首页

> 学术期刊知识库

首页 学术期刊知识库 问题

活性剂在生活中的应用论文

发布时间:

活性剂在生活中的应用论文

表 面 活 性 剂 在 农 药 中 的 应 用 研 究 进 展 摘要 : 介绍了表面活性剂在农药领域的应用研究进展。表面活性剂通过界面膜发生作用, 改善农药加工和使 用性能。表面活性剂可以在各种类型的界面上发生吸附, 改变界面状态 , 从而实现或改善界面物理化学特性 , 增强产品的功能。在农药加工过程中, 表面活性剂吸附于农药微粒表面形成不同的分散体系, 起到乳化 、 润 湿 、 增溶 、 消泡 、 起泡 、 稳定等作用 ; 在农药使用过程 中, 表面活性剂可以改善药液在植物叶面或防治象 表面上的分布、 附着、 渗透等, 提高农药剂量的有效转移, 直接或间接地提高农药的有效利用率。随着胶体 化学、 界面化学理论的引入 , 农药制剂加工的理论和农药应用技术理论的研究也在不断深入和完善, 表面活 性剂的开发研究也会随着农药加工和使用的要求得到进一步发展。 近年来, 我国每年使用农药1 0 0 万吨( 制剂) 左右, 防治 面积达3 亿公顷次以上, 植物保护工作为农业丰收做出了 巨大贡献, 起到了保驾护航的作用 。但由于对农药使用 技术理论和技术措施的研究严重不足, 忽视对靶标生物行 为研究以及普遍采用大容量、 大雾滴喷雾技术等原因, 我 国农药有效利用率很低, 由施药器械喷撒出去的农药只有 2 0 %- 3 0 %~沉积在作物叶片上, 远低于发达国家5 0 %的平 均水平 , 农药使用中的低效率, 不仅浪费大量农药, 还 使大量农药流失到非靶标环境中, 造成人畜中毒、 环境污 染、 农产品农药残留量增加 。 。 农药使用的低效率还与农药加工技术研究不足有很大 关系。我国已经成为农药生产大国, 但国内制剂、 剂型 的研究和产品质量与国外相比仍有很大差距, 主要表现为 分散性能差 、 悬浮率低 、 热贮分解率高等方面, 一些剂型 因湿润性、 渗透性和叶面沉积性差等原因造成药效不稳 定, 相当一部分品种在耐雨水冲刷和黏着性等方面明显差 于国外同类型产品, 如国产农药水悬浮剂普遍存在析水、 稠化、 沉积、 结块等贮存物理稳定性等问题 。出现这种 现象的主要原因除与我国农药用表面活性剂的品种数量和 质量与发达国家相比差距大外, 还与我们对表面活性剂与 农药作用机理研究不足等有关。 如何提高农药的有效利用率, 降低农药在非靶标环境 中的投放量 , 已成为农药学科亟待解决的问题。 1 表面活性剂在农药加工中的应用 表面活性剂是指那些具有很强表面活性、 能使液体的 药新剂型及其稳定性研究。表面张力显著下降的物质。此外表面活性剂还应具有增 溶、 乳化 、 润湿 、 消泡和起泡等应用性质。 表面活性剂 的分子结构特点是具有不对称性。整个分子可分为两部 分, 一部分是亲油的非极性基团, 叫作疏水基或亲油基 ; 另一部分是极性基团或亲水基。两部分分处两端, 形成 不对称结构。因此表面活性剂分子为两亲分子。据分子 组成特点和极性基团的解离性质, 将表面活性剂分为离子 表面活性剂和非离子表面活性剂。根据离子表面活性剂 所带电荷, 又可分为阳离子表面活性剂、 阴离子表面活性 剂和两性离子表面活性剂。农药中常用的表面活性剂是 阴离子表面活性剂与非离子表面活性剂n 。 表面活性剂的亲水亲油平衡值( h y d r o p h i l i c — l i p o p h i l i c b a l a n c e, HLB) 是表示表面活性剂亲水亲油性质的值 , 是 选择表面活性剂的重要参数, 一般而言, HL B值高的表面 活性剂其亲水性强, 在水溶液中的溶解度高, 有利于叶片 表面保持较长时间的湿润; HL B值低的表面活性剂其亲油 性较好, 有利于药液在叶面蜡质层的铺展, 提高药液的渗 透性。根据HL B值, 选择合适的表面活性剂能够提高叶面 对农药的吸收。每一表面活性剂都有一HL B值, 农药有效 成分被乳化也有一最佳HL B值, 只有被选择的表面活性剂 HL B值与被乳化组分的HLB值相当, 才能乳化良好。但 HL B值也存在不能预测表面活性剂的用量、 制剂的稳定程 度以及不能同时兼顾分散相和分散介质的组成等缺陷。 表面活性剂是通过界面膜发生作用的。表面活性剂可 以在各种类型的界面上发生吸附, 改变界面状态, 从而实 现或改善许多化学过程 , 增强产品的功能。 表面活性剂在水中溶解时, 当水中表面活性剂的质量 浓度很低时, 表面活性剂分子在水一 空气界面产生定向排 列 , 亲水基团朝向水而亲油基团朝向空气。当溶液较稀 时, 表面活性剂几乎完全集中在表面形成单分子层, 溶液 表面层的表面活性剂质量浓度大大高于溶液中的质量浓 度, 并将溶液的表面张力降低到纯水表面张力以下。表 面活性剂在溶液表面层聚集的现象称为正吸附。正吸附 改变了溶液表面的性质 , 最外层呈现出碳氢链性质, 从 而表现出较低的表面张力, 随之产生较好的润湿性、 乳化 性 、 起泡性等。如果表面活性剂质量浓度越低 , 而降低 表面张力越显著 , 则其表面活性越强 , 越容易形成正吸 附。因此表面活性剂的表面活性大小, 对于其在农药中 的实际应用有着重要的意义。 表面活性剂溶液与固体接触时, 表面活性剂分子可能 在固体表面发生吸附, 使固体表面性质发生改变。极性 固体物质对离子表面活性剂的吸附在低质量浓度下的吸附 曲线为s形, 形成单分子层, 离子表面活性剂分子的疏水 链向外。在离子表面活性剂溶液质量浓度达临界胶束浓 度时, 单层吸附达到饱和, 并开始双层吸附, 此时离子表 面活性剂分子的排列方向与第一层相反, 亲水基团向外。 提高溶液温度, 吸附量将随之减少。对于非极性固体 , 一般只发生单分子层吸附, 疏水基吸附在固体表面而亲水 基向外 , 当离子表面活性剂质量浓度增加时, 吸附量并不 随之增加甚至有减少的趋势, 认为这是因为胶束的形成使 表面活性剂的有效质量浓度相对减少的缘故。固体表面 对非离子表面活性剂的吸附与前面相似, 但其吸附量随温 度升高而增大, 且可以从单分子层吸附向多分子层吸附转 变n 。 。研究表面、 潘I 生剂的吸附性对农药加工及应用技术 有重要意义。 在农药加工过程中, 农药分散体系的稳定性是农药加 工过程中非常重要的指标, 表面活性剂吸附于农药微粒表 面形成不同的分散体系, 农药剂型主要包括液/ 液、 固/ 固、 固/ 液和气/ 气4 种分散体系, 分散相的颗粒与分散介质的 表面张力越接近0, 分散体系越稳定。微乳剂能形成稳定 的分散体系, 其原因在于分散相的颗粒与分散介质的表面 张力非常的低, 一般只有1 0 ~ ~ 1 0 ~mN/ m。分散相的农药 微粒之间存在排斥力和吸引力 , 当斥力大于引力 , 农药分 散体系就稳定, 当引力大于斥力, 农药分散体系就聚沉 , 表面活性剂与农药微粒表面吸附形成的分散体系的稳定 性, 可以用如下理论解释 : 一是双电层理论, 农药微粒吸 附离子型表面活性剂形成的双电层之间存在着静电相互 作用, 使相同农药微粒之间产生斥力 ; 二是空间稳定理 论, 农药微粒表面上吸附的大分子表面活性剂形成一定 厚度的分子膜保护层, 从空间上阻碍了微粒相互接近, 进而阻碍它们的聚结; 三是空缺稳定理论 , 在微粒界面 间的空间存在着 自由高分子, 也就是农药微粒表面对表 面活性剂没有吸附作用, 微粒相互靠近时, 具有一定扩 散能力的高分子表面活性剂从微粒间的间隙中被挤走, 致使在两个微粒间隙区域内只有溶剂分子而没有高分 子, 称为空缺作用( d e p l e t i o n ) , 在微粒之间存在斥力势 能 , 称此为空缺稳定 。 在可湿性粉剂加工过程中, 表面活性剂可吸附于加工 过程中形成的粒子表面, 防止粒子再聚集 , 也有助于粒子 粉碎加工。 然而 , 因为含微细粒子的分散体是不稳定 的, 所以药剂的粒子具有强烈絮凝的倾 向。絮凝是由相 互接近的粒子间的范德华力所致。为了抵消范德华力需 要一种斥力, 斥力就是通过在配方中加人表面活性剂来提 供, 有静电斥力和空间斥力两种类型的斥力起作用, 这取 决于表面活性剂的离子特性。表面活性剂可用于增进可 湿性粉剂粒子在水中的分散 、 悬浮, 也防止可湿性粉剂悬 浮液在被应用之前发生絮凝。 在乳油加工过程中, 表面活性剂是农药乳油的主要辅 助成分。表面活性剂影响着农药乳油的分散、 乳化、 湿 润、 渗透等性能。进而影响药效的发挥。农药用表面活性 剂多数为聚合物, 分子质量大, 分子链较长, 有的主分子 链上还带有分支, 成梳状结构, 具有易形成空间网状骨架 的可能性。当乳油体系中存在游离的胶体微粒时, 表面活 性剂分子吸附于胶体微粒表面, 使胶体微粒不易沉淀。表 面活性剂带有的电荷能改变环境的电动电位, 使体系更趋 稳定。乳油被水稀释, 产生水包油型乳状液。表面活性剂 防止乳状液分层沉积或絮凝, 从而保持所形成的乳状液呈 稳定 状 态 。 在悬浮剂加工过程中, 表面活性剂作为基本组分起着 重要的作用, 它吸附在原药预混物粒子的表面, 将有效成 分 的粒子表面润湿, 排出粒子间的空气。 在研磨过程 中, 表面活性剂有助于再润湿和分散重新形成更小的粒 子, 起助研磨剂作用。表面活性剂还有助于制剂的稳定 性。通过表面活性剂在粒子上的吸附, 可减少粒子的界 面能, 从而减少粒子聚结合并; 表面活性剂能够在粒子周 围形成扩散双电层。产生电动电势, 从而阻碍粒子之间 的聚结合并; 表面活性剂也可通过吸附在粒子界面上形成 一个致密的保护层, 通过“ 位阻” 作用迫使粒子分开 , 防 止沉淀的生成 , 从而增加悬浮剂的稳定性” 。 农药微乳剂的加工就是借助复合表面活性剂体系的增 溶作用, 将液体或固体农药溶于有机溶剂中形成的溶液均 匀分散在水中形成的光学透明或半透明的分散体系” 。 。 黄放良等发现农. ~ L 4 o o 与农. ~ L s o o ( 体积I : L 2 : 1 ) 混合物可以 使微乳剂中的高效氯氰菊酯微乳剂增溶 ” 。 表面游} 生 剂的 加入可以减少药物分子与水分子的接触, 对药物起到保护 作用, 如当表面活性剂质量浓度达到临界胶束浓度( c mc ) 后 , 胶束结构紧密 , 农药的水解被抑制 。 此外在农药加工后的储存过程中, 表面活性剂还能 抑制药物的氧化速度。药物的氧化性也是常见的性质之 一, 主要发生在醛类 、 醇类 、 酚类 、 肼类等含有易氧化 基团的药物中。链霉素氧化后成为无效的链霉素酸, P E G类表面活性剂对链霉素有稳定作用, 室温下存放 1 . 5 年 仅失效l 5 % 。 在其他农药剂型加工中, 表面活性剂的作用基本包括 在上述4 种剂型当中, 这里不再赘述。 2表面活性剂在农药使用中对其有效利用率的影响 农药喷雾后 , 雾滴沉积在植物叶片的表面上, 会发生 雾滴扩散和水分蒸发的动力学过程, 造成有效成分的质量 浓度逐渐升高, 或沉积在叶片表面, 或被叶片吸收, 所有 这些除与农药有效成分的化学性质有关外, 还与植物叶片 的结构、 表面活性剂的结构与性质有关。 2 . 1植物叶片结构的特征与农药沉积分布的关系 高等植物的叶片一般由表皮 、 叶肉、 叶脉3部分组 成 , 叶面即指叶片表皮的外侧, 覆有蜡质层和角质层。 作物叶片最外层的蜡质层 由脂肪酸、 酯类 、 酮, 、 醇 、 类 萜、 醛等有机物组成 , 具有防止水分损失、 物理伤害 、 病 菌侵入、 抗寒以及减少太阳辐射造成的伤害等多种作用。 表皮的蜡层主要以两种形式存在, 一种是晶状, 一种是不 规则状, 前者主要存在于禾本科植物, 后者主要存在于阔 叶作物, 晶状的蜡层对农药在叶面的展布是不利的, 位于 蜡质层以内的角质层, 其组成成分较为复杂, 不同植物叶 片的角质层化学成分、 结构、 形态等有很大差异。角质 层的外层几乎完全由疏水的角质组成, 内层由含有一定数 量角质的纤维素和果胶混合物组成。植物角质层是药液 叶面沉积与吸收的重要屏障, 农药在角质层的滞留、 渗透 及组织吸收效率直接影响化合物的活性和选择性。 同 时, 叶片表面的毛刺、 附着物更是形态繁多, 许多植物的 叶片表面还有多种能分泌特殊液体的腺体, 这些叶面附着 物对农药喷洒物的沉积和黏附行为有很重要的影响 。 当药液的雾滴沉降到植物叶片表面上时, 不论是粗大 的雾滴还是微小的雾滴 , 可能出现的情况有3 种: 微小的 雾滴可能落入叶片毛刺或其他毛刺物之间, 这种情况最有 利于雾滴与药液牢固地被叶片表面持留; 雾滴被夹持在毛 刺物之间, 这种情况也有利于雾滴或药液比较稳定的被叶 片表面持留, 但也可能受到振动而脱落 ; 雾滴 比较粗大 时, 如果雾滴没有被弹落, 也只能被架空在毛刺物之上 , 处于极不稳定的状态。在后两种情况下, 若药液有较强 的湿润展布能力, 就有可能借助于药液的湿润展布作用而 扩散到毛刺之间而得以比较稳定地被叶面持留, 但是粗大 的雾滴却仍将由于容易发生流失现象而从叶面表面脱落, 只有细雾滴在任何情况下都能够被叶面有效地持留” 。 2 . 2表面活性剂对植物叶面结构的影响 表面活性剂具有乳化、 分散、 润湿和渗透等作用 , 在 农药的施用中广泛地被用作添加剂。表面活性剂可以改 善药液在植物叶面的物理及化学特性 , 增加叶片对有效成 分的吸收, 使药液得到更有效的利用。表面活性剂在植 物叶面上吸附后, 会与气孔和蜡质层发生一定的相互作 用。表面活性剂也能引起气孔的运动。 Pa n等 。 用 Twe e n 一 8 0 的水溶液处理玉米叶片后, 发现叶片的蜡质有 溶解现象 , 并且使叶子的蒸腾作用扩大了1 ~3 倍 ; 在油 菜、 蚕豆等植物叶面喷洒OP 一1 0 或NP一 1 0 的溶液后, 由于 表面活性剂与膜和蛋白质的相互作用引起了叶片枯斑和组 织损伤, 甚至增加了乙烯的释放量, 引起对植物的药害。 叶小利等 系统地研究了烷基聚氧乙烯基醚( P P J ) 和蔗 糖脂肪酸脂( S F E) 对大豆叶片气孔 、 蜡质层、 乙烯释放量 等的影响, 结果表明: 随着表面活性剂质量浓度的增加, 气孔逐渐打开, 质量浓度继续增加, 气孔的孔径达到最大 后逐渐关闭, 蜡质层的溶解程度随表面活性剂质量浓度的 增加而逐渐增加 ; 低质量浓度时, 乙烯的释放量几乎不受 影响, 但表面活性剂的质量浓度进一步增加时, 乙烯的释 放量增加。表面活性剂在不同程度上调节大豆叶片气孔 开闭、 蜡质层的溶解和乙烯的释放量。

