[1] 陈莉莉 宽带无线接入技术比较以及应用分析[J] 科技资讯, 2009,(10) [2] 赵彩霞 浅议无线通信技术的发展及应用[J] 科技信息, 2009,(20) [3] 程海英,陈勇 无线传感器技术在智能家居系统的应用[J] 中国仪器仪表, 2009,(11) [4] 刘丹谱,郝建军,乐光新 WiMAX宽带无线接入技术及其应用[J] 中兴通讯技术, 2008,(01) [5] 唐钊 浅析高速公路数字视频监控传输与交换[J] 科技创新导报, 2009,(22) [6] 易龙 从中国无线技术与应用大会看当前六大热点无线技术[J] 中国无线电, 2009,(09) [7] 程广 无线技术应用新亮点[J] 中国无线电, 2009,(08) [8] 毛卿 APN体系结构及其典型应用[J] 郑州铁路职业技术学院学报, 2007,(03) [9] 江颉,金凤,蔡家楣 无线电子商务中企业级CA设计[J] 浙江工业大学学报, 2004,(05) [10] 李立仁,李少军,刘忠领 智能视频监控技术综述[J] 中国安防, 2009,(10) [1] 张恩宝 无线宽带技术及其行业应用研究[J] 上海电力, 2009,(05) [2] 苏斌, 王玫 谈企业网络信息管理的发展前景[J] 机械管理开发, 2000,(02) [3] 梁京章, 王冠华 软交换技术在企业网应用的探讨[J] 广西大学学报(自然科学版), 2004,(S2) [4] 周旭, 颜廷河 基于企业网的数控技术研究[J] 南通工学院学报(自然科学版), 2004,(02) [5] 张力峰 企业网中的一种电子通信实现[J] 工程设计CAD与智能建筑, 1998,(01) [6] 陈冰 构建市东供电局管理信息系统的要素[J] 华东电力, 1999,(05) [7] 杨小枫, 顾洪军, 吴秋峰, 张佐 工业自动化领域的企业网模型研究[J] 清华大学学报(自然科学版), 1999,(07) [8] 王一如 高速公路专用主干通信网组网技术[J] 中国市政工程, 2004,(06) [9] 陶钧 企业网如何防止IPC$入侵[J] 铁道运营技术, 2005,(02) [10] 龚一光, 刘晓玲 基于Intranet的库存商品管理系统的设计与实现[J] 机床电器, 2000,(01)
优点:1、无需连线,降低安装成本2、相互间没有直接的电气连接,相互干扰的问题就不存在了。3、有些无法连线的条件,必须使用无线传感器缺点:1、网络在强电磁条件下的可靠性不好2、数据传输速度不如有线的高
生物传感器的研究现状及应用摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料电极等构成生物传感器,在发酵工业、环境监测、食品监测、临床医学等方面得到广泛的应用。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。 关键词:生物传感器;发酵工业;环境监测。中图分类号:3 文献标识码:a 文章编号:1006-883x(2002)10-0001-06一、 引言 从1962年,clark和lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(pcr)的发展,应用pcr的dna生物传感器也越来越多。二、 研究现状及主要应用领域 1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。(1) 原材料及代谢产物的测定微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。此外,还有用大肠杆菌(li)组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌―胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。(2) 微生物细胞总数的测定在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。(3) 代谢试验的鉴定传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。2、 环境监测(1) 生化需氧量的测定生化需氧量(biochemical oxygen demand ?bod)的测定是监测水体被有机物污染状况的最常用指标。常规的bod测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种spt1和spt2,并将其固定在玻璃碳极上以构成微生物传感器用于测量bod,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中bod的测定,其测量最小值可达2 mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中bod的测定提供了快捷简便的方法[4]。 除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的bod值。该传感器的反应时间是15min,最适工作条件为30°c,ph=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(fe3+、cu2+、mn2+、cr3+、zn2+)所影响。该传感器已经应用于河水bod的测定,并且获得了较好的结果[4]。