首页

> 期刊发表知识库

首页 期刊发表知识库 问题

统计学毕业论文选题2020

发布时间:

统计学毕业论文选题2020

这个建议你 查十篇左右的文献 看看以前发表的毕业论文都是怎么写的 然后还可以跟上一级打听下 或者跟指导你毕业的老师咨询下 找到一个研究样本之后 再想怎么做 论文题目不急

***统计方法的应用

统计学作为一门综合性很强的学科,其运用范围非常广泛,不少学生在写作统计学论文时,都困在了选题这一步,其实就统计学而言,可供作为论文题目的热词有很多,如:企业管理、实证研究、统计估计、统计分析、计算机应用、支持向量机、数学模型、GIS、多元分析、统计报表等等,学术堂精选了20个优质“统计学毕业论文题目”,供大家参考。  1、药品检验中常用的统计学方法及其应用  2、应用统计学在现实生活中的应用分析  3、浅谈统计学在金融领域的应用  4、统计学在实验室质量控制中的应用  5、论应用统计学PDTR教学模式的必要性和可行性  6、水产生物统计学课程中学生统计思维能力与应用意识的培养研究  7、地质统计学在某铜矿床资源量估算中的应用熊  8、基于地质统计学的采空区储量估算  9、密井网条件下地质统计学岩性反演在河道砂体预测中的应用  10、地质统计学在稀土矿储量计算研究应用  11、地质统计学在矿床品位估算中的应用研究  12、地质统计学在细脉型矿体模拟中的应用:以新疆梅岭-红石铜矿为例  13、地质统计学地震反演技术在溱潼南华地区薄砂层的预测应用  14、朝阳沟油田扶余油层组深度域地质统计学反演  15、基于DMine软件下地质统计学在矿山储量计算中的应用

