首页

> 期刊发表知识库

首页 期刊发表知识库 问题

数学建模论文集

发布时间:

数学建模论文集

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献%3A+%C2%DB%CE%C4&ch=uf&num=10&w=site%3A+%C2%DB%CE%C4点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

无忧在线有很多数学建模论文,你去搜一下就行

重点:数模论文的格式及要求 难点:团结协作的充分体现 一、 写好数模论文的重要性 数模论文是评定参与者的成绩好坏、高低、获奖级别的惟一依据 数模论文是培训(或竞赛)活动的最终成绩的书面形式。 写好论文的训练,是科技论文写作的一种基本训练。 二、数模论文的基本内容 1,评阅原则: 假设的合理性; 建模的创造性; 结果的合理性; 表述的清晰程度 2,数模论文的结构 0、摘要 1、问题的提出:综述问题的内容及意义 2、模型的假设:写出问题的合理假设,符号的说明 3、模型的建立:详细叙述模型、变量、参数代表的意义和满足的条件,进行问题分析,公式推导,建立基本模型,深化模型,最终或简化模型等 4、模型的求解:求解及算法的主要步骤,使用的数学软件等 5、模型检验:结果表示、分析与检验,误差分析等 6、模型评价:本模型的特点,优缺点,改进方法 7、参考文献:限公开发表文献,指明出处 8、 附录:计算框图、计算程序,详细图表 三、需要重视的问题 0.摘要   表述:准确、简明、条理清晰、合乎语法。   字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表   简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论。还可作那些推广。 1、 建模准备及问题重述: 了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。   在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。 2、模型假设、符号说明 基本假设的合理性很重要 (1)根据题目条件作假设; (2)根据题目要求作假设; (3)基本的、关键性假设不能缺; (4)符号使用要简洁、通用。 3、模型的建立 (1)基本模型 1) 首先要有数学模型:数学公式、方案等 2) 基本模型:要求完整、正确、简明,粗糙一点没有关系 (2)深化模型 1)要明确说明:深化的思想,依据,如弥补了基本模型的不足…… 2)深化后的模型,尽可能完整给出 3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、是要解决实际问题,不追求数学上的高(级)、深(刻)、难(度)。 ▲能用初等方法解决的、就不用高级方法;   ▲能用简单方法解决的,就不用复杂方法;   ▲能用被更多人看懂、理解的方法,就不用只有少数人看懂、理解的方法。   4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在   ▲建模中:模型本身,简化的好方法、好策略等;   ▲模型求解中;   ▲结果表示、分析,模型检验;   ▲推广部分。 5)在问题分析推导过程中,需要注意的:  ▲分析要:中肯、确切;  ▲术语要:专业、内行;  ▲原理、依据要:正确、明确;  ▲表述要:简明,关键步骤要列出;  ▲忌:外行话,专业术语不明确,表述混乱、繁琐,冗长。 4、模型求解 (1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,论证要尽可能严密; (2)需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,要说明采用此软件的理由,软件名称; (3)计算过程,中间结果可要可不要的,不要列出。 (4)设法算出合理的数值结果。 5、模型检验、结果分析 (1) 最终数值结果的正确性或合理性是第一位的 ; (2)对数值结果或模拟结果进行必要的检验。    