现在有一种将bod生物传感器经过光处理(即以tio2作为半导体,用6 w灯照射约4min)后,灵敏度大大提高,很适用于河水中较低bod的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的bod值。它使用三对发光二极管和硅光电二极管,假单胞细菌(pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。(2) 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(nox-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的nox-进行了测量,其效果较好[6]。硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在ph=5、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是sp,与氢电极连接构成[7]。最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌(li)中,用来检测砷的有毒化合物[8]。水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5 ´10-9mol。该传感器工作的最适条件为:ph=4、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(pseudomonas rathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸gf/a,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶g,与自动系统cl-fia台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°c下可以使用两周以上,重复性高[12]。最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenol etoxylate --np-80e)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(trichosporum grablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围5~0mg/l内,电信号与np-80e浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(vibrio fischeri)体内的一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(alcaligenes eutrophus (ae1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(saccharomyces cerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母cup1基因上的铜离子诱导启动子与大肠杆菌lacz基因的融合体。其工作原理,首先是cup1启动子被cu2+诱导,随后乳糖被用作底物进行测量。如果cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围(5~2)´10-3mol范围内测定cuso4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌alcaligenes cutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌( cyanobacterium spirlina subsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。近来由于聚合酶链式反应技术(pcr)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用pcr技术的dna压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的dna样品进行同样的杂交反应并由pcr放大,产物为气单胞菌属(aeromonas hydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的psp毒素[20]。dna传感器也在迅速的得到应用,目前有一种小型化dna生物传感器,能将dna识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。微藻素是一种从蓝藻细菌引起的水华中产生的细菌肝毒素,一种固定有表面细胞质粒基因组的生物传感器已经制得,用于测量水中微藻素的含量,它直接的测量范围是50~1000 ´10-6g/l[22]。 一种基于酶的抑制性分析的多重生物传感器用于测量毒性物质的设想也已经提出。在这种多重生物传感器中,应用了两种传导器―对ph敏感的电子晶体管和热敏性的薄膜电极,以及三种酶―尿素酶、乙酰胆碱酯酶和丁酰胆碱酯酶。该生物传感器的性能已经得到测试,效果较好[23]。