首页

> 学术期刊知识库

首页 学术期刊知识库 问题

如何改进运输问题模型运筹学论文

发布时间:

如何改进运输问题模型运筹学论文

管理运筹学就是一门解决最高效率、最大利润、最小成本等的课程。有人说管理运筹学深不可测、高不可攀。运筹学是一门应用科学,至今还没有统一的定义。我国出版的《管理百科全书》将运筹学定义为:“运筹学是应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。”

管理运筹学就是通过数学模型来安排物资,它是一门研究如何有效的组织和管理人机系统的科学,它对于我们逻辑思维能力要求是很高的。从提出问题,分析建摸到求解到方案对逻辑思维的严密性也是一种考验,但它与我们经济管理类专业的学生以后走上工作岗位是息息相关的。

管理,为决策者提供有依据的最优方案,以实现最有效的管理。运筹学应用分析,试验,量化的方法,对经济管理系统中人财物等有限资源进行统筹安排。

向左转|向右转

扩展资料:

管理运筹学和管理学的差异:

管理运筹学和运筹学略微有所差,这个差别不是说讲的知识点的差别,是方法上的差别,举个例子,运筹学中求解线性规划问题有一种方法叫单纯形法,如果你所学的课程名字叫“运筹学”那么你就应该掌握单纯形法的原理、以及计算方法;而“管理运筹学”则只要求你知道有这个方法,具体运用单纯形法求解则通过计算机软件完成。也就是说“运筹学”比“管理运筹学”要求更高。当然这个差别也不是绝对的,不同学校的教学目的不同,还得根据实际情况分析。

随着我国国民经济的不断发展,企业之间的交易活动更加频繁、同地区、不同地区、甚至跨国的交易活动也不断发生,交通运输则成为交易的活动重点了。 交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已 经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在交通运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。

