首页

> 期刊发表知识库

首页 期刊发表知识库 问题

小学数学论文怎么写四年级500字

发布时间:

小学数学论文怎么写四年级500字

我看过小学四年级的数学教材,内容比较简单,写论文应密切联系课本,小学当然以基础为主,你可以就某一章节进行详细的分析讲解夹杂生动具体的例子,也可以包罗全书的内容,有重点有层次的阐述。

写一些生活中遇到的数学问题呀比如和父母一起逛街,买东西的时候讨价还价,打折,这些都是什么意思呢?可以去百度一下哦再就是,如果你有2个苹果,记做2而你的同学又借给你了3个苹果,那么你此时有的苹果是5个,记做5那你想想看,你同学借出去了3个苹果,该怎么表示(记)呢?都可以写个论文,看看有什么数学的应用在里面其实数学论文不要求你写得多难哪怕最简单的1+1也行,如果你能写出自己的想法在里面,老师和家长都会很高兴的!

我自己写的,你可以借鉴一下黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则38°——62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。

四年级数学小论文500字左右

那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了于是我和奶奶就去买西瓜走进菜市场,我一眼就瞅住了一个西瓜堆儿这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,6斤,17元8角”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤5元,单价是:5÷1=5元,而一斤半十五块五,也就是5斤5元,它的单价是:5÷5,我没细算,想想可能应该比5多,但是却犯了个致命的错误算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了回到家,我把这件事告诉给妈妈妈妈听了之后又问了一遍价钱我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”“因为这儿是5÷1=5,而别人那儿是5÷5,反正他这儿便宜”我理直气壮妈妈说:“你呀,太马虎了,5÷5=333……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!