除了发酵工业和环境监测,生物传感器还深入的应用于食品工程、临床医学、军事及军事医学等领域,主要用于测量葡萄糖、乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。三、 讨论与展望 美国的harold weetal指出,生物传感器商品化要具备以下几个条件:足够的敏感性和准确性、易操作、价格便宜、易于批量生产、生产过程中进行质量监测。其中,价格便宜决定了传感器在市场上有无竞争力。而在各种生物传感器中,微生物传感器最大的优点就是成本低、操作简便、设备简单,因此其在市场上的前景是十分巨大和诱人的。相比起来,酶生物传感器等的价格就比较昂贵。但微生物传感器也有其自身的缺点,主要的缺点就是选择性不够好,这是由于在微生物细胞中含有多种酶引起的。现已有报道加专门抑制剂以解决微生物电极的选择性问题。除此之外,微生物固定化方法也需要进一步完善,首先要尽可能保证细胞的活性,其次细胞与基础膜结合要牢固,以避免细胞的流失。另外,微生物膜的长期保存问题也待进一步的改进,否则难于实现大规模的商品化。 总之,常用的微生物电极和酶电极在各种应用中各有其优越之处。若容易获得稳定、高活性、低成本的游离酶,则酶电极对使用者来说是最理想的。相反的,若生物催化需经过复杂途径,需要辅酶,或所需酶不宜分离或不稳定时,微生物电极则是更理想的选择。而其他各种形式的生物传感器也在蓬勃发展中,其应用也越来越广泛。随着固定化技术的进一步完善,随着人们对生物体认识的不断深入,生物传感器必将在市场上开辟出一片新的天地。--------------------------------------------------------------------------------参考文献[1]韩树波,郭光美,李新等伏安型细菌总数生物传感器的研究与应用[j]华夏医学,2000,63(2):49-52 [2]蔡豪斌微生物活细胞检测生物传感器的研究[j] 华夏医学,2000,13(3):252-256[3] trosok sp, driscoll bt, luong jht mediated microbial biosensor using a novel yeast strain for wastewater bod measurement[j] applied micreobiology and biotechnology,2001, 56 (3-4): 550-554 [4] 张悦,王建龙,李花子等生物传感器快速测定bod在海洋监测中的应用[j]海洋环境科学,2001,20(1):50-54[5] yoshida n, mcniven sj, yoshida a,a compact optical system for multi-determination of biochemical oxygen demand using disposable strips[j] field analytical chemistry and technology,2001,5 (5): 222-227[6] meyer rl, kjaer t, revsbech use of nox- microsensors to estimate the activity of sediment nitrification and nox- consumption along an estuarine salinity, nitrate, and light gradient[j] aquatic microbial ecology, 2001,26 (2): 181-193[7]王晓辉,白志辉,孙裕生等硫化物微生物传感器的研制与应用[j] 分析试验室,2000,19(3):83-86[8] alexander d c,costanzo m a, guzzo j, cai j, blazing towards the next millennium: luciferase fusions to identify genes responsive to environmental stress[j]water, air and soil pollution, 2000,123(1-4):81-94[9] makarenko aa, bezverbnaya ip, kosheleva ia, development of biosensors for phenol determination from bacteria found in petroleum fields of west siberia[j]applied biochemistry and microbiology, 2002,38 (1): 23-27[10]semenchuk in, taranova la, kalenyuk aa, effect of various methods of immobilization on the stability of a microbial biosensor for surfactants based on pseudomonas rathonis t[j] applied biochemistry and microbiology, 2000, 36 (1): 69-72[11]yamazaki t, meng z, mosbach k, a novel amperometric sensor for organophosphotriester insecticides