当结果不正确、不合理、或误差大时,要分析原因,对算法、计算方法、或模型进行修正、改进; (3)题目中要求回答的问题,数值结果,结论等,须一一列出; (4)列数据是要考虑:是否需要列出多组数据,或额外数据;对数据进行比较、分析,为各种方案的提出提供可依赖的依据; (5)结果表示:要集中,一目了然,直观,便于比较分析。(最好不要跨页) ▲数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲求解方案,用图示更好 (6) 必要时对问题解答,作定性或规律性的讨论。   最后结论要明确。 6.模型评价   优点要突出,缺点不回避。若要改变原题要求,重新建模则可在此进行。推广或改进方向时,不要玩弄新数学术语。 7、参考文献   限于公开发表的文章、文献资料或网页 规范格式:   [1] 陈理荣,数学建模导论(M),北京:北京邮电大学出版社, [2] 楚扬杰,快速聚类分析在产品市场区分中的应用(J),武汉理工大学学报,2004,23(2),20- 8、附录 详细的数据、表格、图形,计算程序均应在此列出。但不要错,错的宁可不列。主要结果数据,应在正文中列出。 9、关于写答卷前的思考和工作规划  答卷需要回答哪几个问题――建模需要解决哪几个问题   问题以怎样的方式回答――结果以怎样的形式表示   每个问题要列出哪些关键数据――建模要计算哪些关键数据   每个量,列出一组还是多组数――要计算一组还是多组数…… 10、答卷要求的原理 ▲ 准确――科学性 ▲ 条理――逻辑性 ▲ 简洁――数学美 ▲ 创新――研究、应用目标之一,人才培养需要 ▲ 实用――建模。实际问题要求。 四、建模理念 应用意识:要让你的数学模型能解决或说明实际问题,其结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。相同问题上要能够推广。 创新意识:建模有特点,要合理、科学、有效、符合实际;要有普遍应用意义;不单纯为创新而创新 五、格式要求 参赛论文写作格式 论文题目(三号黑体,居中) 一级标题(四号黑体,居中) 论文中其他汉字一律采用小四号宋体,单倍行距。论文纸用白色A4,上下左右各留出5厘米的页边距。 首页为论文题目和作者的专业、班级、姓名、学号,第二页为论文题目和摘要,论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字“1”开始连续编号。 第四页开始论文正文 正文应包括以下八个部分: 问题提出: 叙述问题内容及意义; 基本假设: 写出问题的合理假设; 建立模型: 详细叙述模型、变量、参数代表的意义和满足的条件及建模的思想; 模型求解: 求解、算法的主要步骤; 结果分析与检验:(含误差分析); 模型评价: 优缺点及改进意见; 参考文献: 限公开发表文献,指明出处; 参考文献在正文引用处用方括号标示参考文献的编号,如[1][3]等。参考文献按正文中的引用次序列出,其中 书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:出版年 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日) 附录:计算框图,原程序及打印结果。 六、分工协作取佳绩 最好三人一组,这三人中尽量做到一人数学基础较好,一人应用数学软件和编程的能力较强,一人科技论文写作水平较好。科技论文的写作要求整篇论文的结构严谨,语言要有逻辑性,用词要准确。 三人之间要能够配合得起来。若三人之间配合不好,会降低效率,导致整个建模的失败。   在合作的过程中,最好是能够找出一个组长,即要能够总揽全局,包括任务的分配,相互间的合作和进度的安排。    在建模过程中出现意见不统一时,要尊重为先,理解为重,做到 “给我一个相信你的理由”和“相信我,我的理由是……”,不要作无谓的争论。要善于斗争,勇于妥协。 还要注意以下几点: 注意存盘,以防意外 写作与建模工作同步 注意保密,以防抄袭 数学建模成功的条件和模型: 有兴趣,肯钻研;有信心,勇挑战;有决心,不怕难;有知识,思路宽;有能力,能开拓;有水平,善协作;有办法,点子多;有毅力,轻结果。