Operation Research原意是操作研究、作业研究、运用研究、作战研究,译作运筹学,是借用了《史记》“运筹策于帷幄之中,决胜于千里之外”一语中“运筹”二字,既显示其军事的起源,也表明它在我国已早有萌芽。 运筹学作为一门现代科学,是在第二次世界大战期间首先在英美两国发展起来的,有的学者把运筹学描述为就组织系统的各种经营作出决策的科学手段。与在他们的奠基作中给运筹学下的定义是:“运筹学是在实行管理的领域,运用数学方法,对需要进行管理的问题统筹规划,作出决策的一门应用科学。”运筹学的另一位创始人定义运筹学是:“管理系统的人为了获得关于系统运行的最优解而必须使用的一种科学方法。”它使用许多数学工具(包括概率统计、数理分析、线性代数等)和逻辑判断方法,来研究系统中人、财、物的组织管理、筹划调度等问题,以期发挥最大效益。 现代运筹学的起源可以追溯到几十年前,在某些组织的管理中最先试用科学手段的时候。可是,现在普遍认为,运筹学的活动是从二次世界大战初期的军事任务开始的。当时迫切需要把各项稀少的资源以有效的方式分配给各种不同的军事经营及在每一经营内的各项活动,所以美国及随后美国的军事管理当局都号召大批科学家运用科学手段来处理战略与战术问题,实际上这便是要求他们对种种(军事)经营进行研究,这些科学家小组正是最早的运筹小组。 第二次世界大战期间,“OR”成功地解决了许多重要作战问题,显示了科学的巨大物质威力,为“OR”后来的发展铺平了道路。 当战后的工业恢复繁荣时,由于组织内与日俱增的复杂性和专门化所产生的问题,使人们认识到这些问题基本上与战争中所曾面临的问题类似,只是具有不同的现实环境而已,运筹学就这样潜入工商企业和其它部门,在50年代以后得到了广泛的应用。对于系统配置、聚散、竞争的运用机理深入的研究和应用,形成了比较完备的一套理论,如规划论、排队论、存贮论、决策论等等,由于其理论上的成熟,电子计算机的问世,又大大促进了运筹学的发展,世界上不少国家已成立了致力于该领域及相关活动的专门学会,美国于1952年成立了运筹学会,并出版期刊《运筹学》,世界其它国家也先后创办了运筹学会与期刊,1957年成立了国际运筹学协会。 运筹学的特点是:1.运筹学已被广泛应用于工商企业、军事部门、民政事业等研究组织内的统筹协调问题,故其应用不受行业、部门之限制;2.运筹学既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效;3.它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。对所研究的问题求出最优解,寻求最佳的行动方案,所以它也可看成是一门优化技术,提供的是解决各类问题的优化方法。 运筹学的研究方法有:1.从现实生活场合抽出本质的要素来构造数学模型,因而可寻求一个跟决策者的目标有关的解;2.探索求解的结构并导出系统的求解过程;3.从可行方案中寻求系统的最优解法。 运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、图论、决策论、对策论、排队论、存储论、可靠性理论等。 数学规划即上面所说的规划论,是运筹学的一个重要分支,早在1939年苏联的康托洛维奇( )和美国的希奇柯克()等人就在生产组织管理和制定交通运输方案方面首先研究和应用一线性规划方法。1947年旦茨格等人提出了求解线性规划问题的单纯形方法,为线性规划的理论与计算奠定了基础,特别是电子计算机的出现和日益完善,更使规划论得到迅速的发展,可用电子计算机来处理成千上万个约束条件和变量的大规模线性规划问题,从解决技术问题的最优化,到工业、农业、商业、交通运输业以及决策分析部门都可以发挥作用。从范围来看,小到一个班组的计划安排,大至整个部门,以至国民经济计划的最优化方案分析,它都有用武之地,具有适应性强,应用面广,计算技术比较简便的特点。非线性规划的基础性工作则是在1951年由库恩()和达克()等人完成的,到了70年代,数学规划无论是在理论上和方法上,还是在应用的深度和广度上都得到了进一步的发展。 图论是一个古老的但又十分活跃的分支,它是网络技术的基础。图论的创始人是数学家欧拉。1736年他发表了图论方面的第一篇论文,解决了著名的哥尼斯堡七桥难题,相隔一百年后,在1847年基尔霍夫第一次应用图论的原理分析电网,从而把图论引进到工程技术领域。20世纪50年代以来,图论的理论得到了进一步发展,将复杂庞大的工程系统和管理问题用图描述,可以解决很多工程设计和管理决策的最优化问题,例如,完成工程任务的时间最少,距离最短,费用最省等等。图论受到数学、工程技术及经营管理等各方面越来越广泛的重视。 排队论又叫随机服务系统理论。1909年丹麦的电话工程师爱尔朗()排队问题,1930年以后,开始了更为一般情况的研究,取得了一些重要成果。1949年前后,开始了对机器管理、陆空交通等方面的研究,1951年以后,理论工作有了新的进展,逐渐奠定了现代随机服务系统的理论基础。排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。它是研究系统随机聚散现象的理论。 可靠性理论是研究系统故障、以提高系统可靠性问题的理论。可靠性理论研究的系统一般分为两类:(1)不可修系统:如导弹等,这种系统的参数是寿命、可靠度等,(2)可修复系统:如一般的机电设备等,这种系统的重要参数是有效度,其值为系统的正常工作时间与正常工作时间加上事故修理时间之比。 决策论研究决策问题。所谓决策就是根据客观可能性,借助一定的理论、方法和工具,科学地选择最优方案的过程。决策问题是由决策者和决策域构成的,而决策域又由决策空间、状态空间和结果函数构成。研究决策理论与方法的科学就是决策科学。决策所要解决的问题是多种多样的,从不同角度有不同的分类方法,按决策者所面临的自然状态的确定与否可分为:确定型决策、风险型决策和不确定型决策;按决策所依据的目标个数可分为:单目标决策与多目标决策;按决策问题的性质可分为:战略决策与策略决策,以及按不同准则划分成的种种决策问题类型。不同类型的决策问题应采用不同的决策方法。决策的基本步骤为:(1)确定问题,提出决策的目标;(2)发现、探索和拟定各种可行方案;(3)从多种可行方案中,选出最满意的方案;(4)决策的执行与反馈,以寻求决策的动态最优。 如果决策者的对方也是人(一个人或一群人)双方都希望取胜,这类具有竞争性的决策称为对策或博弈型决策。构成对策问题的三个根本要素是:局中人、策略与一局对策的得失。目前对策问题一般可分为有限零和两人对策、阵地对策、连续对策、多人对策与微分对策等。 运筹学是软科学中“硬度”较大的一门学科,兼有逻辑的数学和数学的逻辑的性质,是系统工程学和现代管理科学中的一种基础理论和不可缺少的方法、手段和工具。运筹学已被应用到各种管理工程中,在现代化建设中发挥着重要作用。在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。可见,筹划安排是十分重要的。 现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。 运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。 但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。 运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。 运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。 虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。 随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。 各分支简介 数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。它可以表示成求函数在满足约束条件下的极大极小值问题。 数学规划和古典的求极值的问题有本质上的不同,古典方法只能处理具有简单表达式,和简单约束条件的情况。而现代的数学规划中的问题目标函数和约束条件都很复杂,而且要求给出某种精确度的数字解答,因此算法的研究特别受到重视。 这里最简单的一种问题就是线性规划。如果约束条件和目标函数都是呈线性关系的就叫线性规划。要解决线性规划问题,从理论上讲都要解线性方程组,因此解线性方程组的方法,以及关于行列式、矩阵的知识,就是线性规划中非常必要的工具。 线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用。许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实。 非线性规划是线性规划的进一步发展和继续。许多实际问题如设计问题、经济平衡问题都属于非线性规划的范畴。非线性规划扩大了数学规划的应用范围,同时也给数学工作者提出了许多基本理论问题,使数学中的如凸分析、数值分析等也得到了发展。还有一种规划问题和时间有关,叫做“动态规划”。近年来在工程控制、技术物理和通讯中的最佳控制问题中,已经成为经常使用的重要工具。 排队论是运筹学的又一个分支,它有叫做随机服务系统理论。它的研究目的是要回答如何改进服务机构或组织被服务的对象,使得某种指标达到最优的问题。比如一个港口应该有多少个码头,一个工厂应该有多少维修人员等。 排队论最初是在二十世纪初由丹麦工程师艾尔郎关于电话交换机的效率研究开始的,在第二次世界大战中为了对飞机场跑道的容纳量进行估算,它得到了进一步的发展,其相应的学科更新论、可靠性理论等也都发展起来。 因为排队现象是一个随机现象,因此在研究排队现象的时候,主要采用的是研究随机现象的概率论作为主要工具。此外,还有微分和微分方程。排队论把它所要研究的对象形象的描述为顾客来到服务台前要求接待。如果服务台以被其它顾客占用,那么就要排队。另一方面,服务台也时而空闲、时而忙碌。就需要通过数学方法求得顾客的等待时间、排队长度等的概率分布。 排队论在日常生活中的应用是相当广泛的,比如水库水量的调节、生产流水线的安排,铁路分成场的调度、电网的设计等等。 对策论也叫博弈论,前面讲的田忌赛马就是典型的博弈论问题。作为运筹学的一个分支,博弈论的发展也只有几十年的历史。系统地创建这门学科的数学家,现在一般公认为是美籍匈牙利数学家、计算机之父——冯·诺依曼。 最初用数学方法研究博弈论是在国际象棋中开始的——如何确定取胜的着法。由于是研究双方冲突、制胜对策的问题,所以这门学科在军事方面有着十分重要的应用。近年来,数学家还对水雷和舰艇、歼击机和轰炸机之间的作战、追踪等问题进行了研究,提出了追逃双方都能自主决策的数学理论。近年来,随着人工智能研究的进一步发展,对博弈论提出了更多新的要求。 搜索论是由于第二次世界大战中战争的需要而出现的运筹学分支。主要研究在资源和探测手段受到限制的情况下,如何设计寻找某种目标的最优方案,并加以实施的理论和方法。在第二次世界大战中,同盟国的空军和海军在研究如何针对轴心国的潜艇活动、舰队运输和兵力部署等进行甄别的过程中产生的。搜索论在实际应用中也取得了不少成效,例如二十世纪六十年代,美国寻找在大西洋失踪的核潜艇“打谷者号”和“蝎子号”,以及在地中海寻找丢失的氢弹,都是依据搜索论获得成功的。 运筹学有广阔的应用领域,它已渗透到诸如服务、库存、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性、等各个方面。