时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个相对独立的研究对象, 因此, 选取省区经济数据进行区域经济的研究, 无疑将是未来几年的研究趋势。而省区经济对我国国民经济的影响, 已从背后走到了台前, 发展较快的省区对我国国民经济的快速增长起到了很大的作用, 而发展相对较慢的省区, 其原因与解决方法也值得我们研究。本文选取华中大省湖北省进行研究, 具有一定的指导和现实意义。湖北省 2006 年 GDP 为 7497 亿元, 人均 GDP13130 元, 达到中等发达国家水平。从省域经济来说, 湖北省是一个较发达的经济实体。另一方面, 湖北省优势的地理位置和众多的人口使之对于我国整体经济的运行起到不可忽视的作用, 对于湖北省 GDP的研究和预测也就从一个侧面反映我国国民经济的走势和未来。尽管湖北省以其重要位置和经济实力在我国国民经济中占据一席之地, 但仍不可避免的面临着建国以来一再的经济波动,从最初的强大势力到如今的挣扎期, 湖北省的经济面临着发展困境。近年来, 湖北省的经济状况一再呈现再次快速发展的趋势, 但是这个趋势能够保持多久却是我们需要考虑的问题。本文选择了时间序列分析的方法进行湖北省区域经济发展的预测。时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律, 将这种规律延伸到未来, 从而对该现象的未来作出预测。二、 基本模型、 数据选择以及实证方法( 一) 基本模型ARMA 模型是一种常用的随机时序模型, 由博克斯, 詹金斯创立, 是一种精度较高的时序短期预测方法, 其基本思想是: 某些时间序列是依赖于时间 t 的一组随机变量, 构成该时序的单个序列值虽然具有不确定性, 但整个序列的变化却具有一定的规律性, 可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构与特征, 达到最小方差意义下的最优预测。现实社会中, 我们常常运用 ARMA模型对经济体进行预测和研究, 得到较为满意的效果。但 ARMA模型只适用于平稳的时间序列, 对于如 GDP 等非平稳的时间序列而言, ARMA模型存在一定的缺陷, 因此我们引入一般情况下的 ARMA模型 ( ARIMA模型) 进行实证研究。事实上, ARIMA模型的实质就是差分运算与 ARMA模型的组合。 本文讨论的求和自回归移动平均模型, 简记为 ARIMA ( p, d, q) 模型,是美国统计学家 GEPBox 和 GMJ enkins 于 1970 年首次提出, 广泛应用于各类时间序列数据分析, 是一种预测精度相当高的短期预测方法。建立 ARIMA ( p, d, q) 模型计算复杂, 须借助计算机完成。本文介绍 ARIMA ( p, d, q) 模型的建立方法, 并利用Eviews 软件建立湖北省 GDP 变化的 ARIMA ( p, d, q) 预测模型。( 二) 数据选择本文所有 GDP 数据来自于由中华人民共和国统计局汇编,中国统计出版社出版的 《新中国五十五年统计数据汇编》 。本文的所有数据处理均使用 EV0 软件进行。( 三) 实证方法ARMA模型及 ARIMA模型都是在平稳时间序列基础上建立的, 因此时间序列的平稳性是建模的重要前提。任何非平稳时间序列只要通过适当阶数的差分运算或者是对数差分运算就可以实现平稳, 因此可以对差分后或对数差分后的序列进行 ARMA( p, q) 拟合。ARIMA ( p, d, q) 模型的具体建模步骤如下:平稳性检验。一般通过时间序列的散点图或折线图对序列进行初步的平稳性判断, 并采用 ADF 单位根检验来精确判断该序列的平稳性。对非平稳的时间序列, 如果存在一定的增长或下降趋势等,则需要对数据取对数或进行差分处理, 然后判断经处理后序列的平稳性。重复以上过程, 直至成为平稳序列。此时差分的次数即为ARIMA ( p, d, q) 模型中的阶数 d。为了保证信息的准确, 应注意避免过度差分。对平稳序列还需要进行纯随机性检验 ( 白噪声检验) 。白噪声序列没有分析的必要, 对于平稳的非白噪声序列则可以进行ARMA ( p, q) 模型的拟合。白噪声检验通常使用 Q 统计量对序列进行卡方检验, 可以以直观的方法直接观测得到结论。ARMA拟合。首先计算时间序列样本的自相关系数和偏自相关系的值, 根据自相关系数和偏自相关系数的性质估计自相关阶数 p 和移动平均阶数 q 的值。一般而言, 由于样本的随机性, 样本的相关系数不会呈现出理论截尾的完美情况, 本应截尾的相关系数仍会呈现出小值振荡的情况。又由于平稳时间序列通常都具有短期相性, 随着延迟阶数的增大, 相关系数都会衰减至零值附近作小值波动。根据 Barlett 和 Quenouille 的证明, 样本相关系数近似服从正态分布。一个正态分布的随机变量在任意方向上超出 2σ 的概率约为 05。因此可通过自相关和偏自相关估计值序列的直方图来大致判断在 5%的显著水平下模型的自相关系数和偏自相关系数不为零的个数, 进而大致判断序列应选择的具体模型形式。同时对模型中的 p 和 q 两个参数进行多种组合选择, 从 ARMA ( p,q) 模型中选择一个拟和最好的曲线作为最后的方程结果。一般利用 AIC 准则和 SC 准则评判拟合模型的相对优劣。模型检验。模型检验主要是检验模型对原时间序列的拟和效果, 检验整个模型对信息的提取是否充分, 即检验残差序列是否为白噪声序列。如果拟合模型通不过检验, 即残差序列不是为白噪声序列, 那么要重新选择模型进行拟合。如残差序列是白噪声序列, 就认为拟合模型是有效的。模型的有效性检验仍然是使谭诗璟ARIMA 模型在湖北省GDP 预测中的应用—— —时间序列分析在中国区域经济增长中的实证分析本文介绍求和自回归移动平均模型 ARIMA ( p, d, q) 的建模方法及 Eviews 实现。广泛求证和搜集从 1952 年到 2006 年以来湖北省 GDP 的相关数据, 运用统计学和计量经济学原理, 从时间序列的定义出发, 结合统计软件 EVIEWS 运用 ARMA建模方法, 将 ARIMA模型应用于湖北省历年 GDP 数据的分析与预测, 得到较为满意的结果。湖北省 区域经济学 ARIMA 时间序列 GDP 预测理论探讨262008/01 总第 360 期图四 取对数后自相关与偏自相关图图三 二阶差分后自相关与偏自相关图用上述 Q 统计量对残差序列进行卡方检验。模型预测。根据检验和比较的结果, 使用 Eviews 软件中的forecas t 功能对模型进行预测, 得到原时间序列的将来走势。 对比预测值与实际值, 同样可以以直观的方式得到模型的准确性。三、 实证结果分析GDP 受经济基础、 人口增长、 资源、 科技、 环境等诸多因素的影响, 这些因素之间又有着错综复杂的关系, 运用结构性的因果模型分析和预测 GDP 往往比较困难。我们将历年的 GDP 作为时间序列, 得出其变化规律, 建立预测模型。本文对 1952 至 2006 年的 55 个年度国内生产总值数据进行了分析, 为了对模型的正确性进行一定程度的检验, 现用前 50 个数据参与建模, 并用后五年的数据检验拟合效果。最后进行 2007年与 2008 年的预测。( 一) 数据的平稳化分析与处理差分。利用 EViews 软件对原 GDP 序列进行一阶差分得到图二:对该序列采用包含常数项和趋势项的模型进行 ADF 单位根检验。结果如下:由于该序列依然非平稳性, 因此需要再次进行差分, 得到如图三所式的折线图。根据一阶差分时所得 AIC 最小值, 确定滞后阶数为 1。然后对二阶差分进行 ADF 检验:结果表明二阶差分后的序列具有平稳性, 因此 ARIMA ( p, d,q) 的差分阶数 d=2。二阶差分后的自相关与偏自相关图如下:对数。利用 EViews 软件, 对原数据取对数:对已经形成的对数序列进行一阶差分, 然后进行 ADF 检验:由上表可见, 现在的对数一阶差分序列是平稳的, 由 AIC 和SC 的最小值可以确定此时的滞后阶数为 2。 因为是进行了一阶差分, 因此认为 ARIMA ( p, d, q) 中 d=1。( 二) ARMA ( p, q) 模型的建立ARMA ( p, q) 模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得。