首页

> 学术期刊知识库

首页 学术期刊知识库 问题

运筹学论文运输问题

发布时间:

运筹学论文运输问题

1. 如果目标函数是求利润最大,伏格尔法求初始解计算行差额和列差额同目标函数求总运费最小是一样的,不过要选差额最大者所在行或列中的最大元素。2 简单变换,目的是改变目标函数中系数的符号,同最大化问题化成最小化问题,这样就可以直接应用表上作业法了。

随着我国国民经济的不断发展,企业之间的交易活动更加频繁、同地区、不同地区、甚至跨国的交易活动也不断发生,交通运输则成为交易的活动重点了。 交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已 经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在交通运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。

运筹学之运输问题主讲人:罗九晖§ 运输问题的基本概念◆运输问题是研究物资调配的学问,这是物流管理的核心问题之一。尤其是企业到达一定规模之后, 拥有了在广大空间上资源配置的自由度,可以通 过优化多个供方与多个需方之间的匹配关系,使 整体的物流效率最高。◆一般的运输问题是解决如何将某种物品从若干产 地(供应地)调运到多个销地(目的地),在每个 产地的供应量、每个销地的需求量和各地之间的运 输单价均已知的前提下,如何在满足需求条件下确 定一个运送货物的最佳路径(总的运输成本最小)。§ 运输问题的数学模型例:某公司从两个产地A1、A2将物品运往三个销地B1、 B2、B3,各产地的产量、各销地的销量和各产地运 往各销地每件物品的运费如下表所示,问:应如 何调运可使总运输费用最小?A1 A2 销量 B1 6 6 150 B2 4 5 150 B3 产量 6 200 5 300 200 总产量=总销量运输问题的数学模型解题思路:①明确此问题属于供销平衡问题;②确定决策变量,写出满足产地产量的约束条件;③写出满足销地销量的约束条件; ④写出使运输费用最小的目标函数 ⑤利用计算机求解。解: 设 xij 为从产地Ai运往销地Bj的运输量,得到下列 运输量表: 销地 B1 B2 B3 产量 产地 A1 x11 x12 x13 200 A2 x21 x22 x23 300 150 150 200 销量运输问题的数学模型Min f = 6x11+4x12+6x13+6x21+5x22+5x23S . t. x11+ x12 + x13 = 200 x21 + x22+ x23 = 300 x11 + x21 = 150 最优解如下 x12 + x22 = 150 起 至 x13 + x23 = 200 发点 1 xij≥0(i=1,2;j=1,2,3)-------1 2 50 100销点2 ----150 0 3 ----0 200-----此运输问题的成本或收益为: 2500§运输问题的基本特点◆一般运输问题的基本特点: (1)有多个产地和多个销地; (2)每个产地的产量不同,每个销地的销量也不同; (3)各产销两地之间的运价不同; (4)如何组织调运,在满足供应和需求的前提下使总运输费 用(或里程、时间等)最小。 ◆运输问题的数学模型的系数矩阵的基本特点: (1)共有m+n行,分别表示各产地和销地;m,n列,分别表 示各决策变量; (2)每列只有两个 1,其余为 0,分别表示只有一个产地和 一个销地被使用。§产销不平衡的运输问题产销不平衡问题的处理方式:产销不平衡问题向产销平衡的问题转化具体措施:增加虚设的产地和产量或者增加虚设的销地和销 量经济意义:虚设的产地(或销地)可以将这些产地的“产品” 运往各销地(或各地的产品运往这些销地)。令这 些产地或销地运输路线上的运价为0。因此,虚设的 销地相当于在产地设了一个库房,虚设的产地相当 于在销地给了一个空

运筹学运输问题论文知网

财政和会计。根据查询运筹学论文相关信息得知,方向有财政和会计。运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。运筹学可以用来很好的解决生活中的许多问题。运筹学有着广泛的应用,对现代化建设有重要作用。

论文参考文献可以找的网站如下:

1、知网国内最大知识库,还有批量导出参考文献功能。

2、谷歌学术收录各个领域学术资料的免费搜索引擎。ScienceDirect收录的期刊是世界上公认的高质量学术期刊。

3、Web of Science数据库是国际公认的反映科学研究水准的数据库。检索精确到文献被收录的期刊、出版公司、作者、日期、页码等。

按照字面的意思,参考文献是文章或著作等写作过程中参考过的文献。然而,按照GB/T7714-2015《信息与文献 参考文献著录规则》的定义,文后参考文献是指:为撰写或编辑论文和著作而引用的有关文献信息资源。