数学建模优秀论文集

数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。请采纳。

DSAD

你邮箱什么,发你邮箱

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。目录背景数学数学建模数学建模应用数学建模的意义数学建模应用数学模型过程模型准备模型假设模型建立模型求解模型分析模型检验模型应用起源进入西方国家大学在中国大学生数学建模竞赛全国大学生数学建模竞赛全国大学生数学建模竞赛章程(2008年)第四届全国大学生数学建模竞赛国际大学生数学建模竞赛数学建模资料竞赛参考书国内教材、丛书国外参考书(中译本)专业性参考书数学建模题目两项题四项题数学建模相关数学建模的意义数学建模经验和体会最新进展数学建模应当掌握的十类算法背景 数学 数学建模 数学建模应用数学建模的意义 数学建模 应用数学模型过程 模型准备 模型假设 模型建立 模型求解 模型分析 模型检验 模型应用起源 进入西方国家大学 在中国大学生数学建模竞赛 全国大学生数学建模竞赛 全国大学生数学建模竞赛章程(2008年) 第四届全国大学生数学建模竞赛 国际大学生数学建模竞赛数学建模资料 竞赛参考书 国内教材、丛书 国外参考书(中译本) 专业性参考书数学建模题目 两项题 四项题数学建模相关 数学建模的意义 数学建模经验和体会最新进展数学建模应当掌握的十类算法展开 编辑本段背景数学  近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。数学建模  数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。   不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。数学建模应用  数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。编辑本段数学建模的意义数学建模  数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。   数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。   我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。   数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。应用数学模型  应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的一个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple,Mathematica,Matlab甚至排版软件等。

数学建模论文模板

奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1:83% A2:09% A3:63% A4:19% A5:72% A6:73% A7:04% A8:49% A9:95% A10:40%B1:81% B2:26% B3:55% B4:95% B5:49% B6:27% C1:69% C2:60% C3:39% C4:84%在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中) 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)…………………………………………………………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:………………………………………………………………………………………………………………………………………3.问题3求解……………………………………………………………………………………商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1=1 && m1<=4 m2=m1+2; while m2<=7 s1=0;vlb=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];vub=[];a=[-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2];%b=[-1020,-4069,-3143,-7830,-4440,-2131,-7830,-0859,-4069,-7279,-0663,-3783,-4027,-0663,-7363,-7978,-9456,-7796,-9323,-3817];b=[-1027,-0825,-7618,-4591,-1203,-2161,-1094,-4121,-7328,-0535,-3921,-7038,-4033,-7418,-4121,-7996,-0290,-7802,-8503,-3827];c=[m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2];[x,lam]=lp(c,a,b,vlb,vub) for i=1:20 s1=s1+x(i)*m1+x(20+i)*m2; end if min_value>s1 min_value=s1; t=x; p=m1; q=m2; end m2=m2+2; end m1=m1+2;endplot(j,x);附录2:图二图三

(1) 每个参赛队可以从A、B、C、D、E题中任选一题完成论文。(2) 论文用白色A4纸单面打印;上下左右各留出至少5厘米的页边距;从左侧装订。(3) 论文题目和摘要写在论文封面上,封面页的下一页开始论文正文。(4) 论文从编号页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1 ”开始连续编号。(5) 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。(6) 论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。程序一般无须打印,但应有执行文件,和源程序一起附在电子版论文中以备检查。(7) 请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),请认真书写(注意篇幅一般不超过两页,且无需译成英文)。全国评阅时对摘要和论文都会审阅。(8) 引用别人的成果或其他公开的资料(包括网上甚至在“博客”上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。