图一 1952- 2001 湖北省 GDP 序列图表 1 一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC 备注0 - 136479 - 161144 - 506374 - 183002 20582非平稳1 - 764521 - 165756 - 508508 - 184230 171892 - 101495 - 170583 - 510740 - 185512 180023 - 418890 - 175640 - 513075 - 186854 205434 - 230514 - 180911 - 515523 - 188259 27059表 2 二阶差分的 ADF 检验Lag Length t- Statistic 1% level 5% level 10% level1 (Fixed) - 714836 - 170583 - 510740 - 185512表 3 对数一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC SC 备注0 - 448501 - 574446 - 923780 - 599925 - 536478 - 458512平稳 1 - 832346 - 577723 - 925169 - 600658 - 662966 - 5448712 - 398029 - 581152 - 926622 - 601424 - 770517 - 6115043 - 324520 - 584743 - 928142 - 602225 - 747432 - 546692图五 对数后一阶差分自相关与偏自相关图理论探讨27时代金融摘 要:关键词:使用 EViews 软件对 AR, MA的取值进行实现, 比较三种情况下方程的 AIC 值和 SC 值:表 4ARMA模型的比较由表 4 可知, 最优情况本应该在 AR ( 1) , MA ( 1) 时取得, 但AR, MA都取 1 时无法实现平稳, 舍去。对于后面两种情况进行比较, 而 P=1 时 AIC 与 SC 值都比较小, 在该种情况下方程如下:综上所述选用 ARIMA ( 1, 1, 0) 模型。( 三) 模型的检验对模型的 Q 统计量进行白噪声检验, 得出残差序列相互独立的概率很大, 故不能拒绝序列相互独立的原假设, 检验通过。模型均值及自相关系数的估计都通过显著性检验, 模型通过残差自相关检验, 可以用来预测。( 四) 模型的预测我们使用时间序列分析的方法对湖北省地方生产总值的年度数据序列建立自回归预测模型, 并利用模型对 2002 到 2006 年的数值进行预测和对照:表 5 ARIMA ( 1, 1, 0) 预测值与实际值的比较由上表可见, 该模型在短期内预测比较准确, 平均绝对误差为 876% , 但随着预测期的延长, 预测误差可能会出现逐渐增大的情况。下面, 我们对湖北省 2007 年与 2008 年的地方总产值进行预测:在 ARIMA模型的预测中, 湖北省的地方生产将保持增长的势头, 但 2008 年的增长率不如 2007 年, 这一点值得注意。GDP毕竟与很多因素有关, 虽然我们一致认为, 作为我国首次主办奥运的一年, 2008 将是中国经济的高涨期, 但是是否所有的地方产值都将受到奥运的好的影响呢? 也许在 2008 年全国的 GDP 也许确实将有大幅度的提高, 但这有很大一部分是奥运赛场所在地带来的经济效应, 而不是所有地方都能够享有的。正如 GDP 数据显示, 1998 年尽管全国经济依然保持了一个比较好的态势, 但湖北省的经济却因洪水遭受不小的损失。作为一个大省, 湖北省理应对自身的发展承担起更多的责任。总的来说, ARIMA模型从定量的角度反映了一定的问题, 做出了较为精确的预测, 尽管不能完全代表现实, 我们仍能以ARIMA模型为基础, 对将来的发展作出预先解决方案, 进一步提高经济发展, 减少不必要的损失。四、结语时间序列预测法是一种重要的预测方法, 其模型比较简单,对资料的要求比较单一, 在实际中有着广泛的适用性。在应用中,应根据所要解决的问题及问题的特点等方面来综合考虑并选择相对最优的模型。在实际运用中, 由于 GDP 的特殊性, ARIMA模型以自身的特点成为了 GDP 预测上佳选择, 但是预测只是估计量, 真正精确的还是真实值, 当然, ARIMA 模型作为一般情况下的 ARMA 模型, 运用了差分、取对数等等计算方法, 最终得到进行预测的时间序列, 无论是在预测上, 还是在数量经济上, 都是不小的进步, 也为将来的发展做出了很大的贡献。我们通过对湖北省地方总产值的实证分析, 拟合 ARIMA( 1, 1, 0) 模型, 并运用该模型对湖北省的经济进行了小规模的预测,得到了较为满意的拟和结果, 但湖北省 2007 年与 2008 年经济预测中出现的增长率下降的问题值得思考, 究竟是什么原因造成了这样的结果, 同时我们也需要到 2008 年再次进行比较, 以此来再次确定 ARIMA ( 1, 1, 0) 模型在湖北省地方总产值预测中所起到的作用。参考文献:【1】易丹辉 数据分析与 EViews应用 中国统计出版社【2】 Philip Hans Frances 商业和经济预测中的时间序列模型 中国人民大学出版社【3】新中国五十五年统计资料汇编 中国统计出版社【4】赵蕾 陈美英 ARIMA 模型在福建省 GDP 预测中的应用 科技和产业( 2007) 01- 0045- 04【5】 张卫国 以 ARIMA 模型估计 2003 年山东 GDP 增长速度 东岳论丛( 2004) 01- 0079- 03【6】刘盛佳 湖北省区域经济发展分析 华中师范大学学报 ( 2003) 03-0405- 06【7】王丽娜 肖冬荣 基于 ARMA 模型的经济非平稳时间序列的预测分析武汉理工大学学报 2004 年 2 月【8】陈昀 贺远琼 外商直接投资对武汉区域经济的影响分析 科技进步与对策 ( 2006) 03- 0092- 02( 作者单位: 武汉大学经济与管理学院金融工程)AR(1)MA(1) AR(1) MA(1) 备注AIC - 536412 - 321820 - 135728最优为 AR(1)MA(1)SC - 458445 - 282837 - 097119Variable Coefficient S Error t- Statistic PAR(1) 586643 115236 090781 0000R- squared - 226023 Mean dependent var 104967Adjusted R- squared - 226023 SD dependent var 111688SE of regression 123668 Akaike info criterion - 321820Sumsquared resid 718807 Schwarz criterion - 282837Log likelihood 72369 Durbin-Watson stat 132697Inverted AR Roots 59年份 实际值 预测值 相对误差(%) 平均误差(%)2002 63 72 - 8762003 71 82 - 122004 92 78 - 892005 78 83 - 682006 00 05 - 26年度 2006 2007 2008GDP 值 00 08 59增长率(%) — 06 16表 6 ARIMA ( 1, 1, 0) 对湖北省经济的预测一、模糊数学分析方法对企业经营 ( 偿债) 能力评价的适用性影响企业经营 ( 偿债) 和盈利能力的因素或指标很多; 在分析判断时, 对事物的评价 ( 或评估) 常常会涉及多个因素或多个指标。这时就要求根据多丛因素对事物作出综合评价, 而不能只从朱晓琳 曹 娜用应用模糊数学中的隶属度评价企业经营(偿债)能力问题影响企业经营能力的许多因素都具有模糊性, 难以对其确定一个精确量值; 为了使企业经营 ( 偿债) 能力评价能够得到客观合理的结果, 有必要根据一些模糊因素来改进其评价方法, 本文根据模糊数学中隶属度的方法尝试对企业经营 ( 偿债) 能力做出一种有效的评价。隶属度及函数 选取指标构建模型 经营能力评价应用理论探讨28

