首页

> 学术期刊知识库

首页 学术期刊知识库 问题

机器人方向好发毕业论文吗

发布时间:

机器人方向好发毕业论文吗

人工智能哪一个方向比较好写的话,我觉得应该是说它的应用方面比较好写吧,因为对于专业知识可能不太了解,但是它的使用的话应该比较简单。

ok,这个好说有什么要求吗?

随着科技的进步,智能机器人的性能不断地完善,因此也被越来越多的应用于军事、排险、农业、救援、海洋开发等方面。这是我为大家整理的关于机器人的科技论文,供大家参考!机器人的科技论文篇一:《浅谈智能移动机器人》 摘要:随着科技的进步,智能机器人性能不断地完善,移动机器人的应用范围也越来越广,广泛应用于军事、排险、农业、救援、海洋开发等。介绍了常见智能移动机器人的基本系统组成及其相关的一些技术,提出一种能够应用于智能移动机器人的越障机构,并简单阐述了其工作原理。在对智能机器人有一定了解的基础上,论述了智能移动机器人的研究现状及其发展动向。 关键词:智能移动机器人越障避障伸展收缩 1 引言 上世纪60年代智能机器人的出现开辟了智能生产自动化的新时代。在工业机器人问世50多年后的今天,机器人已被人们看作是不可缺少的一种生产工具。由于传感器、控制、驱动及材料等领域的技术进步开辟了机器人应用的新领域。智能移动机器人是机器人学中的一个重要分支。 2 智能移动机器人的基本系统组成及其相关技术 由于智能移动机器人在危险与恶劣环境以及民用等各方面具有广阔的应用前景,使得世界各国非常关注它的发展。其共同的五大系统组成要素为:(1)机械机构单元是智能移动机器人的骨架,机器人所有的模块都依靠其支撑,机械机构单元的结构,性能,强度直接影响着整个机器人的稳定性。随着科技发展和新型材料的研制开发,使得智能机器人产品的结构性能有了很大提高,机械机构的各项工艺性及尺寸设计都向着更加合理高效,更加轻便美观,更加环保节能,更加安全可靠等方向发展。(2)动力与驱动单元为智能移动机器人提供动力来源。(3)环境感知单元相当于智能移动机器人的五官,机器人通过感知单元对周围的环境进行感知识别及各种参数的收集,然后通过转换成控制模块可以识别的光电信号,输入到控制单元进行数据处理。(4)执行机构单元为智能移动机器人执行部分,能根据控制中心的命令执行命令,完成任务。不同的机器人有着不同的执行机构,执行机构的设计影响着对要执行动作的效率,精度,稳定性,可靠性等。(5)信息处理与控制单元作为整个机械系统的核心部分,它如人的大脑一样,调控着整个系统,一切的活动都由它指挥。将来自传感器部分采集到的信息进行集中汇总,存储,对所有信息分析,规划决策,输出命令。使机器人有目的的运行。 智能移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合机电系统。它是传感器技术,控制技术,移动技术,信息处理、人工智能、电子工程、计算机工程等多学科的重要研究成果,从某种意义上讲是机器发展进化过程中的产物,是目前科学技术发展最活跃的领域之一。 3 一种越障机器人 我们设计的移动机器人(图1)有很好的机动性能,前导轮、前轮和后轮可以实现独立升降运动。前导轮(如图1)由通过曲柄圆盘的转动角度控制摇杆的摆动角度,带动相关的平面连杆机构运动,从而实现前导向轮的伸展和收缩实现攀越。机器人两侧的侧边驱动机构为平面连杆-滑块越障机构,前后轮(如图1)分别通过导杆在槽中的移动,带动平面连杆机构的运动,实现前后轮的伸展和收缩,实现越障功能。本机器人通过尺寸的设计可以实现较大的越障高度,通过合理的控制轮摆动的角度还能实现多种类型障碍物的攀越。 4 智能移动机器人的应用概况 随着科技的进步,机器人的功能不断完善,智能移动机器人的应用范围也大大拓宽,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在排险、海洋开发和宇宙探测领域等有害与危险场合(如辐射、灾区、有毒等)得到很好的应用。 陆地智能移动机器人 20世纪60年代后期,苏美为了完成对宇宙空间的占领,完成月球探测计划,各自研制开发并应用了移动机器人,通过移动机器人实现对外星土壤的样本采集和土壤分析等各种任务。陆地智能移动机器人的出现是为了帮助人类完成无法完成的任务。陆地移动机器人也广泛应用于军事,可以完成排除爆炸物,扫雷,侦查,清除障碍物等等,近年来智能移动机器人也开始渐渐融入人们的日常生活。 水下智能移动机器人 近年来,人们对资源的渴求加大,开始对原子能和海洋资源的开发,加之水下环境十分复杂(能见度差,定位困难,流体变化等),水下智能移动机器人在海底资源探测上的优势使之受到关注。近年德国基尔大学的科学家研制出新型深水机器人“ROV Kiel 6000”,这架深水机器人能够下探到6000米深的海底,寻找神秘的深水生物和“白色黄金”可燃冰。 仿生智能移动机器人 近年来,全球许多机器人研究机构越来越多的关注仿生学与机构的研究工作.在某些情况下仿生机器人尤其独特优势,例如,蛇形机器人重心低,能够模仿蛇的动作,穿梭在能够穿梭在受灾现场和其他复杂的地形中能够帮助人类完成各种任务。除此之外还有仿生宠物狗、仿生鱼、仿生昆虫等。 5 智能移动机器人的发展方向及前景 影响移动机器人发展的因素主要有:导航与定位技术,多传感器信息的融合技术,多机器人协调与控制技术等因而移动机器人技术发展趋势主要包括: (1)高智能情感机器人。随着科学技术的发展,人们对人机交互的技术的要求越来越高,具有人类智能的情感移动机器人是移动机器人未来发展趋势。目前的移动机器人只能说是具有部分的智能,人们渴望能够出现安全可靠的能够沟通交流的高智能的机器人。虽然现在要实现高智能情感机器人还非常的困难,但是终有一天,随着科学技术的突破,它将成为现实。 (2)高适应性多功能化的机器人。机器人的出现是为人类服务的,自然界中还有好多未知的世界等着我们开拓,各种危险的复杂多变的环境,人类无法涉足,因此人们也迫切希望有能够代替人类的机器人出现,高适应性多功能化的机器人也必将是机器人的发展方向之一。 (3)通用服务型的机器人。随着科学技术的发展,机器人也是应该越来越容易融入人们日常生活中的,在日常生活中为人们服务。例如在家庭中,机器人可以帮助人们做各种家务,和人们生活关系密切。 (4)特种智能移动机器人。根据不同应用领域,不同的目的,设计各种各样特种智能移动机器人是未来发展方向,如纳米机器人,宇宙探索机器人,深海探索机器人,娱乐机器人等等。 6 结束语 总之,智能移动机器人涉及到传感器技术,控制技术,移动技术,信息处理、人工智能、控制工程等多学科技术。未来智能移动机器人走向生活,安全可靠,操作简单是其趋势。尽管智能移动机器人以惊人的速度在发展着,但是实现高适应性,智能化,情感化,多功能化的移动机器人还有很长的路要走。 参考文献: [1]谢进,万朝燕,杜立杰.机械原理(第2版)[M].