人工智能应用范围比较广
没有
(人工智能与机器人研究),这本书上面都是别人发表的关于人工智能的文章,比较权威可信的
应用场景愈发丰富人工智能技术经过过去近10年的快速发展已经取得较大突破,随着人工智能理论和技术的日益成熟,人工智能场景融合能力不断提升,因此,近年来商业化应用已经成为人工智能科技企业布局的重点,欧洲、美国等发达国家和地区的人工智能产业商业落地期较早,中国作为后期之秀,近年来在政策、资本的双重推动下,人工智能商业化应用进程加快。目前,人工智能技术已在金融、医疗、安防、教育、交通、制造、零售等多个领域实现技术落地,且应用场景也愈来愈丰富值得注意的是,尽管目前全球范围内人工智能商业化进程正加速推进,但受制于应用场景的复杂度、技术的成熟度、数据的公开水平等限制,全球人工智能仍处在产业化和市场化的探索阶段,落地场景的丰富度、用户需求和解决方案的市场渗透率仍有待提高。发展规划国家政策层面看——《新一代人工智能发展规划》提出,到2020年初步建成人工智能技术标准、服务体系和产业生态链,培育若干全球领先的人工智能骨干企业,人工智能核心产业规模超过1500亿元,带动相关产业规模超过1万亿元。在国家层面政策的不断推动下,我国各省市也相继出台了适合本地发展环境的人工智能“十三五”相关规划,据前瞻对制定了具体产业规模发展目标省市的整理,中国12个省市2020年的规模目标达到4290亿,远远超过国家层面制定的1500亿的目标。另进一步研读各省市的政策,可知现阶段国家较为注重人工智能领域四个领域的建设——基础层看,注重芯片等硬件研发、技术层则注重智能计算平台的搭建、智能感知处理、智能交互中心的建设,而应用层则注重人工智能创新发展试验区建设。——以上数据及分析均来自于前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
11111
没有
回答 您现在可以使用这种新的图像到图像转换技术,从粗糙甚至不完整的草图生成高质量的人脸图像,无需绘图技巧!如果你的画技和我一样差,你甚至可以调整眼睛、嘴巴和鼻子对最终图像的影响。让我们看看它是否真的有效,以及他们是如何做到的。 Learning to Simulate Dynamic Environments with GameGAN [3] 这项研究由英伟达多伦多AI实验室和日本游戏大厂万代南梦宫 *BANDAI NAMCO) 一同开发,技术来自前者,数据来自后者。 简单来说,仅对简单的游戏录像和玩家输入进行学习,GameGAN 就能够模拟出接近真实游戏的环境,还不需要游戏引擎和底层代码。它的底层是在 AI 领域很有名的生成对抗网络 (GAN)。 PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models [4] 它可以把超低分辨率的16x16图像转换成1080p高清晰度的人脸!你不相信我?然后你就可以像我一样,在不到一分钟的时间里自己试穿一下! Unsupervised Translation of Programming Languages [5] 这种新模型在没有任何监督的情况下将代码从一种编程语言转换成另一种编程语言!它可以接受一个Python函数并将其转换成c++函数,反之亦然,不需要任何先前的例子!它理解每种语言的语法,因此可以推广到任何编程语言!我们来看看他们是怎么做到的。 PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization [6] 这个人工智能从2D图像生成3D高分辨率的人的重建!它只需要一个单一的图像你生成一个3D头像,看起来就像你,甚至从背后! High-Resolution Neural Face Swapping for Visual Effects [7] 迪士尼的研究人员在论文中开发了一种新的高分辨率视觉效果人脸交换算法。它能够以百万像素的分辨率渲染照片真实的结果。。它们的目标是在保持actor的性能的同时,从源actor交换目标actor的外观。这是非常具有 提问 大一人工智能课程学习总结,八百字。 回答 我学习人工智能已经快一年的时间,有许多心得可以和大家分享一下。人工智能,英文是Artificial Intelligence,简称AI。人工智能,最早是由著名计算机科学家图灵在20世纪50年代提出的,就是著名的“图灵测试”。最近几年,随着深度学习发展,人工智能被运用在各行各业,因此有人把人工智能称为第四次科技革命,他将给人们的生活带来翻天覆地的变化。 人工智能怎么学习呢? AI的基础是数据,是对数据进行挖掘、训练和应用。所以基础中的基础是数学,你得要先掌握高等数学、线性代数、概率论和数理统计等相关知识。 