学建模的竞赛都是源于生活,然后根据理论来证明,每一步都要有确定的理论依据,不要空想就好了

石头听了,感谢不尽。那僧便念咒书符,大展幻术,将一块大石登时变成一块鲜明莹洁的美玉,且又缩成扇坠大小的可佩可拿。那僧托于掌上,笑道:“形体倒也是个宝物了!还只没有实在的好处,须得再镌上数字,使人一见便知是奇物方妙。然后携你到那昌明隆盛之邦,诗礼簪缨之族,花柳繁华地,温柔富贵乡去安身乐业。”石头听了,喜不能禁,乃问:“不知赐了弟子那几件奇处,又不知携了弟子到何地方?望乞明示,使弟子不惑。”那僧笑道:“你且莫问,日后自然明白的说着,便袖了这石,同那道人飘然而去,竟不知投奔何方何舍。后来,又不知过了几世几劫,因有个空空道人访道求仙,忽从这大荒山无稽崖青埂峰下经过,忽见一大块石上字迹分明,编述历历。空空道人乃从头一看,原来就是无材补天,幻形入世蒙茫茫大士渺渺真人携入红尘,历尽离合悲欢炎凉世态的一段此系身前身后事,倩谁记去作奇传?诗后便是此石坠落之乡投胎之处,亲自经历的一段陈迹故事。其中家庭闺阁琐事,以及闲情诗词倒还全备,或可适趣解闷,然朝代年纪、地舆邦国反空空道人遂向石头说道:“石兄,你这一段故事,据你自己说有些趣味,故编写在此,意欲问世传奇。据我看来,第一件,无朝代年纪可考;第二件,并无大贤大忠理朝廷治风俗的善政,其中只不过几个异样女子,或情或痴,或小才微善,亦无班姑蔡女之德能。我纵抄去,恐世人不爱看呢。”石头笑答道:“我师何太痴耶!若云无朝代可考,今我师竟假借汉唐等年纪添缀,又有何难?但我想,历来野史,皆蹈一辙,莫如我这不此套者,反倒新奇别致,不过只取其事体情理罢了,又何必拘拘于朝代年纪哉!再者,市井俗人喜看理治之书者甚少,爱适趣闲文者特多。历来野史,或讪谤君相,或贬人妻女,奸淫凶恶,不可胜数。更有一种风月笔墨,其淫秽污臭,屠毒笔墨,坏人子弟,又不可胜数。至若佳人才子等书,则又千部共出一套,且其中终不能不涉于淫滥,以致满纸潘安、子建、西子君、不过作者要写出自己的那两首情诗艳赋来,故假拟出男女二人名姓,又必旁出一小人其间拨乱,亦如剧中之小丑然。且鬟婢开口即者也之乎,非文即理。故逐一看去,悉皆自相矛盾,大不近情理之话,竟不如我半世亲睹亲闻的这几个女子,虽不敢说强似前代书中所有之人,但事迹原委,亦可以消愁破闷;也有几首歪诗熟话,可以喷饭供酒。至若离合悲欢,兴衰际遇,则又追踪蹑迹,不敢稍加穿凿,徒为供人之目而反失其真传者。今之人,贫者日为衣食所累,富者又怀不足之心,纵然一时稍闲,又有贪淫恋色,好货寻愁之事,那里去有工夫看那理治之书?所以我这一段故事,也不愿世人称奇道妙,也不定要世人喜悦检读,只愿他们当那醉淫饱卧之时,或避事去愁之际,把此一玩,岂不省了些寿命筋力?就比那谋虚逐妄,却也省了口舌是非之害,腿脚奔忙之苦。再者,亦令世人换新眼目不比那些胡牵乱扯,忽离忽遇,满纸才人淑女、子建文君红娘空空道人听如此说,思忖半晌,将《石头记》再检阅一遍,因见上面虽有些指奸责佞贬恶诛邪之语,亦非伤时骂世之旨;及至君仁臣良父慈子孝,凡伦常所关之处,皆是称功颂德,眷眷无穷,实非别书之可比。虽其中大旨谈情,亦不过实录其事,又非假拟妄称,一味淫邀艳约、私订偷盟之可比。因毫不干涉时世,方从头至尾抄录回来,问世传奇。从此空空道人因空见色,由色生情,传情入色,自色悟空,遂易名为情僧,改《石头记》为《情僧录》。东鲁孔梅溪则题曰《风月宝鉴》。后因曹雪芹于悼红轩中披阅十载,增删五次,纂成目录,分出章回当日地陷东南,这东南一隅有处曰姑苏,有城曰阊门者,最是红尘中一二等富贵风流之地。这阊门外有个十里街,街内有个仁清巷,巷内有个古庙,因地方窄狭,人皆呼作葫芦庙。庙旁住着一家乡宦,姓甄,名费,字士隐。嫡妻封氏,情性贤淑,深明礼义。家中虽不甚富贵,然本地便也推他为望族了。因这

高中数学建模论文题目

数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。请采纳。

数学中国论坛里面有提供,自己过去找找吧,百度数学中国 第一个就是了

数学建模论文怎么书写

1,要把你文中的主要数学思想写出来;2,有结果的问题,要把结果的书写出来;3,语言要精练,尤其要用专业的书面文字,那些白话尽量不要出现;4,长度一般是一页差三、四行为宜;一点儿心得,希望对你有帮助哈

去数学中国网站上下载一篇适合你的文章,仿照着格式来写。 数学中国

数学建模论文基本格式摘要 (200-300字,包括模型的主要特点、建模方法和主要结果。)关键词(求解问题、使用的方法中的重要术语) 内容较多时最好有个目录1。问题重述 2。问题分析3。模型假设与约定4。符号说明及名词定义5。模型建立与求解 ①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型);6。进一步讨论(参数的变化、假设改变对模型的影响)7。模型检验 (使用数据计算结果,进行分析与检验)8。模型优缺点(改进方向,推广新思想)9。参考文献及参考书籍和网站10。附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。)小经验:1。随时记下自己的假设。有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下 来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨。2。随时记录自己的想法,而且不留余地的完全的表达自己的思想。3。要有自己的特色,闪光点。如何撰写数学建模论文当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。首先要明确撰写论文的目的。数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。其次,要注意论文的条理性。下面就论文的各部分应当注意的地方具体地来做一些分析。(一) 问题提出和假设的合理性在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。 (二) 模型的建立在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。 (三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。(四) 模型的讨论对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。语言是构成论文的基本元素。数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。

相关百科

热门百科

首页
发表服务