首页

毕业论文

首页 毕业论文 问题

微钻针毕业论文

发布时间:

微钻针毕业论文

我们机电系的一篇论文,看看行不行 雕塑曲面体混流式叶片的多轴联动数控加工编程技术 摘要:转轮叶片是水轮机能量转换的关键部件,也是最难加工的零件,目前多轴联动数控加工是解决该类大型雕塑曲面零件最有效的加工方法。多轴联动数控加工编程则是实现其高精度和高效率加工的最重要环节。本文介绍混流式水轮机叶片五轴联动数控加工大型雕塑曲面编程中涉及到转轮叶片三维造型、刀位轨迹计算、切削仿真、机床运动碰撞仿真、后置变换等关键技术。通过对这些技术的链接和研究,开发实现了大型叶片的多轴联动加工。 关键词:数控编程 引言 水轮机是水力发电的原动机,水轮机转轮叶片的制造,转轮的优劣,对水电站机组的安全、可靠性、经济性运行有着巨大的影响。水轮机转轮叶片是非常复杂的雕塑面体。在大中型机组制造工艺上,长期以来采用的“砂型铸造—— —砂轮铲磨——立体样板检测 —的制造工艺,不能有效地保证叶片型面的准确性和制造质量。目前采用五轴联动数控加工技术是当今机械加工中的尖端高技术。大型复杂曲面零件的数控加工编程则是实现其数字化制造的最重要的技术基础,其数控编程技术是一个数字化仿真评价及优化过程。其 关键技术包括:复杂形状零件的三维造型及定位,五 轴联动刀位轨迹规划和计算,加工雕塑曲面体的刀轴 控制技术,切削仿真及干涉检验,以及后处理技术等。 大型复杂曲面的多轴联动数控编程技术使雕塑曲面体 转轮叶片的多轴数控加工成为可能,这将大大推动我 国水轮机行业的发展和进步,为我国水电设备制造业 向着先进制造技术发展奠定基础。 " 大型混流式水轮机叶片的多轴数控加工编程过程大型复杂曲面零件的五轴联动数控编程比普通零件编程要复杂得多,针对混流式叶片体积大并且型面曲率变化大的特点,通过分析加工要求进行工艺设计,确定加工方案,选择合适的机床、刀具、夹具,确定合理的走刀路线及切削用量等;建立叶片的几何模型、计算加工过程中的刀具相对于叶片的运动轨迹,然后进行叶片的切削仿真以及机床的运动仿真,反复修改加工参数、刀具参数和刀轴控制方案,直到仿真结果确无干涉碰撞发生,则按照机床数控系统可接受的程序格式进行后处理,生成叶片加工程序。其具体编程过程如图-所示。 图-大型混流式叶片的五轴联动数控加工编程流程!"! 混流式水轮机叶片的三维几何建模 混流式叶片这一复杂雕塑曲面体由正面、背面、与上冠相接的带状回转面、与下环相接的带状回转面、 大, 可编写一个.*/0程序读入这些三维坐标点,然后采用双三次多补片曲面片通过自由形式特征的通过曲线的方法进行曲面造型,如图1所示。叶片的毛坯形状可从设计数据点进行偏置计算处理,或者从三维测量得到的点云集方式确定对叶片的各个曲面分别进行"234$曲面造型,并缝合成实体。 !"# 叶片加工工艺规划 加工方案和加工参数的选择决定着数控加工的效率和质量。我们根据要加工叶片的结构和特点可选择大型龙门移动式五坐标数控铣镗床,根据三点定位原理经大量的研究分析,决定在加工背面是采用通用的带球形的可调支撑,配以叶片焊接的定位销对叶片定位,在叶片上焊接必要的工艺块,采用一些通用的拉紧装置来装夹。加工正面时,采用在加工背面时配合铣出的和背面型面完全一致的胎具,将叶片背面放入胎具,利用焊接的工艺块进行调整找正,仍然采用通用的拉压装置进行装夹。由于叶片由多张曲面组合而 成,为了解决加工过程中的碰撞问题,我们采用沿流线 走刀,对于叶片的正背面进行分区域加工,根据曲面各 处曲率的不同采用不同直径的刀具、不同的刀轴控制方 式来加工。对每个面一般分多次粗铣和一次精铣。在机 床与工件和夹具不碰撞和不干涉情况下,尽量采用大直 径曲面面铣刀,以提高加工效率。叶片正背面我们选用 刀具直径!-56曲面面铣刀粗铣、!-16曲面面铣刀精铣, 叶片头部曲面采用!76的曲面面铣刀加工,出水边采用!76螺旋玉米立铣刀五轴联动侧铣。根据后续仿真情况 反复做刀位编辑,以寻求合理的加工方案。在满足加工 要求、机床正常运行和一定的刀具寿命的前提下尽可能 的提高加工效率。 !"$叶片五轴联动加工刀位轨迹的生成 针对大型混流式叶片各曲面的特点,进行合理的刀 位轨迹规划和计算,是使所生成的刀位轨迹无干涉、无 碰撞、稳定性好、编程效率高的关键。由于五轴加工的 刀具位置和刀具轴线方向是变化的,因此五轴加工的是 由工件坐标系中的刀位点位置矢量和刀具轴线方向矢量 组成,刀轴可通过前倾角和倾斜角来控制,于是我们可 根据曲面在切削点处的局部坐标计算出刀位矢量和刀轴 矢量。从加工效率、 表面质量和切削工 艺性能来看,选择 沿叶片造型的参数 线作为铣削加工的 方向分多次粗铣和 一次精铣,然后划 分加工区域,定义 与机床有关的参数, 根据以上所选叶片 的加工部位、装夹 图, 混流式叶片的刀轨生成 定位方式、机床、 刀具及切削参数和余量分布情况将叶片分为多个组合面 分别进行加工。通过对曲面曲率的分布情况的分析对于 不同的区域采用不同的面铣刀。粗加工给出每次加工的 余量,精加工采用同一直径的铣刀,根据粗糙度要求给 定残余高度,根据具体情况选择切削类型、切削参数、 刀轴方向、进退刀方式等参数,生成的刀位轨迹如图, 所示。但是对于像叶片这样的曲率变化很大而又不均匀 的雕塑曲面零件我们还要根据情况作大量的刀位编辑, 并且必须进一步通过切削仿真做干涉和碰撞检查修改和 编辑刀轨。 !"#叶片五轴联动数控加工仿真 数控加工仿真通过软件模拟加工环境、刀具路径 与材料切除过程来检验并优化加工程序。在计算机上 仿真验证多轴联动加工的刀具轨迹,辅助进行加工刀 具干涉检查和机床与叶片的碰撞检查,取代试切削或 试加工过程,可大大地降低制造成本,并缩短研制周 期,避免加工设备与叶片和夹具等的碰撞,保证加工 过程的安全。加工零件的"!代码在投入实际的加工之 前通常需要进行试切,水轮机叶片是非常复杂的雕塑 曲面体,开发利用数控加工仿真技术是其成功采用五 轴联动数控加工的关键。在此,我们首先进行工艺系 统分析,明确机床!"!系统型号、机床结构形式和尺 寸、机床运动原理和机床坐标系统。用三维!,-软件建 立机床运动部件和固定部件的实体几何模型,并转换 成仿真软件可用的格式,然后建立刀具库,在仿真软 件中新建用户文件,设置所用!"!系统,并建立机床运 动模型,即部件树,添加各部件的几何模型,并准确 定位,最后设置机床参数。 接下来将叶片模型变换到 加工位置计算出刀具轨迹,再以此轨迹进行叶片切削 过程、刀位轨迹和机床运动的三维动态仿真。这样就 可以清楚的监控到叶片加工过程中的过切与欠切、刀 杆和联接系统与叶片、机床各运动部件与叶片和夹具 间的干涉碰撞,从而保证了数控编程的质量,减少了 试切的工作量和劳动强度,提高了编程的一次成功率, 缩短了产品设计和加工周期,大大提高生产效率。如 在数控加工行业进行推广,可产生巨大的经济和社会 效益。叶片的切削仿真如图.所示,叶片的机床加工仿 真如图/所示。 图. 混流式叶片的切削仿真图/ 混流式叶片的机床加工仿真 !"$叶片刀位轨迹的后置处理 后置处理是数控编程的一个重要内容,它将我们前 面生成的刀位数据转换成适合具体机床的数据。后处理 最基本的两个要素就是刀轨数据和后处理器。我们应首 先了解龙门移动式五坐标数控铣镗床的结构、机床配备的附属设备、机床具备的功能及功能实现的方式和机床 配备的数控系统,熟悉该系统的"!编程包括功能代码 的组成、含义。然后应用通用后置处理器导向模板,根 据以上掌握的知识,开发定制专用后置处理器。然后将 我们已得刀位源文件进行输入转换成可控制机床加工的 "!代码。 % 结束语 复杂曲面的多轴联动数控编程是一涉及到众多领域 知识的复杂流程,是数字化仿真及优化的过程。本文介 绍的大型水轮机叶片的多轴联动编程技术,已用于工程 实际大型叶片的数控编程中,实现了大型转轮叶片的五 轴联动数控加工的刀位轨迹计算和加工仿真,保证了后 续数控加工的质量和效率,已作为大型水轮机叶片五轴 联动数控加工的编程工具用于实际生产中。