学习Python语言。Python最近几年非常火,学习的人非常多,甚至有些地区小学也开设这门课。为什么Python会迅速传红呢?首先,Python编程的代码量只有Java的1/5不到,简单易学。其次,Python的功能强大,写爬虫、游戏开发、自动化运维、机器学习和人工智能领域。最后,Python拥有丰富强大的库,如前端开发的Flask和Django、图形界面的tkInter、矩阵计算numpy、绘图的matplotlib等等。 学习各类机器学习和算法模型。这其中主要包含监督学习和非监督学习,监督学习中有:线性回归、逻辑回归、随机森林、SVM、决策树、等。非监督学习有:聚类、KMeans、DBScan等。 深度学习可以说是AI的精髓。深度学习主要流行的框架有:Tensorflow、Caffe、MXNet、Keras、Pytorch等。 我觉得自学,还是非常费劲的,效果不一定好,最好有老师指导,否则进展很慢,可以先跟教学视频学习,看书实操,做一些具体的项目等。 更多18条
没有
(人工智能与机器人研究),这本书上面都是别人发表的关于人工智能的文章,比较权威可信的
人工智能在当代社会已经是一个不可阻拦的发展大趋势,而且人工智能的影响和运用也深入到了社会生活等方方面面,对人类的衣食住行产生了巨大的改变,同时也在改变着传统或者现代的产业结构和人员配置。人类生活的各个行业例如农业、体育、医疗卫生、制造业、律师行业、记者和编辑行业等领域都已经在或者将会在未来深入使用人工智能技术,这对于未来世界的改变是巨大而且无法想象的。在未来几年内,机器人与人工智能能给世界带来的影响将远远超过个人计算和互联网在过去三十年间已经对世界所造成的改变。人工智能将成为未来10年内的产业新风口,像200I安钱电力彻底颠覆人类世界一样,人工智能也必将掀起一场新的而且持续深入的产业革命。但是事情的发展总是两面性的,人工智能的发展和百年前的工业革命一样将会在很大程度上造成劳动力的转换,在这个过程中,将会出现一系列的问题,而这些问题很有可能成为阻碍人工智能继续发展的巨大阻力。人工智能领域的最新发展对科技变化的促进作用可能会以两种基本的方式搅乱我们的劳动市场。首先,大部分自动化作业都会代替工人,从而减少工作的机会,这就意味着血药人工作的地方变得更少,这种威胁显而易见,也很容易度量;另外,很多科技进步会通过让商家重组和重建运营的方式来改变游戏规则,这样的组织精华和流程不仅经常会淘汰工作岗位,也会淘汰技能。但从总体上来说,人工智能所带给未来人类世界的好处是要大于其弊端的,而且在未来人类生活的理想蓝图中,人工智能也会发挥着很大的作用和推动力,这是一个必然也无法阻止的趋势。
11111
我看人工智能 高三1班 胡懿仍记得,电影银幕上的机器人管家,机器人助手,甚至是机器人女友,让童年的我们对人工智能有了初步了解。如今,随着时代的进步和科技的发展,人工智能已无处不在,我们也已习以为常。然而,在享受其便利的同时,挑战与威胁也接踵而至,对于这种冲突,我们该持何种态度?不可否认的是,人工智能的普遍运用给人类带来了极大的便利。百姓的家庭中,扫地机器人灵活移动,所到之处一尘不染;小汽车里,智能导航精确指引,引领我们走向世界;工厂内外,机械手臂灵活运转,危险工作完美完成;育儿所里,智能机器人伴你玩乐,予你知识;商场门口,机器人维护安全,呵护和谐……不知不觉,人工智能已渗透个人生活与公众领域的方方面面,医疗、卫生、娱乐、安全、教育等等。它们遵循既定的程序,重复特定的工作,让人类摆脱各种麻烦、解除不少威胁、享受许多便利。这样的人工智能,毫无疑问是值得人类推广利用的。然而,凡事皆有利弊,人工智能也不例外。当阿尔法狗接连打败围棋高手李世石、柯洁,当自动驾驶汽车连连发生交通事故致人死亡,当娱乐公司依靠写作机器人撰写文章,当安保机器人不分目标攻击儿童,这注定是一种危险边界的失守。我们应该,也必须看到,人工智能发展目前并不完善,不仅在某些领域造成困扰,而且可能威胁人类的生命安全,更有甚者将挑战人类的伦理道德、法律底线、文化沉淀。高晓松曾说:“当机器代替人类创作与思考,我们的路也会走完的。”诚如其言,一方面。电脑终究不比人脑,存在的仅是冰冷的程序设定,而非温暖的、有人情味的理性思考,许多伦理规则、道德底线是无法设定的。如同轰动一时的自动驾驶汽车的伦理问题,试问马路上的一个行人和轿车上的五个乘客的生命,该何从选择?这种问题或许本来就是荒谬的,行人的去留,决不能交由一台机器抉择;生命的权利,又怎能被一台机器剥夺?另一方面,文艺作品,像电影、报刊、文章等,蕴含着人类的主流价值观和世界发展的潮流,反映的是上下五千年的文化积蓄与无穷无尽的人类内心世界。若交由机器完成,不过是对现有作品的复制粘贴、东拼西凑罢了,这种所谓的“再创作”,缺乏精神内涵和真情实感,终会将人类的精神世界引向匮乏与苍白,将人类的文明发展引向空洞与虚无。既然利与弊交错,既然是与非混淆,那我们到底该如何看待人工智能?持辩证的眼光,使人工智能真正成为帮手而非杀手。对于日常的琐碎事务、繁杂工作等,人工智能的进驻无可厚非。而对于文艺创作这种文化传承类工作,驾车这类需要价值判断的工作,安保等具有攻击性的工作,人类或许更胜一筹。“既然上帝造了我们,我们应该自信。”一如贾平凹先生说的。在现代社会,只有人类与人工智能和谐相处,各司其职,我们才能拥有更和谐的社会,才能走向更美好的未来。