根据《中国学术期刊(光盘版)检索与评价数据规范(试行)》和《中国高等学校社会科学学报编排规范(修订版)》的要求,很多刊物对参考文献和注释作出区分,将注释规定为对正文中某一内容作进一步解释或补充说明的文字,列于文末并与参考文献分列或置于当页脚地。

参考文献自动生成:

知网

百度学术:

谷歌学术:

查找参考文献的网站

1、文献党下载器()一款资源集成的文献下载平台,几乎整合了所有中外文献数据库资源,覆盖全科以及各种文献类型。整合资源包括知网、万方、维普、SpringerLink、Elsevier(sciencedirect)、Wiley 、Web of Science、PubMed 、EI、ProQuest(国外学位论文)等数据库资源,还有大量的世界知名期刊,如:nature《自然》、science《科学》、CELL《细胞》、PNAS《美国科学院院报》等等。只要有互联网,在哪里都可以查找下载文献。

2、知网:全球最大的中文数据库。提供中国学术文献、外文文献、学位论文、报纸、会议、年鉴、工具书等各类资源,并提供在线阅读和下载服务。涵盖领域包括:基础科学、文史哲、工程科技、社会科学、农业、经济与管理科学、医药卫生、信息科技等。

3、万方数据库:是由万方数据公司开发的,涵盖期刊、会议纪要、论文、学术成果、学术会议论文的大型网络数据库;也是和中国知网齐名的中国专业的学术数据库。

学科分类:综合,机械,电子电气,计算机/信息科学,能源/动力工程,建筑/土木工程,艺术,社会科学,语言/文学,教育,哲学,政治,生物,材料科学,环境科学,化学/化工,物理,数学。

4、Web of Science是获取全球学术信息的重要数据库。其中以SCIE、SSCI、A&HCI等引文索引数据库,JCR期刊引证报告和ESI基本科学指标享誉全球科技和教育界。Web of Science收录了论文中所引用的参考文献,通过独特的引文索引,用户可以用一篇文章、一个专利号、一篇会议文献、一本期刊或者一本书作为检索词,检索它们的被引用情况,轻松回溯某一研究文献的起源与历史,或者追踪其最新进展;可以越查越广、越查越新、越查越深。

5、Wiley 作为全球最大、最全面的经同行评审的科学、技术、医学和学术研究的在线多学科资源平台之一,Wiley及旗下的子品牌出版了超过500位诺贝尔奖得主的作品。“Wiley Online Library”覆盖了生命科学、健康科学、自然科学、社会与人文科学等全面的学科领域。Wiley Online Library上有1600多种经同行评审的学术期刊,20000本电子图书,170多种在线参考工具书,580多种在线参考书,19种生物学、生命科学和生物医学的实验室指南(Current Protocols),17种化学、光谱和循证医学数据库(Cochrane Library)。

6、Elsevier(sciencedirect)是荷兰一家全球著名的学术期刊出版商,每年出版大量的学术图书和期刊,大部分期刊被SCI、SSCI、EI收录,是世界上公认的高品位学术期刊。scienceDirect是爱思唯尔公司的全文数据库平台,是全球最大的科学、技术与医学全文电子资源数据库,提供2500余种学术期刊以及37000余种图书的全文内容。包括全球影响力极高的CELL《细胞杂志》、THE LANCET《柳叶刀杂志》等。

7、SpringerLink是全球最大的在线科学、技术和医学(STM)领域学术资源平台。Springer 的电子图书数据库包括各种的Springer图书产品,如专著、教科书、手册、地图集、参考工具书、丛书等。具体学科涉及:数学、物理与天文学、化学、生命科学、医学、工程学、计算机科学、环境科学、地球科学、经济学、法律。

8、PubMed 是一个免费的搜寻引擎,提供生物医学方面的论文搜寻以及摘要的数据库。它的数据库来源为MEDLINE。其核心主题为医学,但亦包括其他与医学相关的领域,像是护理学或者其他健康学科。PubMed 的资讯并不包括期刊论文的全文,但可提供指向全文提供者(付费或免费)的链接。