北京:高等 教育 出版社,2010. [2]陈国华.机械机构及应用[M].北京:机械工业出版社,2008. [3]徐国保,尹怡欣,周美娟.智能移动机器人技术现状及展望[J].机器人技术与应用,2007(2). [4]肖世德,唐猛,孟祥印,等.机电一体化系统监测与控制[M].四川:西南交通大学出版社,2011. 机器人的科技论文篇二:《浅谈机器人设计 方法 》 摘要:机器人是人类完成智能化中非常重要的工具,随着时代的发展,机器人已经在世界有了一定的发展,甚至很多国家机器人已经运用到实际的生活中去。而机器人的设计方法无疑是很多人非常感兴趣的问题,因此本文针对机器人的设计方法进行了详细的探索。 关键词机器人;设计;方法 1.前言 纵观人类的发展史,工具的进步才能带动人类的文明,如今设计朝着智能化的方向在发展,机器人就是人类在发展智能化过程洪重要的产物,因此机器人常用的设计方法是设计师们必备的工具。 2.控制系统的硬件设计 在现代科学技术不断发展的背景之下,工业现场所涉及到的重体力劳动量不断提升。当中部分劳动任务的实现单单依靠人力是很难实现的。而为了良好的完成工业现场的相关生产作业任务。就需要通过对机器人装置的研究与应用来实现机器人控制系统的硬件部分主要由5个模块组成:控制模块、循迹模块、避障模块、电机驱动模块、电源模块。 (1)控制系统模块。ATmega128为基于AVR RISC结构的8位低功耗CMOS微处理器,运算速度快,具有多路PWM输出,可将测速、避障等电路产生的输入信号进行处理,并输出控制信号给驱动放大电路,从而控制电机转速,此方式产生的PWM信号比用定时器中断产生的PWM信号实时性更好,而且不会占用系统的定时器资源。 (2)循迹模块。循迹是指小车在比赛场地上循白色引导线线行走,循迹模块的原理图如图2所示。循迹模块采用灰度传感器,发射管为普通LED灯,接收管为光敏三极管3DU33。工作原理为:不同颜色的物体对LED发射光反射不同的亮度,光敏三极管3DU33接收这些不同亮度的光线,就会呈现不同的电压Vx。Vx输入到比较器LM339的同相端,并与电位器设定的电压V0相比较,当Vx>V0时,比较器输出高电平,当Vx循迹机器人前后两端均是由7个灰度传感器组成的循迹模块。其中,中间三个灰度传感器起巡线的作用,两端的灰度传感器起探测弯道作用,剩下两个灰度传感器交替进行巡线和探测弯道。实验证明,这样的灰度传感器的布置图,机器人循迹的效果好,且“性价比”非常高。 (3)避障模块。避障模块主要使用的是红外发射接收传感器,当红外感应避障模块靠近物体时,输出低电平信号;当没有感应到物体时,输出高电平信号。将该信号线接入到单片机的控制端口,控制程序就能起到探测障碍物的作用,当在机器人行进的路径上就可以发现有障碍物并及时避开绕行。 (4)驱动模块。循迹避障机器人要求行走灵活、反应快速,因此要求驱动电机具有“转速快、制动及时”等特点。我们设计制作的循迹避障机器人采用中鸣公司的JMP-BE-3508I驱动板模块,其输入电压为11V到24V,最大输出电流为20A,满足快速前进、制动、转弯的要求。并且电机速度达到500rpm,堵转力矩为,具有很强的刹车功能。利用单片机的四路PWM输出信号,分别控制四个轮子的转速。并采用“四轮驱动”、“差速转弯”的方式实现机器人的前进、后退与转弯。 (5)电源模块。循迹机器人的电源模块主要实现以下三大功能:①稳定输出5V工作电压。故我们设计制作的电源模块以7805芯片为核心,把输入电压截止到5V。②提供足够的电流。7805芯片最大输出电流为,而循迹机器人需要较大电流,所以我们使用了两片7805芯片分别对控制系统和外部设备进行供电。③滤波。在7805芯片的输入、输出端分别并联104贴片电容和10μF的电解电容,过滤高频、低频信号。 3.软硬件模块开发流程和界面程序 (1)图像处理模块:照相机实时捕捉图像,处理转化后和初始图像进行处理比较,找出图像中差异的位置通过TCP传输。 (2)TCP通信模块:视觉系统通过以太网连接贝加莱控制器,控制器可以作客户机或服务器实时传输数据,:定义结构体用于视觉系统传输位姿给机器人和机器人实时反馈位姿和信号状态数据给视觉系统。 (3)位置转换模块:把视觉系统的位姿转换为机器人的位姿传输给机器人,控制机器人运行。 (4)轨迹规划模块:进行运动轨迹规划和速度规划,根据机器人当前的位置和目标位置,选择最优的运动轨迹(直线、圆弧、不规则曲线等运动轨迹),然后对轨迹、速度进行插补,插补值调用机器人运动学算法计算轨迹的可靠性,再把实时插补的位置、速度传送给运动控制模块。 (5)运动控制模块:根据实时插补的值结合加速度、加加速度等控制参数给驱动器。 (6)伺服模块:根据控制器所发送数据,结合各伺服控制参数,驱动电机以最快响应和速度运行到各个位置。 4.机器人精度标定和视觉软件处理 精度标定 精度的标定包括机器人精度标定 和机器人相对于视觉照相机位置标定 。机器人运动前,需要用激光跟踪仪标定准确各轴杆长、零点、减速比、耦合比等机械参数,给运动学、控制器系统,机器人才能按理论轨迹运行准确。行到指定点。 通过三点法、六点法标定机器人相对于视觉照相机的X、Y、Z方向距离给位置转化模块,确定机器人坐标系相对于照相机坐标系的转化关系。 视觉处理软件 包括固定视觉系统标定模块和移动视觉系统标定模块 。视觉系统安装在固定位置相当于给机器人建立照相机一个用户坐标系,此模块用于运算机器人和固定视觉系统之间位姿转换关系。视觉系统安装在机器人末端法兰位姿相当于给机器人建立照相机一个工具坐标系,随着机器人运动而实时改变位置,此模块用于运算机器人和动态视觉系统之间位姿转换关系。 实时处理传输机器人、视觉系统和以太网的运行通信状态以及出错状态处理。 人机界面设计及实现 当机器人出现故障,不能自动移动位置时,比如碰到硬件限位或出现碰撞现象时,此时可以进入手动页面,选择机器人操作,移动机器人到指定位置。对于新建码垛工艺线,需要配置系统参数、位置信息、以及产品参数,等必要的信息。码垛数据编辑与创建的功能,产品覆盖了袋子、箱子,以及可变数量抓取的功能。可以添加产品数量,改变产品方向,单步数量修改,产品位置移动以及旋转等设置。本页面中,示例生成了每层五包的袋装产品,编号从1到5,可以通过调整编号的顺序,达到改变产品的实际码垛顺序。 5.结束语 总之,在进行机器人的设计过程中,要根据设计的用途进行针对性的设计,对于设计过程中出现的问题要及时的采用上述的思维方法进行解决,随着机器智能化的推广,无疑机器人的设计在未来会有更广阔的天空。 参考文献: [1]张海平,陈彦. Wincc在打包机人机界面中的设计与应用[J].HMI与工业软件,2012(3):70-72. [2]朱华栋,孔亚广.嵌入式人机界面的设计[J].中国水运,2008(11):125-126. [3]金长新,李伟.