前言装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:(1)机械制造技术;(2)信息处理、加工、传输技术;(3)自动控制技术;(4)伺服驱动技术;(5)传感器技术;(6)软件技术等。1, 国内外数控技术发展状况世界制造业在20世纪末的十几年中经历了几次反复,曾一度几乎快成为夕阳工业,所以美国人首先提出了要振兴现代制造业。90年代的全世界数控机床制造业都经过重大改组。如美国、德国等几大制造商都经过较大变动,从90年代初开始已出现明显的回升,在全世界制造业形成新的技术更新浪潮。如德国机床行业从2000年至今已接受3个月以后的订货合同,生产任务饱满。20世纪人类社会最伟大的科技成果是计算机的发明与应用,计算机及控制技术在机械制造设备中的应用是世纪内制造业发展的最重大的技术进步。自从1952年美国第1台数控铣床问世至今已经历了50个年头。数控设备包括:车、铣、加工中心、镗、磨、冲压、电加工以及各类专机,形成庞大的数控制造设备家族,每年全世界的产量有10~20万台,产值上百亿美元。世界制造业在20世纪末的十几年中经历了几次反复,曾一度几乎快成为夕阳工业,所以美国人首先提出了要振兴现代制造业。90年代的全世界数控机床制造业都经过重大改组。如美国、德国等几大制造商都经过较大变动,从90年代初开始已出现明显的回升,在全世界制造业形成新的技术更新浪潮。如德国机床行业从2000年至今已接受3个月以后的订货合同,生产任务饱满。我国数控机床制造业在80年代曾有过高速发展的阶段,许多机床厂从传统产品实现向数控化产品的转型。但总的来说,技术水平不高,质量不佳,所以在90年代初期面临国家经济由计划性经济向市场经济转移调整,经历了几年最困难的萧条时期,那时生产能力降到50%,库存超过4个月。从1995年“九五”以后国家从扩大内需启动机床市场,加强限制进口数控设备的审批,投资重点支持关键数控系统、设备、技术攻关,对数控设备生产起到了很大的促进作用,尤其是在1999年以后,国家向国防工业及关键民用工业部门投入大量技改资金,使数控设备制造市场一派繁荣。从2000年8月份的上海数控机床展览会和2001年4月北京国际机床展览会上,也可以看到多品种产品的繁荣景象。但也反映了下列问题:(1) 低技术水平的产品竞争激烈,互相靠压价促销;(2) 高技术水平、全功能产品主要靠进口;(3) 配套的高质量功能部件、数控系统附件主要靠进口;(4) 应用技术水平较低,联网技术没有完全推广使用;(5) 自行开发能力较差,相对有较高技术水平的产品主要靠引进图纸、合资生产或进口件组装。当今世界工业国家数控机床的拥有量反映了这个国家的经济能力和国防实力。目前我国是全世界机床拥有量最多的国家(近300万台),但我们的机床数控化率仅达到1.9%左右,这与西方工业国家一般能达到20%的差距太大。日本不到80万台的机床却有近10倍于我国的制造能力。数控化率低,已有数控机床利用率、开动率低,这是发展我国21世纪制造业必须首先解决的最主要问题。每年我们国产全功能数控机床3000~4000台,日本1年产5万多台数控机床,每年我们花十几亿美元进口7000~9000台数控机床,即使这样我国制造业也很难把行业中数控化率大幅度提上去。因此,国家计委、经贸委从“八五”、“九五”就提出数控化改造的方针,在“九五”期间,我协会也曾做过调研。当时提出数控化改造的设备可达8~10万台,需投入80~100亿资金,但得到的经济效益将是投入的5~10倍以上。因此,这两年来承担数控化改造的企业公司大量涌现,甚至还有美国公司加入。“十五”刚刚开始,国防科工委就明确提出了在军工企业中投入6.8亿元,用于对1.2~1.8万台机床的数控化改造。数控技术经过50年的2个阶段和6代的发展:第1阶段:硬件数控(NC)第1代:1952年的电子管第2代:1959年晶体管分离元件第3代:1965年的小规模集成电路第2阶段:软件数控(CNC)第4代:1970年的小型计算机第5代:1974年的微处理器第6代:1990年基于个人PC机(PC-BASEO)第6代的系统优点主要有:(1) 元器件集成度高,可靠性好,性能高,可靠性已可达到5万小时以上;(2) 基于PC平台,技术进步快,升级换代容易;(3) 提供了开放式基础,可供利用的软、硬件资源丰富,使数控功能扩展到很宽的领域(如CAD、CAM、CAPP,连接网卡、声卡、打印机、摄影机等);(4) 对数控系统生产厂来说,提供了优良的开发环境,简化了硬件。目前,国际上最大的数控系统生产厂是日本FANUC公司,1年生产5万套以上系统,占世界市场约40%左右,其次是德国的西门子公司约占15%以上,再次是德海德汉尔,西班牙发格,意大利菲地亚,法国的NUM,日本的三菱、安川。国产数控系统厂家主要有华中数控、北京航天机床数控集团、北京凯恩帝、北京凯奇、沈阳艺天、广州数控、南京新方达、成都广泰等,国产数控生产厂家规模都较小,年产都还没有超过300~400套。近10年数控机床为适应加工技术发展,在以下几个技术领域都有巨大进步。(1) 高速化由于高速加工技术普及,机床普遍提高各方面速度,车床主轴转速由3000~4000r/min提高到8000~10000r/min,铣床和加工中心主轴转速由4000~8000r/min提高到12000r/min、24000r/min、40000r/min以上�快速移动速度由过去的10~20m/min提高到48m/min、60m/min、80m/min、120m/min在提高速度的同时要求提高运动部件起动的加速度,其已由过去一般机床的0.5G(重力加速度)提高到1.5~2G,最高可达15G,直线电机在机床上开始使用,主轴上大量采用内装式主轴电机。(2) 高精度化数控机床的定位精度已由一般的0.01~0.02mm提高到0.008mm左右,亚微米级机床达到0.0005mm左右,纳米级机床达到0.005~0.01μm,最小分辨率为1nm(0.000001mm)的数控系统和机床已有产品。数控中两轴以上插补技术大大提高,纳米级插补使两轴联动出的圆弧都可以达到1μ的圆度,插补前多程序段预读,大大提高插补质量,并可进行自动拐角处理等。(3) 复合加工、新结构机床大量出现如5轴5面体复合加工机床,5轴5联动加工各类异形零件。也派生出各新颖的机床结构,包括6轴虚拟轴机床,串并联铰链机床等。采用特殊机械结构,数控的特殊运算方式,特殊编程要求。(4) 使用各种高效特殊功能的刀具使数控机床“如虎添翼”。如内冷钻头由于使高压冷却液直接冷却钻头切削刃和排除切屑,在钻深孔时大大提高效率。加工钢件切削速度能达1000m/min,加工铝件能达5000m/min。(5) 数控机床的开放性和联网管理,已是使用数控机床的基本要求,它不仅是提高数控机床开动率、生产率的必要手段,而且是企业合理化、最佳化利用这些制造手段的方法。因此,计算机集成制造、网络制造、异地诊断、虚拟制造、异行工程等等各种新技术都在数控机床基础上发展起来,这必然成为21世纪制造业发展的一个主要潮流。2, 数控技术的发展趋势数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面〔1~8〕。2.1 高速、高精加工技术及装备的新趋势效率、质量是先进制造技术的体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(CIRP)将其确定为21世纪的中心研究方向之一。在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。这些都对加工装备提出了高速、高精和高柔性的要求。从EMO2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右。目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床。美国CINCINNATI公司的HyperMach机床进给速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60 000r/min。加工一薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分别达12*!000r/mm和1g。在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~μm,并且超精密加工精度已开始进入纳米级(μm)。在可靠性方面,国外数控装置的MTBF值已达6 000h以上,伺服系统的MTBF值达到30000h以上,表现出非常高的可靠性。为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。 5轴联动加工bsp;采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。在EMO2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工。德国DMG公司展出DMUVoution系列加工中心,可在一次装夹下5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制。 智能化、开放式、网络化成为当代数控系统发展的主要趋势21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。目前许多国家对开放式数控系统进行研究,如美国的NGC(The Next Generation Work-Station/Machine Control)、欧共体的OSACA(Op和复合加工机床en System Architecture for Control within Automation Systems)、日本的OSEC(Open System Environment for Controller),中国的ONC(Open Numerical Control System)等。数控系统开放化已经成为数控系统的未来之路。所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。网络化数控装备是近两年国际著名机床博览会的一个新亮点。数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。国内外一些著名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EMO2001展中,日本山崎马扎克(Mazak)公司展出的“CyberProduction Center”(智能生产控制中心,简称CPC);日本大隈(Okuma)机床公司展出“IT plaza”(信息技术广场,简称IT广场);德国西门子(Siemens)公司展出的Open Manufacturing Environment(开放制造环境,简称OME)等,反映了数控机床加工向网络化方向发展的趋势。 重视新技术标准、规范的建立 关于数控系统设计开发规范如前所述,开放式数控系统有更好的通用性、柔性、适应国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范(OMAC、OSACA、OSEC)的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临。我国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定。 关于数控标准数控标准是制造业信息化发展的一种趋势。数控技术诞生后的50年间的信息交换都是基于ISO6983标准,即采用G,M代码描述如何(how)加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要。为此,国际上正在研究和制定一种新的CNC系统标准ISO14649(STEP-NC),其目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程,乃至各个工业领域产品信息的标准化。STEP-NC的出现可能是数控技术领域的一次革命,对于数控技术的发展乃至整个制造业,将产生深远的影响。首先,STEP-NC提出一种崭新的制造理念,传统的制造理念中,NC加工程序都集中在单个计算机上。而在新标准下,NC程序可以分散在互联网上,这正是数控技术开放式、网络化发展的方向。其次,STEP-NC数控系统还可大大减少加工图纸(约75%)、加工程序编制时间(约35%)和加工时间(约50%)。目前,欧美国家非常重视STEP-NC的研究,欧洲发起了STEP-NC的IMS计划(~)。参加这项计划的有来自欧洲和日本的20个CAD/CAM/CAPP/CNC用户、厂商和学术机构。美国的STEP Tools公司是全球范围内制造业数据交换软件的开发者,他已经开发了用作数控机床加工信息交换的超级模型(Super Model),其目标是用统一的规范描述所有加工过程。目前这种新的数据交换格式已经在配备了SIEMENS、FIDIA以及欧洲OSACA-NC数控系统的原型样机上进行了验证。2. 5 柔性化 包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大,可裁剪性强,便于满足不同用户的需求;群控系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。2. 6 工艺复合性和多轴化 以减少工序、辅助时间为主要目的的复合加工,正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。数控技术轴,西门子880系统控制轴数可达24轴。(4)实时智能化 早期的实时系统通常针对相对简单的理想环境,其作用是如何调度任务,以确保任务在规定期限内完成。而人工智能则试图用计算模型实现人类的各种智能行为。科学技术发展到今天,实时系统和人工智能相互结合,人工智能正向着具有实时响应的、更现实的领域发展,而实时系统也朝着具有智能行为的、更加复杂的应用发展,由此产生了实时智能控制这一新的领域。在数控技术领域,实时智能控制的研究和应用正沿着几个主要分支发展:自适应控制、模糊控制、神经网络控制、专家控制、学习控制、前馈控制等。例如在数控系统中配备编程专家系统、故障诊断专家系统、参数自动设定和刀具自动管理及补偿等自适应调节系统,在高速加工时的综合运动控制中引入提前预测和预算功能、动态前馈功能,在压力、温度、位置、速度控制等方面采用模糊控制,使数控系统的控制性能大大提高,从而达到最佳控制的目的。 功能发展方向(1)用户界面图形化 用户界面是数控系统与使用者之间的对话接口。由于不同用户对界面的要求不同,因而开发用户界面的工作量极大,用户界面成为计算机软件研制中最困难的部分之一。当前INTERNET、虚拟现实、科学计算可视化及多媒体等技术也对用户界面提出了更高要求。图形用户界面极大地方便了非专业用户的使用,人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。(2)科学计算可视化 科学计算可视化可用于高效处理数据和解释数据,使信息交流不再局限于用文字和语言表达,而可以直接使用图形、图像、动画等可视信息。可视化技术与虚拟环境技术相结合,进一步拓宽了应用领域,如无图纸设计、虚拟样机技术等,这对缩短产品设计周期、提高产品质量、降低产品成本具有重要意义。在数控技术领域,可视化技术可用于CAD/CAM,如自动编程设计、参数自动设定、刀具补偿和刀具管理数据的动态处理和显示以及加工过程的可视化仿真演示等。(3)插补和补偿方式多样化 多种插补方式如直线插补、圆弧插补、圆柱插补、空间椭圆曲面插补、螺纹插补、极坐标插补、2D+2螺旋插补、NANO插补、NURBS插补(非均匀有理B样条插补)、样条插补(A、B、C样条)、多项式插补等。多种补偿功能如间隙补偿、垂直度补偿、象限误差补偿、螺距和测量系统误差补偿、与速度相关的前馈补偿、温度补偿、带平滑接近和退出以及相反点计算的刀具半径补偿等。(4)内装高性能PLC 数控系统内装高性能PLC控制模块,可直接用梯形图或高级语言编程,具有直观的在线调试和在线帮助功能。编程工具中包含用于车床铣床的标准PLC用户程序实例,用户可在标准PLC用户程序基础上进行编辑修改,从而方便地建立自己的应用程序。(5)多媒体技术应用 多媒体技术集计算机、声像和通信技术于一体,使计算机具有综合处理声音、文字、图像和视频信息的能力。在数控技术领域,应用多媒体技术可以做到信息处理综合化、智能化,在实时监控系统和生产现场设备的故障诊断、生产过程参数监测等方面有着重大的应用价值。2 .8 体系结构的发展(1)集成化 采用高度集成化CPU、RISC芯片和大规模可编程集成电路FPGA、EPLD、CPLD以及专用集成电路ASIC芯片,可提高数控系统的集成度和软硬件运行速度。应用FPD平板显示技术,可提高显示器性能。平板显示器具有科技含量高、重量轻、体积小、功耗低、便于携带等优点,可实现超大尺寸显示,成为和CRT抗衡的新兴显示技术,是21世纪显示技术的主流。应用先进封装和互连技术,将半导体和表面安装技术融为一体。通过提高集成电路密度、减少互连长度和数量来降低产品价格,改进性能,减小组件尺寸,提高系统的可靠性。(2)模块化 硬件模块化易于实现数控系统的集成化和标准化。根据不同的功能需求,将基本模块,如CPU、存储器、位置伺服、PLC、输入输出接口、通讯等模块,作成标准的系列化产品,通过积木方式进行功能裁剪和模块数量的增减,构成不同档次的数控系统。(3)网络化 机床联网可进行远程控制和无人化操作。通过机床联网,可在任何一台机床上对其它机床进行编程、设定、操作、运行,不同机床的画面可同时显示在每一台机床的屏幕上。(4)通用型开放式闭环控制模式 采用通用计算机组成总线式、模块化、开放式、嵌入式体系结构,便于裁剪、扩展和升级,可组成不同档次、不同类型、不同集成程度的数控系统。闭环控制模式是针对传统的数控系统仅有的专用型单机封闭式开环控制模式提出的。由于制造过程是一个具有多变量控制和加工工艺综合作用的复杂过程,包含诸如加工尺寸、形状、振动、噪声、温度和热变形等各种变化因素,因此,要实现加工过程的多目标优化,必须采用多变量的闭环控制,在实时加工过程中动态调整加工过程变量。加工过程中采用开放式通用型实时动态全闭环控制模式,易于将计算机实时智能技术、网络技术、多媒体技术、CAD/CAM、伺服控制、自适应控制、动态数据管理及动态刀具补偿、动态仿真等高新技术融于一体,构成严密的制造过程闭环控制体系,从而实现集成化、智能化、网络化。3, 智能化数控系统3. 1 国内外数控系统发展概况随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。在现代制造