说起数学建模,相信大家都不陌生,它的定义是根据计算结果来解释实际问题,建立数学模型的检验和验收全过程,下面是学术堂的数学建模论文格式规范的收集,提供参考。  摘要  一般为200~400 字;其内容主要包括建模思想、模型特点、求解方法、主要结果等,其既要概括全文, 又要反映出本队的特点;  注意:  (1) 控制好论文摘要的字数, 一般应在400 字左右。  (2) 摘要应包括: 数学模型的归类( 在数学上属于什么类型) ;所用的数学知识、建模的思想、算法思想、模型及算法特点; 主要结果( 数值结果, 结论, 回答题目所问的全部“问题”)  (3) 摘要表述要准确、简明、条理清晰、合乎语法。  (4)摘要中不应引用正文中的结果, 也不应有所引用的参考文献出现, 一般也不应有第一人称的语句出现。  问题的重述和分析  重述是指对原问题的简要回顾, 大多数情况下, 问题的重述可以省略。分析则是通过对问题和所给数据的透彻理解, 理出建模的清晰思路, 明确正确的数学方法。一般情况下, 问题的分析尤为重要, 它可以使评阅者明晰答卷人的建模思想和所用方法, 借以判断答卷人对问题的敏感性和数学建模素质  假设  一要抓住实际问题的主要因素, 忽略次要因素, 为建立模型创造条件;二要假设应当“ 合理”;三要假设确属“ 必要” ;四是原题中已给的假设, 一般不再写入。  注意:  (1) 根据题目中条件作出假设;  (2) 根据题目中要求作出假设;  (3) 关键性假设不能缺; 假设要切合题意、合理。  (4)符号说明要注意整篇文章符号一致。  模型的建立  一要:通过对问题的分析引出建模的思路,要有建模的过程。  二要:建成的模型有完整的数学表述, 最好能在建成后集中写出来,以免评阅者找来找去。  三要:建模是分阶段完成的, 即基础模型→中间模型→最终模型。  四要:有时所建的模型相当好, 只是求解困难, 这样的模型也要写出来。然后设法给出简化的模型以利求解。  五要:注意一个实际问题可以有多个模型, 但不要贪多求全, 抓一个或两个有代表性的或能反映本队特点的, 建好、解好就足够了。  六要:注意不要片面地追求“ 建模的创造性“”模不惊人誓不休”, 要知道评卷依据中的“ 建模的创造性”并非仅指模型要有创造性, 而是整个答卷要有一定的创造性, 因此,对所建模型的要求是: 起码“ 正确”, 进而“ 更好”。  七要:注意模型的建立与求解可以分开来写, 也可以合在一起写。即可以模型: 问题①, 问题②……求解: 问题①, 问题②……也可以问题①: 模型, 求解; 问题②: 模型, 求解……  建立数学模型应注意以下几点:  (1) 分清变量类型, 恰当使用数学工具。  (2) 抓住问题本质, 简化变量之间的关系。  (3) 建立数学模型时要有严密的数学推理。  (4) 用数学方法建模, 模型要明确, 要有数学表达式。  模型的求解和结果  一要:有算法的设计或选择, 给出算法的具体步骤或框图。  二要:注意计算机实现时, 如果是自己编程,程序不一定要打印在附录中, 如果是选用数学软件, 写出名称即可。  三要:注意在模型的建立和求解过程中, 可能有必要的数学命题, 如果是自己给出的命题,应当有证明; 如果是引用他人的命题, 应当注明出处( 并列入参考献) 。  四要:注意中间结果, 除非必不可少的, 一般不必写入答卷。  五要:注意最终结果至少要“ 答为所问”。  六要:注意有的赛题的最终结果可以甚至应当“ 超出”赛题的要求。  七要:注意结果的表述不仅有多样性( 公式、表格、图、文字等), 也可有创造性  结果的分析和检验  (1) 对数值结果或模拟结果要进行必要的检验, 若结果不正确、不合理、或误差大时, 要分析原因, 对算法、计算方法、或模型进行修正、改进;  (2) 必要时, 要对模型进行稳定性分析、统计检验、误差分析,要对不同模型进行对比及实际可行性检验。  模型的评价和改进  根据所建模型的特点提出中肯的评价, 并提出切实可行的改进意见。  (1) 优点突出, 缺点不回避。  (2) 推广或改进方向  参考文献  文献尽量是少而精, 不要滥用, 不要罗列无关文献。  参考文献按正文中的引用次序列出,其中书籍的表述方式为:  [编号]作者,书名,出版地:出版社,出版年。  参考文献中期刊杂志论文的表述方式为:  [编号]作者,论文名,杂志名,卷期号:起止页码,出版年。  参考文献中网上资源的表述方式为:  [编号]作者,资源标题,网址,访问时间(年月日)。  附录  视情况而定, 可有可无。  (1) 计算程序、详细的结果, 详细的数据表格, 可在此列出。但不要错, 错的宁可不列  (2) 主要结果数据, 应在正文中列出, 不怕重复。  总之, 评判一篇论文优劣的标准应当是结构完整,条理清楚,文字通顺,打印规范。以上关于数学建模论文格式要求规范的详细介绍,希望大家可以顺利发表论文,取得自己满意的成绩。