因为,蚂蚁沿途中会留下一种气味,其它蚂蚁用触角来闻对方的气味,所以就不会迷路了。

运筹学论文运输问题

1. 如果目标函数是求利润最大,伏格尔法求初始解计算行差额和列差额同目标函数求总运费最小是一样的,不过要选差额最大者所在行或列中的最大元素。2 简单变换,目的是改变目标函数中系数的符号,同最大化问题化成最小化问题,这样就可以直接应用表上作业法了。

随着我国国民经济的不断发展,企业之间的交易活动更加频繁、同地区、不同地区、甚至跨国的交易活动也不断发生,交通运输则成为交易的活动重点了。 交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已 经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在交通运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。

运筹学之运输问题主讲人:罗九晖§ 运输问题的基本概念◆运输问题是研究物资调配的学问,这是物流管理的核心问题之一。尤其是企业到达一定规模之后, 拥有了在广大空间上资源配置的自由度,可以通 过优化多个供方与多个需方之间的匹配关系,使 整体的物流效率最高。◆一般的运输问题是解决如何将某种物品从若干产 地(供应地)调运到多个销地(目的地),在每个 产地的供应量、每个销地的需求量和各地之间的运 输单价均已知的前提下,如何在满足需求条件下确 定一个运送货物的最佳路径(总的运输成本最小)。§ 运输问题的数学模型例:某公司从两个产地A1、A2将物品运往三个销地B1、 B2、B3,各产地的产量、各销地的销量和各产地运 往各销地每件物品的运费如下表所示,问:应如 何调运可使总运输费用最小?A1 A2 销量 B1 6 6 150 B2 4 5 150 B3 产量 6 200 5 300 200 总产量=总销量运输问题的数学模型解题思路:①明确此问题属于供销平衡问题;②确定决策变量,写出满足产地产量的约束条件;③写出满足销地销量的约束条件; ④写出使运输费用最小的目标函数 ⑤利用计算机求解。解: 设 xij 为从产地Ai运往销地Bj的运输量,得到下列 运输量表: 销地 B1 B2 B3 产量 产地 A1 x11 x12 x13 200 A2 x21 x22 x23 300 150 150 200 销量运输问题的数学模型Min f = 6x11+4x12+6x13+6x21+5x22+5x23S . t. x11+ x12 + x13 = 200 x21 + x22+ x23 = 300 x11 + x21 = 150 最优解如下 x12 + x22 = 150 起 至 x13 + x23 = 200 发点 1 xij≥0(i=1,2;j=1,2,3)-------1 2 50 100销点2 ----150 0 3 ----0 200-----此运输问题的成本或收益为: 2500§运输问题的基本特点◆一般运输问题的基本特点: (1)有多个产地和多个销地; (2)每个产地的产量不同,每个销地的销量也不同; (3)各产销两地之间的运价不同; (4)如何组织调运,在满足供应和需求的前提下使总运输费 用(或里程、时间等)最小。 ◆运输问题的数学模型的系数矩阵的基本特点: (1)共有m+n行,分别表示各产地和销地;m,n列,分别表 示各决策变量; (2)每列只有两个 1,其余为 0,分别表示只有一个产地和 一个销地被使用。§产销不平衡的运输问题产销不平衡问题的处理方式:产销不平衡问题向产销平衡的问题转化具体措施:增加虚设的产地和产量或者增加虚设的销地和销 量经济意义:虚设的产地(或销地)可以将这些产地的“产品” 运往各销地(或各地的产品运往这些销地)。令这 些产地或销地运输路线上的运价为0。因此,虚设的 销地相当于在产地设了一个库房,虚设的产地相当 于在销地给了一个空