基于Windows CE的车载电脑系统人机界面的实现[J].微计算机信息,2005(21):132-134. 机器人的科技论文篇三:《浅谈igm焊接机器人的故障处理》 [摘 要]机器人技术综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。本文通过介绍igm焊接机器人的工作原理,以及在实际工作中机器人的常见故障现象,对故障产生的原因进行分析,并提出了相应的维修方法。 [关键词]igm焊接机器人 工作原理 故障处理 0 前言 机器人技术是综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。这门新型技术的介入,对维修技术人员提出了更高要求。如何保证焊接机器人的可靠性、稳定性,发挥机器人的最大优势,针对机器人的故障维修及设备维护保养工作就尤显重要。 1 igm焊接机器人组成及工作原理 igm焊接机器人的组成 igm焊接机器人是从事焊接(包括切割与喷涂)的工业机器人,它加工精细、动作灵巧、焊接精度高、焊缝成形好。在机械行业中得到了广泛的应用。 igm焊接机器人工作原理 igm焊接机器人内部轴控制原理:通过数字伺服板DSE-IBS处理当前位置的校准、位置驱动、速度驱动等信息,处理后的信息送馈到伺服驱动器,由伺服驱动器内部的脉宽调制器调制,然后放大输出推动伺服电机。伺服电机运动的同时,编码器同步运行,并把采集的位置角度信息反馈给RDW控制板,通过RDW板的增量计算、数据整定后的位置信息回馈给DSE-IBS板,做下一个周期的计算处理,此过程反复进行从而实现了实时位置的更迭过程。 2 igm焊接机器人故障诊断及分析 焊接机器人故障类型 焊接机器人故障类型可分为软件故障和硬件故障,由机器软件造成的故障,如系统停机 死机 的现象;由机器硬件造成的故障,如驱动单元、电气元件各模块的故障。就故障现象可分为人为故障和自然故障、突发故障三大类。对于维修来说,自然故障和突发故障的排除就显得困难,因为这种维修不仅仅针对故障单元本身,还要对系统进行改进,这就需要周密分析,对故障诊断进行优化和改进,避免排除过的故障重复出现,使系统进一步稳定可靠。 igm焊接机器人常见故障处理 机器人开机后示教器无报警信息,但机械手无法正常引弧。首先检查系统是否送丝送气,发现送丝系统无法手动送丝,保护气瓶有压力,但是焊枪喷嘴处无保护气。再检查机械手焊接电缆、引弧板及送丝板,都没有发现故障。这说明机械手的功能是正常的,可能是焊接回路不通畅。可以通过测量焊接回路阻抗来判断焊接回路是否正常。 回路阻抗的测试步骤: i把连接工件的地线接好,保证地线夹与工件接触部分干净良好; ii接通机器人电柜电源,将福尼斯焊机电源开关拨至“I”位置; iii在焊机二级菜单内选择“r”功能。 iv取下焊枪喷嘴,拧上导电嘴,将导电嘴贴紧工件表面。需要注意的是,测量过程中要确保导电嘴与工件接触处的洁净。测量进行时,送丝机和冷却系统不启动; v轻按焊枪开关或点动送丝键。焊接回路阻抗值测算完成。测量过程中,右显示屏显示“run”; vi焊接回路测算结束后显示屏显示测量值。测得的焊接回路阻抗是18 Ω(正常值以<20Ω为佳),说明焊接机器人的焊接回路的通畅的。再断电、通电调试,焊接机器人能正常引弧,应该是回路测试过程中通过连接接地夹、拆卸喷嘴、导电嘴等将回路未正常接触处接通了。 igm机器人在焊接过程中,引弧困难、焊接电流极不稳定,且经常断弧,反复出现“Arc fault”电弧故障。 i检查接地电缆,测量回路电阻值为Ω,正常 值以<20Ω为佳。 ii检查焊丝直径(Ф)与送丝轮的公称直径相匹配。 iii焊丝材料(G2Si)与焊接方式及焊接母材相匹配。 iv后观察焊枪喷嘴处,存在大量粉尘的切粉,手动送出的焊丝不光滑平整,有小量弯曲及伤丝情况,说明送丝不畅。 v对送丝阻力进行检测。将送丝锁紧杆、压紧杆打开,手盘焊丝盘将焊丝收回,发现阻力很大。多为送丝软管堵塞或软管与机械手夹角过大造成。 vi检查送丝轮磨损情况,V型送丝槽不易过深过宽,以正好放置一根Ф规格的焊丝为佳,间隙过大,将影响送丝的稳定性,焊接电流的稳定性。拆下送丝轮,发现送丝轮磨损严重,圆度误差较大,送丝槽过深。送丝机构一旦出现失控,就会高速送丝,焊接电源得不到正常的信号反馈(送丝速度的反馈采用光电测速),不能提供稳定的电流、电压,造成不能正常焊接。更换送丝轮、送丝软管,并进行压力调整,故障解除,焊接正常。 igm机器人回零参数自动丢失。igm机器人在下一次开机时,回零参数自动丢失,重新校零、输入参数,保存参数反复丢失。检查示教电缆、接口、程序、轴卡、RDW板指示灯全部正常,检查后备电池(缓冲电瓶,用于关机或意外掉电情况下,为系统提供短时间供电,进行信息的存储)测量电压值,一个为,一个为12 V,总电压为21 V,正常值为24V,更换一组电池后一切正常,再未出现数据丢失现象。 突发故障的分析及处理 该故障无可预见性,事发突然。实际工作中出现最多。多为受环境影响的系统故障,如焊接机器人控制部分电路板故障、稳压 电源故障 、通讯故障等,反映在机器人在工作时突然报警且无法消除报警。重新启动又恢复正常,但不久又出现报警,这类故障造成整个系统不稳定。 为了进一步判断驱动器的好坏,缩小故障范围, 对编码器进行检查,RCI系列的机器人各轴所使用的编码器是绝对编码器,它是一种电磁部件,可以传递旋转角度的信息,由两个固定绕组(sin绕组和cos绕组)及一个参考绕组组成,原理基本上同旋转变压器相似。将X12插头拔下,分别测量11-12、13-5、14-4端子阻值,结果没有一项有阻值,说明编码器出现异常。 找到12轴伺服电机,检查发现编码器插头锁紧并帽已退出,插头连接松动。将插头重新安插,锁紧到位,再次测量11-12端子阻值为94Ω,13-5端子阻值为65Ω,14-4端子阻值为65Ω,9-10端子阻值为600Ω,说明各绕组正常。上电后,驱动可正常打开,故障解除。 3 结束语 维修工作是理论指导实践,实践促进理论的一个反复过程,理论实践的有机结合才会使维修人员更加深入,更加准确的判断处理各种故障。工作中维修人员必须具有独立思考分析判断的能力,操作中一定要注意观察,不可盲目更改焊接机器人设定、跳线等状态,要养成做工作记录的好习惯,归纳 总结 各类故障现象以及处理过程,积累故障诊断和维修方面的 经验 ,以提高维修水平。 参考文献 [1] 戴光平.《焊接机器人故障诊断及维修技术》. 重庆:中国嘉陵工业股份有限公司,2003. [2] 中国焊接协会成套设备与专业机具分会. 《焊接机器人实用手册》.机械工业出版社,2014. [3] 李德民.《焊接机器人的故障维修》. 长春:长客股份制造中心,2011. 猜你喜欢: 1. 关于科技论文的范文 2. 关于计算机的科技论文3000字 3. 数学科技论文800字 4. 自动化科技论文题目与范文