表面活性剂的应用1.增溶:C>CMC(HLB13~18)增溶体系为热力学平衡体系CMC越低、缔合数越大,增溶量(MAC)就越高温度对增溶的影响:温度影响胶束的形成,影响增溶质的溶解,影响表面活性剂的溶解度Krafft点:离子型表面活性剂的溶解度随温度增加而急剧增大这一温度称为Krafft点,Krafft点越高,其临界胶束浓度越小昙点:对于聚氧乙烯型非离子表面活性剂,温度升高到一定程度时,溶解度急剧下降并析出,溶液出现混浊,这一现象称为起昙,此温度称为昙点。在聚氧乙烯链相同时,碳氢链越长,浊点越低;在碳氢链相同时,聚氧乙烯链越长则浊点越高。2.乳化剂:HLB:3-8W/O型乳化剂:Tween;一价皂HLB:8-16O/W型乳化剂:Span;二价皂3.润湿:(HLB:7-9)4.助悬5.起泡和消泡6.消毒、杀菌7.去垢剂在生产生活中的应用表面活性剂由于具有润湿或抗粘、乳化或破乳、起泡或消泡以及增溶、分散、洗涤、防腐、抗静电等一系列物理化学作用及相应的实际应用,成为一类灵活多样、用途广泛的精细化工产品。表面活性剂除了在日常生活中作为洗涤剂,其他应用几乎可以覆盖所有的精细化工领域。在造纸工业中可以用作蒸煮剂、废纸脱墨剂、施胶剂、树脂障碍控制剂、消泡剂、柔软剂、抗静电剂、阻垢剂、软化剂、除油剂、杀菌灭藻剂、缓蚀剂等。表面活性剂在医药行业也有广泛应用。在药剂中,一些挥发油脂溶性纤维素、甾体激素等许多难溶性药物利用表面活性剂的增溶作用可形成透明溶液及增加浓度;在医药行业中可作为杀菌剂和消毒剂使用,其杀菌和消毒作用归结于它们与细菌生物膜蛋白质的强烈相互作用使之变性或失去功能,这些消毒剂在水中都有比较大的溶解度,根据使用浓度,可用于手术前皮肤消毒、伤口或粘膜消毒、器械消毒和环境消毒;药剂制备过程中,它是不可缺少的乳化剂、润湿剂、助悬剂、起泡剂和消泡剂等。在农药行业,可湿性粉剂、乳油及浓乳剂都需要有一定量的表面活性剂,如可湿性粉剂中原药多为有机化合物,具有憎水性,只有在表面活性剂存在的条件下,降低水的表面张力,药粒才有可能被水所润湿,形成水悬液;而且在粒剂及供喷粉用的粉剂中,有的也含有一定量的表面活性剂,其目的是为了提高药剂在受药表面的附着性和沉积量,提高有效成分在有水分条件下的释放速度和扩展面积,提高防病、治病效果。在化妆品行业中,做为乳化剂是乳霜、乳液、洁面、卸妆等护肤产品中不可或缺的成分。

