首页

> 期刊发表知识库

首页 期刊发表知识库 问题

数学建模小论文5000字

发布时间:

数学建模小论文5000字

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献%3A+%C2%DB%CE%C4&ch=uf&num=10&w=site%3A+%C2%DB%CE%C4点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。请采纳。

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究数学模型的另一个特征是经济性用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真所谓"模型就是模型"(而不是原型),即是指该性质二、数学建模 数学建模是利用数学方法解决实际问题的一种实践即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解简而言之,建立数学模型的这个过程就称为数学建模模型是客观实体有关属性的模拟陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题如果有现成的数学工具当然好如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路而在现在,要真正解决一个实际问题,离了计算机几乎是不行的数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型从这一意义上讲,可以说数学建模是一切科学研究的基础没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法 (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法 (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用 (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式 (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型 (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定机理分析法建模的具体步骤大致可见左图仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验① 离散系统仿真--有一组状态变量② 连续系统仿真--有解析表达式或系统结构图(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响近年来随着数学的发展,又有所谓突变性模型和模糊性模型静态模型和动态模型 取决于是否考虑时间因素引起的变化线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的五、数学建模的一般步骤建模的步骤一般分为下列几步:模型准备首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息模型假设在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解不同的简化假设会得到不同的模型假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化经验在这里也常起重要作用写出假设时,语言要精确,就象做习题时写出已知条件那样模型构成根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型把问题化为数学问题要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用模型求解利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设在难以得出解析解时,也应当借助计算机求出数值解模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等模型检验分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善模型应用所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善应用的方式自然取决于问题的性质和建模的目的参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。

数学建模小论文800字

无忧在线有很多数学建模论文,你去搜一下就行

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究数学模型的另一个特征是经济性用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真所谓"模型就是模型"(而不是原型),即是指该性质二、数学建模 数学建模是利用数学方法解决实际问题的一种实践即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解简而言之,建立数学模型的这个过程就称为数学建模模型是客观实体有关属性的模拟陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题如果有现成的数学工具当然好如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路而在现在,要真正解决一个实际问题,离了计算机几乎是不行的数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型从这一意义上讲,可以说数学建模是一切科学研究的基础没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法 (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法 (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用 (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式 (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型 (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定机理分析法建模的具体步骤大致可见左图仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验① 离散系统仿真--有一组状态变量② 连续系统仿真--有解析表达式或系统结构图(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响近年来随着数学的发展,又有所谓突变性模型和模糊性模型静态模型和动态模型 取决于是否考虑时间因素引起的变化线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的五、数学建模的一般步骤建模的步骤一般分为下列几步:模型准备首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息模型假设在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解不同的简化假设会得到不同的模型假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化经验在这里也常起重要作用写出假设时,语言要精确,就象做习题时写出已知条件那样模型构成根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型把问题化为数学问题要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用模型求解利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设在难以得出解析解时,也应当借助计算机求出数值解模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等模型检验分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善模型应用所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善应用的方式自然取决于问题的性质和建模的目的参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献%3A+%C2%DB%CE%C4&ch=uf&num=10&w=site%3A+%C2%DB%CE%C4点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。请采纳。

数学建模小论文500字

礼品包装中的数学 浙江省金华市xx小学 xx班 xxx 指导老师 xxx 【摘要】 生活与数学是紧密相连的,我对生活中的数学问题很喜欢钻研。本文就礼品包装中如何做到既省包装纸,又让顾客满意的问题进行了探究。结果发现生活中蕴涵着许许多多的数学知识,只要你灵活地运用各种数学知识,就会收到意想不到的效果。 【关键词】 数学 合理 效果 然后是正文,最后是参考文献: 彭林 《小学数学奥林匹克教程》 中国少年儿童出版社 2004年3月 夏美丝 孟佩娟 施燕红 《新潜能数学》 浙江人民出版社 2006年8月 这些包括参考文献不能照抄哦! 祝你成功!!!!