运筹学运输问题论文知网

财政和会计。根据查询运筹学论文相关信息得知,方向有财政和会计。运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。运筹学可以用来很好的解决生活中的许多问题。运筹学有着广泛的应用,对现代化建设有重要作用。

论文参考文献可以找的网站如下:

1、知网国内最大知识库,还有批量导出参考文献功能。

2、谷歌学术收录各个领域学术资料的免费搜索引擎。ScienceDirect收录的期刊是世界上公认的高质量学术期刊。

3、Web of Science数据库是国际公认的反映科学研究水准的数据库。检索精确到文献被收录的期刊、出版公司、作者、日期、页码等。

按照字面的意思,参考文献是文章或著作等写作过程中参考过的文献。然而,按照GB/T7714-2015《信息与文献 参考文献著录规则》的定义,文后参考文献是指:为撰写或编辑论文和著作而引用的有关文献信息资源。

根据《中国学术期刊(光盘版)检索与评价数据规范(试行)》和《中国高等学校社会科学学报编排规范(修订版)》的要求,很多刊物对参考文献和注释作出区分,将注释规定为对正文中某一内容作进一步解释或补充说明的文字,列于文末并与参考文献分列或置于当页脚地。

参考文献自动生成:

知网

百度学术:

谷歌学术:

查找参考文献的网站

1、文献党下载器()一款资源集成的文献下载平台,几乎整合了所有中外文献数据库资源,覆盖全科以及各种文献类型。整合资源包括知网、万方、维普、SpringerLink、Elsevier(sciencedirect)、Wiley 、Web of Science、PubMed 、EI、ProQuest(国外学位论文)等数据库资源,还有大量的世界知名期刊,如:nature《自然》、science《科学》、CELL《细胞》、PNAS《美国科学院院报》等等。只要有互联网,在哪里都可以查找下载文献。

2、知网:全球最大的中文数据库。提供中国学术文献、外文文献、学位论文、报纸、会议、年鉴、工具书等各类资源,并提供在线阅读和下载服务。涵盖领域包括:基础科学、文史哲、工程科技、社会科学、农业、经济与管理科学、医药卫生、信息科技等。

3、万方数据库:是由万方数据公司开发的,涵盖期刊、会议纪要、论文、学术成果、学术会议论文的大型网络数据库;也是和中国知网齐名的中国专业的学术数据库。

学科分类:综合,机械,电子电气,计算机/信息科学,能源/动力工程,建筑/土木工程,艺术,社会科学,语言/文学,教育,哲学,政治,生物,材料科学,环境科学,化学/化工,物理,数学。

4、Web of Science是获取全球学术信息的重要数据库。其中以SCIE、SSCI、A&HCI等引文索引数据库,JCR期刊引证报告和ESI基本科学指标享誉全球科技和教育界。Web of Science收录了论文中所引用的参考文献,通过独特的引文索引,用户可以用一篇文章、一个专利号、一篇会议文献、一本期刊或者一本书作为检索词,检索它们的被引用情况,轻松回溯某一研究文献的起源与历史,或者追踪其最新进展;可以越查越广、越查越新、越查越深。

5、Wiley 作为全球最大、最全面的经同行评审的科学、技术、医学和学术研究的在线多学科资源平台之一,Wiley及旗下的子品牌出版了超过500位诺贝尔奖得主的作品。“Wiley Online Library”覆盖了生命科学、健康科学、自然科学、社会与人文科学等全面的学科领域。Wiley Online Library上有1600多种经同行评审的学术期刊,20000本电子图书,170多种在线参考工具书,580多种在线参考书,19种生物学、生命科学和生物医学的实验室指南(Current Protocols),17种化学、光谱和循证医学数据库(Cochrane Library)。

6、Elsevier(sciencedirect)是荷兰一家全球著名的学术期刊出版商,每年出版大量的学术图书和期刊,大部分期刊被SCI、SSCI、EI收录,是世界上公认的高品位学术期刊。scienceDirect是爱思唯尔公司的全文数据库平台,是全球最大的科学、技术与医学全文电子资源数据库,提供2500余种学术期刊以及37000余种图书的全文内容。包括全球影响力极高的CELL《细胞杂志》、THE LANCET《柳叶刀杂志》等。

7、SpringerLink是全球最大的在线科学、技术和医学(STM)领域学术资源平台。Springer 的电子图书数据库包括各种的Springer图书产品,如专著、教科书、手册、地图集、参考工具书、丛书等。具体学科涉及:数学、物理与天文学、化学、生命科学、医学、工程学、计算机科学、环境科学、地球科学、经济学、法律。