《表面活性剂》论文 表面活性剂的分类及应用 摘要: 表面活性剂的应用范围涵盖了人们生活和工作的各个方面,在20事迹90年代人们已经开始系统的研究表面活性剂。可以说没有表面活性剂就没有现在干净的我们,现在我们对表面活性剂的认识只是停留在表面没有更深入的研究,下面是对表面活性剂一些基础认识。 关键词: HLB值,分类,应用 一、 HLB 值 ----HLB值越大代表亲水性越强,HLB值越小代表亲油性越强,一般而言HLB值从1 ~ 40之间。亲水亲油转折点HLB为10。HLB小于10为亲油性,大于10为亲水性。 1~--3作消泡剂 3~--6作W/O型[乳化剂 司盘(脱水山梨醇脂肪酸酯)是w/o型乳化剂,具有很强的乳化、分散、润滑作用,可与各类表面活性剂混用,尤其适应与吐温-60, HLB值。 7~--9作润湿剂; 8~--18作O/W型乳化剂,也叫吐温型乳化剂, 为司盘(Span,山梨醇脂肪酸酯)和环氧乙烷的缩合物,为聚氧乙烯山梨醇脂肪酸酯的一类非离子型去污剂;常作为水包油(O/W)型, 药用: (1)可作某些药物的增溶剂。 (2)有溶血作用,以吐温-80作用最弱。 (3)水溶液加热后可产生混浊,冷后澄明,不影响质量。 (4)在溶液中可干扰抑菌剂的作用 13~-18作增溶剂。 二、分类及常用 : 1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂: 脂肪酸甘油酯, 脂肪酸山梨坦(司盘), 聚山梨酯(吐温) 阴离子表面活性剂: 1 、肥皂类 :碱金属皂:O/W ,碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2 、硫酸化物 :硫酸化蓖麻油,俗称土耳其红油。 十二烷基硫酸钠(SDS、月桂醇硫酸钠) 3 、磺酸化物 :二辛基琥珀酸磺酸钠(阿洛索-OT) 十二烷基苯磺酸钠 甘胆酸钠 阴离子表面活性剂 阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。 常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1 、卵磷脂 :是制备注射用乳剂及脂质微粒制剂的主要辅料 2 、氨基酸型和甜菜碱型 : 氨基酸型 甜菜碱型: 在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用; 在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1. 脂肪酸甘油酯 :单硬脂酸甘油酯;HLB为3~4主用作W/O型乳剂辅助乳化剂。 2.多元醇 蔗糖酯:HLB(5~13)O/W乳化剂、分散剂 脂肪酸山梨坦(Span) :W/O乳化剂 聚山梨酯(Tween) : O/W乳化剂 3. 聚氧乙烯型 :Myrij(卖泽类,长链脂肪酸酯);Brij (脂肪醇酯) 4. 聚氧乙烯 - 聚氧丙烯共聚物 : 能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂 应用 表面活性剂一般是低分子量分散剂。表面活性剂分子具有改性作用,特别是降低颜料和树脂溶液间表面张力。 表面活性剂结构上含有两种溶解性或极性相反的基团,使表面活性增加。在水性体系中,极性基团是一些亲水基,非极性的则是憎水基或亲油基。在非水性体系中,极性基团是憎油基,非极性的为亲油基。表面活性剂按其化学结构分类,特别是极性基团包括:阴离子、阳离子、电中性粒子和非离子。 聚合物分散剂作用下效力由以下因素确定: 颜料表面极性基团的吸附作用。锚固基团可以是氨基、羧酸、磺酸、磷酸及其盐。 介质中围绕在微粒周围的非极性链段的行为。分子的一些部分(脂肪族或脂肪族-芳香族片断)必须与粘接剂体系高度的相容。 类似表面活性剂的分散剂的稳定机理是静电稳定:围绕颜料粒子的极性基团形成了双层带电的结构。由于布朗运动,液体介质中颜料粒子时常碰撞在一起,因此在其减速进程中具有强烈的重絮凝趋势。 根据其化学结构(如:低的分子量)和静电稳定理论,表面活性剂有以下缺陷: ·水敏感性:表面活性剂通常使最终涂层产生水敏感性,不适于室外应用。 ·易产生泡沫:许多表面改性剂会产生泡沫,在涂层上产生缺陷(如鱼眼、凹坑)。如果泡沫在研磨进程出现,则导致生产能力的下降。 ·干扰涂层间的粘接。 经过多年发展,特殊的表面活性剂得到改进,使涂层缺陷最大程度地降低,并且某些还能使涂层具有一些别的优点,如消泡/抗腐蚀能力或使基材难以润湿。 用于颜料分散作用的最常用表面活性剂有如下品种: 脂肪酸衍生物,磷酸酯,聚丙烯酸钠/聚丙烯酸,乙炔二醇和大豆卵磷脂。表面活性剂发展方向 1.烷基磷羧酸盐(AEC)工业化制造 随着科技飞速发展和现代文盟的不断进步,人们对表面活性剂使用要求也越来越高,即温和、易生物降解和多功能性,强调使用安全、生态保护和提高效率。烷基醇醚羧酸盐(AEC)是8O年代以来,发达国家积极研究开发的优质表面活性剂热点品种,它与烷基多苷和醇醚磷酸单酯同被称为“表面活性剂90年代的绿色品种”。 烷基醚羧酸盐的生产。一般采用以脂肪醇或烷基酚为原料,经乙氧基化和羧甲基化,制备AEC和APEC。烷基醚羧酸盐在化学结构上与皂类似,在疏水基和亲水基之间,嵌入一定加成数环氧乙烷,从而使其兼有阴离子和非离子表面活性剂中许多优良性能,成为多功能性品种。它在金属加工用方面,效果比相应的醇(酚)醚表面活性剂更好,它具有: (1)对皮肤和眼的刺激性很小。 (2)清洗性能,受pH值和温度影响较小。 (3)对酸、碱、氯较为稳定。 (4)生物降解性能优异。 图1 表面活性剂结构示意图 烷基醚羧酸盐国内的应用市场还远远落后于发达国家,随着环保意识的不断加强和人民物质文化水平的不断提高,这类集温和、易生物降解和多功能性于一身的表面活性剂,在金属加工领域内,将发挥更大作用。 2.新一代表面活性剂Gemini 目前已经合成的低聚表面活性剂有二聚体、三聚体和四聚体等,其中最引人注目的是二聚体,结构示意图见图1,二聚表面活性剂最早被合成于1971年[4-5],后因其结构上的特点而被形象地命名为Gemini(英文是双子星之意)表面活性剂。 表面活性剂Gemini(或称dimeric)是由两个单链单头基普通表面活性剂在离子头基处通过化学键联接而成,因而阻抑了表面活性剂有序聚集过程中的头基分离力,极大地提高了表面活性。与当前为提高表面活性而进行的大量尝试,如添加盐类、提高温度或将阴离子表面活性剂与阴离子表面活性剂混合相比较,Gemini表面活性剂是概念上的突破,因而被誉为新一代的表面括性剂。 在Gemini表面活性剂中,两个离子头基是靠联接基团通过化学键而连接的,由此造成了两个表面活性剂单体离子相当紧密的连接,致使其碳氢链间更容易产生强相互作用,即加强了碳氢链问的疏水结合力,而且离子头基间的排斥倾向受制于化学键力而被大大削弱,这就是Gemlrd表面活性剂和单链单头基表面括性剂相比较,具有高表面括性的根本原因。另一方面。在两个离子头基问的化学键联接不破坏其亲水性,从而为高表面活性的C~mini表面活性剂的广泛应用提供了基础。通过化学键联接方法提高表面活性和以往通常应用的物理方法不同,在概念上是一个突破。 图2 炔醇类Gemini表面活性剂 Genfini表面活性剂的优良性质: 实验表明,在保持每个亲水基团联接的碳原子数相等条件下,与单烷烃链和单离子头基组成的普通表面活性剂相比,离子型Gemini表面活性剂具有如下特征性质: (1)更易吸附在气/液表面,从而更有效地降低水溶液表面张力。 (2)更易聚集生成胶团。 (3)Gemini降低水溶液表面张力的倾向远大于聚集生成胶团的倾向,降低水溶液表面张力的效率是相当突出的。 (4)具有很低的Krat~相转移点。 (5)对水溶液表面张力的降低能力和降低效率而言,Gemini和普通表面活性剂尤其是和非离子表面活性剂的复配能产生更大的协同效应。 (6)具有良好的钙皂分散性质。 (7)在很多场台,是优良的润湿剂。 从理论上讲,在极性头基区的化学键台阻抑了原先单链单头基表面活性荆彼此头基之间的分离力,因而必定增强碳链之间的结台。实验证明这是提高表面活性的一个重要突破,而且为实际应用开辟了新的途径 另一方面,由于键台产生的新分子几何形状的改变,带来了若干新形态的分子聚集体,这大大丰富了两亲分子自组织现象,通过揭示新分子结构和自组织行为间的联系有助于深刻认识两亲分子自组织机理。为此Gemini表面活性剂正在成为世界胶体和界面科学领域各主要小组的研究方向。 型嵌段高分子表面活性剂 涂料中颜填料的分散先后使用过聚磷酸盐、硅酸盐、碳酸盐等无机分散剂,传统小分子表面活性剂和聚羧酸盐、聚丙酸酸盐等高分子化合物。高分子化合物主要利用空间位阻使颜填料颗粒稳定,效果好于小分子表面活性剂的静电排斥作用。研究表明,在众多类型的高分子分散剂中,效果最好、效率最高的是AB型嵌段高分子表面活性剂。从分子结构上看,AB型嵌段高分子就是超大号的表面活性剂,A嵌段和B嵌段分别类似于表面活性剂的亲水头基和疏水尾链。AB嵌段高分子表面活性剂在颜填料表面采取尾型吸附形态,A嵌段是亲颜料的锚固基团,B嵌段是亲溶剂的溶剂化尾链。A嵌段可以是酸、胺、醇、酚等官能团,通过离子键、共价键、配位键、氢键及范德华力等相互作用吸附在颗粒表面,由于含有多个吸附点,可以有效地防止分散剂分子脱附,使吸附紧密且持久。B嵌段可以是聚醚、聚酯、聚烯烃、聚丙烯酸酯等基团,分别适用于极性和非极性溶剂。典型的AB嵌段型高分子表面活性剂结构如图3所示。稳定颗粒主要依靠B嵌段形成的吸附层产生的空间位阻作用,所以对作为溶剂化尾链的B嵌段的长度和均一性有极高的要求,希望可以形成厚度适中且均一的吸附层,如果B段过长,可能会起架桥作用,引起分散体系黏度增加,甚至絮凝沉淀。通常认为位阻层的厚度为20nm时,可以达到最好的稳定效果。 图3 AB嵌段型高分子表面活性剂 合成分子结构明确和相对分子质量可控的AB型嵌段高分子表面活性剂是涂料分散助剂的发展方向,这需要用到受控聚合技术。基团转移聚合(GTP)、原子转移游离基聚合(ATRP)、硝酰基聚合(NMP)和可逆加成分裂链段转移聚合(RAFT)是当今最常用的受控聚合技术,利用这些技术,选用合适的方法和设备可得到想要的聚合物结构,可以选择不同的单体,按设计的次序进行排列,最终合成特定结构、相对分子质量分布窄、近单分散的聚合物,如果采用常规的方法,即使花大量的时间、精力、材料也无法做到这样。目前仅有BYK、Ciba、Rhodia等少数几个公司拥有受控聚合技术。深圳海川公司正在开发的新型分散剂也是AB型嵌段高分子表面活性剂。

合成洗涤剂是表面活性剂消费最大的市场之一,产品包括洗衣粉、液体洗涤剂、餐具洗涤剂和各种家庭用清洗产品。它与污垢和在污垢与固体表面之间发生一系列的物理化学作用(如:润湿、渗透、乳化、增溶、分散、起泡等)并借助于机械搅拌获得洗涤效果。用量最多、最广泛的是阴离子和非离子表面活性剂,阳离子和两性表面活性剂只是在生产某些特殊类型和功能的洗涤剂时才使用。主要品种有LAS(指连烷基苯磺酸脂盐)、AES(脂肪醇聚氧乙烯醚硫酸盐)、MES(α - 磺酸脂肪酸脂盐)、AOS(α-烯基磺酸盐)、烷基聚氧乙烯醚、烷基酚聚氧乙烯醚、脂肪酰二乙醇胺、胺基酸型、甜菜碱型等。个人保护用品、化妆品等,毗咯烷酮羧酸钠(PCA)是化妆品天然保湿因子,有抗衰老、去皱的作用,因此PCA被广泛应用于高档化妆品中。作为乳化剂的表面活性剂,在化妆品的乳液应用上非常重要,主要集中在非离子表面活性剂和高分子乳化剂上。化妆品乳液包括双重乳液;W/O、O/W、液晶相,多重乳液;W/O/W、O/W/O、微乳液等。主要产品有洗面奶、润肤露、清洁乳等。