不会。

数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。请采纳。

你的问题问的太宽泛了,我就是搞建模的,都不到从何开始回答你,想要进一步讨论的话可以hi我。论文七大部分肯定是必不可少的:问题重述,模型假设,问题分析,模型建立,模型求解,结果分析及检验,(包括灵敏度分析,如果需要的话)模型推广,当然还得有目录和摘要以及参考文献了

数学建模小论文1000字

这是北邮的数学建模网址,上面有近十几年的论文,应该会查到你想要的那篇,这么问,基本上是没有人回答的。

数学建模--教学楼人员疏散--获校数学建模二等 数学建模人员疏散本题是由我和我的好哥们张勇还有我们区队的学委谢菲菲经过数个日夜的精心准备而完成的,指导老师沈聪摘要 文章分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散。 关键字 人员疏散 流体模型 距离控制疏散过程 问题的提出教学楼人员疏散时间预测学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡。对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议。 前言建筑物发生火灾后,人员安全疏散与人员的生命安全直接相关,疏散保证其中的人员及时疏散到安全地带具有重要意义。火灾中人员能否安全疏散主要取决于疏散到安全区域所用时间的长短,火灾中的人员安全疏散指的是在火灾烟气尚未达到对人员构成危险的状态之前,将建筑物内的所有人员安全地疏散到安全区域的行动。人员疏散时间在考虑建筑物结构和人员距离安全区域的远近等环境因素的同时,还必须综合考虑处于火灾的紧急情况下,人员自然状况和人员心理这是一个涉及建筑物结构、火灾发展过程和人员行为三种基本因素的复杂问题。随着性能化安全疏散设计技术的发展,世界各国都相继开展了疏散安全评估技术的开发及研究工作,并取得了一定的成果(模型和程序),如英国的CRISP、EXODUS、STEPS、Simulex,美国的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亚的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我国建筑、消防科研及教学单位也已开展了此项研究工作,并且相关的研究列入了国家“九五”及“十五”科技攻关课题。一般地,疏散评估方法由火灾中烟气的性状预测和疏散预测两部分组成,烟气性状预测就是预测烟气对疏散人员会造成影响的时间。众多火灾案例表明,火灾烟气毒性、缺氧使人窒息以及辐射热是致人伤亡的主要因素。其中烟气毒性是火灾中影响人员安全疏散和造成人员死亡的最主要因素,也就是造成火灾危险的主要因素。研究表明:人员在CO浓度为4X10-3浓度下暴露30分钟会致死。此外,缺氧窒息和辐射热也是致人死亡的主要因素,研究表明:空气中氧气的正常值为21%,当氧气含量降低到12%~15%时,便会造成呼吸急促、头痛、眩晕和困乏,当氧气含量低到6%~8%时,便会使人虚脱甚至死亡;人体在短时间可承受的最大辐射热为5kW/m2(烟气层温度约为200℃)。 图1 疏散影响因素 预测烟气对安全疏散的影响成为安全疏散评估的一部分,该部分应考虑烟气控制设备的性能以及墙和开口部对烟的影响等;通过危险来临时间和疏散所需时间的对比来评估疏散设计方案的合理性和疏散的安全性。疏散所需时间小于危险来临时间,则疏散是安全的,疏散设计方案可行;反之,疏散是不安全的,疏散设计应加以修改,并再评估。 