第一部分:数控机床应用调查一、 品正数控深孔钻床外型及简介 品正数控深孔钻床外型如图1-1 图1-1品正数控深孔钻床简介:深孔钻 : 自1982年生产以来, 一直占据生产的重要位置。 现市场对模具生产交期需求迫切, 深孔加工机快捷,便利, 不需要铰孔, 一步到位, 成了不可或缺的工具。更兼投资回收成本快速, 是抢占市场的利器。 二、深孔钻在设计上的优点合运水道,热流道,顶针孔,油泵深孔,轧辊孔等深孔加工。 敝司深孔钻在设计上有以下的优点 :1. 工作台, 底座机身, 立柱, 升降台, 全部 FC30铸铁成型, 加工时达至最佳的吸震效果。 2. 床身工作台底座一体成型, 结构一致, 筋骨强壮, 没有立柱与工作台分开的设计。3. 滑轨, 工作台导轨, 采用V型导轨, 保证准确的导向性, 无方轨之侧间隙。滑动时无蛇行现象, 亦能维持滑动之顺畅。在强压下承载座与滑动座更紧密结合。两者接触而能平均受力。长时间运动能维持稳定之动静态精度, 而能达到增长机件寿命及提高加工品质。 4. 滑轨经热处理研磨, 更能保证耐用与刚性。 5. 采用良好的油压泵设计, 控制流量与压力, 确保使用寿命。 6. 另外更采用CNC 换刀系统装置, 只用轻轻按下控制键, 气动锁刀系统。 更换刀具方便。 7. 纸带与磁铁过滤装置, 能将钢材加工中铁屑与切削油废弃的微量元素过滤, 循环再用。三、品正深孔钻规格表深孔钻规格表 型号 MGD-813 MGD-1015 MGD-1520 MGD-1525 Table (单位 mm) 工作台尺寸 400x1500 600x2000 800x2300 800x2800 作业面积 1300x600x800(z1)x400(z2) 1500x600x1000 2000x1000x1500 2500x1000x1500 T型槽 18mmx63mmx5 22x34x5 22x34x7 22x34x7 主轴 主轴进给行程 800 主轴进给速度 (mm/min) 20-5000mm主轴直径 Φ120 主轴端至台面距离 70 mm 电动机 主轴(kw) 磁力分离器(W) 25W 纸带过滤器 25W 铁削排除机 (W) 油压泵 10HPx6P润滑油泵 150Wx2加工能力 加工深度 800 1000 1250 1500 钻孔能力 Φ3-25mm(32)油压系统 切削油桶 (L) 1800LT高压泵压力 (kg/cm2 ) 0-120 高压泵吐出量 (L/min) 5-70最大载重 (kg) 7000 机械净重 (kg) 占地面积 第二部分:数控加工工艺分析要求:能够根据图纸的几何特征和技术要求,运用数控加工工艺知识,选择加工方法、装夹定位方式、合理地选择加工所用的刀具及几何参数,划分加工工序和工步,安排加工路线,确定切削参数。在此基础上,能够完成中等复杂零件数控加工工艺文件的编制(至少两个零件的工艺分析)。一、加工平面凸轮零件上的槽与孔,外部轮廓已加工完,零件材料为HT200。 图、零件图工艺分析 凸轮槽形内、外轮廓由直线和圆弧组成,几何元素之间关系描述清楚完整,凸轮槽侧面与 、 两个内孔表面粗糙度要求较高,为。凸轮槽内外轮廓面和 孔与底面有垂直度要求。零件材料为HT200,切削加工性能较好。 根据上述分析,凸轮槽内、外轮廓及 、 两个孔的加工应分粗、精加工两个阶段进行,以保证表面粗糙度要求。同时以底面A定位,提高装夹刚度以满足垂直度要求。2、确定装夹方案 根据零件的结构特点,加工 、 两个孔时,以底面A定位(必要时可设工艺孔),采用螺旋压板机构夹紧。加工凸轮槽内外轮廓时,采用“一面两孔”方式定位,既以底面A和 、 两个孔为定位基准。3、确定加工顺序及走刀路线 加工顺序的拟定按照基面先行、先粗后精的原则确定。因此应先加工用做定位基准的 、 两个孔,然后再加工凸轮槽内外轮廓表面。为保证加工精度,粗、精加工分开,其中 、 两个孔的加工采用钻孔—粗铰—精铰方案。走刀路线包括平面进给和深度进给两部分。平面进给时,外凸轮廓从切线方向切入,内凹轮廓从过渡圆弧切入。为使凸轮槽表面具有较好的表面质量,采用顺铣方式铣削。深度进给有两种方法:一种是在XOY平面(或YOX平面)来回铣削逐渐进刀到既定深度;另一种方法是先打一个工艺孔,然后从工艺孔进刀到既定深度。4、刀具选择 根据零件特点选用8把刀具,如下表:序号 刀具号 刀具 加工表面 备注 规格名称 数量 刀长/mm 1 T01 ¢5中心钻 1 钻¢5mm中心孔 2 T02 ¢钻头 1 45 ¢20孔粗加工 3 T03 ¢钻头 1 30 ¢12孔粗加工 4 T04 ¢20铰刀 1 45 ¢20孔精加工 5 T05 ¢12铰刀 1 30 ¢12孔精加工 6 T06 90°倒角铣刀 1 ¢20孔倒角×45° 7 T07 ¢6高速钢立铣刀 1 20 粗加工凸轮槽内外轮廓 底圆角 T08 ¢6硬质合金立铣刀 1 20 精加工凸轮槽内外轮廓 5、切削用量选择 凸轮槽内、外轮廓精加工时留㎜铣削余量,精铰 、 两个孔时留㎜铰削余量。主轴转数是1000r/min。二、轴类零件的加工工艺分析与实例 一渗碳主轴(如图2-2),每批40件,材料20Cr,除内外螺纹外~C59。渗碳件工艺比较复杂,必须对粗加工工艺绘制工艺草图(如图)。主轴加工工艺过程工 序 工种 工步 工序内容及要求 机床设备(略) 夹具 刀具 量具1 车 按工艺草图车全部至尺寸工艺要求:(1)一端钻中心孔φ2。(2)1:5锥度及莫氏3#内锥涂色检验,接触面>60%。(3)各需磨削的外圆对中心孔径向跳动不得大于 CA6140 莫氏3号铰刀 莫氏3号塞规1:5环规 检查 2 淬 热处理-C59 3 车 去碳。一端夹牢,一端搭中心架 <1> 车端面,保证φ36右端面台阶到轴端长度为40 <2> 修钻中心孔φ5B型 <3> 调头 车端面,取总长340至尺寸,继续钻深至85,60°倒角 检查 4 车 一夹一顶 CA6140 <1> 车M30×–6g左螺纹大径及ф30JS5处至Φ30 <2> 车φ25至φ25 、长43 <3> 车φ35至φ35 <4> 车砂轮越程槽 5 车 调头,一夹一顶 <1> 车M30×–6g螺纹大径及φ30JS5处至φ30 <2> 车φ40至φ40 <3> 车砂轮越程槽 6 铣 铣19 二平面至尺寸 7 热 热处理HRC59 8 研 研磨二端中心孔 9 外磨 二顶尖,(另一端用锥堵) M1430A <1> 粗磨φ40外圆,留~余量 <2> 粗磨φ30js外圆至φ30t (二处)台阶磨出即可 <3> 粗磨1:5锥度,留磨余量 10 内磨 用V型夹具(ф30js5二外圆处定位) M1432A 磨莫氏3#内锥(重配莫氏3#锥堵)精磨余量~ 11 热 低温时效处理(烘),消除内应力 12 车 一端夹住,一端搭中心架 <1> 钻φ孔,用导向套定位,螺纹不攻 Z–2027 <2> 调头,钻孔φ5攻M6–6H内螺纹 <3> 锪孔口60°中心孔 <4> 调头套钻套钻孔ф×25(螺纹不改) <5> 锪60°中心孔,表面精糙度 60°锪钻 检查 13 钳 <1> 锥孔内塞入攻丝套 <2> 攻M12–6H内螺纹至尺寸 14 研 研中心孔 15 外磨 工件装夹于二顶尖间 <1> 精磨φ40及φ35φ25外圆至尺寸 <2> 磨M30× M30×左螺纹大径至30 <3> 半精磨ф30js5二处至ф30 <4> 精磨1:5锥度至尺寸,用涂色法检查按触面大于85% 1:5环规16 磨 工件装夹二顶尖间,磨螺纹 <1> 磨M30×–6g左螺纹至尺寸 M33×左环规 <2> 磨M30×–6g螺纹至尺寸 M33×环规17 研 精研中心孔 18 外磨 精磨、工件装夹于二顶尖间 M1432A 精磨2-φ30 至尺寸,注意形位公差 19 内磨 工件装在V型夹具中,以1–ф30外圆为基准,精磨莫氏3号内锥孔(卸堵,以2–ф30js5外圆定位),涂色检查接触面大于80%,注意技术要求“1”“2” MG1432A 检查 20 普 清洗涂防锈油,入库工件垂直吊挂 该轴类零件加工过程中几点说明:1.采用了二中心孔为定位基准,符合前述的基准重合及基准统一原则。2.该零件先以外圆作为粗基准,车端面和钻中心孔,再以二中心孔为定位基准粗车外圆,又以粗车外圆为定位基准加工锥孔,此即为互为基准原则,使加工有一次比一次精度更高的定位基准面。3号莫氏圆锥精度要求很高。因此,需用V型夹具以2-ф30js5外圆为定位基准达到形位公差要求。车内锥时,一端用卡爪夹住,一端搭中心架,亦是以外圆作为精基准。3.半精加工、精加工外圆时,采用了锥堵,以锥堵中心孔作为精加工该轴外圆面的定位基准。 对锥堵要求: ① 锥堵具有较高精度,保证锥堵的锥面与其顶尖孔有较高同轴度。② 锥堵安装后不宜更换,以减少重复安装引起的安装误差。③ 锥堵外径靠近轴端处须制有外螺纹,以方便取卸锥堵。4.主轴用20Cr低碳合金钢渗碳淬硬,对工件不需要淬硬部分发(M30×-6g左、M30×-6g、M12-6H、M6-6H)表面留-3mm去碳层。5.螺纹因淬火后,在车床上无法加工,如先车好螺纹后再淬火,会使螺纹产生变形。因此,螺纹一般不允许淬硬,所以在工件中的螺纹部分的直径和长度上必需留去碳层。对于内螺纹,在孔口也应留出3mm去碳层。6.为保证中心孔精度,工件中心孔也不允许淬硬,为此,毛坯总长放长6mm。7.为保证工件外圆的磨削精度,热处理后须安排研磨中心孔的工序,并要求达到较细的表面粗糙度。外圆磨削时,影响工件的圆度主要是由于二顶尖孔的同轴度,及顶尖孔的圆度误差。8.为消除磨削应力,粗磨后安排低温时效工序(烘)。9.要获高精度外圆,磨削时应分粗磨、半精磨、精磨工序。精磨安排在高精度磨床上加工。第三部分:编制数控加工程序要求:能够根据图纸的技术要求和数控机床规定的指令格式与编程方法,正确地编制中等复杂典型零件的加工程序,或应用CAD/CAM自动编程软件编制较复杂零件的加工程序。(至少两个零件)。一、 编制轴类零件(1)数控加工程序如图所示的零件。毛坯为 42㎜的棒料,从右端至左端轴向走刀切削;粗加工每次进给深度㎜,进给量为㎜/r;精加工余量X向㎜,Z向㎜,切断刀刃宽4㎜。工件程序原点如图 图所示。 该零件结构较为简单,属典型轴类零件,轴向尺寸80㎜,采用三爪卡盘装夹即可,选工件回转轴线及右侧面的交点为加工坐标系原点。1. 选择刀具编号并确定换刀点根据加工要求选用3包刀具:1号为外圆左边偏粗车刀,2号为外圆左偏精车刀,3号刀为外圆切断刀,换刀点与对刀点重合2.确定加工路线1)粗车外圆。从右至左切削外轮廓,采用粗车循环。2)精车外圆。左端倒角→ 20㎜外圆→倒角→ 30㎜外圆→倒角→ 40㎜外圆。(3)切断3选择切削用量选择切削用量参数见表.表 选择切削用量参数转数指令 进给速度(mm/r) 刀具粗车外圆 M43 1号精车外圆 M44 2号切断 M43 2号编写程序O0001M03T0101 M43 P1 Q2 N1 G01 M44 T0202G70 P1 Q2 M43 T0303G00 二、 编制轴类零件(2)数控加工程序加工如图3-2所示零件,材料45钢,坯料 60×122。1、刀具:T1——硬质合金93°右偏刀;T2——宽3mm硬质合金割刀,D1——左刀尖。加工工序 材料 刀具车外圆 硬质合金 T1切槽 硬质合金 T2该零件结构较为简单,属典型轴类零件,轴向尺寸120㎜,采用三爪卡盘装夹即可,选工件回转轴线及右侧面的交点为加工坐标系原点。2、 选择刀具编号并确定换刀点根据加工要求选用2包刀具:1号为外圆左边偏粗车刀,2号刀为外圆切断刀和切槽刀,换刀点与对刀点重合 3、程序编写程序指令 说明N10 G56 S300 M3 M7 T1; 选择刀具,设定工艺数据N20 G96 S50 LIMS=3000 ; 设定粗车恒线速度N30 G0 X65 Z0; 快速引刀接近工件,准备车端面N40 G1 X-2; 车端面N50 G0 X65 Z10; 退刀N60 CNAME=“LK2”; 轮廓调用N70 R105=1 R106= R108=4 R109=0 R110=2 R111= R112=; 毛坯循环参数设定N80 LCYC95; 调用LCYC95循环轮廓粗加工N90 G96 S80 LIMS=3000 ; 设定精车恒线速度N100 R105=5; 调整循环参数N110 LCYC95; 调用LCYC95循环轮廓精加工N120 G0 X100 Z150; 快速退刀,准备换割刀N125 G97; 取消恒线速度N130 T2 S250; 换T2割刀D1有效,调整工艺数据N140 G0 X42 Z-33; 快速引刀至槽Z向左侧N150 LCEXP2 P8; 调用子程序8次割8槽N160 G0 X100 Z150 M9; 快速退刀,关冷却N170 M2; 程序结束LK2 N10 G1 X0 Z0; N20 G3 X20 Z-10 CR=10; N30 G1 Z-20; N40 G2 X30 Z-25 CR=5; N50 G1 CHF=; N60 Z-100; N70 X60 Z-105; N80 M17; LCEXP2 N10 G91 G1 X-14; N20 G4 S2; N30 G1 X14; N40 G0 Z-8; N50 G90 M17; 第四部分:绘制CAD零件图