人工智能与机器人研究这本期刊的领域有这些:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人智能其他学科人工智能与机器人研究这本期刊的领域,你可以参考下:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人智能其他学科 具体那个好写就看你自己的专业知识了,你擅长哪方面的就写哪方面的吧

机器人研究方向论文

机器人控制技术论文篇二 智能控制在机器人技术中的应用 摘要:机器人的智能从无到有、从低级到高级,随着科学技术的进步而不断深人发展。计算机技术、 网络技术 、人工智能、新材料和MEMS技术的发展,智能化、网络化、微型化发展趋势凸显出来。本文主要探讨智能控制在机器人技术中的应用。 关键词:智能控制 机器人 技术 1、引言 工业机器人是一个复杂的非线性、强耦合、多变量的动态系统,运行时常具有不确定性,而用现有的机器人动力学模型的先验知识常常难以建立其精确的数学模型,即使建立某种模型,也很复杂、计算量大,不能满足机器人实时控制的要求。智能控制的出现为解决机器人控制中存在的一些问题提供了新的途径。由于智能控制具有整体优化,不依赖对象模型,自学习和自适应等特性,用它解决机器人等复杂控制问题,可以取得良好效果。 2、智能机器人的概述 提起智能机器人,很容易让人联想到人工智能。人工智能有生物学模拟学派、心理学派和行为主义学派三种不同的学派。在20世纪50年代中期,行为主义学派一直占统治地位。行为主义学派的学者们认为人类的大部分知识是不能用数学方法精确描述的,提出了用符号在计算机上表达知识的符号推理系统,即专家系统。专家系统用规则或语义网来表示知识规则。但人类的某些知识并不能用显式规则来描述,因此,专家系统曾一度陷人困境。近年来神经网络技术取得一定突破,使生物模拟学派活跃起来。智能机器人是人工智能研究的载体,但两者之间存在很大的差异。例如,对于智能装配机器人而言,要求它通过视觉系统获取图纸上的装配信息,通过分析,发现并找到所需工件,按正确的装配顺序把工件一一装配上。因此,智能机器人需要具备知识的表达与获取技术,要为装配做出规划。同时,在发现和寻找工件时需要利用模式识别技术,找到图样上的工件。装配是一个复杂的工艺,它可能要采用力与位置的混合控制技术,还可能为机器人的本体装上柔性手腕,才能完成任务,这又是机构学问题。智能机器人涉及的面广,技术要求高,是高新技术的综合体。那么,到底什么是智能机器人呢?到目前为止,国际上对智能机器人仍没有统一的定义。一般认为,智能机器人是具有感知、思维和动作的机器。所谓感知,即指发现、认识和描述外部环境和自身状态的能力。如装配作业,它要能找到和识别所要的工件,需要利用视觉传感器来感知工件。同时,为了接近工件,智能机器人需要在非结构化的环境中,认识瘴碍物并实现避障移动。这些都依赖于智能机器人的感觉系统,即各种各样的传感器。所谓思维,是指机器人自身具有解决问题的能力。比如,装配机器人可以根据设计要求,为一个复杂机器找到零件的装配办法及顺序,指挥执行机构,即动作部分去装配完成这个机器,动作是指机器人具有可以完成作业的机构和驱动装置。因此,智能机器人是一个复杂的软件、硬件的综合体。虽然对智能机器人没有统一的定义,但通过对具体智能机器人的考察,还是有一个感性认识的。 3、智能机器人的体系结构 智能机器人的体系结构主要包括硬件系统和软件系统两 个方面。由于智能机器人的使用目的不同,硬件系统的构成也不尽相同。结构是以人为原型设计的。系统主要包括视觉系统、行走机构、机械手、控制系统和人机接口。如图1所示: 视觉系统 智能机器人利用人工视觉系统来模拟人的眼睛。视觉系统可分为图像获取、图像处理、图像理解3个部分。视觉传感器是将景物的光信号转换成电信号的器件。早期智能机器人使用光导摄像机作为机器人的视觉传感器。近年来,固态视觉传感器,如电荷耦合器件CCD、金属氧化物半导体CMOS器件。同电视摄像机相比,固体视觉传感器体积小、质量轻,因此得到广泛的应用。视觉传感器得到的电信号经过A/D转换成数字信号,即数字图像。单个视觉传感器只能获取平面图像,无法获取深度或距离信息。目前正在研究用双目立体视觉或距离传感.器来获取三维立体视觉信息。但至今还没有一种简单实用的装置。数字图像经过处理,提取特征,然后由图像理解部分识别外界的景物。 行走机构 智能机器人的行走机构有轮式、履带式或爬行式以及类人型的两足式。目前大多数智能机器人.采用轮式、履带式或爬行式行走机构,实现起来简单方便。1987年开始出现两足机器人,随后相继研制了四足、六足机器人。让机器人像人类一样行走,是科学家一直追求的梦想。 机械手 智能机器人可以借用工业机器人的机械手结构。但手的自由度需要增加,而且还要配备触觉、压觉、力觉和滑觉等传感器以便产生柔软、.灵活、可靠的动作,完成复杂作业。 控制系统 智能机器人多传感器信息的融合、运动规划、环境建模、智能推理等需要大量的内存和高速、实时处理能力。现在的冯?诺曼结构作为智能机器人的控制器仍然力不从心。随着光子计算机和并行处理结构的出现,智能机器人的处理能力会更高。机器人会出现更高的钾能。 人机接口 智能机器人的人机接口包括机器人会说、会听以及网络接日、话筒、扬声器、语音合成和识别系统,使机器人能够听懂人类的指令,能与人以自然语言进行交流。机器人还需要具有网络接n,人可以通过网络和通讯技术对机器.人进行控制和操作。 随着智能机器人研究的不断深入、越来越多的各种各样的传感器被使用,信息融合、规划,问题求解,运动学与动力学计算等单元技术不断提高,使智能机器人整体智能能力不断增强,同时也使其系统结构变得复杂。智能机器人是一个多CPU的复杂系统,它必然是分成若干模块或分层递阶结构。在这个结构中,功能如何分解、时间关系如何确定、空间资源如何分配等问题,都是直接影响整个系统智能能力的关键问题。同时为了保证智能系统的扩展,便于技术的更新,要求系统的结构具有一定开放性,从而保证智能能力不断增强,新的或更多传感器可以进入,各种算法可以组合使用口这便使体系结构本身变成了一个要研究解决的复杂问题。智能机器人的体系结构是定义一个智能机器人系统各部分之间相互关系和功能分配,确定一个智能机器人或多个智能机器人系统的信息流通关系和逻辑上的计算结构。对于一个具体的机器人而言,可以说就是这个机器人信息处理和控制系统的总体结构,它不包括这个机器人的机械结构内容。事实上,任何一个机器人都有自己的体系结构。目前,大多数工业机器人的控制系统为两层结构,上层负责运动学计算和人机交互,下层负责对各个关节进行伺服控制。 参考文献: [1]左敏,曾广平. 基于平行进化的机器人智能控制研究[J]. 计算机仿真,2011,08:15-16. [2]陈赜,司匡书. 全自主类人机器人的智能控制系统设计[J]. 伺服控制,2009,02:76-78. [3]康雅微. 移动机器人马达的智能控制[J]. 装备制造技术,:102-103. 看了“机器人控制技术论文”的人还看: 1. 搬运机器人技术论文 2. 机电控制技术论文 3. 关于机器人的科技论文 4. 工业机器人技术论文范文(2) 5. 机器人科技论文

机器人是由计算机控制的通过编程具有可以变更的多功能的自动机械,下面是我整理的机器人技术论文,希望你能从中得到感悟!