图2 人员疏散与烟层下降关系(两层区域模型)示意图 疏散所需时间包括了疏散开始时间和疏散行动时间。疏散开始时间即从起火到开始疏散的时间,它大体可分为感知时间(从起火至人感知火的时间)和疏散准备时间(从感知火至开始疏散时间)两阶段。一般地,疏散开始时间与火灾探测系统、报警系统,起火场所、人员相对位置,疏散人员状态及状况、建筑物形状及管理状况,疏散诱导手段等因素有关。 疏散行动时间即从疏散开始至疏散结束的时间,它由步行时间(从最远疏散点至安全出口步行所需的时间)和出口通过排队时间(计算区域人员全部从出口通过所需的时间)构成。与疏散行动时间预测相关的参数及其关系见图3。 图3 与疏散行动时间预测相关的参数及其关系模型的分析与建立 我们将人群在1号教学楼内的走动模拟成水在管道内的流动,对人员的个体特性没有考虑,而是将人群的疏散作为一个整体运动处理,并对人员疏散过程作了如下保守假设: u 疏散人员具有相同的特征,且均具有足够的身体条件疏散到安全地点;u 疏散人员是清醒状态,在疏散开始的时刻同时井然有序地进行疏散,且在疏散过程中不会出现中途返回选择其它疏散路径;u 在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配u 人员从每个可用出口疏散且所有人的疏散速度一致并保持不变。 以上假设是人员疏散的一种理想状态,与人员疏散的实际过程可能存在一定的差别,为了弥补疏散过程中的一些不确定性因素的影响,在采用该模型进行人员疏散的计算时,通常保守地考虑一个安全系数,一般取1.5~2,即实际疏散时间为计算疏散时间乘以安全系数后的数值。 1号教学楼平面图 教学楼模型的简化与计算假设 我校1号教学楼为一幢分为A、B两座,中间连接着C座的建筑(如上图),A、B两座为五层,C座为两层。A、B座每层有若干教室,除A座四楼和B座五楼,其它每层都有两个大教室。C座一层即为大厅,C座二层为几个办公室,人员极少故忽略不考虑,只作为一条人员通道。为了重点分析人员疏散情况,现将A、B座每层楼的10个小教室(40人)、一个中教室(100)和一个大教室(240人)简化为6个教室。 图4 原教室平面简图在走廊通道的1/2处,将1、2、3、4、5号教室简化为13、14号教室,将6、7、8、9、10号教室简化为15、16号教室。此时,13、14、15、16号教室所容纳的人数均为100人,教室的出口为距走廊通道两边的1/4处,且11、13、15号教室的出口距左楼梯的距离相等,12、14、16号教室的出口距右楼梯的距离相等。我们设大教室靠近大教室出口的100人走左楼梯,其余的140人从大教室楼外的楼梯疏散,这样让每一个通道的出口都得到了利用。由于1号教学楼的A、B两座楼的对称性,所以此简图的建立同时适用于1号教学楼A、B两座楼的任意楼层。 图5 简化后教室平面简图 经测量,走廊的总长度为44米,走廊宽为8米,单级楼梯的宽度为3米,每级楼梯共有26级,楼梯口宽0米,每间教室的面积为125平方米 则简化后走廊的1/4处即为教室的出口,距楼梯的距离应为44/4=11米。对火灾场景做出如下假设:u 火灾发生在第二层的15号教室;u 发生火灾是每个教室都为满人,这样这层楼共有600人;u 教学楼内安装有集中火灾报警系统,但没有应急广播系统;u 从起火时刻起,在10分钟内还没有撤离起火楼层为逃生失败; 对于这种场景下的火灾发展与烟气蔓延过程可用一些模拟程序进行计算,并据此确定楼内危险状况到来的时间但是为了突出重点,这里不详细讨论计算细节人员的整个疏散时间可分为疏散前的滞后时间,疏散中通过某距离的时间及在某些重要出口的等待时间三部分,根据建筑物的结构特点,可将人们的疏散通道分成若干个小段。