关于微钻针的毕业论文

铁路钻探钻杆柱磨损分析 摘要:本文先依次分析了铁路钻探中钻杆柱自身材质缺陷,工作环境及受力特征,然后结合上述分析讨论了钻杆 柱磨损的五种具体表现形式,最后对减少钻杆柱的磨损提出了一些看法。 关键词:铁路钻探钻杆柱磨损 收稿日期:2007-10-10 铁路钻探中,钻杆柱的磨损是一个很严重的问题。钻杆 柱磨损到一定程度,就应该更换新的。目前对钻杆柱的直径 还没有达到用仪器自动监测的程度,大多是技术人员在现场 进行目测,用游标卡尺测量钻杆柱的直径。而使用专门技术 人员监测钻杆直径情况,常常是针对孔深较深的钻孔。当钻 杆柱磨损严重,而没被注意,在遇到使钻杆柱应力集中的异 常情况时,易发生钻杆柱折断的事故。在好的岩土层中,如 果钻孔垂直度好,没发生缩径和扩孔,打捞钻杆柱相对容易, 否则将浪费大量的时间,造成经济损失,对于深孔钻探,造 成的损失更加明显。钻杆柱的磨损研究受到了较多科技工作 者的高度重视。本文分析了铁路钻探中钻杆柱磨损的外因与 内因,以及磨损的具体表现形式。 一、钻杆的材质缺陷 从材质的角度来看,钻杆内部存在着在缺陷。生产车间 在生产钻杆时,有热处理这道工序。在加热和冷却过程中, 钻杆内部组织会发生改变。热处理通常消除钻杆内部粗粒组 织,使其结构细化,能受更大的应力。但局部总存在暇疵。 在高倍电子显微镜下观察钻杆晶粒结构,发现它是由许多离 子、原子按一定规则排列起来的空间格子构成的,晶格一般 处于稳定的平衡状态。晶粒之间常存在着为数不多的夹杂物、 空洞等缺陷,在这些晶粒里,甚至在弹性范围以内,当力还不 太大时,就可能发生塑性变形。 二、钻杆工作环境 铁路钻探多采用回转钻进,对取芯困难的岩层如砂层、 全风化层等情况也采用冲击钻进。钻杆柱在工作中,与钻杆 柱发生作用的主要介质包括钻井液与岩土层。 铁路钻探钻井液一般是水基钻井液,这是一种多相不稳 定体系,以水为分散介质(连续相),以粘土为分散相(固相), 加入一定的化学处理剂或加重材料组成。其成分包括水、膨 润土、化学处理剂(如滤失剂羧甲基纤维素)、气体(溶解氧、 二氧化碳气体、硫化氢气体)及其它腐蚀介质如Cl-、SO42-、 Ca2+、CO32–及HCO3-等。 铁路钻探中岩芯常见的有土层、砂卵石层、全风化岩层、 强风化破碎带岩层、弱风化岩层等。砂卵石层及坚硬的强风化 岩层等复杂地层对钻杆柱造成的磨损比其它岩层尤为厉害。 三、钻杆柱工作受力特征 在工作过程中,钻杆柱的运动方式包括自转与绕钻孔中 心的公转,在深孔钻探中这两种运动方式通常是共存的。钻 杆所受力为复合应力,主要包括以下几个分项:钻杆受到钻 杆自重引起的拉应力,在横向应力作用下产生的弯曲应力, 由扭矩的作用产生的剪应力,钻杆振动引起的轴向及横向应 力,与岩层的摩擦力,以及与钻井液的作用。 四、钻杆磨损表现形式 1.磨粒磨损 磨粒磨损是由外界硬质颗粒或硬表面的微峰在摩擦副对偶 表面相对运动过程中引起表面擦伤与表面材料脱落的现象,钻 杆柱的表面特征是产生擦伤撕裂、纵向拉痕、局部剥落和裂纹。 磨粒磨损机理为微观切削,多次塑变导致断裂以及微观断裂。 钻杆柱在复合应力状态下,易发生较大的弯曲,弯曲后 突起的地方与坚硬的岩层之间产生严重的摩擦。钻杆柱表面 的淬火处理厚度一般为1mm,在淬火层磨损掉后,以后的磨 损速率将加快。在深孔钻探中,有时候取出的钻杆表面有明 显的擦痕,这是磨粒磨损的表现。 2.粘着磨损 粘着磨损是当摩擦副两对偶表面作相对滑动时,由于粘 着致使材料从一个表面转移到另一表面或材料从表面脱落而 引起的磨损现象。由于摩擦副两对偶表面间实际接触面积很 小,接触点应力很高,摩擦副对偶表面处于这种高温和高应 力状态下,杆件表面发生破裂,使接触微峰产生粘着,随后 在滑动中粘着点被剪断。 钻杆的弯曲使其局部与岩层发生摩擦,局部接触点的高 应力构造了粘着磨损的条件。 3.疲劳磨损 疲劳磨损是摩擦副两对偶表面作滚动或滚(下转185页)记得采纳啊