游戏中的数学一天,熙熙姐姐交给我们一个游戏:两人轮流从1—10按顺序报数,每次只能报1、2或3个数,谁先报到10,谁就赢了大家都想将对方“打倒”,但是,怎样才能让自己百分之百的胜利呢?这个问题总在我的脑海中回荡,使我疑惑不解回到家,我在小篮子里挑了十个石子,准备新手操作一下我把爸爸叫来,让爸爸和我一起做这个游戏我找来一支笔和一本本子,将我做的每一步记录下来规则是这样的:我和爸爸轮流拿石子,最多拿3个,最少拿1个,谁拿到最后一个,谁就赢了第一场我失败了原来,爸爸先拿,爸爸让我在最短的时间内输的“很惨”;第二场我先拿,我居然赢了……我将记录反复看了几遍,终于发现,我用最大的和最小的数相加:即1+3=4,又用了石子总数除以最大数与最小数的和,也就是10÷4=2…2,如果有余数,就我先拿,余数是几就那几个石子,如果没有余数,让对方先拿现在余数是2,就拿2个石子,剩下的每次拿的石子和对方拿的和是除数3,我就可以必胜了为了保证答案的准确性,我又拿了28个石子和爸爸重新玩,有了上面的规律,我果然战无不胜!原来,生活中数学无处不在,它们正等着你去发现呢! 学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中比如说,上街买东西自然要用到加减法,修房造屋总要画图纸类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识 从这以后,我开始有意识的把数学和日常生活联系起来有一次,妈妈烙饼,锅里能放两张饼我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的看来,我们必须学以致用,才能更好的让数学服务于我们的生活 数学就应该在生活中学习有人说,现在书本上的知识都和实际联系不大这说明他们的知识迁移能力还没有得到充分的锻炼正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处 我在商场里学数学用数学之买家角度 作为一个买家,最主要的是要做到货比三家要买一件衣服,遇到合适的不妨先把品牌、尺码、价格记下来再到别的店做比较一个物品的价格是进价+运费+税费+厂商利润,还有店铺租金员工工资等一系列附加成本,所以往往卖价要比商品价值高太多了其实在省钱这方面有一个更好的办法——网上购物网上购物价格要便宜多了在网上一个物品的价格是进价+运费一件三四百的衣服,在网上可能只卖五六十,十分实惠就算加上运费也要便宜许多所以,我认为现在商场中挑选自己合适的东西,把品牌、货号、以及自己合适的尺码记好,再到网上购买当然有些东西在网上是买不到的,这是就只有货比三家挑出最实惠的再买了可能有许多人认为一分价钱一分货,便宜没好货……我可以这么说,只要掌握好方法,便宜也是可以买到好东西的同样一件商品,便宜的和贵的,您会选择哪个呢? 大家也知道网上东西便宜,但存在的风险较大这就需要我们有一定的警惕性了!网上卖东西的商家是有信誉度的,这个信誉度直接显示在网页上以供买家参考同时还有成交量啊,好评度阿以及买家的留言,这些都是购物网站为了防止网上行所设置的现在网上购物已经很透明了,多转转多看看总吃不了亏 毕竟网上购物还是风险大,所以不妨我们再来看看商场里的活动吧,商场里的活动多,又诱人,其中会不会有什么小陷阱呢?这时就需要运用我们的数学啦! “买一赠一了啊,满200送200!”哟,你瞧,活动来了! 满额送券销售活动 每过节假日,我们行走在繁华的大街上,随处可见商家打出的“满200送200”的促销招牌消费者们蜂拥而至,商场里人山人海,抢购成风而实际上商家心里早打好了如意算盘俗话说:只有买亏,没有卖亏,“满200送200元券”只是商家的一种促销手段,其中暗藏着数学问题 就说满200送200元购物券某顾客先用490元买了一件羊绒外衣,送来了400元购物券此时得到的四百元购物券,一般顾客心理都会产生一种捡便宜的感觉,于是就产生了较强的购买欲望,意欲花完为快(一般商家的购物券都是限期消费,在一定的时期内没有消费就过期作废)于是这位顾客又花了248元券买了一双鞋,又用剩下的150元券中的128买了一条围巾那么顾客到底便宜了多少呢?我们可以算一下128+248+490=866(元),这是原来不打折时需要花的钱490/866,所打的折扣大约是五六折这位先生处理还好,因为购物券只能在指定地点使用,如果买了送,送了买……这样循环下去的话,那商家就赚大了!因为你不得不一直在这个地点消费,商家就算把你套上套了,所以经过真么一算,看来数学真的很重要! “快看报纸!快看看!有奖耶~!诶?!还有个商场打折耶~!不过哪个合算啊?”你瞧瞧!又是一个活动哟… 有奖销售与折扣比较 某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售我们想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大? 面对问题我们并不能一目了然.在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制.所以这个问题应该有几种答案. 分析:(1)若甲商厦确定在单位时间内抽奖,当参加人数较少,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客;(2)若甲商厦确定在单位时间内抽奖,而在单位时间内的消费者很多,那么它给顾客的优惠幅度就相应的小.因为甲商厦提供的优惠金额是固定的,共14000元(10000+2000+1000+1000=14000).假设两商厦提供的优惠都是14000元,则可知乙商厦的营业额为280000元(14000÷5%=280000) “喔~~~原来如此啊!这个还得看人数呢!还牵扯到优惠金额,嗯……数学是多么重要哇!” 学数学固然重要,但是最终目的还是能把它合理运用到实际生活中来,我们要学会学数学用数学!

打的过搞的广告费沟沟壑壑好尴尬飞飞哥vvv现代风格v不会太丰富非常v比较运费搭错车滚滚滚哈哈哈吃的

生活中的数学平安夜,妈妈带我去逛商场到了商场一看,今天商场里到处都在搞活动妈妈对我说;“今天在搞活动,商场的东西一定比平时便宜,看看我们有没有什么想买的”在商场逛了一圈,我看中了一双鞋子,标价318元,这个柜台搞的活动时满166减61元,妈妈对我说:“平时不搞活动时这种鞋打8折”营业员告诉我们今天搞活动买鞋可划算了,说完就要帮我们按照活动价开票,这时妈妈突然说:“等一下”转身又对我说:“你算一下按照活动价到底有没有便宜”我心想:搞活动嘛肯定比平时要便宜,还要算什么呢?但是妈妈让我算,我只能勉为其难,算一下呗按照活动价算,满166减61元,318元里只有一个166,也就是只能减一个61元,318-61=257(元),按照平时的价格打8折计算,318*80%=4(元)一算真的还是平时不搞活动时的价格便宜,于是妈妈对营业员说还是按照平时的价格开票吧付过钱后,我们就拿了鞋走开了离开了柜台,妈妈就对我说:“我们平时做什么事情都要认真考虑,别被一些表面现象所迷惑了”看来数学在生活中还真是无处不在啊