detection employing catalytic polymer mimicking phosphotriesterase catalytic center[j] electrochemistry,2001,69 (12): 969-97[12] nakamura phosphate ion determination in water for drinking using biosensors[j] bunseki kagaku,2001,50 (8): 581-582[13] a, lucaciu i, fleschin s, magearu microbial biosensor for nonyl-phenol etoxylate (np-80e) [j]south african jounal of chemistry-suid-afrikaanse tydskrif vir chemie , 2000,53 (1): 14-17[14] leth s, maltoni s, simkus r, engineered bacteria based biosensors for monitoring bioavailable heavy metal[j]lectroanalysis, 2002,14 (1): 35-42 [15] lehmann m, riedel k, adler k, amperometric measurement of copper ions with a deputy substrate using a novel saccharomyces cerevisiae sensor[j] biosensors and bioelectronics, 2000, 15 (3-4): 211-219[16] riether kb, dollard ma, billard assessment of heavy metal bioavailability using escherichia coli zntap lux and copap lux-based biosensors[j] applied microbiology and biotechnology,2001,57 (5-6): 712-716[17] karlen c, wallinder io, heijerick d, runoff rates and ecotoxicity of zinc induced by atmospheric corrosion[j] science of the total environment,2001,277 (1-3): 169-180[18] campanella l,cubadda f,sammartino m p,an algal biosensor for the monitoring of water toxicity in estuarine enviraonments[j]wate research, 2001,35(1):69-76[19] tombelli sara,mascini marco,soca cristiana,a dna piezoelectric biosensor assay coupled with a polyerase chain reaction for bacterial toxicity determination in environmental samples[j] analytica chimica acta,2000,418(1):1-9[20] lee hae-ok,cheun byeung soo,yoo jong su,application of a channel biosensor for toxicity measurements in cultured alexandrium tamarense[j] journal of natural toxins,2000, 9(4):341-348[21] wang,iniaturized dna biosensor for detecting cryptosporidium in water technical comletion-311, 2000(3), 26p [22]nakamura c, kobayashi t, miyake m, usage of a dna aptamer as a ligand targeting microcystin[j] molecular crystals and liquid crystals, 2001, 371: 369-374 [23]arkhypova vn, dzyadevych sv, soldatkin ap, multibiosensor based on enzyme inhibition analysis for determination of different toxic substances[j] talanta,2001, 55 (5): 919-927the recent research and application of biosensorabstract: in this article, the recent research progress and application of biosensors ,especially the