已发送,请查收。《X型旋挖钻机的结构分析》作者:杨鹏来源:中国知网

国内封'旋挖钻机结构特点的探讨张启君,张忠海,陈以田,郑华(徐州工程机械股份科技有限公司,江苏徐州221004)摘要:以国内外旋挖钻机现有的底盘机构,钻桅,自行起落架,主副卷扬,动力头,钻杆,发动机系统等结构为背景,分析了国内外旋挖钻机常见的结构特点,为国内企业开发起到一定的借鉴作用.关键词:旋挖钻机;结构;特点;底盘结构中图分类号:文献标识码:B文章编号:1000-033X(2004)10-0037-05Discussion of drilling rig structureZHANG Qi-jun, ZHANG Zhong-hai, CHEN Yi-tian, ZHENG Hua(Xugong Science&Technology Co. Ltd, Xuzhou 221004, China)Abstract: This paper analyzed the structure characteristics of present drilling rig,such as chasis, drill string,lifting frame, windlass, power head, drill rod, engine, words: drilling rig; characterstics; chasis; structure旋挖钻机是一种多功能,高效率的灌注桩成孔设备,被广泛应用于水利工程,高层建筑,城市交通建设,铁路公路桥梁等桩基础工程的施工.旋挖钻机还可配套长短螺旋钻具,普通钻斗,捞砂钻斗,筒式岩石钻头等钻具以适应粘土层,砂砾层,卵石层和中风化泥岩等不同的施工要求.1概述旋挖钻机的结构主要由底盘机构,钻桅,自行起落架,主副卷扬,动力头,钻杆,钻头,转台,发动机系统,驾驶室,覆盖件,配重,液压系统,电气系统等组成,其工作原理也完全相同,都是由全液压动力头产生扭矩,由安装在钻架上的油缸提供钻压力,并通过伸缩式钻杆传递至钻头,钻下的钻渣充入钻头,由主卷扬提拔出孔外.徐工研究院在调查研究的基础上已开发出RD15, RD 18 , RD22旋挖钻机,RD系列产品的旋挖钻机的整机主要由底盘,动力头,钻架,发动机系统,钻杆自动存取装置,钻杆自动润滑装置,虎钳,锚固装置,钻具,液压系统,电气系统及泥浆系统等部件组成.2主要结构特点底盘的结构旋挖钻机的底盘一般为液压驱动,轨距可调,'刚性焊接式车架,履带自行式的结构.底盘主要包括车架及行走装置,行走装置主要包括履带张紧装置,履带总成,驱动轮,导向轮,承重轮,托链轮及行走减速机等组成.目前国内外旋挖钻机的底盘结构大小不一样,履带板宽度为800一1 200 mm.如意大利SOILMEC R622 HD旋挖钻机的底盘采用的是摆动伸缩式底盘,尺寸相对较小,驱动轮节距为216,单边10个支重轮2个托链轮,底盘高度相对较低.底盘伸缩采用的是摆动式,在行走过程中实现底盘的伸缩;行走减速机采用意大利BON-FIGLIOLI公司产品.意大利的CMV公司的旋挖钻机采用节距的驱动轮,支重轮,托链轮及链轨,履带板拟全部采用柏壳优士吉公司的进口件.单边11个支重轮2个托链轮,底盘伸缩仍采用通过油缸伸缩来实现,底架采用框架结构.CMV TH22的车架为箱形主体结构,上部布置有回转支承支座,中心回转体支座,车架的前,后部设置有履带伸缩箱形框架机构,车架主体两边上部固定托链轮,下部固定支重轮,前部设置了导向轮及其张紧装置,后部设置了驱动轮及其传动装置.MAIT公司采用自行设计的多功能底盘,稳定性好,重量轻,可配预留装置实现多功能,并具有上下车水平调整系统可进行倾斜调节.意马公司采用卡特彼勒履带底盘.意大利,德国制造的各类旋挖钻机的履带底盘均可以伸缩.国内的三一SYR220型旋挖钻机选用卡特彼勒3300底盘,C-9电喷发动机,内藏式液压可伸缩履带结构,宽履带提供较低的接地比压,提高施工时整机的翼期践C黔 2oo4Ao 37万方数据黔黝稳定性和适应性,且便于施工和运输.总之,国内外生产的旋挖钻机大多数应用的是专用底盘,轨距可调,能根据施工情况对底盘进行宽度调整,以增加钻机的整体稳定性,驾驶室前窗配有防坠物保护;也有少数厂家应用的是起重机底盘或挖掘机底盘.发动机系统旋挖钻机的发动机系统一般包括发动机,散热器,空滤器,消音器,燃油箱等.一般旋挖钻机设计时发动机选用国外的增压中冷式水冷发动机,选用进口CUMMINS发动机,为了适应不同用户的需求,也可选装国内二汽东风的康明斯发动机.其水散热器,空滤器等附件选用国产配套件,燃油箱自制.变幅机构及钻桅的结构目前国内旋挖钻机的变幅机构一般采用两级变幅油缸,平行四边形连杆机构,上端一级变幅油缸两端具有万向节头便于调整,钻桅截面形式为梯形截面,钻桅下端有液压垂直支腿,上端有两套滑轮机构,上下两端均可折叠,钻桅左右可调整角度为士50,前倾可调整角度为50,后倾可调整角度为150.三一SYR220型旋挖钻机的桅杆采用大箱形截面,为动力头和钻杆提供导向作用,具有良好的刚性和稳定性,抗冲击,耐振动,无需拆卸的可折叠式结构能减少整机长度和高度,便于运输.采用流行的平行四边形结构,通过其上油缸的作用,可使桅杆远离机体或靠近机体.通过桅杆角度的调整,可实现桅杆工作幅度或运输状态桅杆高度,桅杆相对地面角度的调节,使其动作机动灵活,施工效率高.意大利,德国制造的各类旋挖钻机可自行移动,自立桅杆,整个工作机构可在履带底盘上做土3600回转.因而现场转移,对孔位灵活方便,辅助时间少;钻架采用"平行四边形连杆机构十三角形"的支撑结构,非常适合城市狭窄场地的施工;钻架上装有垂直度检测仪,可以检测和显示钻架的偏斜度,并可通过钻机的"微动"系统调整钻架的垂直度;国外的SOILMEC公司的旋挖钻机产品品种有R-210,11-312,11-416,11-5161-11),R-620,R-622,R-625,11-725,11-825,11-930,11-940,R-1240等,其中SOILMEC R622 HD钻孔机的钻桅部分与国内的钻机产品相比,主要有以下几点不同.(1)动力头滑轨的形式SOILMEC R622 HD钻孔机的滑轨采用板式滑轨,但目前许多新型的钻机采用的是方形钢管式滑轨,这种新型的滑轨在强度上容易保证.(2)变幅机构与钻桅之间的十字轴结构SOILMECR622 HD钻孔机的十字轴采用的是转盘式结构;钻机的十字轴结构采用的是柱式结构.(3)加压油缸的固定型式SOILMEC R622 HD钻孔机的加压油缸采用的是2个铰点固定的方式,铰点所需的立板通过2--3个铰点固定在钻桅上;国内的钻机是将铰点所需的立板通过螺栓间接地焊在钻桅上.(4)加压油缸的防掉SOILMEC R622 HD钻孔机的加压油缸在加压油缸的末端另有保护装置;国内的钻机则是利用上铰点来防掉的.(5)动力头的下限位块SOILMEC R622 HD钻孔机的下限位块是在限位块与动力头之间加一橡胶块,并在橡胶块的动力头端加一金属挡板;国内钻机的下限位块是金属的,没有缓冲.(6)背轮的结构SOILMEC R622 HD钻孔机背轮上的2个滑轮是共面布置,主,副卷扬机的钢丝绳,在前后方向上错开;国内的钻机背轮上的2个滑轮是同心布置,主,副卷扬机的钢丝绳在左右方向上错开.(7)背轮的位置及收放SOILMEC R622 HD钻孔机背轮在运输状态下,位于发动机与副卷扬机之间,并在用手动棘轮机构使之水平;国内的钻机背轮在运输状态下,位于配重后面,呈竖直状态.(8)由于SOILMEC R622 HD钻孔机采用的是摆动伸缩式底盘,其钻桅没有在钻桅底部的支腿机构.宝峨公司的产品系列为BG12H,BG15H,BG18H,BG24H, BG24H, BG40H, BG24, BG25 , BG36, BG40,BG48等,该公司最新组装生产的BG20旋挖钻孔机,其二级变幅的结构形式较为特别,在转台上升起一横向支柱,变幅油缸安装在上面.这一设计可以加大变幅油缸安装距,增大钻桅的稳定性;但他也使转台的设计变的复杂,且升高了运输时的整车高度.国外车型中也仅有Bauer公司一家使用此结构.另一个特点是主,副卷扬机都安装在钻桅上,节省了回转平台上的安装空间,便于转台的布置.动力头的结构动力头是螺旋钻孔机的关键工作部件,其性能好坏直接影响钻孔机整机性能的发挥.动力头的功能:动力头是钻孔机工作的动力源,他驱动钻杆,钻头回转,并能提供钻孔所需的加压力,提升力,能满足高速甩土和低速钻进2种工况.动力头驱动钻杆,钻头回转时应能根据不同的土壤地质条件自动调整转速与扭矩,以满足不断变化的工况.国内的动力头为液压驱动,齿轮减速,可实现双向钻进和抛土作业,主要包括回转机蒙舞攀拼蓦黔姗聪38籍着熬袭赚戮臻藻粼髯熟鬓蒸鑫龚撇万方数据筑豁瓢镰澎5.有葬声芭亩三亩亩面面亩亩或互亩面菌面面面面或亩构,动力驱动机构及支撑机构.回转机构主要有齿轮与钻杆互锁的套管,两端支撑采用回转支承,密封等组成.动力驱动机构采用双变量马达带动减速机及小马达小减速机同时驱动钻进.抛土作业时,大减速机脱离,小马达小减速机工作,实现高速抛土.另外,支撑机构由滑槽,支座上盖与油缸连接件等组成,均为焊接结构件,应充分考虑其内部润滑,应有润滑油高度显示,加油口,放油口等,易于保养,维修.国内三一集团的动力头采用双变量液压马达驱动小齿轮,由小齿轮啮合大齿轮带动键套与钻杆配套,可根据不同地质条件自动无级改变旋转速度和输出扭矩.高品质双速减速机还可实现高速甩土功能.动力头有独立的润滑,冷却和换速液压系统,确保动力头可靠高效地工作.OILMECR622 HD钻孔机的动力头部分与国内钻机的产品相比,主要有以下几点不大相同:SOILMEC R622 HD钻孔机的动力头由三液压马达驱动,其中有一对马达同轴驱动一齿轮,在反向抛土时,只依靠小马达提供动力.国内的钻机只是由两液压马达提供动力,在反向抛土作业时,两马达均提供动力输出.SOILMEC R622HD钻孔机的动力头反向旋转由一单独机构实现,依靠此机构实现驱动齿轮与回转支承外齿轮的离合.国内的钻机是通过对减速器的更改来实现这一功能的;国内的钻机与SOILMEC R622 HD钻孔机与CMV钻孔机的动力头部分就结构上来讲,大体上是相似的,但SOILMEC R622 HD钻孔机与CMV钻孔机的动力头更为相似.他们均为三液压马达驱动,减速器与液压马达之间有一抛土换向机构.由于采用的三马达正常驱动及一马达反向抛土驱动.CMV公司的钻机采用平行连杆机构加三角形支撑型式,动力头可按土层自动调整扭矩和转速.意马公司采用动力头装有油浴式润滑.迈特公司系列旋挖钻机的动力头配有套管钻进增扭装置,钻机的摩擦钻杆驱动键的宽度和厚度大,可锁式钻杆为短键嵌入式可保证快速加锁和解锁.从国际知名大公司的钻孔机产品我们可以看出带有离合机构的钻孔机是比较普遍的机型.采用恒功率泵与变量液压马达配合,使动力头可根据地质条件自动改变其排量和压力,从而改变了输出扭矩及转速,即使动力头具有土壤自适应特性;采用带三挡或离合器的减速机,用远程液压操纵换档来实现钻孔机的低速钻进和高速抛土;液压换档,操作简单方便,提高了机器的作业效率.采用2个小齿轮同时驱动I个大齿轮且3个齿轮处于同一水平面.有利于倍增大齿轮所能传递的扭矩;齿轮中心连线为锐角三角形,使动力头结构紧凑.大齿轮与空心轴被联接为一体;空心轴内壁上均布有3条牙嵌板,其牙嵌钻进时与钻杆上的外牙嵌嵌合,可有效地传递扭矩和加压力;空心轴反转时,牙嵌即可分离.此结构不仅实现了轴的功能,也加强了轴的强度和刚度.动力头上,下箱体均为焊接结构,外形轮廓为一条包括几条圆弧及几条切线的封闭曲线;此结构不仅具有足够的强度和刚度,而且具有良好的工艺性.转台的结构目前国内旋挖钻机的转台为整体焊接式结构,主纵梁为"工字梁"形截面,主要包括回转支承,转台主体,钻桅后支撑,配重组成,钻桅后支撑位于配重前与转台主体用螺栓固定,便于拆卸,配重采用分体铸造大圆弧结构,运输时可拆卸.国外旋挖钻机转台的结构不太一样,如R622-HD旋挖钻机回转平台整体上采用了高铰点,大截面结构,这也是由转台受力大,应力高的特点决定的.转台主梁为变截面工字梁结构,采用的是等强度设计,这种设计较矩形梁设计具有重量轻,省材等优点.边梁设计与徐工集团RD 18大致相同,采用大圆弧造型设计.转台上布置与国内的具有较大区别,在布置上显得更为紧凑些,主要区别是回转减速机前置,充分利用了前面的空间,主泵和液压油箱均放在转台左边,燃油箱放在发动机前端,吸油阻力较小,发动机水散和液压油散热放在转台右边,主阀等液压元件放在转台右边油散热之前,这样管路布置不会太乱.后面配重也采用大圆弧设计,与边梁和机棚造型相适应.钻杆的结构决定设备地层适应能力的主要因素在于旋挖钻机所使用的钻杆形式,钻头类型以及与之相适应的设备本身的结构,其中采用什么样的凯式伸缩钻杆是最重要的因素.这是因为钻杆要将动力头的全部扭矩一直传递到孔底的钻头上,并且还要将加压液压缸的压力,动力头自重和钻杆自重等钻压稳定地传递到几十米以下的钻头上,因此当钻进较坚硬的地层时,钻杆可能要同时承受大扭矩和大钻压,还要克服很大的弯矩,这样使得钻杆的受力条件变得非常复杂,如果钻杆本身的能力达不到要求,则很容易损坏.凯式钻杆可以分为摩擦钻杆和锁紧钻杆2大类.摩擦钻杆是指钻杆上的键只能传递扭矩而不能传递钻压的钻杆,而锁紧钻杆是指钻杆之间通过加压平台可以锁成一个刚性体对地层加压钻进的钻杆.摩擦钻杆在提钻时不需要解锁,操作简封撰农慕解 39万方数据单,但由于加压能力有限无法钻进较硬地层.锁紧钻杆的地层适应能力强,但需要解决提钻时可能对钻杆造成强烈冲击的问题.锁紧钻杆又可分为简单的加压式钻杆和六键式嵌岩钻杆.简单加压式钻杆可以实现加压,但加压平台较窄,压强较大,容易磨损造成加压失效,因此不能真正适应坚硬地层的施工.而六键式嵌岩钻杆的加压平台宽大,可以稳定地传递大钻压,又因为是六键结构,钻杆本身抗失稳的能力很强,可以有效地克服钻杆的细长杆效应.国内外的六键式嵌岩钻杆和简单锁紧式钻杆都可以实现加压,但是这类钻杆也有不足,就是在提钻时必须先反转解锁,然后再卸土.正常的提钻顺序应该是钻杆由内向外依次上升,但是如果反转解锁不完全,就会造成某相邻两节钻杆尚未解锁就一起缩进外层钻杆,一般称为挂钻.而这两节钻杆继续往上运动时,受到轻微的扰动就会自动解锁,这样外面的钻杆就会悬空,对钻杆和动力头会形成强大的冲击.通常单节钻杆的质量约为2t,假如钻杆从3m甚至8m高度自由落体冲击下来,冲击能量将非常大,如果没有保护装置,很容易造成动力头和钻杆的严重破坏.因此使用六键式或其他锁紧式加压钻杆必须配置动力头减振器.减振器包括弹簧装置和液压减振装置,能有效缓冲并吸收钻杆对动力头的冲击以及钻杆之间的冲击,保证锁紧式钻杆的安全使用.目前国内外旋挖钻机的钻杆采用4节或5节伸缩内锁式钻杆,每节长度大约为13 m,装配后总长不小于48 m,采用高强度合金钢管,钻杆与动力头采用长牙嵌内锁式连接方式.顶端与上滑动板用010系列无齿回转支承相连,下端带有弹簧缓冲,第4节上端用可滑转万向节与主卷钢丝绳相连,下端采用方形截面杆通过销轴与钻头相连,每只钻头应与方形截面杆相配,具有互换性.钻头的结构钻头是决定旋挖钻机能否较好适应复杂地层,提高工效的重要部件,目前国内外旋挖钻机的钻头共分3种常用的结构:短螺旋钻头(0600-02 500 mm),回转斗钻头(0800-02 500 mm)和岩心钻钻头(0800-02500 mm),如R622-HD旋挖钻机的钻头有:短螺旋钻头,单层底旋挖钻头,双层底旋挖钻头共4个沙900,O1 000,0800,01 500)0目前国内外旋扮钻机钻头的3种常用的进土结构如下.(1)短螺旋钻头旋挖钻头主要纵短螺旋钻头为主,他主要靠螺旋叶片之间的间隙来容纳从孔底切削下来的土,砂砾等,这种钻头结构简单,造价低.地层较好时,使用他也可达到好的效果,如果地下砂砾石较多或含水较多时,在提钻时很容易掉块,钻进效率低,甚至于不能成孔.(2)单层底旋挖钻头在地下水位较高,或含砂砾较多的地层,目前多数旋挖钻机均采用钻头钻进,用静压泥浆护壁,这种钻孔工艺已明显优于短螺旋钻头钻孔.最早的旋挖钻头是单层底,在底下方有对称的2扇仅可向头内方向打开的合页门.当钻头钻进时,孔底切削下来的土,砂经合页门压入头内;在提钻时,在头内土砂的重力作用下,两扇门向下关闭,以阻止砂土漏回孔内.由于这种重力作用不是十分可靠,时常发生合页门关闭不严,造成砂土漏回孔内,降低了钻进效率,还会影响孔底清洁度.(3)双层底旋挖钻头自20世纪90年代以来,国外的一些钻机制造公司,在原单层底钻头的基础上,开发出双层底的旋挖钻头.其特点是2层底可以相对回转一个角度,以实现头底进土口的打开与关闭.即在顺时针旋转切削时,底部的进土口为开放状态,当钻完一个回次后,将钻头逆时针旋转一个角度,致使进土口强行关闭,从而使切削物完整地保存在头内.实践表明,在复杂地层中,双层底钻头的钻进效率及孔底清洁度明显优于单层底钻头.卷扬的结构国内外旋挖钻机的卷扬有主副卷扬2种,卷扬的结构采用卷扬减速机,具有卷扬,下放,制动功能,卷筒自行设计,主卷扬应具有自由下放功能,且实现快,慢双速控制.主,副卷扬应配有压绳器.液压电器系统意大利,德国制造的各类旋挖钻机的机,电,液一体化高度集中,结构紧凑,操纵灵活方便,自动化程度高.他采用伸缩式钻杆,节省了人力和加接钻杆的时间,施工中只需一人即可操纵整台钻机,工人劳动强度低.钻架上装有垂直度检测仪,可以检测和显示钻架的偏斜度,并可通过钻机的"微动"系统调整钻架的垂直度.驾驶室控制面板上装有孔深和钻架垂直度显示仪以及反映发动机,液压系统工作状态的仪表,显示屏及报警装置,有的还装有全电脑操作系统,使操作手能实时掌握钻进深度,钻架垂直度,保证钻孔准确到达设计深度和良好的垂直度.旋挖钻机的电液比例伺服控制系统国内外旋挖钻机采用电液比例伺服控制系统,PLC,CAN总线控制等,提高了定位钻孔精度,具有钻40髯黔及 Cd 万方数据筑黯机镰与旅篡橇戮化兹或奋亩亩亩亩亩亩泣亩石盆兹亩亩孔深度的自动化检测,荧光屏显示功能等,当钻桅发生倾斜时,钻机会自动报警,并进行自动调整.采用能显示多种信息的多功能液晶显示器,能进行起钻桅控制,自动垂直调平,回转倒土控制,发动机的监控,钻孔深度测量及显示,车身工作状态动画显示及虚拟仪表显示,故障检测与报警等信息的显示.安全保护国内外钻机的设计充分考虑操作人员的安全,并采取了一些措施,例如:驾驶室前窗配有FOPS(防坠物保护);卷扬的高度限位;驾驶室内操作台安全控制;发动机,液压等参数显示,报警等.3国外旋挖钻机主要特点意大利,德国等制造的各类旋挖钻机虽然能力大小有别,结构上略有差异,但总体性能和质量都比较先进,可靠,具有以下特点.(1)机,电,液一体化高度集中,结构紧凑,操纵灵活方便,自动化程度高,采用伸缩式钻杆,节省了人力和加接钻杆的时间.(2)可自行移动,自立桅杆,整个工作机构可在履带底盘上做13600回转.因而现场转移,对孔位灵活方便,辅助时间少.(3)与施工能力相同的常规钻机相比,回转扭矩大,并可根据地层情况自动调整.(4)钻架采用"平行四边形连杆机构+三角形"的支撑结构,非常适合城市狭窄场地的施工.(5)履带底盘可以伸缩.(6)钻架上装有垂直度检测仪,可以检测和显示钻架的偏斜度,并可通过钻机的"微动"系统调整钻架的垂直度.(7)驾驶室控制面板上装有孔深和钻架垂直度显示仪,以及反映发动机,液压系统工作状态的仪表,显示屏及报警装置,有的还装有全电脑操作系统,使操作手能实时掌握钻进深度,钻架垂直度,保证钻孔准确到达设计深度和良好的垂直度;实时掌握各系统工作情况,便于及时采取维修措施,保证钻机正常运转.(8)可实现多工艺钻进,能适应不同地层,不同桩基础处理方法施工的需要.一般类型的旋挖钻机除能进行旋挖钻进外,通过更换工作装置,还可实现跟管钻进和长螺旋钻进.参考文献:[1]韩金亭.大口径旋挖钻机在桩基施工中的技术优势【J].西部探矿工程,2002,12(3).[2]王平,赵永生,赵政.旋挖钻机选型及其在成孔施工中存在问题的探讨〔J].探矿工程,2001, 45(4).[3」侯再民.旋挖钻机卡钻原因及其对策〔J].探矿工程,2001,45(l).[41 JTJ 034-2000.公路路面基层施工技术规范[S].[51 GY 筋混凝土预制桩打桩工艺标准〔S].[61 GY 208-1996.设备基础施工工艺标准【S工[71 GY 204-1996.泥浆护壁回转钻孔灌注桩施工工艺标准【S].收稿日期:2004-05-13(上接第36页)3)墩头必须墩圆,以免滑丝;4)千斤顶的张拉杆必须拧进锚杯10扣丝以上;5)钢丝束接长时,连接杆必须拧进锚杯至10扣丝以上;6)如未张拉的钢丝要进行接长时,应套上一个比锚杯还大的钢套管,以便张拉时自由伸长;7)张拉时要随着张拉力的增加紧固螺帽,以防锚杯丝扣变形,不易锚固;8)锚下混凝土要振捣密实,以免大吨位张拉时造成混凝土崩裂.4压浆与封锚压浆是为了加强钢筋束与混凝土的整体作用,增大钢束与混凝土之间的粘结力,把力传递给混凝土,防止钢丝锈蚀.因此,压浆必须及时进行,以免长时间绷紧的钢丝束产生疲劳荷载,造成预应力损失.压浆前应选配好适宜的水灰比,水灰比太小,浆太稠给压浆造成困难;太大,浆太稀易离析沉淀,一般情况水灰比以较适宜.封锚是为了保护锚头不受空气的腐蚀,保证其预应力的永久性,因此封锚一定要封得密实.参考文献:[1]许尚江.滨州黄河大桥引桥横隔梁维修加固方案[J].筑路机械与施工机械化,2003 , 20(6).收稿日期:2004-05-24获麟磊豁粼2004Ao 41万方数据的资料下的好乱,见谅