1、问题陈述2、模型假设3、模型的建立与求解4、模型验证5、结果分析6、提出新方案7、参考文献

数学建模论文模型建立格式

论文(答卷)用白色A4纸,上下左右各留出5厘米的页边距。论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其它汉字一律采用小四号黑色宋体字,行距用单倍行距。论文从正文开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。

奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1:83% A2:09% A3:63% A4:19% A5:72% A6:73% A7:04% A8:49% A9:95% A10:40%B1:81% B2:26% B3:55% B4:95% B5:49% B6:27% C1:69% C2:60% C3:39% C4:84%在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中) 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)…………………………………………………………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:………………………………………………………………………………………………………………………………………3.问题3求解……………………………………………………………………………………商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1=1 && m1<=4 m2=m1+2; while m2<=7 s1=0;vlb=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];vub=[];a=[-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2];%b=[-1020,-4069,-3143,-7830,-4440,-2131,-7830,-0859,-4069,-7279,-0663,-3783,-4027,-0663,-7363,-7978,-9456,-7796,-9323,-3817];b=[-1027,-0825,-7618,-4591,-1203,-2161,-1094,-4121,-7328,-0535,-3921,-7038,-4033,-7418,-4121,-7996,-0290,-7802,-8503,-3827];c=[m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2];[x,lam]=lp(c,a,b,vlb,vub) for i=1:20 s1=s1+x(i)*m1+x(20+i)*m2; end if min_value>s1 min_value=s1; t=x; p=m1; q=m2; end m2=m2+2; end m1=m1+2;endplot(j,x);附录2:图二图三

数学建模论文的模板

论文(答卷)用白色A4纸,上下左右各留出5厘米的页边距。论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其它汉字一律采用小四号黑色宋体字,行距用单倍行距。论文从正文开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。

解:数学建模的封面无必要说明,因为都是网上现有的形式弄下来,填写组员以及承诺书的。基本格式不细说,通过范文可细看,不过关于数学建模论文的书籍应该较多。我举个简单的范文,当然这个范文不是很好,只是全国二等。涉及到我队其他组员的隐私问题,所以只列举关键部分。首先注意,建模过程中的图片均保存彩色与黑白两种,彩色用于电子版发送,黑色的用于打印封皮成本。封皮及分数评表摘要及关键词,注意其语句的说法(基本是根据什么定理等得到了什么结论,结论是表格形式难以叙述的,可以说见表··,图··)问题重述(基本是将原问题变形,转化为数学问题的表达形式)模型假设与符号说明(模型假设可想到什么就添加进去,建模过程中仍可继续添加,最后整理即可。符号说明,则是建模公式等用到的变量符号及单位,可在做下面模型建立时不断添加)模型建立与分析(关键部分)表格的格式,以及表后的分析。图的格式及后面的分析模型的评价(以好为主,缺点也要稍谈一些,并可说明以后准备怎么改善)参考文献附录(主要为计算程序)(注,每次数学建模都有格式的规定,与试题一起下载,包括大小题目的字体,各种距离格式等)(上面的图片只是一些片段,并非完整的原文)

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献%3A+%C2%DB%CE%C4&ch=uf&num=10&w=site%3A+%C2%DB%CE%C4点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

楼主你好,数学建模论文一般分为以下几个部分:  首先是摘要,这个是全文的概述,里面包括这个模型的主题,以及几个需要解决问题的总体答案,比如对模型结果的阐述,或者对原来的安排评价是否合理等等。另外摘要最好控制在word一页内(小四宋体),不要太多。  下面是论文的主体:   问题重述  主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了。   模型假设  对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。   符号说明  将你要建立的模型中的一些参量用符号代替表示。   模型建立  这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法   问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)  利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。   模型改进  解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。   参考文献  最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。  如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。  如果楼主需要看论文样式的话,推荐一个网站:    这是北京航空航天大学的数学建模网站,里面包括了该学校从92年开始到09年的各届论文,里面不乏一些比较好的论文,楼主如果需要参考样式的话,可以看看这些论文。  最后祝楼主好运。

相关百科

热门百科

首页
发表服务