3年级数学小论文怎么写500字

回答 1、题目要新颖。一个新颖的题目可以给人耳目一新的感觉,而且容易给读者和评审人员留下深刻的印象,比较容易通过和发表,因此在题目的选择和设定上要多花些心思。 2、范围要小。既然是小论文,那么选题范围就不要太大了,太大太宽泛的论文一个是容易落入俗套,另外就是如果没有深入研究的话,不容易阐述的清晰透彻,给人言之无物的感觉,不如选个小一点的课题深入的说明,这样效果会更好。 3、见解独特。对于你所选择的课题你要有自己独特的见解,与众不同的见解是你论文的核心和亮点,如果没有这些那么这篇论文的质量无疑是值得质疑的,很难引起读者的注意和评审的好感。 4、系统性强。因为数学是一门以逻辑推理为主的学科,因此你的论述要有很好的系统性,从前到后一步步进行推理,这样的论文即使在文采方面并不出众,也是容易因其逻辑性和系统性而成为一篇好的论文的。 更多2条 

回答 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前11XX年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 即: c=(a2+b2)(1/2) 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=,x=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 提问 一个小正方体的棱是三厘米现在有20个小正方体这样的小正方体把它搭成一个大的长方体这个长方体的表面积是多少? 答案是什么? 回答 3×2+(20×3)×3×4=6+720=726 提问 能讲一下意思? 为什么这样做? 回答 3×3×2上下底正方形面积 20×3×3侧边面积 720+18=738 提问 谢谢老师! 再见 再见 更多21条 