统计学论文选题2020

我给你分享几个统计学与应用这本期刊的题目吧,你参考参考:产业集聚对江苏省制造业全要素生产率的影响研究、基于文献计量分析的企业论文发表情况评价——以宁波市安全生产协会会员为例、基于泰尔指数的城乡收入差距的分析与预测、卡方分布下FSI CUSUM和VSI CUSUM控制图的比较、新冠肺炎疫情对中国旅游业的冲击影响研究——基于修正的TGARCH-M模型

统计学选问题关键所在的

统计学作为一门综合性很强的学科,其运用范围非常广泛,不少学生在写作统计学论文时,都困在了选题这一步,其实就统计学而言,可供作为论文题目的热词有很多,如:企业管理、实证研究、统计估计、统计分析、计算机应用、支持向量机、数学模型、GIS、多元分析、统计报表等等,学术堂精选了20个优质“统计学毕业论文题目”,供大家参考。  1、药品检验中常用的统计学方法及其应用  2、应用统计学在现实生活中的应用分析  3、浅谈统计学在金融领域的应用  4、统计学在实验室质量控制中的应用  5、论应用统计学PDTR教学模式的必要性和可行性  6、水产生物统计学课程中学生统计思维能力与应用意识的培养研究  7、地质统计学在某铜矿床资源量估算中的应用熊  8、基于地质统计学的采空区储量估算  9、密井网条件下地质统计学岩性反演在河道砂体预测中的应用  10、地质统计学在稀土矿储量计算研究应用  11、地质统计学在矿床品位估算中的应用研究  12、地质统计学在细脉型矿体模拟中的应用:以新疆梅岭-红石铜矿为例  13、地质统计学地震反演技术在溱潼南华地区薄砂层的预测应用  14、朝阳沟油田扶余油层组深度域地质统计学反演  15、基于DMine软件下地质统计学在矿山储量计算中的应用

统计学问题我来明确的

统计学毕业论文选题gdp

***统计方法的应用

统计学作为一门综合性很强的学科,其运用范围非常广泛,不少学生在写作统计学论文时,都困在了选题这一步,其实就统计学而言,可供作为论文题目的热词有很多,如:企业管理、实证研究、统计估计、统计分析、计算机应用、支持向量机、数学模型、GIS、多元分析、统计报表等等,学术堂精选了20个优质“统计学毕业论文题目”,供大家参考。  1、药品检验中常用的统计学方法及其应用  2、应用统计学在现实生活中的应用分析  3、浅谈统计学在金融领域的应用  4、统计学在实验室质量控制中的应用  5、论应用统计学PDTR教学模式的必要性和可行性  6、水产生物统计学课程中学生统计思维能力与应用意识的培养研究  7、地质统计学在某铜矿床资源量估算中的应用熊  8、基于地质统计学的采空区储量估算  9、密井网条件下地质统计学岩性反演在河道砂体预测中的应用  10、地质统计学在稀土矿储量计算研究应用  11、地质统计学在矿床品位估算中的应用研究  12、地质统计学在细脉型矿体模拟中的应用:以新疆梅岭-红石铜矿为例  13、地质统计学地震反演技术在溱潼南华地区薄砂层的预测应用  14、朝阳沟油田扶余油层组深度域地质统计学反演  15、基于DMine软件下地质统计学在矿山储量计算中的应用