8、PubMed 是一个免费的搜寻引擎,提供生物医学方面的论文搜寻以及摘要的数据库。它的数据库来源为MEDLINE。其核心主题为医学,但亦包括其他与医学相关的领域,像是护理学或者其他健康学科。PubMed 的资讯并不包括期刊论文的全文,但可提供指向全文提供者(付费或免费)的链接。

参考文献标准格式:

1、参考文献类型:

普通图书[M]、期刊文章[J]、报纸文章[N]、论文集[C]、学位论 文[D]、报告[R]、标准[s]、专利[P]、数据库[DB]、计算机程序[CP]、电 子公告[EB]、联机网络[OL]、网上期刊[J/OL]、网上电子公告[EB/OL]、其他未 说明文献[z]。

2.参考文献格式及示例:

(1)专著、论文集、学位论文、报告:

[序号]主要责任者.文献题名[文献类型标识]. 出版地:出版者,出版年:起止页码(任选).

[1]刘国钧,陈绍业,王凤翥.图书馆目录[M].北京:高等教育出版社,1957: 15—18.

[2]辛希孟.信息技术与信息服务国际研讨会论文集:A集[c].北京:中国社会科学 出版社.1994.

[3]Radden G&Kovecses Z.Towards a Theory of Metonymy[M].Amsterdam:John Benjamins,1999.

(2)期刊文章:

[序号]主要责任者.文献题名[T].刊名,年,卷(期):起止页码.

[4]金显贺,王昌长,王忠东,等.一种用于在线检测局部放电的数字滤波技术[T]. 清华大学学报(自然科学版),1993,33(4):62—67.

[5]Hubscher—Davidson S E.Personal diversity and diverse personalities in translation: A study of individual differences[J].Perspectives&u西es in Translatology,2009,1 7 (3):175-192.

(3)论文集中的析出文献:

[序号]析出文献主要责任者.析出文献题名[C]//原文献主要 责任者(任选).原文献题名.出版地:出版者,出版年:析出文献起止页码.

[6]钟文发.非线性规划在可燃毒物配置中的应用[C]//赵玮.运筹学的理论与应 用——中国运筹学会第五届大会论文集.西安:西安电子科技大学出版社,1996: 468-471.

[7]Barcelona A.Reviewing the properties and prototype structure of metonymy[C]//Benczes R,Barcelona A.Defining Metonymy in Cognitive Linguistics:Towards a Consensus View. Philadelphia:John Benjamins Publishing Co.,20 11:7—57.

(4)报纸文章:

[序号]主要责任者.文献题名[N].报纸名,出版日期(版次).

[8]谢希德.创造学习的新思路[N].人民El报,1998—12—25(10).

(5)国际、国家标准:

[序号].标准编号,标准名称[s].

[9]GB/T 16159—1996,汉语拼音正词法基本规则[s].

(6)专利:

[序号]专利所有者.专利题名[P].专利国别:专利号,出版日期.

[10]姜锡洲.一种温热外敷药制备方案[P].中国专利:881056073,1989—07—26.

(7)电子文献:

[序号]主要责任者.电子文献题名[电子文献及载体类型标识].(发表或 更新日期)[引用日期].电子文献的出处或可获得地址.

[11]王明亮.关于中国学术期刊标准化数据库系统工程的进展[EB/OL].(1998—08— 16)[1998—10—04].http:Hwww.cajcd.edu.cn/pub/wml.txt/980810—2.html.

[12]万锦坤.中国大学学报论文文摘(1983--1993).英文版[DB/CD].北京:中国 大百科全书出版社,1996.

(8)各种未定义类型的文献:

[序号]主要责任者.文献题名[z].出版地:出版者,出 版年.

随着我国国民经济的不断发展,企业之间的交易活动更加频繁、同地区、不同地区、甚至跨国的交易活动也不断发生,交通运输则成为交易的活动重点了。 交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已 经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在交通运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。