在某些小段的出口处,人群通过时可能需要一定的排队时间。于是第i 个人的疏散时间ti 可表示为:式中, ti,delay为疏散前的滞后时间,包括觉察火灾和确认火灾所用的时间; di,n为第n 段的长度; vi,n 为该人在第n 段的平均行走速度;Δtm,queue 为第n 段出口处的排队等候时间。最后一个离开教学楼的人员所有用的时间就是教学楼人员疏散所需的疏散时间。假设二层的15号教室是起火房间,其中的人员直接获得火灾迹象进而马上疏散,设其反应的滞后时间为60s;教学内的人员大部分是学生,火灾信息将传播的很快,因而同楼层的其他教室的人员会得到15号教室人员的警告,开始决定疏散行动设这种信息传播的时间为120s,即这批人的总的滞后时间为120+60=180秒;因为左右两侧为对称状态,所以在这里我们就计算一面的一、三、四、五层的人员将通过火灾报警系统的警告而开始进行疏散,他们得到火灾信息的时间又比二层内的其他教室的人员晚了60秒因此其总反应延迟为240秒由于火灾发生在二楼,其对一层人员构成的危险相对较小,故下面重点讨论二,三,四,五楼的人员疏散为了实际了解教学楼内人员行走的状况,本组专门进行了几次现场观察,具体记录了学生通过一些典型路段的时间。参考一些其它资料[1、2、3] ,提出人员疏散的主要参数可用图6 表示。在开始疏散时算起,某人在教室内的逗留时间视为其排队时间。人的行走速度应根据不同的人流密度选取。当人流密度大于1 人/ m2时,采用 6m/ s 的疏散速度,通过走廊所需时间为60s ,通过大厅所需时间为12s ;当人流密度小于1 人/m2 时,疏散速度取为 2m/ s ,通过走廊所需时间为30s ,通过大厅所需时间为6s。 图6 人员疏散的若干主要参数 Pauls[4]提出,下楼梯的人员流量f 与楼梯的有效宽度w 和使用楼梯的人数p 有关,其计算公式为: 式中,流量f 的单位为人/ s , w 的单位为mm。此公式的应用范围为 1 < p/ w < 55 。 这样便可以通过流量和室内人数来计算出疏散所用时间。出口的有效宽度是从通道的实际宽度里减去其两侧边界层而得到的净宽度,通常通道一侧的边界层被设定为150mm。 3 结果与讨论 在整个疏散过程中会出现如下几种情况: (1) 起火教室的人员刚开始进行疏散时,人流密度比较小,疏散空间相对于正在进行疏散的人群来说是比较宽敞的,此时决定疏散的关键因素是疏散路径的长度。现将这种类型的疏散过程定义为是距离控制疏散过程; (2) 起火楼层中其它教室的人员可较快获得火灾信息,并决定进行疏散,他们的整个疏散过程可能会分成两个阶段来进行计算: 当f进入2层楼梯口流出2层楼梯口时, 这时的疏散就属于距离控制疏散过程;当f进入2层楼梯口> f流出2层楼梯口时, 二楼楼梯间的宽度便成为疏散过程中控制因素。现将这种过程定义为瓶颈控制疏散过程; (3) 三、四层人员开始疏散以后,可能会使三楼楼梯间和二楼楼梯间成为瓶颈控制疏散过程; (4) 一楼教室人员开始疏散时,可能引起一楼大厅出口的瓶颈控制疏散过程; (5) 在疏散后期,等待疏散的人员相对于疏散通道来说,将会满足距离控制疏散过程的条件,即又会出现距离控制疏散过程。 起火教室内的人员密度为100/ 125 = 8 人/m2 。然而教室里还有很多的桌椅,因此人员行动不是十分方便,参考表1 给出的数据,将室内人员的行走速度为1m/ s。设教室的门宽为 80m。而在疏散过程中,这个宽度不可能完全利用,它的等效宽度,等于此宽度上减去 30m。