这个我会的、写什么方向的呢。‘好的

提供一些经济统计类的学年论文题目,供写作参考。 某省各地市经济发展水平的综合评价 工业企业经济效益综合评价的应用研究 某省市经济发展水平分区研究 某省市消费拉动第三产业增长的实证分析 某省市城镇居民消费结构变化趋势研究 某省普通高等教育生源变动趋势与对策研究 某省城镇居民消费结构比较研究 某高校学生的心理健康统计分析 课堂教学评估体系与方法研究 某市各区县经济综合实力评价研究 基于多元统计的某省经济分区研究 因子分析在某省利用外资效果评价中的应用 因子分析在居民消费结构变动分析中的应用 因子分析在企业竞争力评价中的应用 深沪股市收益率分布特征的统计分析 某省市农民收入问题的调查与思考 最优加权组合法在GDP预测中的运用研究 最优加权组合法在粮食产量预测中的运用研究 最优加权组合法在能源消耗预测中的运用研究 我国(某省)实际人均GDP的趋势分析及预测 某省市工业经济效益的综合评价 工业企业科技竞争力的综合评价 某省市城镇居民消费结构的地区差异分析 某省市各地区经济综合实力的评价 基于因子分析法的上市公司财务状况评价研究 某省工业化进程统计测度及实证分析 某省城市化进程统计测度及实证分析 某省城市规模发展水平分析与比较研究 某省市工业行业结构特征的因子分析 城镇居民消费的典型相关分析 我国(某省)各地区人口素质差异的统计分析 我国(某省)三次产业结构变动的统计分析 某省农业产业化发展的实证研究 某省外贸出口与经济发展关系的实证研究 县域经济发展综合评价的实证研究 某省各县市经济发展的聚类分析 某省各县市产业结构的聚类分析 某省(市)信息化实现程度实证评价 某省(市)环境保护综合评价 我国科技进步贡献率的测度 某省(市)居民生活水平与质量实证评价 某省(市)经济外向度实证研究 县级政绩考核指标体系与方法研究 我国城乡居民收入差距实证研究 我国东西部城镇居民收入差距实证研究 某省市城镇居民消费水平与结构变化趋势研究 某省市投资拉动GDP增长的实证研究 耐用品需求预测模型及其应用研究 某省市GDP周期波动实证研究 某省市工业周期波动实证研究 某省市零售市场周期波动实证研究 某省市农民收入周期波动实证研究 某省市人口最优预测模型与应用研究 某省市人口老龄化趋势与对策研究 某省市财政收支变化趋势与对策研究 某省市城镇居收入差距变化趋势与对策研究 某省市农民收入差距变化趋势与对策研究 长江水质的综合评价与预测 多元统计分析方法在股票市场板块中的应用研究 ARCH族波动模型研究及其在我国股市中的应用研究

统计学毕业论文选题2021

现在是互联网时代了,随着电脑的普及,上网浏览网页的人越来越多了,而网页的建设是需要UI设计专业的人进行处理的,现在市场对于这个专业的人才需求越来越大,就业岗位逐渐增多,UI设计专业的就业前景也越来越好而且这个专业是0基础入门的,不用担心没有了解过,会学不好,来我们学校学习这个专业的同学都是没有基础的,都是新手

这个我会的、写什么方向的呢。‘好的

拟几个给你选哈子,没事的不要急

统计学作为一门综合性很强的学科,其运用范围非常广泛,不少学生在写作统计学论文时,都困在了选题这一步,其实就统计学而言,可供作为论文题目的热词有很多,如:企业管理、实证研究、统计估计、统计分析、计算机应用、支持向量机、数学模型、GIS、多元分析、统计报表等等,学术堂精选了20个优质“统计学毕业论文题目”,供大家参考。  1、药品检验中常用的统计学方法及其应用  2、应用统计学在现实生活中的应用分析  3、浅谈统计学在金融领域的应用  4、统计学在实验室质量控制中的应用  5、论应用统计学PDTR教学模式的必要性和可行性  6、水产生物统计学课程中学生统计思维能力与应用意识的培养研究  7、地质统计学在某铜矿床资源量估算中的应用熊  8、基于地质统计学的采空区储量估算  9、密井网条件下地质统计学岩性反演在河道砂体预测中的应用  10、地质统计学在稀土矿储量计算研究应用  11、地质统计学在矿床品位估算中的应用研究  12、地质统计学在细脉型矿体模拟中的应用:以新疆梅岭-红石铜矿为例  13、地质统计学地震反演技术在溱潼南华地区薄砂层的预测应用  14、朝阳沟油田扶余油层组深度域地质统计学反演  15、基于DMine软件下地质统计学在矿山储量计算中的应用

统计学毕业论文选题怎么选

这个建议你 查十篇左右的文献 看看以前发表的毕业论文都是怎么写的 然后还可以跟上一级打听下 或者跟指导你毕业的老师咨询下 找到一个研究样本之后 再想怎么做 论文题目不急

统计学作为一门综合性很强的学科,其运用范围非常广泛,不少学生在写作统计学论文时,都困在了选题这一步,其实就统计学而言,可供作为论文题目的热词有很多,如:企业管理、实证研究、统计估计、统计分析、计算机应用、支持向量机、数学模型、GIS、多元分析、统计报表等等,学术堂精选了20个优质“统计学毕业论文题目”,供大家参考。  1、药品检验中常用的统计学方法及其应用  2、应用统计学在现实生活中的应用分析  3、浅谈统计学在金融领域的应用  4、统计学在实验室质量控制中的应用  5、论应用统计学PDTR教学模式的必要性和可行性  6、水产生物统计学课程中学生统计思维能力与应用意识的培养研究  7、地质统计学在某铜矿床资源量估算中的应用熊  8、基于地质统计学的采空区储量估算  9、密井网条件下地质统计学岩性反演在河道砂体预测中的应用  10、地质统计学在稀土矿储量计算研究应用  11、地质统计学在矿床品位估算中的应用研究  12、地质统计学在细脉型矿体模拟中的应用:以新疆梅岭-红石铜矿为例  13、地质统计学地震反演技术在溱潼南华地区薄砂层的预测应用  14、朝阳沟油田扶余油层组深度域地质统计学反演  15、基于DMine软件下地质统计学在矿山储量计算中的应用