游戏中的数学一天,熙熙姐姐交给我们一个游戏:两人轮流从1—10按顺序报数,每次只能报1、2或3个数,谁先报到10,谁就赢了大家都想将对方“打倒”,但是,怎样才能让自己百分之百的胜利呢?这个问题总在我的脑海中回荡,使我疑惑不解回到家,我在小篮子里挑了十个石子,准备新手操作一下我把爸爸叫来,让爸爸和我一起做这个游戏我找来一支笔和一本本子,将我做的每一步记录下来规则是这样的:我和爸爸轮流拿石子,最多拿3个,最少拿1个,谁拿到最后一个,谁就赢了第一场我失败了原来,爸爸先拿,爸爸让我在最短的时间内输的“很惨”;第二场我先拿,我居然赢了……我将记录反复看了几遍,终于发现,我用最大的和最小的数相加:即1+3=4,又用了石子总数除以最大数与最小数的和,也就是10÷4=2…2,如果有余数,就我先拿,余数是几就那几个石子,如果没有余数,让对方先拿现在余数是2,就拿2个石子,剩下的每次拿的石子和对方拿的和是除数3,我就可以必胜了为了保证答案的准确性,我又拿了28个石子和爸爸重新玩,有了上面的规律,我果然战无不胜!原来,生活中数学无处不在,它们正等着你去发现呢! 学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中比如说,上街买东西自然要用到加减法,修房造屋总要画图纸类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识 从这以后,我开始有意识的把数学和日常生活联系起来有一次,妈妈烙饼,锅里能放两张饼我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的看来,我们必须学以致用,才能更好的让数学服务于我们的生活 数学就应该在生活中学习有人说,现在书本上的知识都和实际联系不大这说明他们的知识迁移能力还没有得到充分的锻炼正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处 我在商场里学数学用数学之买家角度 作为一个买家,最主要的是要做到货比三家要买一件衣服,遇到合适的不妨先把品牌、尺码、价格记下来再到别的店做比较一个物品的价格是进价+运费+税费+厂商利润,还有店铺租金员工工资等一系列附加成本,所以往往卖价要比商品价值高太多了其实在省钱这方面有一个更好的办法——网上购物网上购物价格要便宜多了在网上一个物品的价格是进价+运费一件三四百的衣服,在网上可能只卖五六十,十分实惠就算加上运费也要便宜许多所以,我认为现在商场中挑选自己合适的东西,把品牌、货号、以及自己合适的尺码记好,再到网上购买当然有些东西在网上是买不到的,这是就只有货比三家挑出最实惠的再买了可能有许多人认为一分价钱一分货,便宜没好货……我可以这么说,只要掌握好方法,便宜也是可以买到好东西的同样一件商品,便宜的和贵的,您会选择哪个呢? 大家也知道网上东西便宜,但存在的风险较大这就需要我们有一定的警惕性了!网上卖东西的商家是有信誉度的,这个信誉度直接显示在网页上以供买家参考同时还有成交量啊,好评度阿以及买家的留言,这些都是购物网站为了防止网上行所设置的现在网上购物已经很透明了,多转转多看看总吃不了亏 毕竟网上购物还是风险大,所以不妨我们再来看看商场里的活动吧,商场里的活动多,又诱人,其中会不会有什么小陷阱呢?这时就需要运用我们的数学啦! “买一赠一了啊,满200送200!”哟,你瞧,活动来了! 满额送券销售活动 每过节假日,我们行走在繁华的大街上,随处可见商家打出的“满200送200”的促销招牌消费者们蜂拥而至,商场里人山人海,抢购成风而实际上商家心里早打好了如意算盘俗话说:只有买亏,没有卖亏,“满200送200元券”只是商家的一种促销手段,其中暗藏着数学问题 就说满200送200元购物券某顾客先用490元买了一件羊绒外衣,送来了400元购物券此时得到的四百元购物券,一般顾客心理都会产生一种捡便宜的感觉,于是就产生了较强的购买欲望,意欲花完为快(一般商家的购物券都是限期消费,在一定的时期内没有消费就过期作废)于是这位顾客又花了248元券买了一双鞋,又用剩下的150元券中的128买了一条围巾那么顾客到底便宜了多少呢?我们可以算一下128+248+490=866(元),这是原来不打折时需要花的钱490/866,所打的折扣大约是五六折这位先生处理还好,因为购物券只能在指定地点使用,如果买了送,送了买……这样循环下去的话,那商家就赚大了!因为你不得不一直在这个地点消费,商家就算把你套上套了,所以经过真么一算,看来数学真的很重要! “快看报纸!快看看!有奖耶~!诶?!还有个商场打折耶~!不过哪个合算啊?”你瞧瞧!又是一个活动哟… 有奖销售与折扣比较 某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售我们想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大? 面对问题我们并不能一目了然.在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制.所以这个问题应该有几种答案. 分析:(1)若甲商厦确定在单位时间内抽奖,当参加人数较少,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客;(2)若甲商厦确定在单位时间内抽奖,而在单位时间内的消费者很多,那么它给顾客的优惠幅度就相应的小.因为甲商厦提供的优惠金额是固定的,共14000元(10000+2000+1000+1000=14000).假设两商厦提供的优惠都是14000元,则可知乙商厦的营业额为280000元(14000÷5%=280000) “喔~~~原来如此啊!这个还得看人数呢!还牵扯到优惠金额,嗯……数学是多么重要哇!” 学数学固然重要,但是最终目的还是能把它合理运用到实际生活中来,我们要学会学数学用数学!

国庆节中的一天,我和爸爸吃完午饭玩24。从开始到结束一直是我赢,爸爸说:“你有什么技巧?”我说: “巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动.巧算24点的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24.每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等. “算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题.计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑.给你介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解.把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10—6÷3)×3=24等.又如2、3、3、7可组成(7+3—2)×3=24等.实践证明,这种方法是利用率最大、命中率最高的一种方法. 2.利用0、11的运算特性求解.如3、4、4、8可组成3×8+4—4=24等.又如4、5、J、K可组成11×(5—4)+13=24等. 3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数) ①(a—b)×(c+d) 如(10—4)×(2+2)=24等. ②(a+b)÷c×d 如(10+2)÷2×4=24等. ③(a-b÷c)×d 如(3—2÷2)×12=24等. ④(a+b-c)×d 如(9+5—2)×2=24等. ⑤a×b+c—d 如11×3+l—10=24等. ⑥(a-b)×c+d 如(4—l)×6+6=24等. 游戏时,同学们不妨按照上述方法试一试.需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5. 不难看出,“巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算能力和反应能力很有帮助.” 爸爸说“真棒!我送你一个航模。” 看来,生活真离不开数学