micro- biosensors, are reviewed, and the prospect of biosensors development is also biosensors are made up of bioelectrode , using immobile organism as sensitive material for molecule recognition, together with oxygen-electrode, membrane -eletrode and fuel- biosensors are broadly used in zymosis industry, environment monitor, food monitor and clinic fast, accurate, facilitate as biosensors is,there will be an excellent prospect for biosensors in the marketkeywords:biosensor, zymosis -industry, environment-monitor作者简介:何星月:中国科学技术大学生命科学院,合肥230027刘之景,中国科学技术大学天文与应用物理系教授,合肥230026电话:0551―3601895
建议去科技论文网去查,你去你们学校图书馆问问,有没有买什么数据库,一般学校都有的。然后输入你的关键字去查都能查到。透光脉动传感器的影响因素研究 论文透光脉动传感器是一种非接触式光电检测装置,通过对混凝过程中形成的絮体颗粒的检测,可以得到反映颗粒聚集状态的检测参数R。其检测不受混凝剂种类以及原水水质等条件的限制,其输出值不受取样管管壁的粘污以及电子元件老化、漂移等不利因素的影响,广泛适用于饮用水处理以及工业废水处理中混凝过程的在线连续检测[1]。以该传感器为核心的透光脉动混凝投药控制系统在高浊度水的混凝剂自动投加控制方面得到了良好的应用[2],近年来开始在常规浊度水的混凝剂自动投加控制方面得到应用[3]。在实际使用中,透光脉动传感器的检测性能受诸多因素的限制。作者在综合实践应用经验和试验结果的基础上对透光脉动传感器的主要影响因素进行了研究,并确定了其最优工作参数。1 透光脉动传感器 透光脉动传感器由水样检测部分和信号处理部分构成,分别完成信号的检测和处理,其工作原理如图1所示。由光源发射一束狭窄的光照射到传感器取样管中流动的悬浮液,透过光由光检测器接收并转换成电信号,然后通过后续的信号处理电路完成对电信号的处理,输出透光脉动检测值。检测值可以通过数码显示器(LED)显示,也可以通过输出端子输出,通过接口与计算机等连接,以实现检测值的在线采集和分析处理。式中:L—取样管管径; A—光柱有效照射面积; Ni—第i种颗粒的数量浓度; Ci—第i种颗粒的散射截面积。 从表达式可以看出,在被检测对象即悬浮液中颗粒的性质一定的情况下,检测值受光源的有效照射面积及取样管管径等因素的影响。在实际应用中,取样流速和传感器信号处理部分的放大倍数等因素也对检测值有明显影响,下面将对这些影响因素进行具体分析。2 影响因素分析1 光源的影响 对于透光脉动传感器来说,光源的选择无疑是至关重要的。受透光脉动检测技术的限制,只有当被测水样体积足够小时,颗粒的脉动现象才能被传感器检测到。在实际应用中为保证检测效果,必须尽量减小光柱的有效照射面积,因此应选择发射角小的光源,如激光二极管。 在水处理领域,国际标准化组推荐使用波长为860nm的近红外光和550nm的紫外光作为光源[4]。为了保证传感器的灵敏度,光源发射光的波长应随着被测颗粒尺寸的增大而增大,对于透光脉动传感器来说,它检测的是尺寸较大的絮体颗粒,因此宜选择发射波长为860nm的光源。在860nm处水中的溶解性物质对光的吸收非常弱,这一点对于没有色度补偿的透光脉动传感器来说很重要。2 取样流速的影响 由透光脉动检测技术特性可知[5],颗粒的脉动频率与取样流速有关,只有在保证最低取样流速,使得被检测水样能及时得到一定程度的更新的前提下,经过处理后的检测信号才能真实地反映出颗粒的脉动情况,且此时检测值应与取样流速无关。为了验证取样流速对检测值的影响,用内径为3mm的取样管分别对未混凝和混凝的悬浮液进行了连续检测。对于未混凝的悬浮液,当取样流量小于20mL/min时,此时水样流速太小,脉动信号的频率过低,其在信号处理过程中被滤波电路滤掉一部分,从而导致检测值偏小。取样流量在20mL/min左右时检测值波动较大,而当取样流量大于25mL/min时检测值比较稳定,仅当取样流量达到100mL/min时,检测值才略有下降。从试验结果可得,当取样流量在25mL/min以上即取样流速在06m/s以上时,检测值与取样流速无关。对于混凝的悬浮液,当取样流量为25~40mL/min即取样流速为06~094m/s时,流量变化对检测值的影响很小,而当取样流量大于50mL/min后,取样管中层流剪切力造成絮体明显破碎,导致检测值随流量的增大有明显的下降趋势,当取样流量降低后,絮体破碎程度降低,检测值则重新升高。 试验结果表明,当取样管管径为3mm时,对于未混凝的悬浮液,取样流速在06m/s以上时检测值与取样流速无关;而对于混凝的悬浮液,为了保证检测值能反映絮体颗粒真实的聚集情况,应尽量避免絮体在取样过程中的破碎,将取样流速合理的控制在06~094m/s。3 取样管管径的影响絮体在取样管中层流剪切力的作用下会有一定程度的破碎,检测值将受到影响。