参考文献标准格式:

1、参考文献类型:

普通图书[M]、期刊文章[J]、报纸文章[N]、论文集[C]、学位论 文[D]、报告[R]、标准[s]、专利[P]、数据库[DB]、计算机程序[CP]、电 子公告[EB]、联机网络[OL]、网上期刊[J/OL]、网上电子公告[EB/OL]、其他未 说明文献[z]。

2.参考文献格式及示例:

(1)专著、论文集、学位论文、报告:

[序号]主要责任者.文献题名[文献类型标识]. 出版地:出版者,出版年:起止页码(任选).

[1]刘国钧,陈绍业,王凤翥.图书馆目录[M].北京:高等教育出版社,1957: 15—18.

[2]辛希孟.信息技术与信息服务国际研讨会论文集:A集[c].北京:中国社会科学 出版社.1994.

[3]Radden G&Kovecses Z.Towards a Theory of Metonymy[M].Amsterdam:John Benjamins,1999.

(2)期刊文章:

[序号]主要责任者.文献题名[T].刊名,年,卷(期):起止页码.

[4]金显贺,王昌长,王忠东,等.一种用于在线检测局部放电的数字滤波技术[T]. 清华大学学报(自然科学版),1993,33(4):62—67.

[5]Hubscher—Davidson S E.Personal diversity and diverse personalities in translation: A study of individual differences[J].Perspectives&u西es in Translatology,2009,1 7 (3):175-192.

(3)论文集中的析出文献:

[序号]析出文献主要责任者.析出文献题名[C]//原文献主要 责任者(任选).原文献题名.出版地:出版者,出版年:析出文献起止页码.

[6]钟文发.非线性规划在可燃毒物配置中的应用[C]//赵玮.运筹学的理论与应 用——中国运筹学会第五届大会论文集.西安:西安电子科技大学出版社,1996: 468-471.

[7]Barcelona A.Reviewing the properties and prototype structure of metonymy[C]//Benczes R,Barcelona A.Defining Metonymy in Cognitive Linguistics:Towards a Consensus View. Philadelphia:John Benjamins Publishing Co.,20 11:7—57.

(4)报纸文章:

[序号]主要责任者.文献题名[N].报纸名,出版日期(版次).

[8]谢希德.创造学习的新思路[N].人民El报,1998—12—25(10).

(5)国际、国家标准:

[序号].标准编号,标准名称[s].

[9]GB/T 16159—1996,汉语拼音正词法基本规则[s].

(6)专利:

[序号]专利所有者.专利题名[P].专利国别:专利号,出版日期.

[10]姜锡洲.一种温热外敷药制备方案[P].中国专利:881056073,1989—07—26.

(7)电子文献:

[序号]主要责任者.电子文献题名[电子文献及载体类型标识].(发表或 更新日期)[引用日期].电子文献的出处或可获得地址.

[11]王明亮.关于中国学术期刊标准化数据库系统工程的进展[EB/OL].(1998—08— 16)[1998—10—04].http:Hwww.cajcd.edu.cn/pub/wml.txt/980810—2.html.

[12]万锦坤.中国大学学报论文文摘(1983--1993).英文版[DB/CD].北京:中国 大百科全书出版社,1996.

(8)各种未定义类型的文献:

[序号]主要责任者.文献题名[z].出版地:出版者,出 版年.

随着我国国民经济的不断发展,企业之间的交易活动更加频繁、同地区、不同地区、甚至跨国的交易活动也不断发生,交通运输则成为交易的活动重点了。 交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已 经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在交通运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。

如何改进运输问题模型运筹学论文

管理运筹学就是一门解决最高效率、最大利润、最小成本等的课程。有人说管理运筹学深不可测、高不可攀。运筹学是一门应用科学,至今还没有统一的定义。我国出版的《管理百科全书》将运筹学定义为:“运筹学是应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。”

管理运筹学就是通过数学模型来安排物资,它是一门研究如何有效的组织和管理人机系统的科学,它对于我们逻辑思维能力要求是很高的。从提出问题,分析建摸到求解到方案对逻辑思维的严密性也是一种考验,但它与我们经济管理类专业的学生以后走上工作岗位是息息相关的。