5年级数学小论文怎么写500字

巧用平均数,同学们我们日常生活中都做过简单有趣的数学问题吧,今天我和大家来分享一题罢问题有¥6超重,鹅卵石他们的重量是5千克6千克4千克4千克3千克2千克要求他们分别放在三个背包里,最要求,最终的一个背包尽可能近一点,请写出最终的背包的石头是多少千克,请同学们动手开始吧,接下来我来解答5+ 6:00 +6+4+4+3+2 ( ÷3等于17千克,这时三个背包的平均数,所以最终的肯定要超过17千克,如果¥1中联部,不是整数体育课块平均数为整数,所以最小最重的背包重量只能是5 千克10千克在这六个重量中,正好有6+46+4单5千克与其余的¥5中做的另一块都不可能得到5千克的重量最重的背包的证明,不可能是5千克,那么悲观中就可能最小就是10千克,六个重量重正好有个是6+4等于10或4+4+4+2等于10 24+4+2等于10也就是说,可以取到10千克,剩下的石头中4+3+2等于9000客衣个背包中5千克,所以这样这道题的正确答案是10千克,同学们你们明白了吗了吗?

这个难度比较大

写的不错,是不错,很好 ,可是有的地方写错了 ,我就不说出来了, 希望我进步 。

0是一个神秘的数字,它像宇宙中的奥秘一样,让人捉摸不透。0也是一个重要的数字,如果你一不小心,多添了一个0或少加了一个0的话,那后果真是不堪设想。这次的数学考试,让我真正领略了0的重要性。当考卷发下来的时候,99分!我立即寻找错误点。结果令我目瞪口呆。原来是4500÷90这道题。“怎么可能这么简单的题我也会出错?”我心里嘀咕道。想起当时在口算45000÷90这道题时,我轻而易举地写下50,还十分自信,可到头来一计算原来得500,差了一个0。这是多少不应该的呀!不该错的也错了,想必0是多么重要呀!如果我以后当了公司的财务总经理,别人来提钱,本来要提10000元,我却多加了一个0--100000,在帐单上仍然记了10000元。那这90000元我向谁来要呀!这一切后果都得我承担啊。通过这件事,我明白了在工作上、学习上都要一丝不苟,要不然后果非常严重。

科学小论文500字四年级

科学小论文,科学小论文,科学小论文,科学小论文,科学小论文,(以下省略99个“科学小论文”)

北京2008奥运会体育中心是一个很大很漂亮的鸟巢样式,国家游泳中心则是一个很漂亮的充满着气泡的水立方,但是庞然大物下面究竟隐藏着哪些方面的技术呢?今天科技小论文将带领您解开这些什么的建筑物。 首先我们来说“鸟巢”,鸟巢建筑是基于国际建筑领先地位的,他是我国乃至世界在空间技术的应用方面的一个重大突破,也是首次将空间技术应用到建筑物结构框架上的一个重大创举。它是由我国多为建筑方面的专家通过进行可行性验证和安全构架验证而决定实施的一个重大工程,于是 鸟巢成了 我国2008奥运会的一大标志之一。他将向全世界展示一个全新的中国。 首先在设计结构上,采用空间技术的鸟巢,在最大程度上介绍了对原材料的需求,节约了成本,并且形象完美纯净,是奥林匹克的一大亮点。 “水立方”以方型的建筑形态体现与“鸟巢”和谐共生的中国文化理念。“水立方”钢结构采用了新型的基于气泡理论的多面体空间钢架体系,属于国内外首创,是一个具有很高科技含量的建筑,结构设计面临着许多国内外前所未有的课题 题将通过对新型空间结构几何构成与优化、结构整体分析与设计、结构风雪冰试验、各类节点和杆件计算方法与实验、室内环境声光电热研究、ETFE立面装配系统研究等方面的研究,完成将最终的成果直接应用于国家游泳中心的设计与施工,确保工程安全、经济、合理,同时纳入国家新版网格结构技术规程等课题立项目标。