运筹学学报模板

. Tang and maximum entropy algorithm for convexprogramming,Chinese Science Bulletin,40:5(1995),. Tang and maximum entropy method for linearprogramming,Chinese J. Num. Math. Appli.,17:3(1995),54-65.(唐焕文,张立卫,线性规划的极大熵方法,计算数学,2 (1995),160-172.)3.唐焕文,王云诚,张立卫,求解一般约束极大极小问题的一个有效的近似算法,经济数学,12:1,.王云诚,张立卫,唐焕文,求解一般约束凸规划的极大熵方法,大连理工大学学报,35:6(1995),. Tang and ,Maximum entropy methods for constrainedoptimization and minimax problems,Systems Sci. Math. Sci.,9:1(1996),.王云诚,唐焕文,张立卫,求解一半无限极大极小问题的一个极大熵方法,经济数学,13:2(1996),.唐焕文,王雪华,张立卫,求解极大极小问题的极大熵方法的收敛性,运筹学杂志,14:1(1996),. Zhang,On the ABS algorithm with singular matrix and itsapplications to linear programming,Optimization Methods andSoftware,8(1997),. Xia and . Zhang,A simplified trust region methodwith projection and convergence,(1997),. . Zhang and . Tang,A maximum entropy algorithm withparameters for solving minimax problem,Archives of ControlSciences,XLⅡ:6(1997),. E. Spedicato,. Xia and . Zhang,The implicit LX method ofthe ABS class,Optimization Methods and Software,8(1997),. . Chen and factorization algorithms in thesimplex method,J. Applied Basic and Engineering Sciences,5:4(1997),. E. Spedicato,. Xia,. Zhang and K. Mirnia,ABS algorithmsfor linear equations and applications to optimization,in & E. Spedicato (eds.),Algorithms for Large Scale LinearAlgebraic Systems,Series C: Mathematical and PhysicalSciences -508,1998, Kluwer Academic Publishers,. . Zhang and . Tang,A further study on a penalty function ofBertsekas,in: Yuan Ya-Xiang ed.,Advances in Nonlinear Programming,Kluwer Academic Publishers,1998,. 张立卫,唐焕文,A theorem on the differential of the K-Sfunction,经济数学,15:1/2(1998),. 张立卫,Condition on parameter $\beta_k$ in a convergent conjugategradient method,运筹学学报,3:2 (1999),. modified version to the differential system ofEvtushenko and Zhadan for solving nonlinear programming,in:Yuan Ya-Xiang ed.,Numerical Linear Algebra and Optimization,Science Press,Beijing,New York,1999,161-- 168 .18. 郭崇惠,唐焕文,张立卫,Global convergence for a class of conjugategradient methods,运筹学学报,3:2(1999),. . He and of a dual algorithm for minimaxproblems,Archives of Control Sciences,10(XLⅥ)(2000),. 张立卫,李勤,张鑫,Two differential systems for solving nonlinearprogramming problems,运筹学学报,4:4(2000),. and . He,The convergence of a dual algorithm fornonlinear programming,Korean J. Comput. & . 7:3(2000),. E. Spedicato, and . Zhang,ABS algorithms for linearequations and optimization,J. Computational and AppliedMathematics,124(2000),. 王明征,张立卫,夏尊铨,Dennis-Wolkowicz最小改变割算法的超线性收敛性,大连理工大学学报,11(2000),645—. 夏尊铨,张士霞,张立卫,复ABS方法. 大连理工大学学报,11(2000),. . Zhang and . Xia,Newton-type methods forquasidifferentiable equations,Journal of Optimization Theory andApplications,108:2 (2001),. and . Xia,Approximations to convex-valuedmultifunctions. in: Demayano V. and Rubinov A. eds.,Quasidifferentiability and Related Topics,Kluwer AcademicPublishers,. Y. Gao,. Xia and quasidifferential for aquasidifferentiable function in two-dimensional space,Journal ofConvex Analysis,8:2(2001),. 贺素香,张立卫,A class of constructive dual algorithms forsolving nonlinear programming problems,运筹学学报,5:3(2001),. 贺素香,张立卫,求解约束优化问题的对偶算法,计算数学,23:3(2001),. . Zhang,Computing inertias of KKT matrix and reduced Hessianvia the ABS algorithm,Ricerca Operativa,Vol. 31,(2001),. . Zhang,. Liu and . Xia,Application of the ABS methodto systems of linear matrix integer equations,Ricerca Operativa,Vol. 31, (2001),. . Xia and . Zhang,ABS algorithms for solving linearlyconstrained optimization problems via the active set strategy,Ricerca Operativa,Vol. 31,(2001),. 张立卫,张鑫,求解拟可微方程组的非精确牛顿法,经济数学,18:1(2001),. . Q. Xia,Y. Gao and . Wang,Star-kernels andstar-differentials in quasidifferentiable analysis,Journal ofConvex Analysis,9:1(2002),. J. Sun and thelog-exponential trajectory of linearprogramming. Journal of Global Optimization,25:1 (2003),. 张宏伟,张立卫夏尊铨,Calculus ofgeneralized quasi-differentiablefunctions I: some results on the space of pairs of convex-setcollections,东北数学,19:1(2003),. . Xia,. Wang and derivative of aclass of set-valued mappings and its applications,Journal ofConvex Analysis,10:1(2003),. and a second order parallelvariable transformation approach,Journal of Applied Mathematicsand Computing,11:1-2,. and PVT-type algorithm forminimizing a nonsmooth convex function,Serdica Math. J. 29(2003),. and . Liu,Convergence analysis of a nonlinearLagrange algorithm for nonlinear programming withinequality constraints,Journal of Applied Mathematics & Computing,13:1-2(2003):. . Zhang and . Hsu,A scheduling model for AGVs at thecontainer terminal,2002 Japan-USA Symposium of FlexibleAutomation,Hiroshima,Japan,July 14-19,. . Ye,. Hsu and . Huang,Two equivalentinteger programming models for dispatching vehicles at a containerterminal,Proceedings International Conference on PORT andMaritime R&D and Technology,10-12 September,Singapore,2003,. 王明征,夏尊铨,张立卫,参数凸二次规划的线性稳定性,7:1运筹学学报(2003),. 贺素香,张立卫,李兴斯,不等式约束优化问题的一个势函数,33:3数学进展(2004),. 宋秋生,张立卫,无约束拟可微优化问题信赖域方法的全局收敛性,应用数学学报,27:1(2004),. . Lin,L. W. Zhang and . Pang,Two projection-typealgorithms for solving pseudo-monotone variational inequalityproblems,OR Transactions,9:1 (2005),. . Yu and . Zhang,The augmented Lagrangian method for thepacking of unequal circles within a strip,International Journalof Pure and Applied Mathematics,18:4(2005),. L. W. Zhang,R. Ye,. Huang and W. J. Hsu,Mixed IntegerProgramming Models for Dispatchingvehicles ataContainerTerminal,Journal of Applied Mathematics & Computing,17:1-2(2005),. J. Sun,. Zhang and Y. Wu,Properties of the augmentedLagrangian in nonlinear semidefinite optimization,accepted . . Zhou and . Zhang,A differential equation approach tofinding a Kuhn-Tucker point of a nonlinear programming problem,大连理工大学学报,2005,. . Xia,. Song and . Zhang,On Fritz John and KKTnecessary conditions of constrained quasidifferentiableoptimization,International Journal of Pure and AppliedMathematics,Vol. 23 No. 3,2005,. . Zhou,. Zhang and . He,A differential equation approachto solving nonlinear complementarity problems,OR Transactions,Vol. 9 . 张宏伟,张立卫,夏尊铨,宋春玲 不等式约束的广义拟可微优化问题最优性条件,大连理工大学学报,46卷2期,2006,.贺素香,张立卫,非线性约束优化问题的一个修正Lagrangian算法,数学物理学报,26卷1期,2006,. . Yu and . Zhang,An optimization model for the two-dimensional packing problem and its augmented Lagrangian method,International Journal of Pure and Applied Mathematics,Vol. .刘勇进,张立卫,二阶锥互补问题的一类效益函数与全局误差界,大连理工大学学报, (2006),. . Liu, and . Wang,Some properties of a class ofmerit functions for symmetric cone complementarity problems,Asia-Pacific Journal of Operational Research,(2006),58. . Liu,. Zhang and . Wang,Analysis of a smoothing methodfor symmetric conic linear programming,Journal of Appliedmathematics & Computing,22:1-2(2006),. . Liu, Analysis of the AugmentedLagrangian Method for Nonlinear Second-Order Cone OptimizationProblems,to appear in Nonlinear . Jin and L. W. Zhang, Two differential equation systemsforinequality constrained optimization,to appear in AppliedMathematics and . 金丽,张立卫,肖现涛,一个求解约束非线性优化问题的微分方程方法,计算数学接收.62.金丽,张立卫,肖现涛,求解约束优化问题的两个微分方程算法,运筹学学报接收.63. L. Jin,Liwei Zhang,Adifferential system for nonlinearprogramming problems,The 6th World Congress on IntelligentControl and Automation,Dalian,China,June 2006,12⑵:. L. Jin,L. W. Zhang and X. T. Xiao. Stabledifferential equationmethods in inequality constrained optimization,to appear inInternational Journal of Pure and Applied . Y. Li,L. Jin,L. W. Zhang,A novel neural network for linearcomplementarity problems,to appear inJournal of MathematicalResearch and . 于洪霞,张立卫,二维装箱问题的非线性规划模型和算法,大连理工大学学报接收.67. 任咏红,张立卫,基于一类非线性 Lagrange函数的对偶问题,大连理工大学学报接收.68. L. W. Zhang and . Ren,A Nonlinear Lagrangian Based on Fischer-Burmeister NCP Function,to appear in Applied Mathematics . . Sun, rate of convergence ofthe augmentedLagrangian method fornonlinear semidefiniteprogramming,to appear in Mathematical and L. W. Zhang, Two differential equation systemsforequality constrained optimization,to appear in AppliedMathematics and . . Liu,. Zhang,On the convergence of the augmentedLagrangian method for nonlinear optimization problems over second-order cones,to appear in Journal of Optimization Theory . Liu,. Zhang,Extension of smoothing functions tosymmetric cone complementarity problems,高校应用数学学报接受.73. . Liu,. Zhang and . Liu,Convergence analysis of anonlinear Lagrange algorithmfor nonconvex semidefiniteprogramming,to appear in OR Transactions.