刍议智能机器人及其关键技术

【摘 要】文章介绍了机器人的定义,阐述了智能机器人研究领域的关键技术,最后展望了智能机器人今后的发展趋势。

【关键词】智能机器人;信息融合;智能控制

一、机器人的定义

自机器人问世以来,人们就很难对机器人下一个准确的定义,欧美国家认为机器人应该是“由计算机控制的通过编程具有可以变更的多功能的自动机械”;日本学者认为“机器人就是任何高级的自动机械”,我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器。”目前国际上对机器人的概念已经渐趋一致,联合国标准化组织采纳了美国机器人协会(RIA:Robot Institute of America)于1979 年给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变和可编程动作的专门系统。”概括说来,机器人是靠自身动和控制能力来实现各种功能的一种机器。

二、智能机器人关键技术

随着社会发展的需要和机器人应用领域的扩大,人们对智能机器人的要求也越来越高。智能机器人所处的环境往往是未知的、难以预测的,在研究这类机器人的过程中,主要涉及到以下关键技术:

(1)多传感器信息融合。多传感器信息融合技术是近年来十分热门的研究课题,它与控制理论、信号处理、人工智能、概率和统计相结合,为机器人在各种复杂、动态、不确定和未知的环境中执行任务提供了一种技术解决途径。机器人所用的传感器有很多种,根据不同用途分为内部测量传感器和外部测量传感器两大类。内部测量传感器用来检测机器人组成部件的内部状态,包括:特定位置、角度传感器;任意位置、角度传感器;速度、角度传感器;加速度传感器;倾斜角传感器;方位角传感器等。外部传感器包括:视觉(测量、认识传感器)、触觉(接触、压觉、滑动觉传感器)、力觉(力、力矩传感器)、接近觉(接近觉、距离传感器)以及角度传感器(倾斜、方向、姿式传感器)。多传感器信息融合就是指综合来自多个传感器的感知数据,以产生更可靠、更准确或更全面的信息。经过融合的多传感器系统能够更加完善、精确地反映检测对象的特性,消除信息的不确定性,提高信息的可靠性。融合后的多传感器信息具有以下特性:冗余性、互补性、实时性和低成本性。目前多传感器信息融合方法主要有贝叶斯估计、卡尔曼滤波、神经网络、小波变换等。

(2)导航与定位。在机器人系统中,自主导航是一项核心技术,是机器人研究领域的重点和难点问题。导航的基本任务有3点:一是基于环境理解的全局定位:通过环境中景物的理解,识别人为路标或具体的实物,以完成对机器人的定位,为路径规划提供素材;二是目标识别和障碍物检测:实时对障碍物或特定目标进行检测和识别,提高控制系统的稳定性;三是安全保护:能对机器人工作环境中出现的障碍和移动物体作出分析并避免对机器人造成的损伤。机器人有多种导航方式,根据环境信息的完整程度、导航指示信号类型等因素的不同,可以分为基于地图的导航、基于创建地图的导航和无地图的导航3类。根据导航采用的硬件的不同,可将导航系统分为视觉导航和非视觉传感器组合导航。视觉导航是利用摄像头进行环境探测和辨识,以获取场景中绝大部分信息。目前视觉导航信息处理的内容主要包括:视觉信息的压缩和滤波、路面检测和障碍物检测、环境特定标志的识别、三维信息感知与处理。非视觉传感器导航是指采用多种传感器共同工作,如探针式、电容式、电感式、力学传感器、雷达传感器、光电传感器等,用来探测环境,对机器人的位置、姿态、速度和系统内部状态等进行监控,感知机器人所处工作环境的静态和动态信息,使得机器人相应的工作顺序和操作内容能自然地适应工作环境的变化,有效地获取内外部信息。

(3)路径规划。路径规划技术是机器人研究领域的一个重要分支。最优路径规划就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在机器人工作空间中找到一条从起始状态到目标状态、可以避开障碍物的最优路径。路径规划方法大致可以分为传统方法和智能方法两种。传统路径规划方法主要有以下几种:自由空间法、图搜索法、栅格解耦法、人工势场法。大部分机器人路径规划中的全局规划都是基于上述几种方法进行的,但这些方法在路径搜索效率及路径优化方面有待于进一步改善。人工势场法是传统算法中较成熟且高效的规划方法,它通过环境势场模型进行路径规划,但是没有考察路径是否最优。智能路径规划方法是将遗传算法、模糊逻辑以及神经网络等人工智能方法应用到路径规划中,来提高机器人路径规划的避障精度,加快规划速度,满足实际应用的需要。其中应用较多的算法主要有模糊方法、神经网络、遗传算法、Q学习及混合算法等,这些方法在障碍物环境已知或未知情况下均已取得一定的研究成果。

(4)机器人视觉。视觉系统是自主机器人的重要组成部分,一般由摄像机、图像采集卡和计算机组成。机器人视觉系统的工作包括图像的获取、图像的处理和分析、输出和显示,核心任务是特征提取、图像分割和图像辨识。而如何精确高效的处理视觉信息是视觉系统的关键问题。目前视觉信息处理逐步细化,包括视觉信息的压缩和滤波、环境和障碍物检测、特定环境标志的识别、三维信息感知与处理等。其中环境和障碍物检测是视觉信息处理中最重要、也是最困难的过程。机器人视觉是其智能化最重要的标志之一,对机器人智能及控制都具有非常重要的意义。目前国内外都在大力研究,并且已经有一些系统投入使用。

(5)智能控制。随着机器人技术的发展,对于无法精确解析建模的物理对象以及信息不足的病态过程,传统控制理论暴露出缺点,近年来许多学者提出了各种不同的机器人智能控制系统。机器人的智能控制方法有模糊控制、神经网络控制、智能控制技术的融合(模糊控制和变结构控制的融合;神经网络和变结构控制的融合;模糊控制和神经网络控制的融合;智能融合技术还包括基于遗传算法的模糊控制方法)等。近几年,机器人智能控制在理论和应用方面都有较大的进展。在模糊控制方面,等人论证了模糊系统的逼近特性,首次将模糊理论用于一台实际机器人。模糊系统在机器人的建模控制、对柔性臂的控制、模糊补偿控制以及移动机器人路径规划等各个领域都得到了广泛的应用。在机器人神经网络控制方面,CMCA(Cere-bella Model Controller Articulation)应用较早的一种控制方法,其最大特点是实时性强,尤其适用于多自由度操作臂的控制。

(6)人机接口技术。智能机器人的研究目标并不是完全取代人,复杂的智能机器人系统仅仅依靠计算机来控制目前是有一定困难的,即使可以做到,也由于缺乏对环境的适应能力而并不实用。智能机器人系统还不能完全排斥人的作用,而是需要借助人机协调来实现系统控制。因此,设计良好的人机接口就成为智能机器人研究的重点问题之一。人机接口技术是研究如何使人方便自然地与计算机交流。为了实现这一目标,除了最基本的要求机器人控制器有1个友好的、灵活方便的人机界面之外,还要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,研究人机接口技术既有巨大的应用价值,又有基础理论意义。目前,人机接口技术已经取得了显著成果,文字识别、语音合成与识别、图像识别与处理、机器翻译等技术已经开始实用化。另外,人机接口装置和交互技术、监控技术、远程操作技术、通讯技术等也是人机接口技术的重要组成部分,其中远程操作技术是一个重要的研究方向。

三、总结与展望

机器人是自动化领域的主题之一,人们几十年来对机器人的开发和研究,使机器人技术取得了巨大的进步。随着人工智能、智能控制和计算机技术的发展,机器人的应用领域必将不断扩大,性能不断提高,在未来的生产、生活、科研当中会发挥更重要的作用。

参 考 文 献

[1]孙华,陈俊风,吴林.多传感器信息融合技术及其在机器人中的应用[J].传感器技术.2003,22(9):1~4

[2]王灏,毛宗源.机器人的智能控制方法[M].北京:国防工业出版社,2002

[3]金周英.关于我国智能机器人发展的几点思考[J].机器人技术与应用.2001(4):5~7

点击下页还有更多>>>机器人技术论文

机器视觉研究方向论文好写吗

写毕业论文,不是件容易事情,想过关,得花费一番心血。

今年多所高校都发布通知要求严查本科生论文,部分学校还将对已毕业学生的毕业论文开展质量跟踪监控。即便学校没有明文规定,许多同学也能从导师的叮嘱和要求中感受到,想成功毕业,大概得挠秃两百根头发。