捏鸡蛋  不知大家有没有尝试过捏鸡蛋,可能有的人会觉得这没有意义,因为谁都知道鸡蛋薄薄的壳,一碰就碎,有多少人知道这其中鲜为人知的奥秘。  那时我在家上网查资料,看到了一个有趣的故事,上面说:“一个大力士能徒手打碎一块砖,可是有个人叫他把鸡蛋捏破,大力士拿起鸡蛋使劲捏了半天,却怎么也捏不破。”我看了半信半疑,决定找个机会试验一下。  这天,妈妈答应中午给我做我最爱吃又最有营养的番茄炒蛋,想到那甜甜的番茄,滑滑的鸡蛋,我便口水直流。到了中午,我主动请缨要去帮妈妈,妈妈答应了,让我去打两个鸡蛋。我先从冰箱里拿了两个鸡蛋,然后拿了一个大碗,看着鸡蛋,我心想:试验的好机会来了。第一个鸡蛋,我按平常的方法打到碗里去,一敲就破的鸡蛋让我对那个故事产生了更多怀疑。第二个鸡蛋,为了防止捏碎鸡蛋时蛋黄洒一地,我刻意把鸡蛋对准碗中心这时,我的心“砰砰”直跳,手心都冒出了汗。鸡蛋破碎那一幕仿佛出现在我的眼前,我双眼一闭,然后等待鸡蛋破裂的声音响起。但令我吃惊的是,当我睁开眼睛,鸡蛋竟然没破。第一回合的“失利”没有让我气馁,我准备进行第二回合第二回合,我吸取了“教训”,我这次用两只手把鸡蛋紧紧握在手里,然后咬紧牙关,瞪大眼睛,使出全身力量去捏鸡蛋尽管我使出了九牛二虎之力,可在我认为这回鸡蛋“必死无疑”的时候,它却安然无恙地在我手中这让我又懊恼又惊奇,我只好去问在旁边的妈妈  妈妈听了我的话后,语重心长的对我说:“孩子,这其实是一个科学原理。鸡蛋壳虽然很薄,但它是一个椭圆形,当你去捏它时,它就会把你使出的力量全部均匀的分布在鸡蛋各个地方,所以它能承受很大的力量,一些建筑物就是运用这个原理建成的。”听了妈妈的话,我恍然大悟。  其实这个世界真的非常奇妙,我相信只要大家爱发现,爱观察,爱劳动,就能与科学邂逅。当今社会可以说已经离不开科学了,相信我们明亮的眼睛能发现许多奇妙的事物。

蚂蚁为什么不会迷路 一只微不足道的蚂蚁,相信大家都很熟悉。那又有谁能真正地了解蚂蚁呢?我的脑子里又出现了一个疑问:蚂蚁为什么不会迷路呢? 带着这个问题,我查阅了一些书籍,看了一点电脑上的资料,然后明白,蚂蚁从蚁穴出发到达目的地后,沿途会留下一些气味,返回蚁穴。用触角相互碰一下,通知其他的蚂蚁。科学家曾经就作了一个试验。科学家先确定一只蚂蚁,将他沿途到达目的地的地方用力擦干净。当这只蚂蚁返回时,在被擦去气味的地方突然间停了下来。原地边转圈边寻找着什么。从而得到蚂蚁是靠气味来辨别方向的。 但现实生活中是不是这样的呢?我为了证实这个结论,做了个试验。我找来一根长木棍,在上面撒了一些米粒,放在蚁穴周围。我在蚁穴周围隐蔽着,不一会,蚂蚁就从蚁穴里钻出来了,它爬上木棍,飞快的到达了放米粒的地方,趁它匆忙搬米粒的时候,我悄悄地把木棍的后端折断了一点,马上躲到了一边,蚂蚁搬着“战果”兴高采烈地走回家,到了那被折断的地方时,立刻站住不动了,在原地转圈,用“热锅上的蚂蚁——急得团团转”来形容再合适不过了。而这高兴也是暂时的,我又怕这只是偶然性,老师说过,科学避免不了偶然性嘛!于是,我又重复了刚才的实验3次,这才放心了。终于解了这个谜! 蚂蚁为什么不会迷路?因为蚂蚁是靠气味来辨别方向的。经过了我的努力,这个答案才获得了证实。这一次,我为了解蚂蚁打下了结实的基础。

相关百科

热门百科

首页
发表服务