管理,为决策者提供有依据的最优方案,以实现最有效的管理。运筹学应用分析,试验,量化的方法,对经济管理系统中人财物等有限资源进行统筹安排。

向左转|向右转

扩展资料:

管理运筹学和管理学的差异:

管理运筹学和运筹学略微有所差,这个差别不是说讲的知识点的差别,是方法上的差别,举个例子,运筹学中求解线性规划问题有一种方法叫单纯形法,如果你所学的课程名字叫“运筹学”那么你就应该掌握单纯形法的原理、以及计算方法;而“管理运筹学”则只要求你知道有这个方法,具体运用单纯形法求解则通过计算机软件完成。也就是说“运筹学”比“管理运筹学”要求更高。当然这个差别也不是绝对的,不同学校的教学目的不同,还得根据实际情况分析。

随着我国国民经济的不断发展,企业之间的交易活动更加频繁、同地区、不同地区、甚至跨国的交易活动也不断发生,交通运输则成为交易的活动重点了。 交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已 经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在交通运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。

Operation Research原意是操作研究、作业研究、运用研究、作战研究,译作运筹学,是借用了《史记》“运筹策于帷幄之中,决胜于千里之外”一语中“运筹”二字,既显示其军事的起源,也表明它在我国已早有萌芽。 运筹学作为一门现代科学,是在第二次世界大战期间首先在英美两国发展起来的,有的学者把运筹学描述为就组织系统的各种经营作出决策的科学手段。与在他们的奠基作中给运筹学下的定义是:“运筹学是在实行管理的领域,运用数学方法,对需要进行管理的问题统筹规划,作出决策的一门应用科学。”运筹学的另一位创始人定义运筹学是:“管理系统的人为了获得关于系统运行的最优解而必须使用的一种科学方法。”它使用许多数学工具(包括概率统计、数理分析、线性代数等)和逻辑判断方法,来研究系统中人、财、物的组织管理、筹划调度等问题,以期发挥最大效益。 现代运筹学的起源可以追溯到几十年前,在某些组织的管理中最先试用科学手段的时候。可是,现在普遍认为,运筹学的活动是从二次世界大战初期的军事任务开始的。当时迫切需要把各项稀少的资源以有效的方式分配给各种不同的军事经营及在每一经营内的各项活动,所以美国及随后美国的军事管理当局都号召大批科学家运用科学手段来处理战略与战术问题,实际上这便是要求他们对种种(军事)经营进行研究,这些科学家小组正是最早的运筹小组。 第二次世界大战期间,“OR”成功地解决了许多重要作战问题,显示了科学的巨大物质威力,为“OR”后来的发展铺平了道路。 当战后的工业恢复繁荣时,由于组织内与日俱增的复杂性和专门化所产生的问题,使人们认识到这些问题基本上与战争中所曾面临的问题类似,只是具有不同的现实环境而已,运筹学就这样潜入工商企业和其它部门,在50年代以后得到了广泛的应用。对于系统配置、聚散、竞争的运用机理深入的研究和应用,形成了比较完备的一套理论,如规划论、排队论、存贮论、决策论等等,由于其理论上的成熟,电子计算机的问世,又大大促进了运筹学的发展,世界上不少国家已成立了致力于该领域及相关活动的专门学会,美国于1952年成立了运筹学会,并出版期刊《运筹学》,世界其它国家也先后创办了运筹学会与期刊,1957年成立了国际运筹学协会。 运筹学的特点是:1.运筹学已被广泛应用于工商企业、军事部门、民政事业等研究组织内的统筹协调问题,故其应用不受行业、部门之限制;2.运筹学既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效;3.它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。对所研究的问题求出最优解,寻求最佳的行动方案,所以它也可看成是一门优化技术,提供的是解决各类问题的优化方法。 运筹学的研究方法有:1.从现实生活场合抽出本质的要素来构造数学模型,因而可寻求一个跟决策者的目标有关的解;2.探索求解的结构并导出系统的求解过程;3.从可行方案中寻求系统的最优解法。 运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、图论、决策论、对策论、排队论、存储论、可靠性理论等。 数学规划即上面所说的规划论,是运筹学的一个重要分支,早在1939年苏联的康托洛维奇( )和美国的希奇柯克()等人就在生产组织管理和制定交通运输方案方面首先研究和应用一线性规划方法。