微型台钻毕业论文

一般需要花钱的 我去年也是买的毕业论文 不过你们800字就OK了???那随便找个应该问题不大,我们论文光纸就用了48张~~巨囧~~八百字的话 我给你吧 我这边论文多一腿,这边今年卖的!我随便找一个啊 你将就将就 找了一下 还真找不到800字的 论文~~ 贴一个你自己决定吧正文!下面(这是我找到的字最少的了)毕业实习报告 经过在公司模具车间大约半年的实习,学到了好多东西,收获不小。在学校学的都是一些存理论的东西,有的问题都比较抽象,但通过实践就清楚多了。在半年的实践当中主要学习了模具的设计与制作过程,还亲自制作了一个冷冲模具。刚开始去的时候,一到车间看了看设备,我在学校只有学过普通车床和数控车床。可一开始的时候让我做的是钻孔,而且是摇壁钻床。以前根本没操作过,在学校钳工实习的时候接触的只是普通的台钻。这摇壁钻床还是跟普通的台钻是不一样的,它有攻丝的功能。一开始就帮师傅钻模具板料上的孔,销孔、摸丝孔、螺丝孔、落料孔等。钻孔的时候也学到了不少,主要就是怎样去磨钻头。刚开始磨的时候掌握不好钻头的角度,磨出来的钻头总是一会儿就钻不动了,或者有时会把钻头烧掉。经过几个星期的学习,在师傅的指导下,基本上算是可以自己磨了,但我觉得还是不怎么好,这个磨钻头应该摇需要时间吧,不可能在短期内就能磨出完美的钻头。在制作模具的过程中普车一般加工的是模柄和冲头。模柄的精度要求是不高的,主要把螺纹的部分加工好就可以了,而冲头就有公差范围了,在加工的时候就要注意了。在车间里磨床是最简单的操作设备了,一般知道怎样操作顺序就可以了,没有技术上的要求。在数控铣上学到了不少,公司用的是我学过的的软件。但在我学校学的东西是不能够工作的,还需要知道许多书本上学不到的东西,也要会操作数控铣床,因为有的模具铣的时候要考虑到设计人员所想要得到的尺寸。有的地方需要选择怎样的刀路,这都是要考虑的东西,而学校里学的只是功能的介绍,一些技术性的东西还是要靠实践才能得到的。冷冲模具的加工一般用线切割的,所以在线切割上也学刀了一点,线切割主要用的是CAX软件,跟CAD软件功能差不多,画出所要切割的形状,然后自动生成3B程序,我觉得线切割对刀的时候很要有耐心的,它对刀时候看那个电火花的程度,一般从头摇到尾电火花的亮度差不多就可以了,但往往不容易把工件放直,需要慢慢的去调整的。对刀的时间往往需要好多时间。模具装配是我做的时间最长的,从中学到了好多,装配过程中遇到问题很多,冲头的装配主要是要注意不要把冲头敲偏心了,一般冲头的配合部位都是油倒角的,这样就容易把冲头安装进去。敲的时候一定要注意把固定板垫平了再敲,敲的时候也有很多地方值得注意的,敲的时候一定要慢慢地砸下去,而且要用铜棒来敲进去,但在撞冲头之前还要对固定板上地孔进行扩孔,为了是把冲头的帽子埋进去。所以扩孔的深度应该是帽子的深度。在扩孔时也要注意不要偏心,钻头对的时候要小心。在装配凸凹模之前先把固定板上的螺纹孔钻好。为下一步做准备。凸凹模和固定板之间一般放的间隙是。所以在装配的时候需要在侧壁注入一些厌氧胶水,这个胶水有助于它们之间的固定。而冲头和固定板是过盈配合,所以不需要注入厌氧胶水凸凹模在装配前需要把孔倒一个R角,因为是翻边的。倒这个R角我是用铁砂纸绑在钻头上倒处来的,这样倒出来的角比较光滑,不容易让材料拉破,有助于提高产品的质量。把安装好的凸凹模固定板装到下模架板上,首先用瞬间胶水把凸凹模固定到下模架板上,位置一定要定得适当,离导柱得距离也要适当,考虑到导套的尺寸,还有就是定位元件的位置都要留好空间。当定位好了,然后把模架一起搬到钻床进行引孔,对螺纹孔进行引孔,引孔时钻速一定要打慢,防止碰到边缘时使胶水脱掉,只要钻个痕迹就可以了。因为这螺丝是M10的,所以下模座的孔应用12的钻头钻通孔,然后在反面钻内六角螺丝的帽孔,一般用16的钻头扩的孔,只要钻下去帽子的深度就可以了。在固定板上用M10的丝锥攻丝。用内六角螺钉把凸凹模与下模座连接起来,用板手把螺钉上紧。然后通过固定板与下模座一起钻销孔,用的钻头钻通孔,然后用铰刀铰孔。然后打上销子就把凸凹模与下模座的固定完成了安装上模时首先要进行的是对模,我用尼龙袋的薄膜作为间隙填充物,先把尼龙薄膜放在凸凹膜的上面,用几个尼龙垫子放在凸凹模固定板上,这几个尼龙垫的高度也是配作的,一般比凸凹模低3mm左右。然后把凹模放到凸模上面,轻轻用铜棒敲下凹模,使得凹模跟尼龙垫子精密接触,四周的尼龙垫子都要跟凹模紧密结合,看不到缝隙就算可以了。然后再把冲头固定板轻轻用铜棒敲进凸凹模,直到跟凹模紧密结合。因为对的时候还不知道冲头是否装斜了,可以把固定板和凹模取出,看一下尼龙薄膜被刃口切掉的程度就可以知道冲头的安装情况,有斜的,可以用凿子对冲头进行调整。如果确定冲头安装正确了,就可以把固定板与凹模连接起来了,但在连接的时候一定要在对模的状态下进行,把凹模仍然放进凸凹模,中间还是要放尼龙薄膜,下面的尼龙垫圈一定要与凹模紧密结合,然后在凹模的上面涂上厌氧胶水然后把冲头固定板轻轻的敲到凸凹模,直到跟凹模紧密结合,然后过段时间把冲头固定板与凹模一起小心取出来,然后通过凹模上的螺丝孔用钻头引到冲头固定板上,然后就可以把凹模与固定板分开了。然后把固定板上的螺孔钻好,然后把冲头固定板和凹模用内六角螺钉固定住,然后再通过凹模上的销孔打到固定板,打上销子就把凹模与冲头固定板固定住了。然后可以把上模垫板和上模架连接了,在连接时还是要在模具闭合的状态下进行连接,还是要把凹模和凸凹模闭合,然后放上垫板和上模架,然后钻螺钉孔,进行连接,最后把销孔打好并敲上销子,这样就把上模的零件连接好了。最后就是把托料板与卸料板装上,一样把两块板的螺孔先钻好,然后装上引孔,就可以把它们连接起来了,之间的硬橡皮只要高出板高度3~5mm就可以了。整个上模和下模都连接好了就可以用一个钢杆试一下,看看闭合的情况如何,能否不合下去。一些老模具工就可以听声音就可以知道闭合的情况了。通过这次实践我了解了现代机械制造工业的生产方式和工艺过程。熟悉工程材料主要成形方法和主要机械加工方法及其所用主要设备的工作原理和典型结构、工夹量具的使用以及安全操作技术。①了解机械制造工艺知识和新工艺、新技术、新设备在机械制造中的应用。 ② 在工程材料主要成形加工方法和主要机械加工方法上,具有初步的独立操作技能。 ③ 在了解、熟悉和掌握一定的工程基础知识和操作技能过程中,培养、提高和加强了我们的工程实践能力、创新意识和创新能力。 步入社会,就业单位不会像老师那样点点滴滴细致入微地把要做的工作告诉我们,更多的是需要我们自己去观察、学习。不具备这项能力就难以胜任未来的挑战。随着科学的迅猛发展,新技术的广泛应用,会有很多领域是我们未曾接触过的,只有敢于去尝试才能有所突破,有所创新。将近半年的实习带给我的,不全是所接触到的那些操作技能,也不仅仅是通过几项工种所要求我们锻炼的几种能力,更多的则需要我们每个人在实习结束后根据自己的情况去感悟,去反思,勤时自勉,有所收获,使实习达到了他的真正目的。

两个塔形五槽皮带轮互相反向安装,电机轴上带轮小端朝下,钻杆轴上,带轮小端朝上,即可实现转换变速。台式钻床(台钻)可安放在作业台上,主轴垂直布置的小型钻床。立式钻床主轴箱和工作台安置在立柱上,主轴垂直布置的钻床。摇臂钻床可绕立柱回转、升降,通常主轴箱可在摇臂上作水平移动。铣钻床工作台可纵横向移动,钻轴垂直布置,能进行铣削的钻床。孔深钻床使用特制深孔钻头,工件旋转,钻削深孔的钻床。

这是个电机变速问题,五级转速也就是让电机实现五种转速,多数采用电机抽五个头来确定每档转速。

倒换带轮,上面的带轮不是有好几个槽吗,?

微针模组毕业论文

弹片微针模组blade pin和探针模组pogo pin都作为传送信号和导通电流的作用,传送信号和导通作用不仅在智能手机测试中展现,而且在智能可穿戴设备、FPC/BTB测试连接器等都发挥着作用,那么弹片微针模组(blade pin)与探针模组(pogo pin)有何区别呢? 以上就是弹片微针模组(blade pin)与探针模组(pogo pin )的区别,无论是外形结构、使用寿命还是可通过电流能力等,探针模组都远远不及弹片微针模组。大电流弹片微针模组是新时代产物,凯智通微电子紧跟科技步伐,走在时代前沿,研发出了性能高度适配且具有良好连接功能和导通作用的新型产品。

3C锂电池的化成是指电池制造完成后,通过充放电的方式将电芯内部的正负极物质激活,改善电池的自放电、充放电性能和储存性能。分容是指电池制造完成后,通过测试电池容量及其他电性能参数,将电池容量进行分级。3C锂电池的化成、分容分别由自动化系统完成。关于3C锂电池为什么要化成、分容?因为电池的单体电芯生产完成后,受电池生产工艺的制约,在容量、电压、电流、内阻等方面的参数一致性不高,因此需要对电池进行化成、分容来保持3C锂电池电芯的一致性。3C锂电池的化成、分容完成后,还需要对其进行性能测试,测试中可用弹片微针模组作为电流传输的媒介,能起到稳定连接的作用。3C锂电池的性能测试包括基本性能、安全性能、环境性能、电化学性能几大类,弹片微针模组在测试中可通过1-50A范围内的电流,过流能力强大,还有着平均20W次的使用寿命,可有效提高3C锂电池测试效率,保障测试高效安全进行。

能适应手机锂电池的大电流需求,可过电流高达50A,过流稳定;在小pitch领域测试中,大电流弹片微针模组的可取值范围在之间,连接稳定;具有平均超过20w次的使用寿命,能应对手机锂电池的高频率测试需求;大电流弹片微针模组在BTB母座上的测试良率高达,是高性能模组。由镍合金/铍铜制成的大电流弹片微针模组具有精度高、连接稳、过流强的特点。以上就是大电流弹片微针模组在手机锂电池测试中的优势。