则从教室中出来的人员流量f0为: f0=v0×s0×w0=1×8×7=1(人/ s) (3)式中, v0 和s0 分别为人员在教室中行走速度和人员密度, w0 为教室出口的有效宽度。按此速度计算,起火教室里的人员要在3s 内才能完全疏散完毕。 设人员按照1 人/ s 的流量进入走廊。由于走廊里的人流密度不到1 人/ m2 ,因此采用 2m/s的速度进行计算。可得人员到达二楼楼梯口的时间为2s。在此阶段, 将要使用二楼楼梯的人数为100人。此时p/ w=100/1700=059 < 1 , 因而不能使用公式2 来计算楼梯的流量。采用Fruin[5]提出的人均占用楼梯面积来计算通过楼梯的流量。根据进入楼梯间的人数,取楼梯中单位宽度的人流量为5人 /( s) ,人的平均速度为 6m/ s ,则下一层楼的楼梯的时间为13s。这样从着火时刻算起,在第5s(60+3+2+13)时,着火的15号教室人员疏散成功。以上这些数据都是在距离控制疏散过程范围之内得出的。 起火后120s ,起火楼层其它两个教室(即11和13号教室)里的人员开始疏散。在进入该层楼梯间之前,疏散的主要参数和起火教室中的人员的情况基本一致。在2s他们中有人到达二层楼梯口,起火教室里的人员已经全部撤离二楼大厅。因此,即将使用二楼楼梯间的人数p1 为: p1 = 100 ×2 = 200 (人) (4)此时f进入2层楼梯口>f流出2层楼梯口,从该时刻起,疏散过程由距离控制疏散过渡到由二楼楼梯间瓶颈控制疏散阶段。由于p/ w =200/1700= 12 ,可以使用公式2 计算二楼楼梯口的疏散流量f1 , 即:?/P> 73 f1 = (3400/ 8040) × 200 = 2人/ s) (5) 式中的3400 为两个楼梯口的总有效宽度,单位是mm。而三、四层的人员在起火后180s 时才开始疏散。三层人员在5s(180+5)时到达二层楼梯口,与此同时四层人员到达三层楼梯口,第五层到达第四层楼梯口。此时刻二层楼梯前尚等待疏散人员数p′1: p′1 = 200 - (5 – 2) ×2 = -1(人) <0 (6) 所以,二层楼的人员已经全部到达一层此后,需要使用二层楼梯间的人数p2 : p2 = 100×3=300 (人) (7)相应此阶段通过二楼楼梯间的流量f 2 :73 f2 = (3400/8040) × 200 = 5(人/ s) (8) 这┤送ü楼楼梯的疏散时间t1 : t1 = 300÷5 = 120 ( s) (9) 因为教学楼三、四、五层的结构相同,所以五层到四层,四层到三层和三层到二层所用的时间相等,因此人员的疏散在楼梯口不会出现瓶颈现象所以,通过二楼楼梯的总体疏散时间T : T = 5+ 120×3 = 5 ( s) (10) 最终根据安全系数得出实际疏散时间为T实际: T实际 =5×(5~2)=75~1293( s) (11)图7 二楼楼梯口流量随时间的变化曲线图 关于几点补充说明:以上是我们只对B座二楼的15号教室起火进行的假设分析和计算,此时当人员到达一楼即视为疏散成功。同理,当三楼起火的时候,人员到达二楼即视为疏散成功,四楼、五楼以此类推。因为1号教学楼A、B座结构的对称性所以楼层的其他教室起火与此是同一个道理。所以本文上述的分析与计算同时适用于A、B两座楼。另外当三层以上(包括三楼)起火的时候,便体现出C座二楼的作用。当B座的三楼起火的时候,B座二楼的人员肯定是在B座三楼人员后对起火做出应对反应,所以会出现当三楼人员疏散到二楼的时候,二楼的人员也开始疏散的情况,势必造成二楼楼梯口出现瓶颈现象。因为A、B座的三、四、五楼并没有连接,都是独立的结构,出现火灾不会直接从B座的三楼威胁到A座三楼及其他楼层人员的安全,所以为了避免上述二楼楼梯口出现瓶颈现象的发生,我们让二楼的所有人员向A座的二楼转移,这样就会让起火楼层的人员能够更快的疏散到安全区域。