首页

> 期刊发表知识库

首页 期刊发表知识库 问题

论文数据与假设相反

发布时间:

论文数据与假设相反

文缺少案例实证该怎么办垦地比较多分析的

论文结论与假设相反

首先你的论文立题存在一些问题,你要照顾到实际情况。其次你的问卷也可能存在一些问题。在操作上你的态度,全程是否跟进,确保每一份问卷的真实认真。自编问卷本来就缺乏权威性,你可以检查一下你的问卷是否存在纰漏等。类似的论文你可以查查,应该是有的……希望对你有帮助

论文研究结果与假设相反

在假设检验时原假设和备择假设如果设相反了,结果完全相反是因为统计中用的假设检验的方法,对于原假设得到的结论不是“对”与“错”两个结果,而是“拒绝”与“接受”。因为在做假设检验的时候,都要设定一个置信水平,当实验者“拒绝”原假设的时候,实际上我们只是说“我们有95%的把握”说原假设错了,也就是说,它还是有可能是对的,换而言之,我们不能逻辑上否定原假设。再来说“接受”原假设,准确一点来说应该是“不能拒绝”原假设,比如说原假设H0是:期望=2,如果“拒绝”H0, 那么意思是实验者有95%的把握说H0是错的,但是当实验者所谓“接受”H0的时候,指的并不是有95%的把握肯定期望就等于2。所以在假设检验时,原假设和备择假设如果设相反了,结果完全相反。扩展资料:假设检验的基本步骤:1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。H0:样本与总体或样本与样本间的差异是由抽样误差引起的;H1:样本与总体或样本与样本间存在本质差异;预先设定的检验水准为05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=05或α=01。2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1。则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。参考资料来源:百度百科-假设检验

这个问题是每个学到这一部分的学生都会感到困惑的问题。设原假设为H0,备择假设为H1,置信水平为95%H0与H1从逻辑上说本来是二择一的,非此即彼,对于原假设检验的结果逻辑上说只有两个,要么对的,要么错的,如果H0是对的,那么H1就必定错了,如果H0错了,那么H1就必定是对的,如此说来,随便把哪一个作为原假设应该都是一样的结果。但事实上,选择哪个作为原假设是有差别的,那么问题出在哪儿呢?其实问题出在假设检验的结果上,统计中用的假设检验的方法,对于原假设得到的结论不是“对”与“错”两个结果,而是“拒绝”与“接受”,两者有什么差别吗?一定要注意在做假设检验的时候,都要设定一个置信水平,当我们“拒绝”原假设的时候,实际上我们只是说“我们有95%的把握”说原假设错了,也就是说,它还是有可能是对的,换句话说,我们不能逻辑上否定原假设!再来说“接受”原假设,这个“接受”两个字,害苦了几乎所有的学生,其实准确的说法应该是“不能拒绝”原假设,比如说原假设H0是:期望=2,如果“拒绝”H0, 那么意思是我们有95%的把握说H0是错的,但是当我们所谓“接受”H0的时候,我们并不是有95%的把握肯定期望就等于2,其实我们一点把握都没有,我们只是利用现有样本数据不能否定它是2而已,它完全可能是1,11,等等等等。综上我们注意到两点:一是我们的“拒绝”和“接受”原假设,不是逻辑上的对与错;二是我们“拒绝”原假设和“接受”原假设是完全不对等的,当我们拒绝原假设的时候,我们有95%的把握;但是当我们接受原假设的时候,我们一点把握都没有。由此可知当我们选择原假设的时候,应该选择我们有比较大的把握否定它的一面。关于这个问题更精细的讨论要牵涉到置信区间的长度问题,需要画图,这里比较难弄,自己找资料看去吧。

是这样的,假设检验是倾向于保护原假设的。比如说要推广一种新药,如果原假设是该药可靠,那只有很不可靠的时候才会拒绝。但若原假设是该药不可靠,只有很可靠的时候才会拒绝。在这个具体问题中,推广新药必须要很可靠才行,所以一般会把原假设定为该药不可靠。再说仔细一些,一般取置信区间为05,也就是说只有当原假设前提下5%的小概率事件发生时,才会拒绝原假设。具体的判别方法你再复习一下关于置信水平的知识,会有更深的理解。希望能帮到你

本科论文数据与假设不相符

一般不会,但是最好还是自己做数据。没必要为了证明你的命题而造假数据,如果真实数据证明不了你的命题就大大方方把结论和下一步猜想写出来,科学本来就是探究性的,没人能保证自己的设想一定是对的。有的硕士导师就会告诉学生,自然科学不是人文科学,像政治、法律之类的都是先设定命题,然后搜集证据去支持命题,只要自身前后逻辑和上了就行,不管对错;然而自然科学是提出假设,然后用真实数据去验证假设,对就是对错就是错,错了也算有收获,至少说明这条路走不通。假造数据说明自己的思维模式就不在自然科学这一挂。

论文结果和假设相反

你的立意有问题,很有可能做出来的结果与你预期的结果有偏差。1、高考成绩与录取学校层次越相符,学校认同感越高——这个问题不大,不太会有很大的差距。2、学校认同感越高,在校成绩或表现越优秀——这个有问题,因为成绩优秀与认同感没有必然联系。

晕,肯定是第一种情况啊,第二种你是在论证一个什么道理吗?论文格式这些东东网上一大堆啊

相关百科

热门百科

首页
发表服务