表面活性剂的应用论文

摘要:综述了生物表面活性剂的种类及其生产菌,介绍了目前常用的两种生产方法:微生物发酵法和酶法合成生物表面活性剂。总结了其在环境工程中的应用,如在废水处理中浮选去除重金属离子,在污染场地的生物修复中用于促进烷烃、多环芳烃(PAHs)的降解,修复受重金属污染的土壤等,并对今后的研究方向做了探讨。 关键词:生物表面活性剂 生物修复 重金属 多环芳烃 生物表面活性剂是微生物在一定条件下培养时,在代谢过程中分泌的具有表面活性的代谢产物。与化学合成表面活性剂相比,生物表面活性剂具有许多独特的属性,如:结构的多样性、生物可降解性、广泛的生物活性及对环境的温和性等[1]。由于化学合成表面活性剂受原材料、价格和产品性能等因素的影响,且在生产和使用过程中常会严重污染环境及危害人类健康。因此,随着人类环保和健康意识的增强,近二十多年来,对生物表面活性剂的研究日益增多,发展很快,国外已就多种生物表面活性剂及其生产工艺申请了专利[2],如乙酸钙不动杆菌生产的一种胞外生物乳化剂已经有了成品出售。国内对生物表面活性剂的研制和开发应用起步较晚,但近年来也给予了高度重视,其中研究最多的就是生物表面活性剂在提高石油采收率以及生物修复中的应用。 1 生物表面活性剂的种类及其生产菌 生物表面活性剂的种类 化学合成表面活性剂通常是根据它们的极性基团来分类,而生物表面活性剂则通过它们的生化性质和生产菌的不同来区分。一般可分为五种类型:糖脂、磷脂和脂肪酸、脂肽和脂蛋白、聚合物和特殊表面活性剂[1]。 生物表面活性剂的生产菌 大多数生物表面活性剂是细菌、酵母菌和真菌的代谢产物。这些生产菌大多是从油类污染的湖泊、土壤或海洋中筛选得到的。如Banat等[3]从油泥污染的土壤中分离得到两株生物表面活性剂的菌株:芽孢杆菌AB-2和Y12-B。表1列出了一些主要的生物表面活性剂的种类及其生产菌[2,4]。 表1 生物表面活性剂的种类及其生产菌生物表面活性剂 生产菌 海藻糖脂 石蜡节杆菌(Arthrobacter paraffineus) 棒状杆菌(Corynebacterium spp.) 红平红球菌(Rhodococus erythropolis) 鼠李糖脂 铜绿假单胞菌(Pseudomonas aeruginosa) 槐糖脂 解脂假丝酵母(Candida lipolytica) 球拟酵母(Torulopsis bombicola) 葡萄糖、果糖、蔗糖脂 棒状杆菌(Corynebacterium spp.) 红平红球菌(R.. erythropolis) 纤维二糖脂 玉蜀黍黑粉菌(Ustilago maydis) 脂多糖 乙酸钙不动杆菌(Acinetobacter calcoaceticus RAG1) 假单胞菌(Pseudomonas spp.) 脂肽 枯草芽孢杆菌(Bacillus subtilis) 地衣芽孢杆菌(Bacillus licheniformis) 荧光假单胞菌(Pseudomonas fluorescens) 鸟氨酸,赖氨酸,缩氨酸 氧化硫硫杆菌(Thiobacillus thiooxidans) 盐屋链霉菌(Streptomyces sioyaensia) 葡萄糖杆菌(Gluconobacter cerinus) 磷脂 氧化硫硫杆菌(T. thiooxidans) 脂肪酸 野兔棒状杆菌(Corynebacterium lepus) 石蜡节杆菌(Arthrobacter paraffineus) 2 生物表面活性剂的生产 目前,可以通过两种途径生产生物表面活性剂:微生物发酵法和酶法。 采用发酵法生产时,生物表面活性剂的种类、产量主要取决于生产菌的种类、生长阶段,碳基质的性质,培养基中N、P 和金属离子Mg2+、Fe2+的浓度以及培养条件(pH、温度、搅拌速度等)。 如Davis等[5]在成批培养枯草芽孢杆菌时发现,在溶解氧耗尽和限氮条件下可得最大浓度( mg/L)的莎梵婷。Kitamoto等[6]利用南极假丝酵母的休止细胞生产甘露糖赤藓糖醇脂,对培养条件进行优化后,最高产量可达140 g/L。发酵法生产生物表面活性剂的优点在于生产费用低、种类多样和工艺简便等,便于大规模工业化生产,但产物的分离纯化成本较高。 与微生物发酵法相比,酶法合成的表面活性剂分子多是一些结构相对简单的分子,但同样具有优良的表面活性。其优点在于产物的提取费用低、次级结构改良方便、容易提纯以及固定化酶可重复使用等,且酶法合成的表面活性剂可用于生产高附加值产品,如药品组分。尽管现阶段酶制剂成本较高,但通过基因工程技术增强酶的稳定性与活性,有望降低其生产成本。 3 生物表面活性剂的提取 发酵产物的提取(也称下游处理)费用大约占总生产费用的60%,这是生物表面活性剂产品商业化的一个主要障碍。生物表面活性剂的最佳提取方法随发酵操作及其物理化学性质的不同而不同。其中溶剂萃取是最常用的提取方法,如Kuyukina等[7]利用甲基-叔丁基醚萃取红球菌生产的生物表面活性剂,可以获得较高产率10 mg/L。超滤是用于提取生物表面活性剂的一种新方法。Lin等[8]用分子量截止值为30000 Da的超滤膜从发酵液中提取枯草芽孢杆菌产生的脂肽类生物表面活性剂莎梵婷,收率达95%。Mattei等设计了一套连续提取生物表面活性剂的装置,应用切面流过滤法能连续提取产物,产率高达3 g/L[1]。能与连续发酵生产配套的产物提取方法有泡沫分离、离子交换树脂法等。Davis等[9]用泡沫分离法连续提取枯草芽孢杆菌产生的莎梵婷,收率达。鼠李糖脂的提取过程是先离心过滤除去细胞,再通过吸附色谱将鼠李糖脂浓缩在安珀莱特XAD-2树脂上,后用离子交换色谱法提纯,最后将液体蒸发和冷冻干燥可得纯度为90%的成品,收率达60%[2]。 4 生物表面活性剂在环境工程中的应用 许多化学合成表面活性剂由于难降解、有毒及在生态系统中的积累等性质而破坏生态环境,相比之下,生物表面活性剂则由于易生物降解、对生态环境无毒等特性而更适合于环境工程中污染治理。如:在废水处理工艺中可作为浮选捕收剂与带电胶粒相吸以除去有毒金属离子,修复受有机物和重金属污染的场地等。 在废水处理工艺中的应用 用生物法处理废水时,重金属离子对活性污泥中的微生物菌群常会产生抑制或毒害作用,因此,在用生物法处理含重金属离子的废水时须进行预处理。当前,常用氢氧化物沉淀法除去废水中的重金属离子,但其沉淀效率受氢氧化物溶解度的限制,应用效果不甚理想;浮选法用于废水预处理时又常因所用浮选捕收剂在其后续处理过程中难降解(如化学合成表面活性剂十二烷基磺酸钠),易产生二次污染而受限制,因此,有必要开发易生物降解、对环境无毒害的替代品,而生物表面活性剂恰好具有这一优势。但是,国内外对这一方面的应用研究很少,直到最近才有报道。Zouboulis 等[10]研究了生物表面活性剂作为捕收剂除去广泛存在于工业废水中的两种有毒金属离子:Cr4+和Zn2+。结果表明,莎梵婷和地衣芽孢杆菌素在pH为4 时均能很好地从废水中分离吸附了Cr4+的αFeO(OH)或Cr4+与 FeCl3•6H2O形成的螯合物,极大地提高了Cr4+(50 mg/L)的去除率,几乎可达100%;在pH为6时,莎梵婷对螯合物中的Zn2+(50 mg/L)去除率高达96%,而在相同条件下,地衣芽孢杆菌素的处理效果不明显,去除率为50%左右。