毕业论文,名义上是大学生完成大学学业的标志和成果,实际上却是一批批年轻人彻底脱离学校、进入社会前必须要渡的劫。一般本科毕业论文字数上要求最少5000字。这5000字可不是随随便便就写的,从选题、结构、格式、内容都是有一定要求的,需要和指导老师进行反复的沟通和确认。

大部分同学从写论文到最后定稿基本上要花费半年的时间,可见毕业论文并不是一件简单的事情。

人工智能与机器人研究这本期刊的领域有这些:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人智能其他学科人工智能与机器人研究这本期刊的领域,你可以参考下:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人智能其他学科 具体那个好写就看你自己的专业知识了,你擅长哪方面的就写哪方面的吧

你哪一个熟悉就写哪方面的,如果都不熟悉,我建议写图像处理方面的。因为直观,可以写的也比较多,比如车牌识别、人脸识别、指纹识别、目标检测与跟踪。

图像处理方面比较好写

提供几个题目思路: 1、图像处理对图像色彩的影响

2、东西方文化的差异对图像处理的影响

3、图像处理能否弥补拍摄机器硬件的不足

4、图像处理对摄影发展的影响

5、图像处理对当今社会的影响

机器人算法好发的ei期刊

推荐《控制工程》,CSCD期刊,3个审稿周期,简介如下:

《控制工程》是教育部科技司主管、东北大学主办的学术类期刊。本刊为中文期刊,单月刊,大16开本,每月20日出版,公开发行,邮发代号:8-216,国外邮发代号:BM8219。本刊是中文核心期刊,中国科技核心期刊,中国科学引文数据库核心期刊(CSCD),中国科技论文统计用刊,中国科学文献数据用刊,中国学术期刊综合评价数据库来源期刊。从2002年开始,被俄罗斯《文摘杂志》(AJ),美国《剑桥科学文摘》(CSA), 英国《科学文摘》(SA)等著名国际检索机构全文检索。

半导体学报(英文版) 爆炸与冲击 北京工业大学学报 北京航空航天大学学报 北京科技大学学报 北京理工大学学报 北京理工大学学报(英文版) 北京邮电大学学报 兵工学报 材料工程 材料科学技术(英文版) 材料科学与工艺 材料热处理学报 材料研究学报 采矿与安全工程学报 测绘学报 船舶力学 催化学报(电子版,英文版) 大连理工大学学报 弹道学报 等离子体科学与技术(英文版) 地球科学 地震工程与工程振动(英文版) 电波科学学报 电工技术学报 电机与控制学报 电力系统保护与控制 电力系统自动化 电力自动化设备 电网技术 电子科技大学学报 电子学报 电子学报(英文版) 电子与信息学报 东北大学学报(自然科学版) 东华大学学报(英文版) 东南大学学报(英文版) 东南大学学报(自然科学版) 发光学报 仿生工程学报(英文版) 非线性科学与数值模拟通讯(英文版) 粉末冶金材料科学与工程 复合材料学报 高电压技术 高分子材料科学与工程 高技术通讯 高技术通讯(英文版) 高校化学工程学报 高压物理学报 工程力学 工程热物理学报 工业工程学刊 功能材料 固体火箭技术 固体力学学报 固体力学学报(英文版) 光电子激光 光电子快报(英文版) 光谱学与光谱分析 光学精密工程 光学学报 硅酸盐学报 国防科技大学学报 国际电气工程杂志 国际路面研究和技术杂志(英文版)台湾 国际模糊系统杂志(英文版) 国际自动化与计算杂志(英文版) 哈尔滨工程大学学报 哈尔滨工业大学学报 哈尔滨工业大学学报(英文版) 海洋科学与技术学报(英文版) 焊接学报 航空材料学报 航空动力学报 航空太空及民航学刊(A辑,英文版) 航空太空及民航学刊(B辑) 航空学报 核动力工程 红外与毫米波学报 红外与激光工程 湖南大学学报(自然科学版) 华南理工大学学报(自然科学版) 华中科技大学学报(自然科学版) 化工学报 环境科学学报(英文版) 火炸药学报 机器人 机械工程学报 机械工程学报(英文版) 吉林大学学报(地球科学版) 吉林大学学报(工学版) 计算机辅助设计与图形学学报 计算机集成制造系统 计算机科学技术学报(英文版) 计算机科学前沿(英文版) 计算机学报 计算机研究与发展 计算力学学报 计算物理 计算信息系统学报(英文版) 建筑材料学报 建筑结构学报 江苏大学学报(自然科学版) 交通运输工程学报(中文版) 解放军理工大学学报(自然科学版) 金属学报 金属学报(英文版) 颗粒学报(英文版) 空气动力学学报 控制理论与应用 控制理论与应用(英文版) 控制与决策 矿物冶金与材料学报(英文版) 矿业科学技术(英文版) 力学学报 力学学报(英文版) 力学学报(英文版) (被Journal of Mechanics继承) 煤炭学报 模式识别与人工智能 摩擦学学报 内燃机工程 内燃机学报 纳米技术与精密工程 南京航空航天大学学报 南京航空航天大学学报(英文版) 南京理工大学学报(自然科学版) 农业工程学报 农业工程学报(重复) (重复) 农业机械学报 排灌机械 (被排灌机械工程学报继承) 品质学报 汽车工程 强激光与粒子束 清华大学学报(英文版) 清华大学学报(自然科学版) 燃料化学学报 燃烧科学与技术 热科学学报(英文版) 人工晶体学报 软件学报 润滑与密封(已经拒收) 上海交通大学学报 上海交通大学学报(英文版) 深圳大学学报理工版 沈阳工业大学学报 生物医学工程-应用,基础和通讯(英文版) 声学学报 石油地球物理勘探 石油勘探与开发 石油学报 石油学报(石油加工) 实验流体力学 水动力学研究与进展(B辑,英文版) 水科学进展 水科学与水工程(英文版) 水力发电学报 水利学报 四川大学学报(工程科学版) 台湾海洋建筑与船舶工程学报(英文版) 台湾化学工程学会会志(英文版) 台湾林业科学(2008年拒收) 太阳能学报 天津大学学报 天津大学学报(英文版) 天然气化学(英文版) 铁道学报 通信学报 同济大学学报(自然科学版) 土木工程学报 土木建筑与环境工程 推进技术 无机材料学报 武汉大学学报(信息科学版) 武汉理工大学学报(材料科学版(英文版)) 西安电子科技大学学报 西安交通大学学报 西北工业大学学报 西南交通大学学报 稀土学报(英文版) 稀有金属(英文版) 稀有金属材料与工程 系统工程理论与实践 系统工程与电子技术 系统工程与电子技术(英文版) 系统科学与电子技术 系统科学与复杂性学报(英文版) 香港工程师学会学报(英文版) 新型炭材料 信息科学与工程学刊(英文版) 信息与计算科学杂志(英文版) 亚洲控制学报(英文版) 岩石力学与工程学报 岩土工程学报 岩土力学 医用生物力学 仪器仪表学报 应用基础与工程科学学报 应用科学学报 应用数学和力学(英文版) 宇航学报(恢复) 原子能科学技术 浙江大学学报(A辑 应用物理和工程,英文版) 浙江大学学报(C 辑) 浙江大学学报(工学版) 真空科学与技术学报 振动测试与诊断 振动工程学报 振动与冲击 中国地球化学学报(英文版) 中国电机工程学报 中国工程学刊(英文版) 中国公路学报 中国惯性技术学报 中国光学快报(英文版) 中国海洋工程(英文版) 中国焊接(英文版) 中国航空学报(英文版) 中国化学工程学报(英文版) 中国机械工程学刊(英文版) 中国激光 中国科学(B辑 化学(英文版)) 中国科学(D辑 地球科学(英文版)) 中国科学(E辑 技术科学,英文版) 中国科学(G辑 物理 力学与天文学(英文版)) 中国科学(地球科学,英文版) 中国科学(化学,英文版) 中国科学(技术科学,英文版) 中国科学(物理力学与天文学,英文版) 中国空间科学技术 中国矿业大学学报(自然科学版) 中国石油大学学报(自然科学版) 中国铁道科学 中国土木水利工程学刊 中国物理(英文版) 中国邮电高校学报(英文版) 中国有色金属学报 中国有色金属学会学报(英文版) 中南大学学报(自然科学版) 中南工业大学学报 (被中南大学学报(自然科学版)继承) 中南工业大学学报(英文版) 中正岭学报 重庆大学学报 重庆建筑大学学报 (被土木建筑与环境工程继承) 自动化学报