1、理论联系实际毕业论文的题材十分广泛,社会生活,经济建设,科学文化事业的各个方面,各个领域的问题都可以成为论文的题目,马克思主义告诉我们,理论来源于实践,理论为实践服务,因此科学研究的选题首先要注意理论联系实际。2、新颖性所谓要有新意,就是要从自己已经掌握的理论知识出发,在研究前人研究成果的基础上,善于发现新问题,敢于提出前人没有提出过的,或者虽已提出来,但尚未得到定论或者未完全解决的问题。只要自己的论文观点正确鲜明,材料真实充分,论证深刻有力,也可能填补我国理论界对某些方面研究的空白,或者对以前有关学说的不足进行补充、深化和修正。这样,也就使论文具有新意,具有独创性。3、客观性客观性主要是指要客观地把握自己写作毕业论文的能力。确题的方向、大小、难易都应与自己的知识积累、分析问题和解决问题的能力以及写作经验相适应,要对自己有一个客观性的估计。只要充分估计到自己的知识储备情况和分析问题的能力才可以很好的完成。知识和能力的积累是一个较长的过程,不可能靠一次毕业论文的写作就来个突飞猛进。所以选题时要量力而行,客观地分析和估计自己的能力。具体的范文模板链接:_zatHedA?pwd=nehi 提取码: nehi