表面活性剂概述: 1.概念: 表面活性剂(surfactant)是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。 2.组成:分子结构具有两亲性 非极性烃链: 8个碳原子以上烃链 极性基团:羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等。 3.吸附性: 溶液中的正吸附:增加润湿性、乳化性、起泡性 固体表面的吸附:非极性固体表面单层吸附, 极性固体表面可发生多层吸附[编辑本段]表面活性剂的分类 表面活性剂的分类方法很多, 根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等; 根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等; 有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。 按极性基团的解离性质分类 1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂: 脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温) 阴离子表面活性剂 1、肥皂类 系高级脂肪酸的盐,通式: (RCOOˉ)n M。脂肪酸烃R一般为11~17个碳的长链,常见有硬脂酸、油酸、月桂酸。根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。它们均有良好的乳化性能和分散油的能力。但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析 。 碱金属皂:O/W 碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2、硫酸化物 RO-SO3-M 主要是硫酸化油和高级脂肪醇硫酸酯类。脂肪烃链R在12~18个碳之间。 硫酸化油的代表是硫酸化蓖麻油,俗称土耳其红油。 高级脂肪醇硫酸酯类有十二烷基硫酸钠(SDS、月桂醇硫酸钠) 乳化性很强,且较稳定,较耐酸和钙、镁盐。在药剂学上可与一些高分子阳离子药物产生沉淀,对粘膜有一定刺激性,用作外用软膏的乳化剂,也用于片剂等固体制剂的润湿或增溶。 3、磺酸化物 R-SO3 - M 属于这类的有脂肪族磺酸化物、烷基芳基磺酸化物和烷基萘磺酸化物。它们的水溶性和耐酸耐钙、镁盐性比硫酸化物稍差,但在酸性溶液中不易水解。 常用品种有:二辛基琥珀酸磺酸钠(阿洛索-OT),十二烷基苯磺酸钠,甘胆酸钠 阳离子表面活性剂 该类表面活性剂起作用的部分是阳离子,因此称为阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。 常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 这类表面活性剂的分子结构中同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1、卵磷脂:是制备注射用乳剂及脂质微粒制剂的主要辅料 2、氨基酸型和甜菜碱型: 氨基酸型:R-NH+2-CH2CH2COO- 甜菜碱型:R-N+(CH3)2-COO—。 在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用;在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1.脂肪酸甘油酯: 单硬脂酸甘油酯; HLB为3~4,主要用作W/O型乳剂辅助乳化剂。 2.多元醇 蔗糖酯:HLB(5~13)O/W乳化剂、分散剂 脂肪酸山梨坦(Span) :W/O乳化剂 聚山梨酯(Tween) : O/W乳化剂 3.聚氧乙烯型:Myrij(长链脂肪酸酯);Brij (脂肪醇酯) 4.聚氧乙烯-聚氧丙烯共聚物: Poloxamer 能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂[编辑本段]表面活性剂的基本性质 1.临界胶束浓度(CMC):表面活性剂分子缔合形成胶束的最低浓度。当其浓度高于CMC值时,表面活性剂的排列成球状、棒状、束状、层状/板状等结构。 2.亲水亲油平衡值(HLB):表面活性剂分子中亲水和亲油基团对油或水的综合亲合力。根据经验,将表面活性剂的HLB值范围限定在0-40,非离子型的HLB值在0-20。 混合加和性:HLB=(HLBa Wa+HLBb /Wb) / (Wa+Wb) 理论计算:HLB=∑(亲水基团HLB值)+∑(亲油基团HLB)-7 表面活性剂的基本性质 3、增溶作用 1)胶束增溶:水不溶性、微溶性药物在胶束溶液中溶解度显著增加 非洛地平吐温-----10倍 (表)亲水基团---亲油基团, (药)极性基团---非极性基团 cmc,“表”的量,胶束,增溶量,最大增溶浓度(MAC)[编辑本段]表面活性剂的应用 1.增溶:C>CMC ( HLB13~18) 增溶体系为热力学平衡体系 CMC越低、缔合数越大,增溶量(MAC)就越高 温度对增溶的影响:温度影响胶束的形成,影响增溶质的溶解,影响表面活性剂的溶解度 Krafft点:离子型表面活性剂的溶解度随温度增加而急剧增大这一温度称为Krafft点, Krafft点越高,其临界胶束浓度越小 昙点:对于聚氧乙烯型非离子表面活性剂,温度升高到一定程度时,溶解度急剧下降并析出,溶液出现混浊,这一现象称为起昙,此温度称为昙点。在聚氧乙烯链相同时,碳氢链越长,浊点越低;在碳氢链相同时,聚氧乙烯链越长则浊点越高。 2.乳化: HLB:3-8 W /O型乳化剂:Tween;一价皂 HLB:8-16 O/W型乳化剂:Span;二价皂 3.润湿:(HLB:7-9) 4.助悬: 5.起炮和消泡 6.消毒、杀菌 7.去污剂[编辑本段]表面活性剂的结构 传统观念上认为,表面活性剂是一类即使在很低浓度时也能显著降低表(界)面张力的物质。随着对表面活性剂研究的深入,目前一般认为只要在较低浓度下能显著改变表(界)面性质或与此相关、由此派生的性质的物质,都可以划归表面活性剂范畴。 无论何种表面活性剂,其分子结构均由两部分构成。分子的一端为非极亲油的疏水基,有时也称为亲油基;分子的另一端为极性亲水的亲水基,有时也称为疏油基或形象地称为亲水头。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,便又不是整体亲水或亲油的特性。表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic structure),表面活性剂分子因而也常被称作“双亲分子”。 根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换亲水基或亲油基种类、所占份额及在分子结构中的位置,可以达到所需亲水亲油平衡的目的。经过多年研究和生产,已派生出许多表面活性剂种类,每一种类又包含众多品种,给识别和挑选某个具体品种带来困难。因此,必须对成千上万种表面活性剂作一科学分类,才有利于进一步研究和生产新品种,并为筛选、应用表面活性剂提供便利。[编辑本段]表面活性剂的历史发展 表面活性剂和合成洗涤剂形成一门工业得追溯到本世纪30年代,以石油化工原料衍生的合成表面活性剂和洗涤剂打破了肥皂一统天下的局面。经过60余年的发展,1995年世界洗涤剂总产量达到4300万吨,其中肥皂900万吨。据专家预测,全世界人口从2000年到2050年将翻一番,洗涤剂总量将从5000万吨增加到12000万吨,净增培,这是一个令人鼓舞的数字。 中国的表面活性剂和合成洗涤剂工业起始于50年代,尽管起步较晚,但发展较快。1995年洗涤用品总量已达到310万吨,仅次于美国,排名世界第二位。其中合成洗涤剂的生产量从1980年的40万吨上升到1995年的230万吨,净增倍,并以年平均增长率大于10%的速度增长。据中国权威部门预测,2000年洗涤用品总量将达到360万吨,其中合成洗涤剂将达到万吨。其中产量超万吨的表面活性剂品种计有:直链烷基苯磺酸钠(LAS)、脂肪醇聚氧乙烯醚硫酸钠(AES)、脂肪醇聚氧乙烯醚硫酸铵(AESA)、月桂醇硫酸钠(K12或SDS)、壬基酚聚氧乙烯(10)醚(TX-10)、平平加O、二乙醇酰胺(6501)硬脂酸甘油单酯、木质素磺酸盐、重烷基苯磺酸盐、烷基磺酸盐(石油磺酸盐)、扩散剂NNO、扩散剂MF、烷基聚醚(PO-EO共聚物)、脂肪醇聚氧乙烯(3)醚(AEO-3)等。 表面活性剂的化学结构与性能的关系 1.亲疏平衡值与性能之间的关系 H·L·B值:表示表面活性剂的亲水疏水性能 (Hydrophile-Lipophile Balance) 表面活性剂要呈现特有的界面活性,必须使疏水基和亲水基之间有一定的平衡。 石蜡HLB值=0(无亲水基) 聚乙二醇HLB值=20(完全亲水) 对阴离子表面活性剂,可通过乳化标准油来确定HLB值。 HLB值 15~18 13~15 8~8 7~9 用途 增溶剂 洗涤剂 油/水型乳化剂 润湿剂 水/油乳化剂 消泡剂 HLB值可作为选用表面活性剂的参考依据。 3. 疏水基种类与性能 疏水基按应用分四种 (1) 脂肪烃: (2) 芳烃: (3) 混合烃: (4) 带有弱亲水性基 (5) 其他:全氟烃基 疏水性大小:(5)>(1)>(3)>(2)>(4) 3.亲水基的位置与性能 末端:净洗作用强,润湿性差;中间:相反。 4.分子量与性能 HLB值、亲水基、疏水基相同,分子量小,润湿作用好,去污力差; 分子量大,润湿作用差,去污力好。 5.浊点 对非离子表面活性剂来说,亲水性取决于醚键的多少,醚与水分子的结合是放热反应。 当温度↑,水分子逐渐脱离醚建,而出现混浊现象,刚刚出现混浊时的温度称浊点。此时表面活性剂失去作用。浊点越高,使用的温度范围广。