我国数学类的核心刊物主要有:

1、数学学报。

2、数学研究与评论。

3、数学年刊。

4、应用数学学报。

5、计算数学。

6、数学进展。

7、数学杂志。

8、系统科学与数学。

9、应用数学。

10、应用概率统计。

11、高等学校计算数学学报。

12、高校应用数学学报。

13、系统工程理论与实践。

14、数学的实践与认识。

15、数学物理学报。

16、数理统计与应用概率。

17、运筹学学报。

18、工程数学学报。

19、系统工程。

数学期刊数学专业刊物。

它是传播、交流数学科学学术思想,并及时反映数学科学研究成果的有力工具。它的出现是数学科学事业发展的需要,反过来又有力地促进了数学事业的发展。

理论数学、应用数学进展都是rccse的核心刊

核心期刊有:国内七大核心期刊体系,1、北京大学图书馆“中文核心期刊”;2、南京大学“中文社会科学引文索引(CSSCI)来源期刊”;3、中国科学技术信息研究所“中国科技论文统计源期刊”(又称“中国科技核心期刊”);4、中国社会科学院文献信息中心“中国人文社会科学核心期刊”;5、中国科学院文献情报中心“中国科学引文数据库(CSCD)来源期刊”;6、中国人文社会科学学报学会“中国人文社科学报核心期刊”;7、万方数据股份有限公司的“中国核心期刊遴选数据库”。