时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个相对独立的研究对象, 因此, 选取省区经济数据进行区域经济的研究, 无疑将是未来几年的研究趋势。而省区经济对我国国民经济的影响, 已从背后走到了台前, 发展较快的省区对我国国民经济的快速增长起到了很大的作用, 而发展相对较慢的省区, 其原因与解决方法也值得我们研究。本文选取华中大省湖北省进行研究, 具有一定的指导和现实意义。湖北省 2006 年 GDP 为 7497 亿元, 人均 GDP13130 元, 达到中等发达国家水平。从省域经济来说, 湖北省是一个较发达的经济实体。另一方面, 湖北省优势的地理位置和众多的人口使之对于我国整体经济的运行起到不可忽视的作用, 对于湖北省 GDP的研究和预测也就从一个侧面反映我国国民经济的走势和未来。尽管湖北省以其重要位置和经济实力在我国国民经济中占据一席之地, 但仍不可避免的面临着建国以来一再的经济波动,从最初的强大势力到如今的挣扎期, 湖北省的经济面临着发展困境。近年来, 湖北省的经济状况一再呈现再次快速发展的趋势, 但是这个趋势能够保持多久却是我们需要考虑的问题。本文选择了时间序列分析的方法进行湖北省区域经济发展的预测。时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律, 将这种规律延伸到未来, 从而对该现象的未来作出预测。二、 基本模型、 数据选择以及实证方法( 一) 基本模型ARMA 模型是一种常用的随机时序模型, 由博克斯, 詹金斯创立, 是一种精度较高的时序短期预测方法, 其基本思想是: 某些时间序列是依赖于时间 t 的一组随机变量, 构成该时序的单个序列值虽然具有不确定性, 但整个序列的变化却具有一定的规律性, 可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构与特征, 达到最小方差意义下的最优预测。现实社会中, 我们常常运用 ARMA模型对经济体进行预测和研究, 得到较为满意的效果。但 ARMA模型只适用于平稳的时间序列, 对于如 GDP 等非平稳的时间序列而言, ARMA模型存在一定的缺陷, 因此我们引入一般情况下的 ARMA模型 ( ARIMA模型) 进行实证研究。事实上, ARIMA模型的实质就是差分运算与 ARMA模型的组合。 本文讨论的求和自回归移动平均模型, 简记为 ARIMA ( p, d, q) 模型,是美国统计学家 GEPBox 和 GMJ enkins 于 1970 年首次提出, 广泛应用于各类时间序列数据分析, 是一种预测精度相当高的短期预测方法。建立 ARIMA ( p, d, q) 模型计算复杂, 须借助计算机完成。本文介绍 ARIMA ( p, d, q) 模型的建立方法, 并利用Eviews 软件建立湖北省 GDP 变化的 ARIMA ( p, d, q) 预测模型。( 二) 数据选择本文所有 GDP 数据来自于由中华人民共和国统计局汇编,中国统计出版社出版的 《新中国五十五年统计数据汇编》 。本文的所有数据处理均使用 EV0 软件进行。( 三) 实证方法ARMA模型及 ARIMA模型都是在平稳时间序列基础上建立的, 因此时间序列的平稳性是建模的重要前提。任何非平稳时间序列只要通过适当阶数的差分运算或者是对数差分运算就可以实现平稳, 因此可以对差分后或对数差分后的序列进行 ARMA( p, q) 拟合。ARIMA ( p, d, q) 模型的具体建模步骤如下:平稳性检验。一般通过时间序列的散点图或折线图对序列进行初步的平稳性判断, 并采用 ADF 单位根检验来精确判断该序列的平稳性。对非平稳的时间序列, 如果存在一定的增长或下降趋势等,则需要对数据取对数或进行差分处理, 然后判断经处理后序列的平稳性。重复以上过程, 直至成为平稳序列。此时差分的次数即为ARIMA ( p, d, q) 模型中的阶数 d。为了保证信息的准确, 应注意避免过度差分。对平稳序列还需要进行纯随机性检验 ( 白噪声检验) 。白噪声序列没有分析的必要, 对于平稳的非白噪声序列则可以进行ARMA ( p, q) 模型的拟合。白噪声检验通常使用 Q 统计量对序列进行卡方检验, 可以以直观的方法直接观测得到结论。ARMA拟合。首先计算时间序列样本的自相关系数和偏自相关系的值, 根据自相关系数和偏自相关系数的性质估计自相关阶数 p 和移动平均阶数 q 的值。一般而言, 由于样本的随机性, 样本的相关系数不会呈现出理论截尾的完美情况, 本应截尾的相关系数仍会呈现出小值振荡的情况。又由于平稳时间序列通常都具有短期相性, 随着延迟阶数的增大, 相关系数都会衰减至零值附近作小值波动。根据 Barlett 和 Quenouille 的证明, 样本相关系数近似服从正态分布。一个正态分布的随机变量在任意方向上超出 2σ 的概率约为 05。因此可通过自相关和偏自相关估计值序列的直方图来大致判断在 5%的显著水平下模型的自相关系数和偏自相关系数不为零的个数, 进而大致判断序列应选择的具体模型形式。同时对模型中的 p 和 q 两个参数进行多种组合选择, 从 ARMA ( p,q) 模型中选择一个拟和最好的曲线作为最后的方程结果。一般利用 AIC 准则和 SC 准则评判拟合模型的相对优劣。模型检验。模型检验主要是检验模型对原时间序列的拟和效果, 检验整个模型对信息的提取是否充分, 即检验残差序列是否为白噪声序列。如果拟合模型通不过检验, 即残差序列不是为白噪声序列, 那么要重新选择模型进行拟合。如残差序列是白噪声序列, 就认为拟合模型是有效的。模型的有效性检验仍然是使谭诗璟ARIMA 模型在湖北省GDP 预测中的应用—— —时间序列分析在中国区域经济增长中的实证分析本文介绍求和自回归移动平均模型 ARIMA ( p, d, q) 的建模方法及 Eviews 实现。广泛求证和搜集从 1952 年到 2006 年以来湖北省 GDP 的相关数据, 运用统计学和计量经济学原理, 从时间序列的定义出发, 结合统计软件 EVIEWS 运用 ARMA建模方法, 将 ARIMA模型应用于湖北省历年 GDP 数据的分析与预测, 得到较为满意的结果。湖北省 区域经济学 ARIMA 时间序列 GDP 预测理论探讨262008/01 总第 360 期图四 取对数后自相关与偏自相关图图三 二阶差分后自相关与偏自相关图用上述 Q 统计量对残差序列进行卡方检验。模型预测。根据检验和比较的结果, 使用 Eviews 软件中的forecas t 功能对模型进行预测, 得到原时间序列的将来走势。 对比预测值与实际值, 同样可以以直观的方式得到模型的准确性。三、 实证结果分析GDP 受经济基础、 人口增长、 资源、 科技、 环境等诸多因素的影响, 这些因素之间又有着错综复杂的关系, 运用结构性的因果模型分析和预测 GDP 往往比较困难。我们将历年的 GDP 作为时间序列, 得出其变化规律, 建立预测模型。本文对 1952 至 2006 年的 55 个年度国内生产总值数据进行了分析, 为了对模型的正确性进行一定程度的检验, 现用前 50 个数据参与建模, 并用后五年的数据检验拟合效果。最后进行 2007年与 2008 年的预测。( 一) 数据的平稳化分析与处理差分。利用 EViews 软件对原 GDP 序列进行一阶差分得到图二:对该序列采用包含常数项和趋势项的模型进行 ADF 单位根检验。结果如下:由于该序列依然非平稳性, 因此需要再次进行差分, 得到如图三所式的折线图。根据一阶差分时所得 AIC 最小值, 确定滞后阶数为 1。然后对二阶差分进行 ADF 检验:结果表明二阶差分后的序列具有平稳性, 因此 ARIMA ( p, d,q) 的差分阶数 d=2。二阶差分后的自相关与偏自相关图如下:对数。利用 EViews 软件, 对原数据取对数:对已经形成的对数序列进行一阶差分, 然后进行 ADF 检验:由上表可见, 现在的对数一阶差分序列是平稳的, 由 AIC 和SC 的最小值可以确定此时的滞后阶数为 2。 因为是进行了一阶差分, 因此认为 ARIMA ( p, d, q) 中 d=1。( 二) ARMA ( p, q) 模型的建立ARMA ( p, q) 模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得。