研究表明,层流的平均剪切率和管径的立方成反比,和流速成正比,因此除通过适当降低取样流速外,还可以通过增大取样管管径的方式来减小剪切率。取样管管径可以根据使用目的以及所检测水样的絮凝情况综合考虑,例如在实验室小试研究中,为了尽量节约试验用水,取样管管径宜选择得小一些,如3mm,在适当控制取样流速的情况下,可以保证絮体基本不破碎。从图4可看出,当取样管管径小至1mm时管中的平均剪切率变得非常大,例如当取样流量仅为5mL/min时,剪切率即达到约300s-1,这样高的剪切率很容易造成絮体的破碎。因此,在实际应用中往往不是用1mm的取样管来检测颗粒的聚集过程,而是充分利用层流剪切力对悬浮液中颗粒的破碎作用,将其用于研究絮体颗粒的抗剪性能或者颗粒物质在悬浮液中的分散过程等[6]。 在水处理工艺中,混凝效果良好时形成的絮体颗粒粒径较大,絮体强度相对较小,特别是在原水浊度较高、投药量较大的情况下;另外,为了保证在长时间运行时取样管不易被沉积物堵塞,必须保证较大的取样流速,这样都容易导致絮体的破碎。当取样管管径仅为3mm时,颗粒破碎程度明显增大,此时需要选择管径较大的取样管。生产实践表明,当取样管管径增加到5mm左右时,就可以保证水样流过取样管时絮体基本不会破碎,当然,也可以根据原水性质选用直径更大的取样管,如在高浊度水絮凝过程的检测中则建议使用内径为8mm左右的取样管4 放大倍数的影响 透光脉动传感器直接检测到的脉动信号很微弱,必须经信号处理部分放大和滤波等处理后才能参与控制。为了研究信号处理部分的放大倍数对检测值的影响,选取放大倍数分别为K1和K2的两个传感器进行了试验研究,在改变水样的絮凝程度时的检测 传感器的放大倍数K1较小,其检测值的变化幅度相当小,仅在2%~5%之间变化,而2号传感器的放大倍数K2较大,检测值在7%~7%之间变化,由此可见放大倍数对于检测值的输出具有相当大的影响。把两条曲线绘于不同的坐标下时发现其变化规律非常接近,说明两个传感器的检测性能基本相同,只是由于信号处理部分的放大倍数不同,导致输出值差异很大。对于投药控制系统来说,传感器信号处理部分的放大倍数过高,检测值波动太大,导致系统稳定性差;放大倍数过低,检测值无法准确反映出絮体颗粒的变化情况,控制系统无法调节投药量,因此在控制系统投入运行之前必须调节好放大倍数。一般来说,放大倍数可以根据所检测水样的性质现场调节,其调节可以分为两步:首先将絮凝充分的水样通过传感器,调节放大倍数使得检测值在40%左右,然后较大幅度地改变取样流速或者水样的絮凝程度,使检测值大约在20%~80%之间变化即可。3 结论通过对传感器的工作参数进行优化,可以改善传感器的检测性能,使其在生产中获得更加良好的应用,主要应注意以下几个方面: (1)光源应选择发射光的波长范围窄、发射角小的激光二极管等,波长宜选择860nm; (2)对于混凝的悬浮液,其检测值受取样流速的影响,在生产中应合理控制取样流速; (3)为了减小絮体在取样管中的破碎,应根据悬浮液的絮凝程度合理选用取样管,试验研究中一般选用1~3mm,生产应用中则选用5~8mm; (4)传感器信号处理部分的放大倍数对检测值的输出有很大影响,为了保证控制系统的控制性能,必须合理确定好放大倍数,其值可根据被检测水样的性质在现场调节确定。参考文献:[1] Gregory, J , Nelson, DW A New Optical Method for Flocculation Monitoring[A] Solid-Liquid Separation[C] Chichester,Ellis Horwood:172-[2] 于水利, 李邦宜, 曹世杰, 李虹, 李圭白 新型在线光学絮凝检测仪的原理、设计与制造[J] 传感器技术, 1997, 16(1):18-[3] 孙连鹏 透光率脉动混凝投药控制系统的应用研究及系统优化[D] 哈尔滨:哈尔滨工业大学, [4] ISO Water qulity-Determination of turbidity[S][5] Gregory, J Laminar dispersion and the monitoring of flocculation processes[J] J of Colloid Interface S, 1987,118(2):397-[6] 李星, 张正磊, 齐文明 颗粒分散和破碎过程在线检测研究[J] 哈尔滨建筑大学学报, 1999,32(6):31- [来源:论文天下论文网 ] 论文天下 希望对你有帮助
CMOS模拟集成温度传感器的设计
1、氧传感器:当氧传感器故障时,ECU无法获取这些信息,就不知道喷射的汽油量是否正确,而不合适的油气空燃比会导致发动机功率降低,增加排放污染;2、轮速传感器:它主要是收集汽车的转速来判断汽车有没有打滑的征兆,所以,就有一一个专门收集汽车轮速的传感器来完成这项工作,一般安装在每个车轮的轮毂上,而一旦传感器损坏,ABS会失效;3、水温传感器:当水温传感器故障后,往往冷车启动时显示的还是热车时的温度信号,ECU得不到正确的信号,只能供给发动机较稀薄的混合气,所以发动机冷车不易启动,且还会伴随怠速运转不稳定,加速动力不足的问题;4、电子油门踏板位置传感器:当传感器失效后,ECU无法测得油门位置信号,无法获得油门门踏板的正确位置,所以会出现发动机加速无力的现象,甚至出现发动机不能加速的情况;5、进气压力传感器:进气压力传感器顾名思义就是随着发动机不同的转速负荷,感应一系列的电阻和压力变化,转换成电压信号,供ECU修正喷油量和点火正时角度。一般安装在节气门边上,假如故障了会引起点火困难、怠速不稳、加速无力等问题。
