首页

> 期刊发表知识库

首页 期刊发表知识库 问题

数据科学的核心

发布时间:

数据科学的核心

简单说有三大核心技术:拿数据,算数据,卖数据。基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。数据清理:指利用ETL等清洗工具,对有遗漏数据(缺少感兴趣的属性)、噪音数据(数据中存在着错误、或偏离期望值的数据)。数据集成:是指将不同数据源中的数据,合并存放到统一数据库的,存储方法,着重解决三个问题:模式匹配、数据冗余、数据值冲突处理。数据转换:是指对所抽取出来的数据中存在的不一致,进行处理的过程。它同时包含了数据清洗的工作,即根据业务规则对异常数据进行清洗,以保证后续分析结果准确性。数据规约:是指在最大限度保持数据原貌的基础上,最大限度精简数据量,以得到较小数据集的操作,包括:数据方聚集、维规约、数据压缩、数值规约、概念分层等。

2020年成为数据科学家需要具备哪些技能?

数学功底:微积分是严格要掌握的。不一定要掌握多元微积分,但一元微积分是必须要熟练掌握并使用的。另外线性代数一定要精通,特别是矩阵的运算、向量空间、秩等概念。当前机器学习框架中很多计算都需要用到矩阵的乘法、转置或是求逆。虽然很多框架都直接提供了这样的工具,但我们至少要了解内部的原型原理,比如如何高效判断一个矩阵是否存在逆矩阵并如何计算等。数理统计:概率论和各种统计学方法要做到基本掌握,比如贝叶斯概率如何计算?概率分布是怎么回事?虽不要求精通,但对相关背景和术语一定要了解。交互式数据分析框架:这里并不是指SQL或数据库查询,而是像Apache Hive或Apache Kylin这样的分析交互框架。开源社区中有很多这样类似的框架,可以使用传统的数据分析方式对大数据进行数据分析或数据挖掘。笔者有过使用经验的是Hive和Kylin。不过Hive特别是Hive1是基于MapReduce的,性能并非特别出色,而Kylin采用数据立方体的概念结合星型模型,可以做到很低延时的分析速度,况且Kylin是第一个研发团队主力是中国人的Apache孵化项目,因此日益受到广泛的关注。机器学习框架:机器学习当前真是火爆宇宙了,人人都提机器学习和AI,但笔者一直认为机器学习恰似几年前的云计算一样,目前虽然火爆,但没有实际的落地项目,可能还需要几年的时间才能逐渐成熟。不过在现在就开始储备机器学习的知识总是没有坏处的。说到机器学习的框架,大家耳熟能详的有很多种, 信手拈来的就包括TensorFlow、Caffe8、Keras9、CNTK10、Torch711等,其中又以TensorFlow领衔。笔者当前建议大家选取其中的一个框架进行学习,但以我对这些框架的了解,这些框架大多很方便地封装了各种机器学习算法提供给用户使用,但对于底层算法的了解其实并没有太多可学习之处。因此笔者还是建议可以从机器学习算法的原理来进行学习。

数据科学的核心问题

2020高考志愿填报,大数据专业解读

数据科学根据其侧重点不同其实又分为三大类,即:数据分析、数据挖掘和大数据。 数据分析主要偏重业务,即利用一些数据分析和统计工具,如Excel、Spass、SAS、SQL等,进行数据分析和展现,以辅助公司的某项业务决策。 数据挖掘比数据分析更侧重于建模能力一些,一般是给定一些数据和某个问题,让你运用某些机器学习算法从中建立出模型,再通过这个模型去对某些东西进行预测。所以,机器学习算法可以说是数据挖掘中的核心。 大数据目前一般指Hadoop和Spark这些大数据框架,实际上偏重于一些平台架构类的东西。 注意,我们这里的数据科学主要围绕数据挖掘为主,辅助以一些数据分析技术。

能够从不同的角度提出回答问题的方法,并且有取舍。也许没有一个方法是百分百正确或者可以百分百给出问题答案的,但是一个好的数据分析师,能够给出不同维度的数据,总结出其中的故事,给出可能性最高的答案。继续刚才的例子,产品前期用户最重要的使用特点是什么,是一个可以推广的特点吗,除了去看用户对这个产品的使用数据,你也许还想看一下用户在其他同类竞争产品里面的使用数据,也许还想看一些市场数据来确定市场大小以及市场需求,也许还想看一下用户本身的属性(年龄,学历,性别,居住地或者主要社交圈),也许还想看一下用户使用产品之后的变化可以看的事情非常多,也很容易迷失在无穷无尽的曲线中。可是,哪些才是最重要的呢。