表面活性剂应用的相关论文

表面活性剂概述: 1.概念: 表面活性剂(surfactant)是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。 2.组成:分子结构具有两亲性 非极性烃链: 8个碳原子以上烃链 极性基团:羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等。 3.吸附性: 溶液中的正吸附:增加润湿性、乳化性、起泡性 固体表面的吸附:非极性固体表面单层吸附, 极性固体表面可发生多层吸附[编辑本段]表面活性剂的分类 表面活性剂的分类方法很多, 根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等; 根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等; 有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。 按极性基团的解离性质分类 1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂: 脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温) 阴离子表面活性剂 1、肥皂类 系高级脂肪酸的盐,通式: (RCOOˉ)n M。脂肪酸烃R一般为11~17个碳的长链,常见有硬脂酸、油酸、月桂酸。根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。它们均有良好的乳化性能和分散油的能力。但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析 。 碱金属皂:O/W 碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2、硫酸化物 RO-SO3-M 主要是硫酸化油和高级脂肪醇硫酸酯类。脂肪烃链R在12~18个碳之间。 硫酸化油的代表是硫酸化蓖麻油,俗称土耳其红油。 高级脂肪醇硫酸酯类有十二烷基硫酸钠(SDS、月桂醇硫酸钠) 乳化性很强,且较稳定,较耐酸和钙、镁盐。在药剂学上可与一些高分子阳离子药物产生沉淀,对粘膜有一定刺激性,用作外用软膏的乳化剂,也用于片剂等固体制剂的润湿或增溶。 3、磺酸化物 R-SO3 - M 属于这类的有脂肪族磺酸化物、烷基芳基磺酸化物和烷基萘磺酸化物。它们的水溶性和耐酸耐钙、镁盐性比硫酸化物稍差,但在酸性溶液中不易水解。 常用品种有:二辛基琥珀酸磺酸钠(阿洛索-OT),十二烷基苯磺酸钠,甘胆酸钠 阳离子表面活性剂 该类表面活性剂起作用的部分是阳离子,因此称为阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。 常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 这类表面活性剂的分子结构中同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1、卵磷脂:是制备注射用乳剂及脂质微粒制剂的主要辅料 2、氨基酸型和甜菜碱型: 氨基酸型:R-NH+2-CH2CH2COO- 甜菜碱型:R-N+(CH3)2-COO—。 在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用;在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1.脂肪酸甘油酯: 单硬脂酸甘油酯; HLB为3~4,主要用作W/O型乳剂辅助乳化剂。 2.多元醇 蔗糖酯:HLB(5~13)O/W乳化剂、分散剂 脂肪酸山梨坦(Span) :W/O乳化剂 聚山梨酯(Tween) : O/W乳化剂 3.聚氧乙烯型:Myrij(长链脂肪酸酯);Brij (脂肪醇酯) 4.聚氧乙烯-聚氧丙烯共聚物: Poloxamer 能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂[编辑本段]表面活性剂的基本性质 1.临界胶束浓度(CMC):表面活性剂分子缔合形成胶束的最低浓度。当其浓度高于CMC值时,表面活性剂的排列成球状、棒状、束状、层状/板状等结构。 2.亲水亲油平衡值(HLB):表面活性剂分子中亲水和亲油基团对油或水的综合亲合力。根据经验,将表面活性剂的HLB值范围限定在0-40,非离子型的HLB值在0-20。 混合加和性:HLB=(HLBa Wa+HLBb /Wb) / (Wa+Wb) 理论计算:HLB=∑(亲水基团HLB值)+∑(亲油基团HLB)-7 表面活性剂的基本性质 3、增溶作用 1)胶束增溶:水不溶性、微溶性药物在胶束溶液中溶解度显著增加 非洛地平吐温-----10倍 (表)亲水基团---亲油基团, (药)极性基团---非极性基团 cmc,“表”的量,胶束,增溶量,最大增溶浓度(MAC)[编辑本段]表面活性剂的应用 1.增溶:C>CMC ( HLB13~18) 增溶体系为热力学平衡体系 CMC越低、缔合数越大,增溶量(MAC)就越高 温度对增溶的影响:温度影响胶束的形成,影响增溶质的溶解,影响表面活性剂的溶解度 Krafft点:离子型表面活性剂的溶解度随温度增加而急剧增大这一温度称为Krafft点, Krafft点越高,其临界胶束浓度越小 昙点:对于聚氧乙烯型非离子表面活性剂,温度升高到一定程度时,溶解度急剧下降并析出,溶液出现混浊,这一现象称为起昙,此温度称为昙点。在聚氧乙烯链相同时,碳氢链越长,浊点越低;在碳氢链相同时,聚氧乙烯链越长则浊点越高。 2.乳化: HLB:3-8 W /O型乳化剂:Tween;一价皂 HLB:8-16 O/W型乳化剂:Span;二价皂 3.润湿:(HLB:7-9) 4.助悬: 5.起炮和消泡 6.消毒、杀菌 7.去污剂[编辑本段]表面活性剂的结构 传统观念上认为,表面活性剂是一类即使在很低浓度时也能显著降低表(界)面张力的物质。随着对表面活性剂研究的深入,目前一般认为只要在较低浓度下能显著改变表(界)面性质或与此相关、由此派生的性质的物质,都可以划归表面活性剂范畴。 无论何种表面活性剂,其分子结构均由两部分构成。分子的一端为非极亲油的疏水基,有时也称为亲油基;分子的另一端为极性亲水的亲水基,有时也称为疏油基或形象地称为亲水头。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,便又不是整体亲水或亲油的特性。表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic structure),表面活性剂分子因而也常被称作“双亲分子”。 根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换亲水基或亲油基种类、所占份额及在分子结构中的位置,可以达到所需亲水亲油平衡的目的。经过多年研究和生产,已派生出许多表面活性剂种类,每一种类又包含众多品种,给识别和挑选某个具体品种带来困难。因此,必须对成千上万种表面活性剂作一科学分类,才有利于进一步研究和生产新品种,并为筛选、应用表面活性剂提供便利。[编辑本段]表面活性剂的历史发展 表面活性剂和合成洗涤剂形成一门工业得追溯到本世纪30年代,以石油化工原料衍生的合成表面活性剂和洗涤剂打破了肥皂一统天下的局面。经过60余年的发展,1995年世界洗涤剂总产量达到4300万吨,其中肥皂900万吨。据专家预测,全世界人口从2000年到2050年将翻一番,洗涤剂总量将从5000万吨增加到12000万吨,净增培,这是一个令人鼓舞的数字。 中国的表面活性剂和合成洗涤剂工业起始于50年代,尽管起步较晚,但发展较快。1995年洗涤用品总量已达到310万吨,仅次于美国,排名世界第二位。其中合成洗涤剂的生产量从1980年的40万吨上升到1995年的230万吨,净增倍,并以年平均增长率大于10%的速度增长。据中国权威部门预测,2000年洗涤用品总量将达到360万吨,其中合成洗涤剂将达到万吨。其中产量超万吨的表面活性剂品种计有:直链烷基苯磺酸钠(LAS)、脂肪醇聚氧乙烯醚硫酸钠(AES)、脂肪醇聚氧乙烯醚硫酸铵(AESA)、月桂醇硫酸钠(K12或SDS)、壬基酚聚氧乙烯(10)醚(TX-10)、平平加O、二乙醇酰胺(6501)硬脂酸甘油单酯、木质素磺酸盐、重烷基苯磺酸盐、烷基磺酸盐(石油磺酸盐)、扩散剂NNO、扩散剂MF、烷基聚醚(PO-EO共聚物)、脂肪醇聚氧乙烯(3)醚(AEO-3)等。 表面活性剂的化学结构与性能的关系 1.亲疏平衡值与性能之间的关系 H·L·B值:表示表面活性剂的亲水疏水性能 (Hydrophile-Lipophile Balance) 表面活性剂要呈现特有的界面活性,必须使疏水基和亲水基之间有一定的平衡。 石蜡HLB值=0(无亲水基) 聚乙二醇HLB值=20(完全亲水) 对阴离子表面活性剂,可通过乳化标准油来确定HLB值。 HLB值 15~18 13~15 8~8 7~9 用途 增溶剂 洗涤剂 油/水型乳化剂 润湿剂 水/油乳化剂 消泡剂 HLB值可作为选用表面活性剂的参考依据。 3. 疏水基种类与性能 疏水基按应用分四种 (1) 脂肪烃: (2) 芳烃: (3) 混合烃: (4) 带有弱亲水性基 (5) 其他:全氟烃基 疏水性大小:(5)>(1)>(3)>(2)>(4) 3.亲水基的位置与性能 末端:净洗作用强,润湿性差;中间:相反。 4.分子量与性能 HLB值、亲水基、疏水基相同,分子量小,润湿作用好,去污力差; 分子量大,润湿作用差,去污力好。 5.浊点 对非离子表面活性剂来说,亲水性取决于醚键的多少,醚与水分子的结合是放热反应。 当温度↑,水分子逐渐脱离醚建,而出现混浊现象,刚刚出现混浊时的温度称浊点。此时表面活性剂失去作用。浊点越高,使用的温度范围广。

摘要:综述了生物表面活性剂的种类及其生产菌,介绍了目前常用的两种生产方法:微生物发酵法和酶法合成生物表面活性剂。总结了其在环境工程中的应用,如在废水处理中浮选去除重金属离子,在污染场地的生物修复中用于促进烷烃、多环芳烃(PAHs)的降解,修复受重金属污染的土壤等,并对今后的研究方向做了探讨。 关键词:生物表面活性剂 生物修复 重金属 多环芳烃 生物表面活性剂是微生物在一定条件下培养时,在代谢过程中分泌的具有表面活性的代谢产物。与化学合成表面活性剂相比,生物表面活性剂具有许多独特的属性,如:结构的多样性、生物可降解性、广泛的生物活性及对环境的温和性等[1]。由于化学合成表面活性剂受原材料、价格和产品性能等因素的影响,且在生产和使用过程中常会严重污染环境及危害人类健康。因此,随着人类环保和健康意识的增强,近二十多年来,对生物表面活性剂的研究日益增多,发展很快,国外已就多种生物表面活性剂及其生产工艺申请了专利[2],如乙酸钙不动杆菌生产的一种胞外生物乳化剂已经有了成品出售。国内对生物表面活性剂的研制和开发应用起步较晚,但近年来也给予了高度重视,其中研究最多的就是生物表面活性剂在提高石油采收率以及生物修复中的应用。 1 生物表面活性剂的种类及其生产菌 生物表面活性剂的种类 化学合成表面活性剂通常是根据它们的极性基团来分类,而生物表面活性剂则通过它们的生化性质和生产菌的不同来区分。一般可分为五种类型:糖脂、磷脂和脂肪酸、脂肽和脂蛋白、聚合物和特殊表面活性剂[1]。 生物表面活性剂的生产菌 大多数生物表面活性剂是细菌、酵母菌和真菌的代谢产物。这些生产菌大多是从油类污染的湖泊、土壤或海洋中筛选得到的。如Banat等[3]从油泥污染的土壤中分离得到两株生物表面活性剂的菌株:芽孢杆菌AB-2和Y12-B。表1列出了一些主要的生物表面活性剂的种类及其生产菌[2,4]。 表1 生物表面活性剂的种类及其生产菌生物表面活性剂 生产菌 海藻糖脂 石蜡节杆菌(Arthrobacter paraffineus) 棒状杆菌(Corynebacterium spp.) 红平红球菌(Rhodococus erythropolis) 鼠李糖脂 铜绿假单胞菌(Pseudomonas aeruginosa) 槐糖脂 解脂假丝酵母(Candida lipolytica) 球拟酵母(Torulopsis bombicola) 葡萄糖、果糖、蔗糖脂 棒状杆菌(Corynebacterium spp.) 红平红球菌(R.. erythropolis) 纤维二糖脂 玉蜀黍黑粉菌(Ustilago maydis) 脂多糖 乙酸钙不动杆菌(Acinetobacter calcoaceticus RAG1) 假单胞菌(Pseudomonas spp.) 脂肽 枯草芽孢杆菌(Bacillus subtilis) 地衣芽孢杆菌(Bacillus licheniformis) 荧光假单胞菌(Pseudomonas fluorescens) 鸟氨酸,赖氨酸,缩氨酸 氧化硫硫杆菌(Thiobacillus thiooxidans) 盐屋链霉菌(Streptomyces sioyaensia) 葡萄糖杆菌(Gluconobacter cerinus) 磷脂 氧化硫硫杆菌(T. thiooxidans) 脂肪酸 野兔棒状杆菌(Corynebacterium lepus) 石蜡节杆菌(Arthrobacter paraffineus) 2 生物表面活性剂的生产 目前,可以通过两种途径生产生物表面活性剂:微生物发酵法和酶法。 采用发酵法生产时,生物表面活性剂的种类、产量主要取决于生产菌的种类、生长阶段,碳基质的性质,培养基中N、P 和金属离子Mg2+、Fe2+的浓度以及培养条件(pH、温度、搅拌速度等)。 如Davis等[5]在成批培养枯草芽孢杆菌时发现,在溶解氧耗尽和限氮条件下可得最大浓度( mg/L)的莎梵婷。Kitamoto等[6]利用南极假丝酵母的休止细胞生产甘露糖赤藓糖醇脂,对培养条件进行优化后,最高产量可达140 g/L。发酵法生产生物表面活性剂的优点在于生产费用低、种类多样和工艺简便等,便于大规模工业化生产,但产物的分离纯化成本较高。 与微生物发酵法相比,酶法合成的表面活性剂分子多是一些结构相对简单的分子,但同样具有优良的表面活性。其优点在于产物的提取费用低、次级结构改良方便、容易提纯以及固定化酶可重复使用等,且酶法合成的表面活性剂可用于生产高附加值产品,如药品组分。尽管现阶段酶制剂成本较高,但通过基因工程技术增强酶的稳定性与活性,有望降低其生产成本。 3 生物表面活性剂的提取 发酵产物的提取(也称下游处理)费用大约占总生产费用的60%,这是生物表面活性剂产品商业化的一个主要障碍。生物表面活性剂的最佳提取方法随发酵操作及其物理化学性质的不同而不同。其中溶剂萃取是最常用的提取方法,如Kuyukina等[7]利用甲基-叔丁基醚萃取红球菌生产的生物表面活性剂,可以获得较高产率10 mg/L。超滤是用于提取生物表面活性剂的一种新方法。Lin等[8]用分子量截止值为30000 Da的超滤膜从发酵液中提取枯草芽孢杆菌产生的脂肽类生物表面活性剂莎梵婷,收率达95%。Mattei等设计了一套连续提取生物表面活性剂的装置,应用切面流过滤法能连续提取产物,产率高达3 g/L[1]。能与连续发酵生产配套的产物提取方法有泡沫分离、离子交换树脂法等。Davis等[9]用泡沫分离法连续提取枯草芽孢杆菌产生的莎梵婷,收率达。鼠李糖脂的提取过程是先离心过滤除去细胞,再通过吸附色谱将鼠李糖脂浓缩在安珀莱特XAD-2树脂上,后用离子交换色谱法提纯,最后将液体蒸发和冷冻干燥可得纯度为90%的成品,收率达60%[2]。 4 生物表面活性剂在环境工程中的应用 许多化学合成表面活性剂由于难降解、有毒及在生态系统中的积累等性质而破坏生态环境,相比之下,生物表面活性剂则由于易生物降解、对生态环境无毒等特性而更适合于环境工程中污染治理。如:在废水处理工艺中可作为浮选捕收剂与带电胶粒相吸以除去有毒金属离子,修复受有机物和重金属污染的场地等。 在废水处理工艺中的应用 用生物法处理废水时,重金属离子对活性污泥中的微生物菌群常会产生抑制或毒害作用,因此,在用生物法处理含重金属离子的废水时须进行预处理。当前,常用氢氧化物沉淀法除去废水中的重金属离子,但其沉淀效率受氢氧化物溶解度的限制,应用效果不甚理想;浮选法用于废水预处理时又常因所用浮选捕收剂在其后续处理过程中难降解(如化学合成表面活性剂十二烷基磺酸钠),易产生二次污染而受限制,因此,有必要开发易生物降解、对环境无毒害的替代品,而生物表面活性剂恰好具有这一优势。但是,国内外对这一方面的应用研究很少,直到最近才有报道。Zouboulis 等[10]研究了生物表面活性剂作为捕收剂除去广泛存在于工业废水中的两种有毒金属离子:Cr4+和Zn2+。结果表明,莎梵婷和地衣芽孢杆菌素在pH为4 时均能很好地从废水中分离吸附了Cr4+的αFeO(OH)或Cr4+与 FeCl3•6H2O形成的螯合物,极大地提高了Cr4+(50 mg/L)的去除率,几乎可达100%;在pH为6时,莎梵婷对螯合物中的Zn2+(50 mg/L)去除率高达96%,而在相同条件下,地衣芽孢杆菌素的处理效果不明显,去除率为50%左右。