当B座的四、五楼起火的时候也同样让二楼的人员向A座的二楼转移,为二楼以上的人员疏散创造条件。同理,A座也是如此。 在对火灾假设分析和计算的时候,我们并没有对大教室的后门楼梯的疏散做出计算,由于1号教学楼的特殊性,A座的四楼和B座的五楼没有大教室,所以大教室的后门楼梯疏散人员的速度是很快的,不会在大教室后门的楼梯出现瓶颈现象。 关于1号教学楼的几个出口:u 大厅有一个大门u A座一楼靠近正厅有一个门u A座大教室旁边有一个门u B座中教室靠近大厅正门侧面的窗户可以作为一个应急出口u A、B座的底层都有一个地下室(当烟气蔓延太快来不及疏散,受烟气威胁的时候可以作为一个逃生去向)u A、B座大教室各有一个后门 合计: 8个出口致校领导的一封信尊敬的校领导,你们好。针对我校1号教学楼,我们数学建模小组通过实际测量、建立模型、模型分析,得出如下结论:一旦1号教学楼发生火灾,人员有可能不能全部安全疏散。以上的分析是按一种很理想的条件进行的,并没有进行任何修正。实际上人在火灾中的行为是很复杂的,尤其是没有经过火灾安全训练的人,可能会出现盲目乱跑、逆向行走等现象,而这也会延长总的疏散时间。 该模型在现阶段是一个人员疏散分析模型的基础,目前属于理论上的模型,以上的计算结果都是通过手算或文曲星计算得到的。模型中的人员行走速度是通过多次观察该教学楼内下课时人员的行走速度和参照Fru2in 给出的疏散时人员行走速度、NFPA 中给出的人员行走速度以及目前人员疏散模型中通用的计算速度等修正而得到的,具有较为广泛的通用性。而预测的疏散时间是根据建筑物的结构特点和人员行走速度而得到的,在计算疏散所用时间的时候在剔除疏散前人员的滞后时间(或称预移动时间) 外,所得到的时间是合理的。对于疏散前人员的滞后时间,参考T J Shields 等试验结论:75 %人员在听到火灾警报后的15~40 s 才开始移动,而整个疏散所用的时间为5 s。在该例中起火教室的反应滞后时间为60 s ,这是从开始着火时刻算起的。预移动时间与不同类型的建筑物、建筑物中人员的自身特点和建筑物中的报警系统有着很大的关系,它是一个很不确定的数值。本文中所用的预移动时间不到整个疏散过程中所用的时间的 10 %。二楼楼梯口流量随时间的变化曲线如图7所示。由上可知,二层以上的所有人通过二楼楼梯所需的时间为5 s ,这比前面设定的可用安全疏散时间要长,因而不能保证有关人员全部安全疏散出去。楼梯的宽度和大厅的正门显然是制约人员疏散的一个瓶颈。造成这种情况的基本原因是该教学楼的疏散通道安排不当,楼梯通道的宽度不够,对此可以适当增大楼梯的总宽度;或者在教学楼的每个分支上再修一个楼梯,则人员的疏散会更加的畅通;最好是分别在A座和B座新建一个象正门一样的出口,这样将大大的缓解了大厅正门疏散人员的压力,不至于造成大厅人员堵塞而影响楼上人员的疏散。另一方面,学校还应多增加一些消防设施,每个教室都该配备灭火器;学校还应加强学生消防意识的培养和教育,形式可以多样化、新颖化,比如做报告,上实践课,做消防演习等等。让他们了解一些消防逃生的常识,学会一些消防器材的使用,并让他们对自己所使用的教学楼有充分发认识和了解,一旦发生火灾好知道采取何种疏散方法才能在最短的时间内到达安全区域。如果学校经费有限,也可以不花一分钱就可以消除这个消防隐患,就是合理安排上课的教室,避免每个楼层的所有教室都被用于上课。每层至少可以空出几个,这样就会大大的缓解人员疏散不利带来的危险。但是这样也有弊端,就是没有充分利用教室的使用价值,浪费资源。