CMOS模拟集成温度传感器的设计
我已发送。。不知这些对你是否有用,这些是我做方案设计的写的!
校园网综合布线的实施摘要:校园网正逐渐成为各学校必备的信息基础设施,其规模和应用水平将是衡量学校教学与科研综合实力的一个重要标志。很多学校准备利用暑期组建校园网,特别是校园网基础设施的铺设更是难得的好时机。要想组建高性能、低成本的校园网,综合布线的好坏至关重要,好的综合布线系统如同给校园网打了一个好的地基。关键词:校园网综合布线校园网正逐渐成为各学校必备的信息基础设施,其规模和应用水平将是衡量学校教学与科研综合实力的一个重要标志。很多学校准备利用暑期组建校园网,特别是校园网基础设施的铺设更是难得的好时机。要想组建高性能、低成本的校园网,综合布线的好坏至关重要好的综合布线系统如同给校园网打了一个好的地基。综合布线目标综合布线系统是建筑物或建筑群内的传输网络,是计算机网络的线路基础。它使语音与数据通信设备、交换设备和其他信息管理系统彼此相连,也使这些设备与外部通信网络相连。结构化布线设计应该满足以下目标。1、满足要求,兼顾发展布线设计必须能够满足学校各楼宇、实验室、图书馆等的主要业务需求,并能兼顾未来的发展需要。2、易于扩展,预留空间符合当前和以后的信息传输需要,保证较好的扩展性和足够的升级空间。3、遵从标准,采用星型布线系统设计遵从国际(ISO/IEC11801)标准和邮电部、建设部标准,布线系统采用国际标准建议的星型拓扑结构。4、高质传输,适应面广布线系统应该能够支持语音、数据等综合信息(如ISDN、B-ISDN、ATM等)的高质量传输,并能适应各种不同类型、不同厂商的电脑及网络产品的需要。5、统一出口,线路规范布线系统的信息出口采用国际标准的RJ-45插座,以统一的线路规格和设备接口,使任意信息点都能接插不同类型的终端设备,如电脑、打印机、网络终端、电话机、传真机等,以支持话音、数据、图像及多媒体信息的传输。6、预备互连、国际接轨布线系统符合综合业务数据网ISDN的要求,以便与国内国际其他网络互联。综合布线原则及方式1、性价比原则选择的线缆、接插件、其他设备应具有良好的物理和电气性能,而且价格适中;2、实用性原则设计、选择的系统应满足用户在现在和未来10至15年内对通信线路的要求;3、灵活性原则做到信息口设备合理,可即插即用;4、扩充性原则尽可能采用易于扩展的结构和接插件;5、易管理原则便于管理,有统一标识,方便配线、跳线。机房的布线系统直接影响到未来机房的功能,一般布线系统要求布线距离尽量短而整齐,排列有序。具体的方式有“田”字形和“井”字形两种:“田”字形较适用于环形机房布局,“井”字形较适用于纵横式机房布局,它的位置可安排在地板下,也可吊顶安装,各有特点。综合布线要点1、地板布线最常见的布线方式,充分利用了地板下的空间,要注意地板下的漏水、鼠害和散热,还应保证在每个机柜下方开凿相应的穿线孔(包括地板和线槽)。2、吊顶布线特别适合于经常需要布线的机房,此方式中吊顶内包含了各种电源布线、弱电布线,在每个机柜上方开凿相应的穿线孔(包括地板和线槽),当然也要注意漏水、鼠害和散热。具体布线的内容有:电源布线、弱电布线和接地布线。其中电源布线和弱电布线均放在金属布线槽内,具体的金属槽尺寸可根据线量的多少并考虑一定的发展余地(一般为100×50或50×50)。电源线槽和弱电线槽之间的距离应保持至少5厘米以上,不能互相穿越,以防止相互之间的电磁干扰。(1)电源布线:在新机房装修进行电源布线时,应根据整个机房的布局和UPS的容量来安排,在规划中的每个机柜和设备附近,安排相应的电源插座,插座的容量应根据接入设备的功率来定,并留有一定的冗余,一般为10A或15A。电吹南呔队Ω莸缭床遄娜萘坎⒘粲幸欢ǖ娜萘俊?br>(2)弱电布线:弱电布线中主要包括同轴细缆、五类网线和电话线等,布线时应注意在每个机柜、设备后面都要有相应的线缆,并应考虑以后的发展需要,各种线缆应分门别类用尼龙编织带捆扎好。3、接地布线由于新机房内部都是高性能的计算机和网络设备,故对接地应有严格要求;接地也是消除公共阻抗、防止电容耦合干扰、保护设备和人员的安全、保证计算机系统稳定可靠运行的重要措
国际杂志Journal of Electroanalytical Chemistry(SCI源刊)编委、国际学术期刊International Journal of Electrochemical Science国际顾问编委、《科学通报》特邀编辑、《分析化学》、《物理化学学报》、《分析科学学报》、《化学传感器》等期刊编委;曾任中国化学会理事和国家自然科学基金委第九届和第十届化学部专家评审组成员,现任中国化学会分析化学委员会副主任、中国化学会应用化学学科委员会委员、中国仪器仪表学会化学传感器专业委员会副主任委员、中国微米纳米技术学会国际交流与合作工作委员会委员、“波谱与原子分子物理国家重点实验室”、“电分析化学国家重点实验室”、“生命分析化学教育部重点实验室”和中科院武汉物理与数学研究所学术委员会委员、湖北省化学生物学专业委员会主任委员等。82年获武大电化学专业学士学位,92年获武大电化学专业博士学位,92-94年武大生物学博士后,94年副教授,96年教授,98年博导,97-98年美国康奈尔(Cornell)大学合作研究,02年6-7月法国巴黎七大特邀访问教授,02年9-10月美国康奈尔大学、加州州立大学高访学者,03年12月-04年6月香港理工大学Croucher学者。
分析化学进展吧