1947年旦茨格等人提出了求解线性规划问题的单纯形方法,为线性规划的理论与计算奠定了基础,特别是电子计算机的出现和日益完善,更使规划论得到迅速的发展,可用电子计算机来处理成千上万个约束条件和变量的大规模线性规划问题,从解决技术问题的最优化,到工业、农业、商业、交通运输业以及决策分析部门都可以发挥作用。从范围来看,小到一个班组的计划安排,大至整个部门,以至国民经济计划的最优化方案分析,它都有用武之地,具有适应性强,应用面广,计算技术比较简便的特点。非线性规划的基础性工作则是在1951年由库恩()和达克()等人完成的,到了70年代,数学规划无论是在理论上和方法上,还是在应用的深度和广度上都得到了进一步的发展。 图论是一个古老的但又十分活跃的分支,它是网络技术的基础。图论的创始人是数学家欧拉。1736年他发表了图论方面的第一篇论文,解决了著名的哥尼斯堡七桥难题,相隔一百年后,在1847年基尔霍夫第一次应用图论的原理分析电网,从而把图论引进到工程技术领域。20世纪50年代以来,图论的理论得到了进一步发展,将复杂庞大的工程系统和管理问题用图描述,可以解决很多工程设计和管理决策的最优化问题,例如,完成工程任务的时间最少,距离最短,费用最省等等。图论受到数学、工程技术及经营管理等各方面越来越广泛的重视。 排队论又叫随机服务系统理论。1909年丹麦的电话工程师爱尔朗()排队问题,1930年以后,开始了更为一般情况的研究,取得了一些重要成果。1949年前后,开始了对机器管理、陆空交通等方面的研究,1951年以后,理论工作有了新的进展,逐渐奠定了现代随机服务系统的理论基础。排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。它是研究系统随机聚散现象的理论。 可靠性理论是研究系统故障、以提高系统可靠性问题的理论。可靠性理论研究的系统一般分为两类:(1)不可修系统:如导弹等,这种系统的参数是寿命、可靠度等,(2)可修复系统:如一般的机电设备等,这种系统的重要参数是有效度,其值为系统的正常工作时间与正常工作时间加上事故修理时间之比。 决策论研究决策问题。所谓决策就是根据客观可能性,借助一定的理论、方法和工具,科学地选择最优方案的过程。决策问题是由决策者和决策域构成的,而决策域又由决策空间、状态空间和结果函数构成。研究决策理论与方法的科学就是决策科学。决策所要解决的问题是多种多样的,从不同角度有不同的分类方法,按决策者所面临的自然状态的确定与否可分为:确定型决策、风险型决策和不确定型决策;按决策所依据的目标个数可分为:单目标决策与多目标决策;按决策问题的性质可分为:战略决策与策略决策,以及按不同准则划分成的种种决策问题类型。不同类型的决策问题应采用不同的决策方法。决策的基本步骤为:(1)确定问题,提出决策的目标;(2)发现、探索和拟定各种可行方案;(3)从多种可行方案中,选出最满意的方案;(4)决策的执行与反馈,以寻求决策的动态最优。 如果决策者的对方也是人(一个人或一群人)双方都希望取胜,这类具有竞争性的决策称为对策或博弈型决策。构成对策问题的三个根本要素是:局中人、策略与一局对策的得失。目前对策问题一般可分为有限零和两人对策、阵地对策、连续对策、多人对策与微分对策等。 运筹学是软科学中“硬度”较大的一门学科,兼有逻辑的数学和数学的逻辑的性质,是系统工程学和现代管理科学中的一种基础理论和不可缺少的方法、手段和工具。运筹学已被应用到各种管理工程中,在现代化建设中发挥着重要作用。在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。可见,筹划安排是十分重要的。 现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。 运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。 但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。 运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。 运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。 虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。 随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。 各分支简介 数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。它可以表示成求函数在满足约束条件下的极大极小值问题。 数学规划和古典的求极值的问题有本质上的不同,古典方法只能处理具有简单表达式,和简单约束条件的情况。