无忧在线有很多数学建模论文,你去搜一下就行

没有具体字数,要求将基本的方面写齐全就可以,我个人的经验来说,少的5000左右,多的20000左右。如果做大型问题的建模,可能更多点~

数学建模论文字体大小

论文(答卷)用白色A4纸,上下左右各留出5厘米的页边距。论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其它汉字一律采用小四号黑色宋体字,行距用单倍行距。论文从正文开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。

标题、摘要部分题目——写出较确切的题目(不能只写A题、B题)。摘要——200-300字,包括模型的主要特点、建模方法和主要结果。内容较多时最好有个目录。 中心部分1)问题提出,问题分析。2)模型建立:① 补充假设条件,明确概念,引进参数;② 模型形式(可有多个形式的模型);③ 模型求解;④ 模型性质;3)计算方法设计和计算机实现。4)结果分析与检验。5)讨论——模型的优缺点,改进方向,推广新思想。6)参考文献——也有特定格式。 附录部分计算程序,框图。各种求解演算过程,计算中间结果。各种图形、表格。(论文有其严格的格式,这里只是一点挂一漏万的表述,详细的内容留有下期,敬请观看)

1、问题陈述2、模型假设3、模型的建立与求解4、模型验证5、结果分析6、提出新方案7、参考文献

说起数学建模,相信大家都不陌生,它的定义是根据计算结果来解释实际问题,建立数学模型的检验和验收全过程,下面是学术堂的数学建模论文格式规范的收集,提供参考。  摘要  一般为200~400 字;其内容主要包括建模思想、模型特点、求解方法、主要结果等,其既要概括全文, 又要反映出本队的特点;  注意:  (1) 控制好论文摘要的字数, 一般应在400 字左右。  (2) 摘要应包括: 数学模型的归类( 在数学上属于什么类型) ;所用的数学知识、建模的思想、算法思想、模型及算法特点; 主要结果( 数值结果, 结论, 回答题目所问的全部“问题”)  (3) 摘要表述要准确、简明、条理清晰、合乎语法。  (4)摘要中不应引用正文中的结果, 也不应有所引用的参考文献出现, 一般也不应有第一人称的语句出现。  问题的重述和分析  重述是指对原问题的简要回顾, 大多数情况下, 问题的重述可以省略。分析则是通过对问题和所给数据的透彻理解, 理出建模的清晰思路, 明确正确的数学方法。一般情况下, 问题的分析尤为重要, 它可以使评阅者明晰答卷人的建模思想和所用方法, 借以判断答卷人对问题的敏感性和数学建模素质  假设  一要抓住实际问题的主要因素, 忽略次要因素, 为建立模型创造条件;二要假设应当“ 合理”;三要假设确属“ 必要” ;四是原题中已给的假设, 一般不再写入。  注意:  (1) 根据题目中条件作出假设;  (2) 根据题目中要求作出假设;  (3) 关键性假设不能缺; 假设要切合题意、合理。  (4)符号说明要注意整篇文章符号一致。  模型的建立  一要:通过对问题的分析引出建模的思路,要有建模的过程。  二要:建成的模型有完整的数学表述, 最好能在建成后集中写出来,以免评阅者找来找去。  三要:建模是分阶段完成的, 即基础模型→中间模型→最终模型。  四要:有时所建的模型相当好, 只是求解困难, 这样的模型也要写出来。然后设法给出简化的模型以利求解。  五要:注意一个实际问题可以有多个模型, 但不要贪多求全, 抓一个或两个有代表性的或能反映本队特点的, 建好、解好就足够了。  六要:注意不要片面地追求“ 建模的创造性“”模不惊人誓不休”, 要知道评卷依据中的“ 建模的创造性”并非仅指模型要有创造性, 而是整个答卷要有一定的创造性, 因此,对所建模型的要求是: 起码“ 正确”, 进而“ 更好”。  七要:注意模型的建立与求解可以分开来写, 也可以合在一起写。即可以模型: 问题①, 问题②……求解: 问题①, 问题②……也可以问题①: 模型, 求解; 问题②: 模型, 求解……  建立数学模型应注意以下几点:  (1) 分清变量类型, 恰当使用数学工具。  (2) 抓住问题本质, 简化变量之间的关系。  (3) 建立数学模型时要有严密的数学推理。  (4) 用数学方法建模, 模型要明确, 要有数学表达式。  模型的求解和结果  一要:有算法的设计或选择, 给出算法的具体步骤或框图。  二要:注意计算机实现时, 如果是自己编程,程序不一定要打印在附录中, 如果是选用数学软件, 写出名称即可。  三要:注意在模型的建立和求解过程中, 可能有必要的数学命题, 如果是自己给出的命题,应当有证明; 如果是引用他人的命题, 应当注明出处( 并列入参考献) 。  四要:注意中间结果, 除非必不可少的, 一般不必写入答卷。  五要:注意最终结果至少要“ 答为所问”。  六要:注意有的赛题的最终结果可以甚至应当“ 超出”赛题的要求。  七要:注意结果的表述不仅有多样性( 公式、表格、图、文字等), 也可有创造性  结果的分析和检验  (1) 对数值结果或模拟结果要进行必要的检验, 若结果不正确、不合理、或误差大时, 要分析原因, 对算法、计算方法、或模型进行修正、改进;  (2) 必要时, 要对模型进行稳定性分析、统计检验、误差分析,要对不同模型进行对比及实际可行性检验。  模型的评价和改进  根据所建模型的特点提出中肯的评价, 并提出切实可行的改进意见。  (1) 优点突出, 缺点不回避。  (2) 推广或改进方向  参考文献  文献尽量是少而精, 不要滥用, 不要罗列无关文献。  参考文献按正文中的引用次序列出,其中书籍的表述方式为:  [编号]作者,书名,出版地:出版社,出版年。  参考文献中期刊杂志论文的表述方式为:  [编号]作者,论文名,杂志名,卷期号:起止页码,出版年。  参考文献中网上资源的表述方式为:  [编号]作者,资源标题,网址,访问时间(年月日)。  附录  视情况而定, 可有可无。  (1) 计算程序、详细的结果, 详细的数据表格, 可在此列出。但不要错, 错的宁可不列  (2) 主要结果数据, 应在正文中列出, 不怕重复。  总之, 评判一篇论文优劣的标准应当是结构完整,条理清楚,文字通顺,打印规范。以上关于数学建模论文格式要求规范的详细介绍,希望大家可以顺利发表论文,取得自己满意的成绩。

相关百科

热门百科

首页
发表服务