钻井钻探毕业论文

定向井钻井技术被应用到石油钻井中是在19世纪中后期,我整理了定向井钻井技术论文,有兴趣的亲可以来阅读一下! 定向井钻井技术论文篇一 浅析定向井钻井轨迹控制技术 [摘 要]定向井钻井中的关键技术是井眼轨迹控制技术,本文在分析定向井井眼轨迹剖面优化设计技术的基础上,对钻井中的井眼轨迹控制技术进行了探究。 [关键词]定向井;井眼轨迹;关键技术 中图分类号:TG998 文献标识码:A 文章编号:1009-914X(2015)08-0056-01 随着我国油气资源勘探开发力度的不断加大,对于地面遮挡物无法正常钻井开采、地质情况复杂存在断层等构造遮挡和钻井发生事故需要侧钻等复杂油气藏的勘探开发日益重视,而这些油气藏一般需要采用定向井钻井技术进行开发,从而增加油气储层裸露面积、提高油气采收率、降低钻井成本。但是,定向井钻井的井眼轨迹控制难度较大,需要对井眼轨迹进行优化设计,并通过在直井段、造斜段和稳斜井段采用不同的钻井轨迹控制技术进行控制,才能有效保证定向井的井眼轨迹,而对这些技术措施进行探究,成为提高定向井钻井水平的关键。 一、科学进行定向井井眼轨迹和轨道设计 1、定向井井眼轨迹的优化设计技术 井眼轨迹的剖面设计是定向井钻井施工的基础,只有不断优化完善井眼轨迹设计,保证井眼轨迹设计的科学性、合理性,才能确保定向井钻井实现预期目标。在定向井井眼轨迹剖面优化设计中,要坚持一定的原则:要以实现定向井钻井地质目标为原则,定向井钻井的地质目标很多,包括穿越多个含油地层提高勘探开发效果、避开地层中的断层等地质构造从而实现对地下剩余油气储层的有效开采、实现油井井眼轨迹在油气储层目的层的大范围延伸以增加油气藏的裸露面积等,同时,因为钻井或油气开采中发生事故导致无法正常开采的油井,可以通过定向井实现对油气储层的侧钻来达到开采目的,存在地面障碍物无法进行正常钻井的区域也可以通过定向井来实现钻井开采的目的,为了节约钻井成本,还可以通过丛式平台定向井开发的方式来节省井场占地面积;要以高校、优质、安全钻井施工作为现场施工目的,在进行定向井井眼轨迹剖面设计时,结合所处区域的地质特征进行设计,选择在地层稳定、松软度适中的位置进行造斜,造斜点要尽量避开容易塌陷、缩径或漏失以及压力异常的地层层位进行,要将造斜段的井斜角控制在15°-45°之间,因为过大的井斜角会增加施工难度且易引发钻井事故,而过小的井斜角会造成钻井方位的不稳定性,增加调整次数,还有就是在造斜率的选择上,要综合考虑油井所处地层的地质状况和钻井工具的实际造斜能力,在满足定向井钻井目标的前提下尽量减小造斜率并缩短造斜段的长度,实现快速钻井的目的;要尽量满足后期采油和完井工艺实施的要求,在满足定向井钻井要求的前提下,尽量减小井眼的曲率,方便后期抽油杆和油层套管下井,同时减小二者之间的偏磨,方便后期改造安全采油泵等井下作业施工。 2、定向井钻井的轨道设计 根据定钻井的目的和用途不同,可以将定向井分为常规定向井、丛式井、大位移井等几种类型进行设计,常规定向井一般水平位移不超过1km、垂直深度不超过3km,丛式井可减小井场面积,大位移定向井的轨道一般采用悬链曲线轨道,在井眼轨迹上采用高稳斜角和低造斜率。我国定向井井眼剖面轨迹主要有“直―增―稳”三段制剖面、“直―增―稳―降”四段制剖面和“直―增―稳―降―直”五段制剖面三种类型,在具体设计时根据所在地层地质特征不同进行优化设计。三种井眼轨迹各有优缺点:三段制井眼轨迹造斜段短,设计和施工操作比较方便,在没有其他特殊要求时可以采用三段制轨迹剖面;四段制井眼轨迹剖面起钻操作时容易捋出键槽加大下钻的摩擦力,容易造成卡钻事故,且容易形成岩屑床,一般不会采用,只在特殊情况下使用;五段制井眼轨迹剖面在目的油气储层中处于垂直状态,有利于采油泵安全下入,且便于后期采油工艺的实现。 二、三段制定向井轨迹剖面钻井控制技术 基于三种不同类型轨迹剖面的优缺点,在现实中多应用三段制和五段制井眼轨迹剖面进行定向井钻井设计,而三段制井眼轨迹剖面最为常用,下面就对三段制定向井井眼轨迹钻井控制技术进行研究。 1、直井段的井眼轨迹控制技术 直井段的井眼轨迹控制技术主要是防斜打直,这是定向井轨迹控制的基础,因为地质、工程因素和井眼扩大等原因,直井段钻井中会发生井斜,地质因素无法控制,可通过在施工和井眼扩大两方面采取技术措施进行直井段钻井的轨迹控制,关键要选择满眼钻具和钟摆钻具组合进行直井段钻井,前者可以在钻井中防止倾斜,将扶正器与井壁尽量靠近,就可以有效防止井斜问题出现;钟摆钻具的工作原理是超过一定角度后会产生回复力,具有纠正井斜问题的作用,但要保证钻压适量,因为钻压过大会使钟摆力减小而增斜力增大,妨碍纠斜效果。 2、造斜段的井眼轨迹控制技术 在定向井钻井中,造斜段钻井是关键部位,造斜就是从设计好的造斜点开始,使钻头偏离井口铅垂线而进行倾斜钻进的过程,关键是要让钻头偏离铅垂线开始造斜钻进。要根据设计好的井眼轨迹,综合井斜角、方位偏差来计算造斜率,以此指导造斜钻井施工,通过增加钻铤等措施,调整滑动钻进和复合钻进的比例,从而使钻头按照设计的井眼轨迹进行钻进,指导造斜段完成。 3、稳斜段的井眼轨迹控制技术 造斜段完成后,需要进行稳斜段的钻井施工,在稳斜段的钻进中,要选用无线随钻测井仪器对钻头的工作进程进行动态跟踪,实时监测钻头的实际井斜角、方位角偏离情况并与设计值进行对比,确保钻头中靶。在没有无线随钻测井仪器的情况下,需要通过稳斜钻具组合进行钻井,并应用单、多点测斜仪进行定点测斜,从而保证井眼中靶,提高钻井质量。 三、结论 综上所述,定向井是开采复杂油气藏的有效手段,可以对常规油井无法开采的油气藏进行开采,但要顺利实现定向井钻井,需要根据地质特征等设计井眼轨迹剖面、选择合适的轨道类型,并对不同井段采取对应的井眼轨迹控制技术,确保按设计的井眼轨迹钻进,提高油气资源开采效果。 参考文献 [1] 王辉云.定向井录井技术难点浅析[J].科技情报开发与经济,2009(10). [2] 鲁港,王刚,邢玉德,孙忠国,张芳芳.定向井钻井空间圆弧轨道计算的两个问题[J].石油地质与工程,2006(06). [3] 王学俭.浅层定向井连续控制钻井技术[J].石油钻探技术,2004(05). [4] 崔剑英,贺昌华.定向井信息查询系统的开发[J].数字化工,2005(07). 定向井钻井技术论文篇二 寿阳区块煤层气定向井钻井技术浅谈 摘要:本文介绍了寿阳煤层气的开发现状和煤层气特征,分析了定向井钻井技术在施工过程中的应用,对今后在寿阳区块内施工的定向井有一定的指导作用。 关键词:寿阳区块;定向井;造斜段;稳斜段 Abstract: This paper introduces the development status and characteristics of Shouyang coal-bed methane coal-bed gas, analyzes the application of directional drilling technology in the construction process, has the certain instruction function to the construction of directional well in Shouyang block. Keywords: Shouyang block; directional well; oblique section; steady inclined section 中图分类号: 1.概况 寿阳区块位于山西省中部,沁水盆地的北端,沁水盆地是我国大型含煤盆地之一,蕴藏着丰富的煤层气资源,根据远东能源(百慕大)有限公司前期在沁水盆地南部施工的参数井和定向生产井所获得的相关资料,显示该区具有良好的开发前景。 寿阳区块勘探开发历史和现状 1995年由联合国开发计划署(UNDP)利用全球环境基金资助、煤科总院西安分院承担的《中国煤层气资源开发》项目,《阳泉矿区煤层气资源评价》专题科研报告,对阳泉矿区(包括生产区、平昔区和寿阳区)煤层气资源开发进行了评价和研究,其中重点对寿阳区的煤层气资源开发进行了评价和研究。 中国煤田地质总局于1996~1997年在韩庄井田施工了一批煤层气勘探参数井,获得了该区有关的煤储层参数,并对HG6井的主要煤层进行了压裂改造和排采试验,取得了该井合层排采的一整套数据。中联公司1997~1998年在寿阳区块施工了4口煤层气生产井,其中1口探井,3口生产试验井,获得该区宝贵的煤储层参数和生产数据。1998年完成了四条二维地震勘探线,共计167km,获得了丰富的地质成果。2005年远东公司在该区施工了3口羽状水平井,其中2口在煤层段进尺超过3000m,3口井均在生产。 2007年远东能源(百慕大)有限公司根据取得的初步成果资料研究、分析后,认为该区15#煤层十分稳定,储层参数比较有利,是煤层气开发的有利区块,决定在寿阳县南燕竹镇共计部署一批定向井及参数井,以获取该地区15#煤层的埋深、厚度等储层参数,进一步扩大勘探范围,并逐步形成区域生产井网,争取短期内该区煤层气地面开发进入大规模商业化运营。 寿阳区块地质背景 沁水盆地北端位于北东向新华夏系第三隆起太行山隆以西,汾河地堑东侧,阳曲——盂县纬向构造带南翼。总体形态呈现走向东西、向南倾斜的单斜构造。区内构造简单,地层平缓,倾角一般在10°左右。燕山运动和喜马拉雅运动期间,由于较大规模的岩浆侵入活动,大地热流背景值升高,本区石炭二叠纪煤层在原来深成变质作用的基础上,又叠加了区域岩浆热变质作用,致使煤化作用大大加深,形成了本区高变质的瘦煤、贫煤以及少量无烟煤。 本区所钻遇的地层为:第四系(Q),三叠系下统刘家沟组(T1l),二叠系上统石千峰组(P2sh),二叠系上统上石盒子组(P2x),二叠系下统下石盒子组(P1x),二叠系下统山西组(P1s),石炭系上统太原组(C3t)。 寿阳区块煤储层特征 主要含煤地层为上石炭统太原组及下二叠统山西组,含煤10余层,其中3#、9#、15#煤为主力煤层。 3#煤层:俗称七尺煤,全区煤层厚0~,煤层较稳定,寿阳矿区西部和阳泉三矿矿区煤层较厚,其他地区煤层变薄,甚至尖灭。结构简单,有时含一层夹矸,顶底板为泥岩,砂质泥岩、粉砂岩,局部为炭质泥岩和细砂岩。 9#煤层:全区煤层厚不一,煤层较稳定。结构简单,顶底板为泥岩,砂质泥岩、粉砂岩,局部为炭质泥岩和细砂岩。 15#煤层:煤层厚~,是寿阳区块内煤层气开发的主力煤层。15#煤含1~3层夹矸,结构中等,顶底板K2灰岩,底板为泥岩、砂质泥岩,局部为炭质泥岩和细砂岩。 沁水盆地北端煤储层厚度大,埋深适中;煤的热化程度较高,己进入生气高峰,煤层顶底板封闭性能好,含气量高;煤储层裂隙较发育,孔隙以小孔和微孔为主,渗透性较好;煤的吸附性能强,但含气饱和度偏低。 2.设备设备选择 钻机选择 寿阳区块定向生产井井深一般在在1000m以内,水平段不超过500m,根据我井队现有设备的情况,选择了TSJ-2000、GZ-2000钻机。该钻机提升、回转能力均能满足煤层气定向生产井施工的需要。 设备配置 水泵:TBW-850(直井段)、3NB-1000、F-500;排量0~42L/s,压力5~32MPa。 动力:PZ12V-190、PZ8V-190、12V135;功率120~800HP。 钻塔:型塔(750KN)。 钻具:Φ127mm钻杆,Φ203钻铤,Φ178钻铤+Φ159钻铤。 定向钻具 Φ172(°)螺杆、Φ165(°)螺杆 Φ172MWD定向短节、Φ165MWD定向短节 Φ165mm、Φ159mm短钻挺 Φ214mm扶正器、Φ48MWD Φ165mm无磁钻铤、Φ172无磁钻挺 3钻井工艺 井身结构 井身结构在钻井工程中处于最基础的地位,体现了钻井的目的,也是决定该目的能否顺利实现的重要因素之一。井身结构设计以钻井目的为目标,以现实的钻井工程和地质等条件为依据,使目标和过程统一起来。 一开采用Φ311mm钻头钻至稳定基岩,且水文显示正常,下入Φ表层套管,固井并候凝48小时。 二开采用Φ钻头钻至完井,达到钻井目的后,下入Φ生产套管并固井。 钻头选用 二开选择造适岩的HJ537G钻头。 动力钻具选择 为了适应软及中软地层,选择了中转速中扭矩马达。 钻井液的选择 煤层气井施工时,煤储层保护是关键。在煤层段钻井中,主要采用清水钻进,严格控制钻井液中的固相含量、比重,井内岩粉较多时,可换用高粘无污染钻井液排出岩粉,既能保证孔内安全,又防止了储层污染。 4.定向钻具组合及钻进处理措施 定向井施工中主要分直井段、造斜段、稳斜段,要针对不同地层、不同井深、位移有效地选择好三个井段的钻具组合。实现设计的井身规迹是施工的关键。 直井段钻井技术 直井段的防斜是定向井施工的重要保证,一般要求井斜100m内小于1°。直井段的钻具组合是关系到定向井下部定向造斜段的难易程度。 (1)钻具组合:一开采用塔式钻具组合:Φ311钻头+Φ203钻铤+Φ178钻铤+Φ159钻铤+Φ127钻杆。 二开:Φ钻头 +Φ178钻铤+Φ159钻铤+Φ127钻杆。 (2)钻进参数: 钻压 10~80 kN排量 12 L/s 泵压 ~2MPa 钻井液性能: 密度 ~粘度 21 s (3)见基岩时要轻压慢转,防止井斜。 (4)直井段换径时要吊打,换定向钻具前测井斜。 造斜段钻井技术 造斜段下钻到底后,EMWD仪器无干扰开始定向钻进;施工采用°单弯螺杆,测得实际造斜率为9°/30m,定向过程中采用滑动钻进与复合钻进交替作业,确保狗腿度满足要求。 (1)钻具组合Φ钻头+Φ172(°)螺杆+Φ172MWD定向短节+Φ172无磁*1根+Φ178钻铤*2根+411*4A10+Φ159钻铤*9根+Φ127钻杆 (2)钻进参数:钻压 40~80 kN排量 20~24 L/s 泵压 2~4MPa 钻井液性能:密度 ~粘度 16 s (3)要调整好钻井液性能,采用三级固控设备控控制固相含量不超标。 (4)及时测量井斜、方位,发现与设计不符,应马上采取措施。 (5)做好泥浆的性能维护,提高防塌性能和携带岩屑的能力,清洁井眼。 稳斜段钻井技术 稳斜段钻具组合在本区可采用以下三种方法,也可以交替作业,确保井斜方位满足要求,三班各钻井参数要保持一致辞,并保证井下安全。 (1)采用螺杆复合稳斜钻进 钻具组合:Φ钻头+Φ172(°)螺杆+Φ172MWD定向短节+Φ172无磁*1根+Φ178钻铤*2根+411*4A10+Φ159钻铤*9根+Φ127钻杆 钻进参数:钻压 40~80 kN排量 20~24 L/s 泵压 3~5 MPa 钻井液性能:密度 ~粘度 17s (2)采用近钻头扶正器稳斜钻进。 钻具组合:Φ钻头+Φ214扶正器+Φ172MWD定向短节+Φ172无磁*1根+411*4A10+Φ159钻铤*9根+Φ127钻杆 钻进参数:钻压 40~80 kN排量 20~24 L/s 泵压 2~4 MPa 钻井液性能:密度 ~粘度 17s (3)采用光钻铤钻进。 钻具组合:Φ钻头+Φ172MWD定向短节+Φ172无磁*1根+411*4A10+Φ159钻铤*9根+Φ127钻杆 钻进参数:钻压 80~120 kN排量 20~24 L/s 泵压 2~4 MPa 钻井液性能:密度 ~粘度 16 s 5.经验与建议 通过对本区FCC-HZ-23D、FCC-HZ-33D、FCC-HZ-11D、FCC-HZ-47D、FCC-HZ-70D井的施工,取得了以下经验: (1)及时测斜、准确计算、跟踪作图是保证井身轨迹的关键。使用MWD能准确掌握井身轨迹的变化情况,使轨迹得到有效的控制。 (2)在钻井过程中,随时观察扭矩、泵压的变化,发现问题及时分析与解决。 (3)勤测泥浆中固相含量的变化,确保固相含量不超标,从而影响螺杆的使用。有条件的话可以上三级固控设备。 (4)采取“转动+滑动”的复合钻进方式,利用无线随钻实时监测,能有效的确保井眼轨迹质量,使施工安全、快速进行;在稳斜过程中采用“转动+滑动”的复合钻进方式,有效降低摩阻和扭矩,降低施工风险。 (5)在定向造斜过程中使实际井斜略超前设计井斜,提前结束造斜段,使实钻稳斜段井斜略小于设计稳斜段井斜,在复合钻中使井斜微增至设计轨迹要求,达到快速、安全目的。参考文献 [1]王明寿.2006.寿阳区块煤层气勘探开发现状、地质特征及前景分析.北京:地质出版社 [2]大港油田.1999.钻井工程技术.北京:石油工业出版社 看了“定向井钻井技术论文”的人还看: 1. 地质钻探技术论文(2) 2. 地质录井方法与技术探讨论文 3. 采油技术发展展望科技论文 4. 超声波检测技术论文 5. 工程定额原理的应用论文

