操作设备:戴尔电脑
操作系统:win10
操作软件:SPSS 版
1、首先打开SPSS 版软件,找到要编辑的数据,可以从下图中找到方框。
2、在接下来的过程中需要在上方菜单栏中找到分析菜单,将鼠标移动到一般线性模型,然后选择单个变量,单击鼠标左键选择。
3、可以看到界面中的红色框。在单变量对话框中,将变量分别移动到因变量和协变量。在这里,将高度移动到因变量,将药物移动到协变量。
4、单击右侧菜单中的选项,将鼠标移动到单变量选项,选择参数估计值,并将参数估计值标记为勾号。
5、选择完成后,点击选项中的继续选项,然后可以选择在单变量对话框中点击确定,即可查看编辑后的操作。
6、最后可以看到界面上的方框显示在SPSS查看器中可以看到药物对身高影响的显着性分析,红框内的显着性为0<,为显着。
t检验
适用于计量资料、正态分布、方差具有齐性的两组间小样本比较,检验两个处理平均数的差异是否显著。
spss提供的T检验有3种形式,分别是单样本T检验(One-Sample T Test),独立样本T检验(Independent-Sample T Teat)和成对样本T检验(Paired-Sample T Test)。
如果比较某两个样品的差异,应该用t检验。要比较3个样品之间的差异可以用卡方检验。具体的方法是用SPSS的Analyze菜单--Descriptivestatistics--Crosstabs,Row变量选为“样品”,列变量选为“指标”,Cell选项中选中Row的Percentage,在Statistics中选中Chi-Square。确定后即可看到SPSS的分析结果,通常报告为P<,如果P值小于就表明有显著的统计差异。否侧没有显著差异。
你的问题中提到了“频度分析”,单就这个词来说,可使用大样本资料的U检验或列联表资料的卡方检验;不过你在问题补充中,又对数据进行了量化,似乎是要进行均值比较,假若是这样,则选用参数t检验或非参数法的秩和检验。
我建议你用卡方检验 就是crosstabs项 这是专门进行率的比较的 事先要把数据呈标准的状态建立在spss中 如何建立没法讲 自己看一下专业书 具体操作步骤:spss--analyze--descriptive statistics--crosstabs然后出现对话框 选入行与列 点开下面的statistics子对话框 选中chi-squrie和kappa 点continue 然后ok 你就看到结果了 结果中看sig值即可 就是p值
我觉得可以适当的发散一下,这样会更加的丰富,变得更合适。
写的论文得出来的结果不显著,可以再改改呀,或者是找比自己学习好的人帮你看看问题出在了哪里
写的论文得出来的结果改成显著了,可以再改改,或者是找比自己学习好的人帮你看看问题出在了哪里。
论文是一个汉语词语,古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。
它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。不显著的话直接写出结论即可,说明之前的假设是不成立的。直接写出结论即可。
论文变量关系不显著的方法:
论文变量关系不显著,可以尽量引用更多关于变量关系的理论依据,甚至于相关事例!使自己的论点羽翼更丰满。
论文变量关系不显著,就要着重讲述和阐述论文变量的关系,使它。显著的表露出来硕士论文不显著改成显著了。
硕士论文不显著改成显著了不可以,属于数据造假。是学术不端行为,会拖累导师。硕士论文不显著原因:数据收集不准确、预期结论存在一定错误都有可以造成结果与预期不符。
检查与实验相关的过程
与实验有关的过程直接影响实验结果,相对来说具体形象,容易分析。分析的目的是确保你设计的实验是可以用来检验假设的,并且获得的实验结果是可靠的。
需要检查的与实验相关的过程包括三方面:实验设计的合理性、实验数据的可靠性、数据分析的合理性。
丢失重要数据
也许由于实验室出现问题或存储数据的硬盘出现技术问题等,你丢失了大量对项目至关重要的数据。
首先,你应该请教导师,询问解决方法。在你有时间、有资源的情况下,可以考虑重新进行数据收集或实地考察,再次获取这些数据。
如果无法重新收集数据,那么可以与导师讨论如何把数据丢失纳入项目,成为研究的一部分。例如,如果是由于你所使用的某种研究方法导致数据丢失(比如,一个实验出现重大错误,导致部分数据被破坏),那就会引发非常耐人寻味、同时也十分重要的讨论。你可以研究并讨论数据丢失和错误的研究方法所带来的影响,这样也能够向该领域贡献有价值的原创知识。
对于实验来说,没有修正实验数据这一项内容。实验数据显示的都是正确的。但是实验出现错误,会导致得到的数据不正确。此时要从新做实验。这是正确的做法。如何判断实验数据是否正确呢?或者说实验的步骤出错如何尽早发现?预习实验时,要把实验里每步的理论值算出来。做实验时得到的数据与理论值对比,如果差很多,那就是实验出现了错误,须重新做实验。直接将实验数据改成理论值附近的数据的做法是不负责任的。
我觉得你可以再去找一些知识丰富你一下你的论文,让得出来的结果更加显著一些。
直接写出结论即可。不显著的话直接写出结论即可,说明之前的假设是不成立的。论文是一个汉语词语,古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。
题主是否想询问“eviews取对数后不显著的原因”?不显著的原因有很多,有调查设计、数据来源、抽样方法、质量控制、录入错误、分析方法错误等原因。在数学中,对数是对求幂的逆运算,正如除法是乘法的逆运算,反之亦然。意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
看下是否存在异方差或者自相关等违背经典假定的错误。协整回归模型要是显著的话其误差修正模型一般是显著的。结果不显著的原因有很多,有调查设计、数据来源、抽样方法、质量控制、录入错误、分析方法错误等原因,因此在数据已经收集到之后,是没法判断造成不显著的原因的。如果您的研究假设就错了,也就是说,A和B的相关关系原本就是不显著的,你一定要假设他们显著,然后去做调查,这样就算您努力去设计和调查了,得到的结果仍然是没法让您满意。所以,设计方案是第一,有一个好的设计,才会去收集到合适的数据。至于统计方法,那是最后要做的事情。如果前期工作都满意了,那么后期统计分析结果满意的可能性就大一些。
不显著的原因有很多,有可能是你操作错误,有可能是data本身的问题我经常帮别人做类似的数据统计分析的,经验很丰富
怎么可能不相关。只是有相关显著不显著的问题。踢出异常值,就是那些乱填的就不要输入了!然后填的不认真的,有规律的也要拉!缺失值的话可以用均值,平均数等代替。不可能不相关,除非不是同一个人的数据。
运行的时候,软件会自动剔除,你不用管它直接运行就行。 如果你觉得缺失太多,剔除后你的valid数量太少了,可以补全,软件会自行帮你根据该数据周围的值预测出一个这个位置大概的数值帮你补充完整,你就可以接着运行了。 我并不知道stata里面关...
stata变量显著不显著看:pwcorr y x, st(#) 可以在stata里面输入 help corr 里面会有你想要的答案。 STATA 中的变量可以划分为三类:分别是数值型,字符型和日期型。变量类型可通过help data type显示。数值型变量数值型变量按其精度又可分为五种类型:byte、int、long、float、double。类似于Access中的字节型、整型、长整型、浮点型和双精度型,不同的精度对应着不同的计算运算误差,若多次运算均需四舍五入时,低精度的运算会使计算误差迅速变大,而高的精度却需要占用较多的内存。当运算精度要求很高的时候,需要将变量设置成浮点型或双精度型。