数据科学的核心技术

想学习大数据技术,是不是首先要知道大数据技术有哪些呢?也好知道自己未来应该往哪个方向发展,应该重点学习哪些知识? 抽象而言,各种大数据技术无外乎分布式存储 + 并行计算。具体体现为各种分布式文件系统和建立在其上的并行运算框架。这些软件程序都部署在多个相互连通、统一管理的物理或虚拟运算节点之上,形成集群(cluster)。因此不妨说,云计算是大数据的基础。下面介绍几种当前比较流行的大数据技术:HadoopHadoop无疑是当前很知名的大数据技术了。2003年到2004年间,Google发布了关于GFS、MapReduce和BigTable三篇技术论文(这几篇论文成为了后来云计算、大数据领域发展的重要基石)。当时一位因公司倒闭赋闲在家的程序员Doug Cutting根据前两篇论文,开发出了一个简化的山寨版GFS – HDFS,以及基于其的MapReduce计算框架,这就是Hadoop当初的版本。后来Cutting被Yahoo雇佣,得以依赖Yahoo的资源改进Hadoop,并将其贡献给了Apache开源社区。简单描述Hadoop原理:数据分布式存储,运算程序被发派到各个数据节点进行分别运算(Map),再将各个节点的运算结果进行合并归一(Reduce),生成结果。相对于动辄TB级别的数据,计算程序一般在KB – MB的量级,这种移动计算不移动数据的设计节约了大量网络带宽和时间,并使得运算过程可以充分并行化。在其诞生后的近10年里,Hadoop凭借其简单、易用、高效、免费、社区支持丰富等特征成为众多企业云计算、大数据实施的首选。StormHadoop虽好,却有其“死穴”其一:它的运算模式是批处理。这对于许多有实时性要求的业务就无法做到很好的支持。因此,Twitter推出了他们自己的基于流的运算框架——Storm。不同于Hadoop一次性处理所有数据并得出统一结果的作业(job),Storm对源源导入的数据流进行持续不断的处理,随时得出增量结果。SparkHadoop的另一个致命弱点是:它的所有中间结果都需要进行硬盘存储,I/O消耗巨大,这就使得它很不适合多次迭代的运算。而大多数机器学习算法,恰恰要求大量迭代运算。2010年开始,UC Berkeley AMP Lab开始研发分布式运算的中间过程全部内存存储的Spark框架,由此在迭代计算上大大提高了效率。也因此成为了Hadoop的强有力竞争者。NoSQL 数据库NoSQL数据库可以泛指非关系型数据库,不过一般用来指称那些建立在分布式文件系统(例如HDFS)之上,基于key-value对的数据管理系统。相对于传统的关系型数据库,NoSQL数据库中存储的数据无需主键和严格定义的schema。于是,大量半结构化、非结构化数据可以在未经清洗的情况下直接进行存储。这一点满足了处理大量、高速、多样的大数据的需求。当前比较流行的NoSQL数据库有MongoDB,Redis,Cassandra,HBase等。NoSQL并不是没有SQL,而是不仅仅有(not only)SQL的意思。为了兼容之前许多运行在关系型数据库上的业务逻辑,有很多在NoSQL数据库上运行SQL的工具涌现出来,典型的例如Hive和Pig,它们将用户的SQL语句转化成MapReduce作业,在Hadoop上运行。大数据产业已进入发展的“快车道”,急需大量优秀的大数据人才作为后盾。能够在大数据行业崛起的初期进入到这个行业当中来,才有机会成为时代的弄潮儿。

人工智能数据采集是指在人工智能领域,根据特定项为训练机器学习数学模型所使用的的训练数据集的要求,在一定的既定标准下收集和衡量数据和信息的过程,并输出一套有序的数据。澳鹏提供的数据采集服务,提升规模化机器学习。作为训练数据服务的行业领先者,我们能够快速交付涵盖多种数据类型大量优质数据,包括图像、视频、语音、音频和文本,以满足客户特定 AI 项目的需求