[中图分类号] [文献码] B [ 文章 编号] 1000-405X(2013)-7-229-2 中国地质调查局是我国目前唯一组织公益性地质钻探技术研究开发和推广应用的单位,自1999年成立以来,在组织地质钻探技术研究开发和推广应用方面开展了大量工作并做出了显著的成绩,对我国地质钻探技术的发展起到了较好的推动作用。面对地质工作大发展的新形势和实现地质工作现代化目标的要求,地质钻探技术如何发展,如何更好地起到对地质工作的支撑作用,笔者对这些问题有些不成熟的想法,在此发表,希望能抛砖引玉,与大家共同探讨地质钻探技术的发展问题。 1地质工作对钻探技术的需求 目前我国矿产资源紧缺,资源问题成为制约国家建设和国民经济发展的瓶颈问题,引起了国家政府和领导的高度重视。在国务院关于加强地质工作的决定提出的地质工作主要任务中,突出能源矿产勘查和加强非能源重要矿产勘查是两项首要任务。国家为此投入了大量经费,除了正在实施的国土资源大调查专项基金之外,又启动了危机矿山接替资源找矿专项基金和地质勘查基金。此外,地方、甚至个人也在找矿方面表现出很大的热情,并进行积极的投资。近年来,随着地质工作的加强,地质钻探工作量成倍增长,一些省区的年钻探工作量达到了几十万米。钻探工作项目资金来源有国土资源大调查、矿产资源补偿费、中央财政补贴、省资源补偿费、地方财政补贴、市场项目等。钻探工作量加大,使得对钻探设备和技术的需求同时加大。 2地质钻探技术应用现状 与世界先进的钻探技术相比,目前我国地质勘探工作中采用的钻探技术总体水平比较落后。钻探施工主要采用立轴式岩心钻机,基本上是20世纪80年代左右的设计。现代的全液压动力头钻机依靠进口,我国自己研制的产品已经开始出现,但还未得到大面积推广应用,而且现在只有个别钻深能力(1000m)的钻机,还未形成系列。钻探工艺方面,一些先进的钻进工艺方法还没有得到推广应用。金刚石绳索取心钻进方法虽得到了较多的应用,但还未能大面积普及。液动锤钻进(液动冲击回转钻进)方法的优点虽然为人们所认识,但由于该方法在恶劣的泥浆条件下使用时,钻具可靠性和寿命方面存在着一些问题以及这些年钻探现场管理水平的下降,使其在地质钻探中的应用较以前更少。一些具有较好前景的先进的钻进工艺方法,如绳索取心液动锤钻进方法和不提钻换钻头方法虽然都已研制成功,但实际应用很少。空气反循环取样钻进方法尽管具有高效率、低成本的特点,但由于没有得到地质人员的认可,至今未能得到推广。除此之外,目前地质钻探施工中所用的钻孔护壁堵漏技术、测斜技术等,基本上也是20世纪80年代左右的水平。由于采用的钻探技术水平不高,地质勘探中钻探工作的效率和效果不太理想,表现在台月效率较低、复杂地层钻进问题多、深孔钻进能力差、钻进成本高。这些问题的存在,使得钻探技术对地质工作的技术支撑效果受到影响。 3地质钻探技术发展目标 笔者认为,考虑地质钻探技术发展目标时应该分阶段,应该分成近期、中长期和远期。划分原则是:至2010年为近期,至2020年为中长期,至2050年为远期。 远期(至2050年)目标 实现地质钻探技术的现代化应该是钻探技术发展的远期目标。在国务院关于加强地质工作的决定和国务院温家宝就贯彻决定所作的重要批示中,都明确地提出了要实现地质工作现代化。关于地质工作现代化的定义,目前尚无统一的说法。笔者的理解是:地质工作现代化的标志应该是,在地质工作中普遍采用具有现代世界先进水平的地质勘查技术。钻探技术是地质勘查技术的种类之一,地质钻探技术的现代化也应该符合此项标准。然而,此项目标的实现是一项长期和艰巨的任务,因为只有国家的整体工业技术水平达到了世界先进水平后,我国的地质钻探技术才有可能从总体上达到世界先进水平,地质钻探技术现代化与国家的现代化应该是基本同步的。邓小平同志在介绍中国实现现代化的三步走战略时,明确提出到2050年中国基本实现现代化,达到世界中等发达国家的水平。1999年10月22日,时任国家主席江泽民在英国剑桥大学发表演讲时向公众宣布:我们的目标是,到下世纪中叶,即中华人民共和国成立一百周年时,基本实现现代化。由此看来,我国地质钻探技术现代化实现的时间应该是21世纪中叶。 中长期(至2020)年目标 地质钻探技术发展的中长期(至2020年)目标应该是:自主创新能力显著增强,地质钻探技术水平显著提高,自主研发的新型钻探设备和先进钻进工艺方法得到较大面积的推广应用,钻探装备与施工技术总体上接近发达国家水平。 近期(至2010年)目标 地质钻探技术发展的近期(至2010年)目标应该是:初步完成2000m深度以内的新一代地质岩心钻探设备系列研制;改进完善一批先进的钻进工艺方法,使之达到推广应用的水平;取得一批深孔钻探、复杂地层钻探和高精度定向钻探技术研究成果;研发成功现代的深水井和煤层气井钻探用全液压动力头钻机;地质钻探科技成果转化和推广取得较显著的成效。 4地质钻探技术近期研发工作重点 中国地质调查局近期组织开展的地质钻探技术研发工作基本上是按照上述的近期目标的思路安排的,重点研究内容如下: (1)2000m深度以内的新一代地质岩心钻探设备系列;(2)满足覆盖区化探和异常查证需求、适应复杂地层条件的轻便、高效、多功能取样钻机及其配套的钻进工艺方法和器具;(3)1000m全液压动力头水井和煤层气井钻机及其配套的钻进工艺方法和器具;(4)改进完善一批先进的钻进工艺方法,包括冲击回转钻进方法、绳索取心冲击回转钻进方法、不提钻换钻头方法和深孔绳索取心方法;(5)解决复杂地层钻进技术难题,包括复杂地层钻孔护壁堵漏技术问题、复杂地层取心技术问题等;(6)高精度定向钻探技术,包括提高钻孔测量精度和定向钻进施工中靶精度的技术以及取心定向钻进技术;(7)万米科学超深孔钻探技术方案预研究。除了研究与开发工作以外,钻探新方法、新技术推广应用也是中国地质调查局钻探技术管理工作的重点之一,拟开展以下一些工作: ①新型岩心钻探机具应用培训;②地质调查浅层取样钻技术应用培训;③地质钻孔测量技术应用培训;④新型地质钻探泥浆体系应用培训;⑤节水钻进技术应用培训;⑥空气反循环取心钻进技术培训和应用示范;⑦车载式浅层取样钻机应用示范。 5几个值得强调的问题 加强技术创新 技术创新的核心内容是科学技术的发明和创造,其直接结果是推动科学技术进步,提高社会生产力的发展水平,进而促进社会经济的增长。通过技术创新可实现技术跨越式发展,在短期内获得显著的技术经济效果,使一些常规方法难以解决的问题得到解决。这里举2个钻探技术领域技术创新取得显著成效的实例。第一个实例是科拉超深钻。前苏联的工业技术发达程度比不上西方国家,却钻成了世界上唯一一口深度超万米的钻井——12262m深的科拉超深井。钻万米超深井的难度非常大。这口井之所以能钻进成功,是因为前苏联人在施工这口井时进行了大量的钻探技术创新,其中3项对钻进施工的成败起决定性作用的重大创新是:超前孔裸眼钻进方法;铝合金钻杆;带减速器的涡轮马达井底驱动。第二个实例是中国大陆科学钻探工程科钻一井。该项目是在坚硬的结晶岩中施工5000m连续取心钻孔。这种施工在我国没有先例,在世界上也属高难度钻井工程。该井在施工时采取了一系列的技术创新,涉及套管和钻进施工程序、取心钻进技术、扩孔钻进技术和井斜控制技术,最终获得了高效、优质的施工效果。由于采用螺杆马达-液动锤-金刚石取心钻进方法,使机械钻速提高50%以上,回次长度由3m提高到8~9m,大大节省了施工时间和成本。 加强新方法、新技术推广应用 新方法、新技术从研发出来,到在钻探施工中得到普遍应用,通常需要花很长的时间,做大量的推广应用工作。推广应用工作包括宣传、现场演示、技术培训和技术交流等。这些环节工作效果的好坏,都会直接影响到科技成果转化及其得到实际应用所需的时间,影响地质钻探技术现代化的进程。为获得好的效果,该项工作应有计划、有组织地开展,因为研发单位通常只是从本单位的利益和眼前的利益考虑推广应用工作,而该项目工作的计划和组织实施需要一种全局性和长远的考虑。这些年来,在钻探技术研究与应用的所有环节中,科技成果推广应用是相对比较薄弱的环节,加强此方面工作是当务之急。 参考文献 [1]王达.探矿工程(地质工程)未来20年科技发展战略研究[J].探矿工程(岩土钻掘工程),2004,31(1).看了“地质钻探技术论文”的人还看: 1. 工程地质勘探中的钻探技术应用论文 2. 工程地质勘查论文 3. 工程地质勘察论文 4. 地质毕业论文范文 5. 地质学毕业论文范文

相关百科

热门百科

首页
发表服务