目前学术期刊的种类和数量众多,要使自己的论文被更多的人看到并产生影响,在什么样的期刊上发表是很重要的,现在许多高校和科研单位对科研人员的评价也要看其发表论文的期刊级别。目前国内有7大核心期刊(或来源期刊)遴选体系:(1)中国科学院文献情报中心“中国科学引文数据库(CSCD)来源期刊”;(2)南京大学“中文社会科学引文索引(CSSCI)来源期刊”;(3)北京大学图书馆“中文核心期刊”;(4)中国科学技术信息研究所“中国科技论文统计源期刊”(又称“中国科技核心期刊”);(5)中国社会科学院文献信息中心“中国人文社会科学核心期刊”;(6)中国人文社会科学学报学会“中国人文社科学报核心期刊”;(7)万方数据股份有限公司正在建设中的“中国核心期刊遴选数据库”。下面就国内最常见也是最权威的三个核心期刊体系作简单介绍(SCI和Ei的相关介绍可参见本网站其他文章所作介绍)。一、中文社会科学引文索引CSSCI由南京大学研制成功的“中文社会科学引文索引”(Chinese Social Sciences Citation Index,简称CSSCI)是国家、教育部重点课题攻关项目。CSSCI遵循文献计量学规律,采取定量与定性评价相结合的方法从全国2700余种中文人文社会科学学术性期刊中精选出学术性强、编辑规范的期刊作为来源期刊。现已开发的CSSCI(1998-2006年)9年数据,来源文献近63万余篇,引文文献409余万篇。该项目成果填补了我国社会科学引文索引的空白,达到了国内领先水平。二、中国科学引文数据库CSCD 中国科学引文数据库(Chinese Science Ctitation Database,简称CSCD)创建于1989年,收录我国数学、物理、化学、天文学、地学、生物学、农林科学、医药卫生、工程技术、环境科学和管理科学等领域出版的中英文科技核心期刊和优秀期刊千余种,目前已积累从1989年到现在的论文记录300万条,引文记录近1700万条。中国科学引文数据库内容丰富、结构科学、数据准确。系统除具备一般的检索功能外,还提供新型的索引关系——引文索引,使用该功能,用户可迅速从数百万条引文中查询到某篇科技文献被引用的详细情况,还可以从一篇早期的重要文献或著者姓名入手,检索到一批近期发表的相关文献,对交叉学科和新学科的发展研究具有十分重要的参考价值。中国科学引文数据库还提供了数据链接机制,支持用户获取全文。 三、北京大学中文核心期刊北京大学在国内最早进行期刊评估的工作,其出版的《中文核心期刊要目总览》就界定了国内核心期刊的范围。该书已于1992、1996、2000、2004年出版过四版,在社会上引起了较大反响,图书情报界、学术界、出版界和科研管理部门对该项研究成果都给予了较高评价,普遍认为它适应了社会需要,为国内外图书情报部门对中文学术期刊的评估和选购提供了参考依据,促进了中文期刊编辑和出版质量的提高,已成为具有一定权威性的参考工具书。为了及时反映中文期刊发展变化的新情况,我们开展了新一版核心期刊的研究工作。