回答 您现在可以使用这种新的图像到图像转换技术,从粗糙甚至不完整的草图生成高质量的人脸图像,无需绘图技巧!如果你的画技和我一样差,你甚至可以调整眼睛、嘴巴和鼻子对最终图像的影响。让我们看看它是否真的有效,以及他们是如何做到的。 Learning to Simulate Dynamic Environments with GameGAN [3] 这项研究由英伟达多伦多AI实验室和日本游戏大厂万代南梦宫 *BANDAI NAMCO) 一同开发,技术来自前者,数据来自后者。 简单来说,仅对简单的游戏录像和玩家输入进行学习,GameGAN 就能够模拟出接近真实游戏的环境,还不需要游戏引擎和底层代码。它的底层是在 AI 领域很有名的生成对抗网络 (GAN)。 PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models [4] 它可以把超低分辨率的16x16图像转换成1080p高清晰度的人脸!你不相信我?然后你就可以像我一样,在不到一分钟的时间里自己试穿一下! Unsupervised Translation of Programming Languages [5] 这种新模型在没有任何监督的情况下将代码从一种编程语言转换成另一种编程语言!它可以接受一个Python函数并将其转换成c++函数,反之亦然,不需要任何先前的例子!它理解每种语言的语法,因此可以推广到任何编程语言!我们来看看他们是怎么做到的。 PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization [6] 这个人工智能从2D图像生成3D高分辨率的人的重建!它只需要一个单一的图像你生成一个3D头像,看起来就像你,甚至从背后! High-Resolution Neural Face Swapping for Visual Effects [7] 迪士尼的研究人员在论文中开发了一种新的高分辨率视觉效果人脸交换算法。它能够以百万像素的分辨率渲染照片真实的结果。。它们的目标是在保持actor的性能的同时,从源actor交换目标actor的外观。这是非常具有 提问 大一人工智能课程学习总结,八百字。 回答 我学习人工智能已经快一年的时间,有许多心得可以和大家分享一下。人工智能,英文是Artificial Intelligence,简称AI。人工智能,最早是由著名计算机科学家图灵在20世纪50年代提出的,就是著名的“图灵测试”。最近几年,随着深度学习发展,人工智能被运用在各行各业,因此有人把人工智能称为第四次科技革命,他将给人们的生活带来翻天覆地的变化。 人工智能怎么学习呢? AI的基础是数据,是对数据进行挖掘、训练和应用。所以基础中的基础是数学,你得要先掌握高等数学、线性代数、概率论和数理统计等相关知识。 学习Python语言。Python最近几年非常火,学习的人非常多,甚至有些地区小学也开设这门课。为什么Python会迅速传红呢?首先,Python编程的代码量只有Java的1/5不到,简单易学。其次,Python的功能强大,写爬虫、游戏开发、自动化运维、机器学习和人工智能领域。最后,Python拥有丰富强大的库,如前端开发的Flask和Django、图形界面的tkInter、矩阵计算numpy、绘图的matplotlib等等。 学习各类机器学习和算法模型。这其中主要包含监督学习和非监督学习,监督学习中有:线性回归、逻辑回归、随机森林、SVM、决策树、等。非监督学习有:聚类、KMeans、DBScan等。 深度学习可以说是AI的精髓。深度学习主要流行的框架有:Tensorflow、Caffe、MXNet、Keras、Pytorch等。 我觉得自学,还是非常费劲的,效果不一定好,最好有老师指导,否则进展很慢,可以先跟教学视频学习,看书实操,做一些具体的项目等。 更多18条
屌丝和高富帅幸福的生活在一起
111
你还是自己去汉斯出版社 的官网找下相关文献看看学习学习吧