简单说有三大核心技术:拿数据,算数据,卖数据

楼上说的对,目前国内基本就是hadoop生态做分布式存储,实时计算框架的话spark和flink。基本都是开源技术,可以多关注一下官方了解,也可以关注一些好的微信公众号如“自学帮”,里边都有各个组件的详细说明

数据科学的核心任务

数学功底:微积分是严格要掌握的。不一定要掌握多元微积分,但一元微积分是必须要熟练掌握并使用的。另外线性代数一定要精通,特别是矩阵的运算、向量空间、秩等概念。当前机器学习框架中很多计算都需要用到矩阵的乘法、转置或是求逆。虽然很多框架都直接提供了这样的工具,但我们至少要了解内部的原型原理,比如如何高效判断一个矩阵是否存在逆矩阵并如何计算等。数理统计:概率论和各种统计学方法要做到基本掌握,比如贝叶斯概率如何计算?概率分布是怎么回事?虽不要求精通,但对相关背景和术语一定要了解。交互式数据分析框架:这里并不是指SQL或数据库查询,而是像Apache Hive或Apache Kylin这样的分析交互框架。开源社区中有很多这样类似的框架,可以使用传统的数据分析方式对大数据进行数据分析或数据挖掘。笔者有过使用经验的是Hive和Kylin。不过Hive特别是Hive1是基于MapReduce的,性能并非特别出色,而Kylin采用数据立方体的概念结合星型模型,可以做到很低延时的分析速度,况且Kylin是第一个研发团队主力是中国人的Apache孵化项目,因此日益受到广泛的关注。机器学习框架:机器学习当前真是火爆宇宙了,人人都提机器学习和AI,但笔者一直认为机器学习恰似几年前的云计算一样,目前虽然火爆,但没有实际的落地项目,可能还需要几年的时间才能逐渐成熟。不过在现在就开始储备机器学习的知识总是没有坏处的。说到机器学习的框架,大家耳熟能详的有很多种, 信手拈来的就包括TensorFlow、Caffe8、Keras9、CNTK10、Torch711等,其中又以TensorFlow领衔。笔者当前建议大家选取其中的一个框架进行学习,但以我对这些框架的了解,这些框架大多很方便地封装了各种机器学习算法提供给用户使用,但对于底层算法的了解其实并没有太多可学习之处。因此笔者还是建议可以从机器学习算法的原理来进行学习。

数据科学的核心任务是

数据库系统的核心和基础,是数据模型,现有的数据库系统均是基于某种数据模型的。数据库系统的核心是数据库管理系统。数据库系统一般由数据库、数据库管理系统(DBMS)、应用系统、数据库管理员和用户构成。DBMS是数据库系统的基础和核心。

数据分析师的基本素养--论如何成为一名数据科学家 Part 1这里有一些我收集的关于数据处理方面的材料,希望能够对你有所帮助(请注意:我是一名本科生,下面提到的资料仅为个人整理所得,在任何方面都不可视为专家意见)。了解矩阵因式分解学习计算机线性代数相关的课程(这类课程有时也叫做线性代数应用、矩阵计算、数值分析或者矩阵分析等,它既可以属于计算机科学,也可以属于应用数学课程)。矩阵分解算法是许多数据挖掘应用的基础,而在标准的"机器学习"课程中使用的矩阵分解算法通常不具有代表性。面对TB规模的数据时,Matlab等传统工具无法有效地执行数据处理工作,你不可能在大数据上只执行一条eig()语句就可以得出预期的结果。分布式矩阵计算包,例如Apache Mahout[1] 中包含的那些,试图填补这方面的空白,但是,你仍需要理解数值算法/LAPACK/BLAS [2][3][4][5]的工作机制,以便正确使用它们,针对特殊情况进行调整,构建自己的数据处理工具,并将其扩展到商业机器集群中TB级别规模的数据之上[6]。数学课程通常基于本科代数与微积分的基础,因此你应该具有良好的先决条件。

数据库系统的核心是数据库管理系统。数据库系统一般由数据库、数据库管理系(DBMS)、应用系统、数据库管理员和用户构成。DBMS是数据库系统的基础和核心。

相关百科

热门百科

首页
发表服务