表面活性剂配方应用文章

表面活性剂是由两种截然不同的粒子形成的分子,一种粒子具有极强的亲油性,另一种则具有极强的亲水性。溶解于水中以后,表面活性剂能降低水的表面张力,并提高有机化合物的可溶性。

表面活性剂范围十分广泛(阳离子、阴离子、非离子及两性),为具体应用提供多种功能,包括发泡效果,表面改性,清洁,乳液,流变学,环境和健康保护。

表面活性剂在许多行业配方中被用作性能添加剂,如个人和家庭护理,以及无数的工业应用中:金属处理、工业清洗、石油开采、农药等。

组成

表面活性剂分子结构具有两亲性:一端为亲水基团,另一端为疏水基团。[2]

原理

通过分子中不同部分分别对于两相的亲和,使两相均将其看作本相的成分,分子排列在两相之间,使两相的表面相当于转入分子内部。从而降低表面张力。由于两相都将其看作本相的一个组分,就相当于两个相与表面活性剂分子都没有形成界面,就相当于通过这种方式部分的消灭了两个相的界面,就降低了表面张力和表面自由能。

吸附性

溶液中的正吸附:增加润湿性、乳化性、起泡性;

固体表面的吸附:非极性固体表面单层吸附,

极性固体表面可发生多层吸附.

表面活性剂由于具有润湿或抗粘、乳化或破乳、起泡或消泡以及增溶、分散、洗涤、防腐、抗静电等一系列物理化学作用及相应的实际应用,成为一类灵活多样、用途广泛的精细化工产品。表面活性剂除了在日常生活中作为洗涤剂,其他应用几乎可以覆盖所有的精细化工领域.

根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换亲水基或亲油基种类、所占份额及在分子结构中的位置,可以达到所需亲水亲油平衡的目的。主要运用于洗涤用品。增溶:乳化:润湿:起炮和消泡:消毒、杀菌:去污剂等。。。。。