登陆EI,侧面有分类情况,罗列所有不同级别的期刊名录。

机器视觉论文研究方向

记得是写论文,我觉得还是比较好写,你也可以查找相关的资料

如何从图像中解析出可供计算机理解的信息,是机器视觉的中心问题。深度学习模型由于其强大的表示能力,加之数据量的积累和计算力的进步,成为机器视觉的热点研究方向。 那么,如何理解一张图片?根据后续任务的需要,有三个主要的层次。 一是分类(Classification),即是将图像结构化为某一类别的信息,用事先确定好的类别(string)或实例ID来描述图片。这一任务是最简单、最基础的图像理解任务,也是深度学习模型最先取得突破和实现大规模应用的任务。其中,ImageNet是最权威的评测集,每年的ILSVRC催生了大量的优秀深度网络结构,为其他任务提供了基础。在应用领域,人脸、场景的识别等都可以归为分类任务。 二是检测(Detection)。分类任务关心整体,给出的是整张图片的内容描述,而检测则关注特定的物体目标,要求同时获得这一目标的类别信息和位置信息。相比分类,检测给出的是对图片前景和背景的理解,我们需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因而,检测模型的输出是一个列表,列表的每一项使用一个数据组给出检出目标的类别和位置(常用矩形检测框的坐标表示)。 三是分割(Segmentation)。分割包括语义分割(semantic segmentation)和实例分割(instance segmentation),前者是对前背景分离的拓展,要求分离开具有不同语义的图像部分,而后者是检测任务的拓展,要求描述出目标的轮廓(相比检测框更为精细)。分割是对图像的像素级描述,它赋予每个像素类别(实例)意义,适用于理解要求较高的场景,如无人驾驶中对道路和非道路的分割。 两阶段模型因其对图片的两阶段处理得名,也称为基于区域(Region-based)的方法,我们选取R-CNN系列工作作为这一类型的代表。 本文的两大贡献:1)CNN可用于基于区域的定位和分割物体;2)监督训练样本数紧缺时,在额外的数据上预训练的模型经过fine-tuning可以取得很好的效果。第一个贡献影响了之后几乎所有2-stage方法,而第二个贡献中用分类任务(Imagenet)中训练好的模型作为基网络,在检测问题上fine-tuning的做法也在之后的工作中一直沿用。 传统的计算机视觉方法常用精心设计的手工特征(如SIFT, HOG)描述图像,而深度学习的方法则倡导习得特征,从图像分类任务的经验来看,CNN网络自动习得的特征取得的效果已经超出了手工设计的特征。本篇在局部区域应用卷积网络,以发挥卷积网络学习高质量特征的能力。 R-CNN将检测抽象为两个过程,一是基于图片提出若干可能包含物体的区域(即图片的局部裁剪,被称为Region Proposal),文中使用的是Selective Search算法;二是在提出的这些区域上运行当时表现最好的分类网络(AlexNet),得到每个区域内物体的类别。 另外,文章中的两个做法值得注意。 一是数据的准备。输入CNN前,我们需要根据Ground Truth对提出的Region Proposal进行标记,这里使用的指标是IoU(Intersection over Union,交并比)。IoU计算了两个区域之交的面积跟它们之并的比,描述了两个区域的重合程度。 文章中特别提到,IoU阈值的选择对结果影响显著,这里要谈两个threshold,一个用来识别正样本(如跟ground truth的IoU大于),另一个用来标记负样本(即背景类,如IoU小于),而介于两者之间的则为难例(Hard Negatives),若标为正类,则包含了过多的背景信息,反之又包含了要检测物体的特征,因而这些Proposal便被忽略掉。 另一点是位置坐标的回归(Bounding-Box Regression),这一过程是Region Proposal向Ground Truth调整,实现时加入了log/exp变换来使损失保持在合理的量级上,可以看做一种标准化(Normalization)操作。 R-CNN的想法直接明了,即将检测任务转化为区域上的分类任务,是深度学习方法在检测任务上的试水。模型本身存在的问题也很多,如需要训练三个不同的模型(proposal, classification, regression)、重复计算过多导致的性能问题等。尽管如此,这篇论文的很多做法仍然广泛地影响着检测任务上的深度模型革命,后续的很多工作也都是针对改进这一工作而展开,此篇可以称得上"The First Paper"。 文章指出R-CNN耗时的原因是CNN是在每一个Proposal上单独进行的,没有共享计算,便提出将基础网络在图片整体上运行完毕后,再传入R-CNN子网络,共享了大部分计算,故有Fast之名。 上图是Fast R-CNN的架构。图片经过feature extractor得到feature map, 同时在原图上运行Selective Search算法并将RoI(Region of Interset,实为坐标组,可与Region Proposal混用)映射到到feature map上,再对每个RoI进行RoI Pooling操作便得到等长的feature vector,将这些得到的feature vector进行正负样本的整理(保持一定的正负样本比例),分batch传入并行的R-CNN子网络,同时进行分类和回归,并将两者的损失统一起来。 文章最后的讨论也有一定的借鉴意义: Fast R-CNN的这一结构正是检测任务主流2-stage方法所采用的元结构的雏形。文章将Proposal, Feature Extractor, Object Classification&Localization统一在一个整体的结构中,并通过共享卷积计算提高特征利用效率,是最有贡献的地方。 Faster R-CNN是2-stage方法的奠基性工作,提出的RPN网络取代Selective Search算法使得检测任务可以由神经网络端到端地完成。粗略的讲,Faster R-CNN = RPN + Fast R-CNN,跟RCNN共享卷积计算的特性使得RPN引入的计算量很小,使得Faster R-CNN可以在单个GPU上以5fps的速度运行,而在精度方面达到SOTA(State of the Art,当前最佳)。 本文的主要贡献是提出Regional Proposal Networks,替代之前的SS算法。RPN网络将Proposal这一任务建模为二分类(是否为物体)的问题。 第一步是在一个滑动窗口上生成不同大小和长宽比例的anchor box(如上图右边部分),取定IoU的阈值,按Ground Truth标定这些anchor box的正负。于是,传入RPN网络的样本数据被整理为anchor box(坐标)和每个anchor box是否有物体(二分类标签)。RPN网络将每个样本映射为一个概率值和四个坐标值,概率值反应这个anchor box有物体的概率,四个坐标值用于回归定义物体的位置。最后将二分类和坐标回归的损失统一起来,作为RPN网络的目标训练。 由RPN得到Region Proposal在根据概率值筛选后经过类似的标记过程,被传入R-CNN子网络,进行多分类和坐标回归,同样用多任务损失将二者的损失联合。 Faster R-CNN的成功之处在于用RPN网络完成了检测任务的"深度化"。使用滑动窗口生成anchor box的思想也在后来的工作中越来越多地被采用(YOLO v2等)。这项工作奠定了"RPN+RCNN"的两阶段方法元结构,影响了大部分后续工作。 单阶段模型没有中间的区域检出过程,直接从图片获得预测结果,也被成为Region-free方法。 YOLO是单阶段方法的开山之作。它将检测任务表述成一个统一的、端到端的回归问题,并且以只处理一次图片同时得到位置和分类而得名。 YOLO的主要优点: 1.准备数据:将图片缩放,划分为等分的网格,每个网格按跟Ground Truth的IoU分配到所要预测的样本。 2.卷积网络:由GoogLeNet更改而来,每个网格对每个类别预测一个条件概率值,并在网格基础上生成B个box,每个box预测五个回归值,四个表征位置,第五个表征这个box含有物体(注意不是某一类物体)的概率和位置的准确程度(由IoU表示)。测试时,分数如下计算: 等式左边第一项由网格预测,后两项由每个box预测,以条件概率的方式得到每个box含有不同类别物体的分数。 因而,卷积网络共输出的预测值个数为S×S×(B×5+C),其中S为网格数,B为每个网格生成box个数,C为类别数。 3.后处理:使用NMS(Non-Maximum Suppression,非极大抑制)过滤得到最后的预测框 损失函数被分为三部分:坐标误差、物体误差、类别误差。为了平衡类别不均衡和大小物体等带来的影响,损失函数中添加了权重并将长宽取根号。 YOLO提出了单阶段的新思路,相比两阶段方法,其速度优势明显,实时的特性令人印象深刻。但YOLO本身也存在一些问题,如划分网格较为粗糙,每个网格生成的box个数等限制了对小尺度物体和相近物体的检测。 SSD相比YOLO有以下突出的特点: SSD是单阶段模型早期的集大成者,达到跟接近两阶段模型精度的同时,拥有比两阶段模型快一个数量级的速度。后续的单阶段模型工作大多基于SSD改进展开。 最后,我们对检测模型的基本特征做一个简单的归纳。 检测模型整体上由基础网络(Backbone Network)和检测头部(Detection Head)构成。前者作为特征提取器,给出图像不同大小、不同抽象层次的表示;后者则依据这些表示和监督信息学习类别和位置关联。检测头部负责的类别预测和位置回归两个任务常常是并行进行的,构成多任务的损失进行联合训练。 另一方面,单阶段模型只有一次类别预测和位置回归,卷积运算的共享程度更高,拥有更快的速度和更小的内存占用。读者将会在接下来的文章中看到,两种类型的模型也在互相吸收彼此的优点,这也使得两者的界限更为模糊。

找你导师沟通,让他帮你推荐几篇跟课题相关的论文和几本专业书籍。这种只给学生一个题目而不做任何指导的导师,在中国高校有一大堆。不能指导学生怎么能被称作导师呢?这群滥竽充数者实际上是应该剔除出导师队伍的。误人子弟!当前你这种迷茫不是你的问题。问题是你先要知道想做什么,也就是先找到你要着手解决的问题。然后针对这个问题看看别人是怎么做的,别人在做的过程中出现了什么问题。研究别人怎么做的过程中,你可以照猫画虎把别人的方法实现一遍,练练手。在动手的过程中,你会逐渐发现不少细节性问题。有些地方是你可以改进或者创新的。把能改进的做了改进,能创新的做了创新。有了文章发表,你的研究生生涯基本也就结束了。如果没有根据要解决的课题作为导向,胡子眉毛一把抓。凡是计算机视觉和机器视觉的相关的资料都去看,到头来也没有找出要解决的问题。这样下去,在研究方向上很难有进展。至少是你做起来会很慢。该看不该看的都看了,该学不该学的都学了,具体能不能用来解决你要面对的问题,答案却还是不知道。总之,一句话以你要解决的问题为导向来入手。用啥学啥就好!能解决问题就行!研究生阶段不过是导师带你科研入门的一种训练而已。如果连入门都带不了,这样的导师是没有最起码的科研素质的。也就是说你导师没有受过科研训练,他不知道该怎么搞科研。建议尽快换导师为好!越快越好,省得浪费你的青春岁月。

这样的主题论文还是比较好写的,首先必须要抓住论文的中心,确立文章的思想内涵,然后分几个不同的角度进行有效的论证。

相关百科

热门百科

首页
发表服务