历史如何运用数学模型研究论文

数学建模的论文一般可以分为以下几个部分:

1. 引言

在引言中,需要简单介绍研究的背景、目的和意义,可以阐述研究问题的重要性和现实应用,引出论文的研究内容。

2. 问题描述

在问题描述中,需要准确明确研究的问题,并对问题进行详细的描述。需要注意的是,问题描述需要清晰明了,表述精准,可以用图表等方式辅助描述,以便读者更好地理解问题。

3. 模型建立

在模型建立中,需要提出适合于解决研究问题的模型,并对模型进行详细的介绍和推导。需要注意的是,模型建立需要符合实际情况,并且需要考虑到模型的可行性和实际操作性。

4. 模型求解

在模型求解中,需要对建立的模型进行求解,并对求解结果进行分析和讨论。需要注意的是,模型求解需要使用合适的数学方法和工具,并且需要对求解过程进行详细的记录和说明。

5. 结果分析

在结果分析中,需要对求解结果进行详细的分析和讨论,包括结果的准确性、合理性和实际意义等方面。需要注意的是,结果分析需要与研究问题密切相关,并且需要结合实际情况进行分析。

6. 结论和展望

在结论和展望中,需要对研究结果进行总结,并对未来研究方向进行展望。需要注意的是,结论和展望需要简明扼要,表述清晰,具有实际意义和指导意义。

7. 参考文献

在参考文献中,需要列出论文中引用的所有文献,包括已发表的文献和未发表的文献。需要注意的是,参考文献需要符合学术规范,并且需要详细记录文献的相关信息。

数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。

数学建模论文写作方法

随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,分享数学建模论文写作方法技巧,快来看看吧!

一、问题重述

主要是对需要解决的问题用自己的语言对问题的重要特征或者重点进行描述,言简而意赅,这个就看你自己的文笔功底了。

二、 模型假设

对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。

三、符号说明

将你要建立的模型中的一些参量用符号代替表示。点状符号:以符号个体表达一定意义对象整体;线状符号:一般采用颜色、纹理、空间布局来表达一定的意义;面妆符号:用来表达呈面状分布于一定范围的现象。

四、模型建立

这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法

五、问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)

利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。

六、模型改进

解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。

七、参考文献

最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。

如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。

不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 以前在论文发表向导网看到一个编辑介绍数学建模论文写作的具体方法和步奏,感觉很不错,摘录下来与大家一起分享。

(一)摘要

摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。摘要又称概要,内容提要。摘要是以提供文献内容梗概为目的,不加评论 和补充解释,简明、确切地记述文献重要内容的短文。其基本要素包括研究目的、方法、结果和结论。具体地讲就是研究工作的主要对象和范围,采用的手段和方 法,得出的结果和重要的结论,有时也包括具有情报价值的其它重要的信息。摘要应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能 获得必要的信息。对一篇完整的论文都要求写随文摘要,摘要的主要功能有以下几点。

1、让读者尽快了解论文的主要内容,以补充题名的不足。现代科技文献信息浩如烟海,读者检索到论文题名后是否会阅读全文,主要就是通过阅读摘要来判断,所以,摘要担负着吸引读者和将文章的主要内容介绍给读者的任务。

2、为科技情报文献检索数据库的建设和维护提供方便。论文发表后,文摘杂志或各种数据库对摘要可以不作修改或稍作修改而直接利用,从而避免他人编写摘要可能产生的误解、欠缺甚至错误。

(二)问题提出和假设的合理性

模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,我们应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本 质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分 内容时要注意以下几方面:

1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。

2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。

3、假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类推得到。对于后者我们应指出参考文献的相关内容。

(三)模型的建立

在作出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形 式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程。上下文之间我们切忌逻辑推理过程中跃度过大,影响论文的 说服力,需要推理和论证的地方,应该有推导的'过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出 现时加以说明。总之,我们要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。

(四)模型的计算与分析

把实际问题归结为一定的数学问题后,我们就要求解或进行分析。在数值求解时,我们应对计算方法有所说明,并给出所使用软件的名称或者给出计算 程序(通常以附录形式给出)。我们还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,我们可以用由分析方法得到一些对实 践有所帮助的结论。

有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时我们应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。

在模型建立和分析的过程中,带有普遍意义的结论我们可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,我们可以用助记的形式列出。对于定理和命题,我们必须写清结论成立的条件。

(五)模型的讨论

对所作的数学模型,我们可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化,或可以根据实际情况,改变文章一开始所作的某些假 设,指出由此数学模型的变化。我们还可以用不同的数值方法进行计算,并比较所得的结果。有时我们不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。

通常,我们应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。

相关百科

热门百科

首页
发表服务