而现代的数学规划中的问题目标函数和约束条件都很复杂,而且要求给出某种精确度的数字解答,因此算法的研究特别受到重视。 这里最简单的一种问题就是线性规划。如果约束条件和目标函数都是呈线性关系的就叫线性规划。要解决线性规划问题,从理论上讲都要解线性方程组,因此解线性方程组的方法,以及关于行列式、矩阵的知识,就是线性规划中非常必要的工具。 线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用。许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实。 非线性规划是线性规划的进一步发展和继续。许多实际问题如设计问题、经济平衡问题都属于非线性规划的范畴。非线性规划扩大了数学规划的应用范围,同时也给数学工作者提出了许多基本理论问题,使数学中的如凸分析、数值分析等也得到了发展。还有一种规划问题和时间有关,叫做“动态规划”。近年来在工程控制、技术物理和通讯中的最佳控制问题中,已经成为经常使用的重要工具。 排队论是运筹学的又一个分支,它有叫做随机服务系统理论。它的研究目的是要回答如何改进服务机构或组织被服务的对象,使得某种指标达到最优的问题。比如一个港口应该有多少个码头,一个工厂应该有多少维修人员等。 排队论最初是在二十世纪初由丹麦工程师艾尔郎关于电话交换机的效率研究开始的,在第二次世界大战中为了对飞机场跑道的容纳量进行估算,它得到了进一步的发展,其相应的学科更新论、可靠性理论等也都发展起来。 因为排队现象是一个随机现象,因此在研究排队现象的时候,主要采用的是研究随机现象的概率论作为主要工具。此外,还有微分和微分方程。排队论把它所要研究的对象形象的描述为顾客来到服务台前要求接待。如果服务台以被其它顾客占用,那么就要排队。另一方面,服务台也时而空闲、时而忙碌。就需要通过数学方法求得顾客的等待时间、排队长度等的概率分布。 排队论在日常生活中的应用是相当广泛的,比如水库水量的调节、生产流水线的安排,铁路分成场的调度、电网的设计等等。 对策论也叫博弈论,前面讲的田忌赛马就是典型的博弈论问题。作为运筹学的一个分支,博弈论的发展也只有几十年的历史。系统地创建这门学科的数学家,现在一般公认为是美籍匈牙利数学家、计算机之父——冯·诺依曼。 最初用数学方法研究博弈论是在国际象棋中开始的——如何确定取胜的着法。由于是研究双方冲突、制胜对策的问题,所以这门学科在军事方面有着十分重要的应用。近年来,数学家还对水雷和舰艇、歼击机和轰炸机之间的作战、追踪等问题进行了研究,提出了追逃双方都能自主决策的数学理论。近年来,随着人工智能研究的进一步发展,对博弈论提出了更多新的要求。 搜索论是由于第二次世界大战中战争的需要而出现的运筹学分支。主要研究在资源和探测手段受到限制的情况下,如何设计寻找某种目标的最优方案,并加以实施的理论和方法。在第二次世界大战中,同盟国的空军和海军在研究如何针对轴心国的潜艇活动、舰队运输和兵力部署等进行甄别的过程中产生的。搜索论在实际应用中也取得了不少成效,例如二十世纪六十年代,美国寻找在大西洋失踪的核潜艇“打谷者号”和“蝎子号”,以及在地中海寻找丢失的氢弹,都是依据搜索论获得成功的。 运筹学有广阔的应用领域,它已渗透到诸如服务、库存、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性、等各个方面。

因为,蚂蚁沿途中会留下一种气味,其它蚂蚁用触角来闻对方的气味,所以就不会迷路了。

运筹学生产计划问题论文

现在和将来的角度,结合你所学 我可以写,比较多

随着我国国民经济的不断发展,企业之间的交易活动更加频繁、同地区、不同地区、甚至跨国的交易活动也不断发生,交通运输则成为交易的活动重点了。 交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已 经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在交通运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。

去看看这本(运筹与模糊学 )里的内容吧

运筹学解决实际问题的论文

去看看这本(运筹与模糊学 )里的内容吧

现在和将来的角度,结合你所学 我可以写,比较多

在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划,选择一个最好的方案,就会取得最好的效果。可见,筹划是十分重要的。现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。

因为,蚂蚁沿途中会留下一种气味,其它蚂蚁用触角来闻对方的气味,所以就不会迷路了。

相关百科

热门百科

首页
发表服务