图一 1952- 2001 湖北省 GDP 序列图表 1 一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC 备注0 - 136479 - 161144 - 506374 - 183002 20582非平稳1 - 764521 - 165756 - 508508 - 184230 171892 - 101495 - 170583 - 510740 - 185512 180023 - 418890 - 175640 - 513075 - 186854 205434 - 230514 - 180911 - 515523 - 188259 27059表 2 二阶差分的 ADF 检验Lag Length t- Statistic 1% level 5% level 10% level1 (Fixed) - 714836 - 170583 - 510740 - 185512表 3 对数一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC SC 备注0 - 448501 - 574446 - 923780 - 599925 - 536478 - 458512平稳 1 - 832346 - 577723 - 925169 - 600658 - 662966 - 5448712 - 398029 - 581152 - 926622 - 601424 - 770517 - 6115043 - 324520 - 584743 - 928142 - 602225 - 747432 - 546692图五 对数后一阶差分自相关与偏自相关图理论探讨27时代金融摘 要:关键词:使用 EViews 软件对 AR, MA的取值进行实现, 比较三种情况下方程的 AIC 值和 SC 值:表 4ARMA模型的比较由表 4 可知, 最优情况本应该在 AR ( 1) , MA ( 1) 时取得, 但AR, MA都取 1 时无法实现平稳, 舍去。对于后面两种情况进行比较, 而 P=1 时 AIC 与 SC 值都比较小, 在该种情况下方程如下:综上所述选用 ARIMA ( 1, 1, 0) 模型。( 三) 模型的检验对模型的 Q 统计量进行白噪声检验, 得出残差序列相互独立的概率很大, 故不能拒绝序列相互独立的原假设, 检验通过。模型均值及自相关系数的估计都通过显著性检验, 模型通过残差自相关检验, 可以用来预测。( 四) 模型的预测我们使用时间序列分析的方法对湖北省地方生产总值的年度数据序列建立自回归预测模型, 并利用模型对 2002 到 2006 年的数值进行预测和对照:表 5 ARIMA ( 1, 1, 0) 预测值与实际值的比较由上表可见, 该模型在短期内预测比较准确, 平均绝对误差为 876% , 但随着预测期的延长, 预测误差可能会出现逐渐增大的情况。下面, 我们对湖北省 2007 年与 2008 年的地方总产值进行预测:在 ARIMA模型的预测中, 湖北省的地方生产将保持增长的势头, 但 2008 年的增长率不如 2007 年, 这一点值得注意。GDP毕竟与很多因素有关, 虽然我们一致认为, 作为我国首次主办奥运的一年, 2008 将是中国经济的高涨期, 但是是否所有的地方产值都将受到奥运的好的影响呢? 也许在 2008 年全国的 GDP 也许确实将有大幅度的提高, 但这有很大一部分是奥运赛场所在地带来的经济效应, 而不是所有地方都能够享有的。正如 GDP 数据显示, 1998 年尽管全国经济依然保持了一个比较好的态势, 但湖北省的经济却因洪水遭受不小的损失。作为一个大省, 湖北省理应对自身的发展承担起更多的责任。总的来说, ARIMA模型从定量的角度反映了一定的问题, 做出了较为精确的预测, 尽管不能完全代表现实, 我们仍能以ARIMA模型为基础, 对将来的发展作出预先解决方案, 进一步提高经济发展, 减少不必要的损失。四、结语时间序列预测法是一种重要的预测方法, 其模型比较简单,对资料的要求比较单一, 在实际中有着广泛的适用性。在应用中,应根据所要解决的问题及问题的特点等方面来综合考虑并选择相对最优的模型。在实际运用中, 由于 GDP 的特殊性, ARIMA模型以自身的特点成为了 GDP 预测上佳选择, 但是预测只是估计量, 真正精确的还是真实值, 当然, ARIMA 模型作为一般情况下的 ARMA 模型, 运用了差分、取对数等等计算方法, 最终得到进行预测的时间序列, 无论是在预测上, 还是在数量经济上, 都是不小的进步, 也为将来的发展做出了很大的贡献。我们通过对湖北省地方总产值的实证分析, 拟合 ARIMA( 1, 1, 0) 模型, 并运用该模型对湖北省的经济进行了小规模的预测,得到了较为满意的拟和结果, 但湖北省 2007 年与 2008 年经济预测中出现的增长率下降的问题值得思考, 究竟是什么原因造成了这样的结果, 同时我们也需要到 2008 年再次进行比较, 以此来再次确定 ARIMA ( 1, 1, 0) 模型在湖北省地方总产值预测中所起到的作用。参考文献:【1】易丹辉 数据分析与 EViews应用 中国统计出版社【2】 Philip Hans Frances 商业和经济预测中的时间序列模型 中国人民大学出版社【3】新中国五十五年统计资料汇编 中国统计出版社【4】赵蕾 陈美英 ARIMA 模型在福建省 GDP 预测中的应用 科技和产业( 2007) 01- 0045- 04【5】 张卫国 以 ARIMA 模型估计 2003 年山东 GDP 增长速度 东岳论丛( 2004) 01- 0079- 03【6】刘盛佳 湖北省区域经济发展分析 华中师范大学学报 ( 2003) 03-0405- 06【7】王丽娜 肖冬荣 基于 ARMA 模型的经济非平稳时间序列的预测分析武汉理工大学学报 2004 年 2 月【8】陈昀 贺远琼 外商直接投资对武汉区域经济的影响分析 科技进步与对策 ( 2006) 03- 0092- 02( 作者单位: 武汉大学经济与管理学院金融工程)AR(1)MA(1) AR(1) MA(1) 备注AIC - 536412 - 321820 - 135728最优为 AR(1)MA(1)SC - 458445 - 282837 - 097119Variable Coefficient S Error t- Statistic PAR(1) 586643 115236 090781 0000R- squared - 226023 Mean dependent var 104967Adjusted R- squared - 226023 SD dependent var 111688SE of regression 123668 Akaike info criterion - 321820Sumsquared resid 718807 Schwarz criterion - 282837Log likelihood 72369 Durbin-Watson stat 132697Inverted AR Roots 59年份 实际值 预测值 相对误差(%) 平均误差(%)2002 63 72 - 8762003 71 82 - 122004 92 78 - 892005 78 83 - 682006 00 05 - 26年度 2006 2007 2008GDP 值 00 08 59增长率(%) — 06 16表 6 ARIMA ( 1, 1, 0) 对湖北省经济的预测一、模糊数学分析方法对企业经营 ( 偿债) 能力评价的适用性影响企业经营 ( 偿债) 和盈利能力的因素或指标很多; 在分析判断时, 对事物的评价 ( 或评估) 常常会涉及多个因素或多个指标。这时就要求根据多丛因素对事物作出综合评价, 而不能只从朱晓琳 曹 娜用应用模糊数学中的隶属度评价企业经营(偿债)能力问题影响企业经营能力的许多因素都具有模糊性, 难以对其确定一个精确量值; 为了使企业经营 ( 偿债) 能力评价能够得到客观合理的结果, 有必要根据一些模糊因素来改进其评价方法, 本文根据模糊数学中隶属度的方法尝试对企业经营 ( 偿债) 能力做出一种有效的评价。隶属度及函数 选取指标构建模型 经营能力评价应用理论探讨28

相关百科

热门百科

首页
发表服务