做洗涤剂,这是表面活性剂最广泛的用途。

表面活性剂在化妆品中的主要功能包括乳化、分散、增溶、起泡、清洗、润滑和柔软等。表面活性剂在化妆品中具有广泛的用途,起着重要的作用。化妆品中所利用的表面活性剂的性能不仅仅是其单一的性能,而是利用其多种性能,因此,表面活性剂是化妆品生产中不可缺少的原料,广泛应用于化妆品中。化妆品是指以涂抹、喷、洒或者其他类似方法,施于人体(皮肤、毛发、指趾甲和口唇齿等),以达到清洁、保养、美化、修饰和改变外观,或者修正人体气味,保持良好状态为目的的产品。目前,化妆品的发展趋势是向疗效性、功能性和天然性方向发展。1表面活性剂的分类表面活性剂的分类方法有很多种,根据表面活性剂的来源进行分类,通常把表面活性剂分为合成表面活性剂、天然表面活性剂和生物表面活性剂三大类。1.1合成表面活性剂 合成表面活性剂是指以石油、天然气为原料,通过化学方法合成制备的表面活性剂。表面活性剂在性质上的差异,除与烃基的大小和形状有关外,主要与亲水基团类型有关。一般以亲水基团的结构为依据来分类,按亲水基团是否带电可将表面活性剂分为离子型和非离子型两大类,其中离子型表面活性剂又分为阳离子表面活性剂、阴离子表面活性剂和两性离子表面活性剂。1.2天然表面活性剂 20世纪70年代的石油危机对以石油为基本原料的表面活性剂工业产生了巨大的冲击,引起人们对能源消耗、工艺生产过程、生态学和石油制品安全性等一系列问题的思考,从而引发了以天然油脂为原料生产表面活性剂的重大变革。由于生物新技术的应用,油脂分离精制技术的发展,植物油脂品种的改良及增产,使得大量获得价格较低的高纯度的天然油脂成为可能,新的抗氧化剂的开发成功,解决了天然油脂腐败变质的问题,再加上人们对安全及环保意识的提高,以油脂为原料的天然表面活性剂的开发引起人们的高度重视。目前在天然油脂中最受重视的要数棕榈油和棕榈仁油。1.3生物表面活性剂生物表面活性剂是指由细菌、酵母和真菌等多种微生物产生的具有表面活性剂特征的化合物。用微生物生产表面活性剂是20世纪70年代后期国际生物工程领域中研究的新课题。用微生物制取生物表面活性剂可以得到许多难以用化学方法合成的产物,在结构中引进了新的化学基团,而制得的产物易于被生物完全降解,无毒性,在生态学上是安全的。生物表面活性剂根据其亲水基的不同可分为糖脂系、酰基缩氨酸系、磷脂系、脂肪酸系和高分子表面活性剂五类。2表面活性剂的功能 表面活性剂是一类具有多种功能的精细化学品,表面活性剂具有润湿、分散、乳化、增溶、起泡、消泡和洗涤去污等多种功能。 当液体与固体表面接触时,气体被排斥,原来的固一气界面消失,代之以固一液界面,这种现象称为润湿。从普遍意义而言,润湿是一种流体被另一种流体自表面取代的过程。 通常把一种物质的颗粒或液滴以及微小的形态分散到另一介质中的过程叫分散。所得到的均匀、稳定的体系叫分散体。 乳化是一种液体以微小液滴或液晶形式均匀分散到另一种不相混溶的液体介质中形成的具有相当稳定性的多相分散体系的过程。 表面活性剂在水溶液中形成胶束后,具有能使不溶或微溶于水的有机化合物的溶解度显著增大的能力,且溶液呈透明状,这种作用称为增溶作用。 由液体薄膜或固体薄膜隔离开的气泡聚集体称为泡沫,可分为液体泡沫和固体泡沫。在液体泡沫中,液体和气体的界面起主要作用。一般地说,当表面张力低,膜的强度高时,不论是稳定泡沫还是不稳定泡沫,起泡力都较好。溶液的黏度对泡沫稳定在两方面起作用:一方面是增强泡沫液膜的强度;另外,表面黏度大,膜液体不易流动排出,延缓了液膜破裂,而增强了泡沫的稳定性。 消泡作用分为破泡和抑泡两种。具有破泡能力的物质称为破泡剂。有效的消泡剂既要能迅速破泡,又要能在相当长的时间内防止泡沫生成。 洗涤去污作用是表面活性剂应用最广泛、最具有实用意义的基本特性。洗涤去污过程是极为复杂的,与污垢种类、基本性能、表面活性剂和助剂的种类和结构密切相关,而其过程又是多种表面现象,如吸附、润湿、渗透、乳化、分散、泡沫和增溶等在不同情况下的综合效应。3化妆品的分类 化妆品能对人体面部、皮肤表面、毛发和口腔起清洁保护和美化作用。化妆品的品种多种多样,分类方式也各不相同。按使用部位可分为:皮肤用化妆品、毛发用化妆品、指甲用化妆品和口腔用化妆品。按使用目的可分为:洁净用化妆品、基础保护化妆品、美容化妆品和芳香制品,还可根据化妆品本身的剂型分类。4化妆品的原料 制造化妆品所用的原料有很多种,据统计大概有3000多种。根据化妆品原料在化妆品中所含比例的大小,可分为基质原料和配合原料。基质原料是调配各种化妆品的主体,也成为基础原料。膏霜类的油脂,香粉类的滑石粉等均属基质原料;配合原料是用来改善化妆品的某些性质和赋予色、香等的辅助原料,如膏霜中的乳化剂、抗氧化剂和防腐剂等均属配合原料。配合原料在化妆品中的比例虽小,但对化妆品的质量影响却很大。它们之间没有绝对的界限,某一种原料在化妆品中起着基质原料的作用,而在另一化妆品中可能仅起着辅助原料的作用。4.1基质原料1)油脂类油脂是组成膏霜类化妆品的基本原料,主要起护肤、柔滑和滋润等作用。脂肪酸甘油酯是组成动植物油脂的主要成分,在常温下呈液态的称为油,呈固态的称为脂。根据来源又可分为植物性油脂和动物性油脂。植物性油脂包括椰子油、橄榄油、蓖麻籽油、杏仁油、花生油、大豆油和棕榈油等。动物油脂包括牛油、猪油、貂油和海龟油等。这些动植物油脂加氢后的产物称为硬化油。在化妆品中常用的硬化油有:硬化椰子油、硬化牛脂、硬化蓖麻油和硬化大豆油等。2)蜡类 蜡是高碳脂肪酸和高碳脂肪醇所组成的酯。在化妆品中主要作为固定剂,增加化妆品的稳定性,调节其黏度,提高液体油的熔点,使用时对皮肤产生柔软的效果。依据来源的不同,蜡类也可分为植物性蜡和动物性蜡。植物性蜡包括巴西棕榈蜡、霍霍巴蜡和小烛树蜡等。动物蜡类包括蜂蜡、羊毛脂蜡、鲸油和虫蜡等。 3)高碳烃类用于化妆品原料中的烃类主要包括烷烃和烯烃,它们在化妆品中的主要作用是其溶解作用,净化皮肤表面,还能在皮肤表面形成憎水性油膜,来抑制皮肤表面水分的蒸发,提高化妆品的功效。在化妆品中用的主要包括角鲨烷、凡士林、液体石蜡和固体石蜡等。4)粉类 粉类是组成香粉、爽身粉、胭脂、牙粉和牙膏等粉类化妆品的基质原料。一般是不溶于水的固体,经研磨制成的细粉,主要起遮盖、滑爽、吸收、吸附及摩擦等作用。化妆品中常用的粉类原料主要有滑石粉、高岭土和钛白粉等。 5)溶剂类 溶剂是膏、浆和液状化妆品配方中不可缺少的成分,包括水、乙醇、丁醇、戊醇和异丙醇等。在配方上溶剂与其他成分互相配合,使制品具有一定的物理化学性质,便于使用。在化妆品中,除了利用溶剂的溶解性外,还运用它的挥发、润湿、润滑、增塑、保香、防冻及收敛等性能。4.2配合原料1)香料化妆品用香料是关键性原料之一。在化妆品中所用的香料除了必须选择适宜的香型外,还要考虑到所用香料对产品质量及使用效果有无影响,如对白色膏霜、奶液等必须注意色泽的影响;唇膏、牙膏等产品应考虑有无毒性;直接在皮肤上涂敷的产品应注意对皮肤的刺激性。 2)抗氧剂 含有油脂成分的化妆品,特别是原料中含有不饱和键的化妆品很易被氧化而引起变质,所以必须加入抗氧剂,以防止原料的氧化。化妆品中使用的抗氧化剂包括酚类、醌类、胺类、有机酸、醇及酯类和无机酸及其盐类。 3)防腐剂 化妆品中含有水分、胶质、脂肪酸、类脂物、蛋白质、激素与维生素等,这些物质均易引起微生物繁殖变质。为使化妆品质量得到保证必须加入防腐剂。化妆品中用的防腐剂包括对羟基苯甲酸酯类、醇类、香料类和酚类。 4)色素 化妆品使用的色素包括有机合成色素、无机色素和天然色素。5化妆品对表面活性剂的要求 化妆品配方的组成是多样的和复杂的,除油、水原料外,还有各种功能表面活性剂、防腐剂、香精和色素等,属多相分散体系。随着化妆品剂型和功能要求越来越多,化妆品中使用的表面活性剂品种也在增加。化妆品中使用的表面活性剂应对皮肤无刺激、无毒副作用,另外还要满足无色、无不愉快气味和稳定性高等要求。 1)对表面活性剂的功能性要求每一种化妆品都有特定的功效,这些功效表现在遮盖、清洁、保湿、抗皱、美白、色彩和香气等。2)对表面活性剂的配伍性要求 化妆品在保质期内可能会出现析水、析油、分层、沉淀、变色、变味和有膨胀现象等稳定性问题,这与用作乳化剂的表面活性剂的选择不恰当有关,因此,要求用作乳化剂的表面活性剂的配伍性和相容性要好。 3)对表面活性剂的商品性要求 使用表面活性剂后要求产品具有良好的外观和肤感,要求产品香气怡人、细腻、光滑、柔软,并有良好的涂沫生和铺展性。在生产操作上应方便。成本与性能比值越小,表明该产品的成本越低,而产品的性能越高,表明该产品的配方技术水平越高。 4)对表面活性剂的安全性要求 由于对化妆品引起的皮肤不良反应可直接影响到人们的身心健康,所以,要求化妆品的原料必须对人体无害,要求对皮肤、毛发及眼黏膜无刺激、无毒性、无不愉快气味、无过敏性等不良现象。 5)对表面活性剂的卫生指标要求 化妆品在使用和贮存时,会出现微生物污染等卫生安全性问题,因此,要求用作化妆品的表面活性剂应具有抗微生物的污染性能。6化妆品中常用的表面活性剂 表面活性剂的各种功能主要表现在改变液体的表面、液一液界面和液一固界面的性质,而其中液体的表(界)面性能是最主要的。将物质加到溶剂中会大大降低溶剂的表面张力,能够使体系的表面状态发生明显的变化,这些物质都称之为表面活性剂。按表面活性剂在水溶液中能否解离及解离后所带电荷类型分为阴离子型、阳离子型、两性离子型和非离子型表面活性剂。 1)阴离子表面活性剂 化妆品中常用的阴离子表面活性剂包括:脂肪酸皂、十二烷基硫酸钠、月桂醇聚氧乙烯醚硫酸钠、十六烷基聚氧乙烯醚磷酸钠和大豆磷脂(卵磷脂)等,其特点是洗净、去污能力强,在化妆品中主要起清洁、润湿、乳化和发泡的作用。 2)阳离子表面活性剂 阳离子表面滑陛剂主要为高碳烷基的伯、仲、叔胺和季铵盐,如十八烷基三甲基氯化铵、C12~14烷基二甲基苄基氯化铵、双十八烷基二甲基氯化钠等,其特点是具有较好的杀菌性与抗静电性,在化妆品中起柔软、抗静电、防水和固色的作用。 3)两性离子表面活性剂 化妆品中常用的两性表面活性剂包括:椰油酰胺基丙基甜菜碱、咪唑啉等,两性表面活性剂的特点是具有良好的洗涤性能,且比较温和,低毒性和对皮肤、眼睛的低刺激性,以及良好的生物降解性。两性表面活性剂常与阴离子或阳离子表面活性剂复配使用,有良好的配伍性,在一般情况下会产生协同增效效应。在化妆品中起柔软、抗静电、乳化、分散和杀菌的作用。 4)非离子表面活性剂 化妆品中常用的非离子表面活性剂主要有:失水山梨醇单月桂酸酯(司盘一20、司盘一40、司盘一60和司盘一80)、环氧乙烷加成物(吐温一20、吐温一40、吐温一60和吐温一80)、月桂醇聚氧乙烯醚、椰油酸二乙醇酰胺、油酸单甘油酯、聚氧乙烯蓖麻油和聚氧乙烯羊毛脂等,其特点是安全,对皮肤温和、无刺激性,具有良好的乳化、增溶以及稳定性高,与其他类型表面活性剂相容性好等特点,在化妆品中应用最广。 除了上面几种表面活性剂外,最近迅速发展起来的还有天然表面活性剂(如羊毛脂和卵磷脂)、生物表面活性剂以及有机硅表面活性剂。7表面活性剂在化妆品中的应用 随着表面活性剂的开发和应用研究的不断深入,其应用范围也日益扩大。目前,表面活性剂已成为洗涤用品的主要成分,同时在化妆品中也有着多种重要应用,如在化妆品中起乳化、分散、增溶、发泡和洗净等作用。 1)乳化作用使非水溶性物质在水中呈均匀乳化而形成乳状液的现象称为乳化作用。乳化剂在化妆品中主要用于生产膏霜和乳液。常见的粉质雪花膏和中性雪花膏都是0/W型乳状液,可用阴离子型乳化剂脂肪酸皂(肥皂)乳化,用肥皂乳化制取油分少的乳状液较容易,而且肥皂的胶凝作用可使其具有较大黏度。对于含大量油相的冷霜,乳状液多属w/O型,可选用吸水量大且黏性大的天然羊毛脂乳化。目前应用最广的是非离子型乳化剂,其原因是非离子型乳化剂安全、刺激性低。有名的失水山梨醇脂肪酸酯(司盘)及其环氧乙烷加成物(吐温)便是良好的复合非离子型乳化剂,司盘亲油,吐温亲水,两者混合应用于O/W型乳液中,可形成稳定性好、亲肤性高的乳状液。2)增溶作用 使微溶性或不溶性物质增大溶解度的现象称为增溶作用。将表面活性剂加于水中时,水的表面张力开始会急剧下降,继而形成表面活性剂分子聚集的胶束。形成胶束时所用表面活性剂的浓度称为临界胶束浓度。当表面活性剂的浓度达到临界胶束浓度时,胶束能把油或固体微粒吸聚在亲油基的一端,因此可增大微溶物或不溶物的溶解度。 在化妆品中增溶剂主要用于化妆水、生发油、生发养发剂的生产。用作增溶剂的表面活性剂应具有高的亲水性,HLB>15,如聚氧乙烯硬化蓖麻油、聚氧乙烯蓖麻油、脂肪醇聚氧乙烯醚、脂肪醇聚氧乙烯一聚氧丙烯醚、聚氧乙烯失水山梨醇脂肪酸酯和聚甘油脂肪酸酯等。 化妆品中油性成分,如香料、油脂以及油溶性维生素,由于在结构和极性上的不同,增溶形成亦不同,故必须选用适宜的表面活性剂做增溶剂。如化妆水的增溶对象是香料、油分和药剂等,因而可用烷基聚氧乙烯醚来增溶。而烷基酚聚氧乙烯醚(OP类、TX类)虽然增溶能力强,但对眼睛有刺激,一般不使用。此外,蓖麻油基的两性衍生物对香料油和植物油具有优良的溶解性,且这类表面活性剂对眼睛无刺激,适用于制备无刺激香波等化妆品。 3)分散作用 使非水溶性物质在水中形成微粒且呈均匀分散状态的现象称为分散作用。化妆品的分散系统包括粉体、溶剂及分散剂3部分。粉体可分为无机颜料(如滑石、云母、二氧化钛和碳黑等)和有机颜料(如酞青蓝等)两类,主要是使化妆品具有好的色调,能遮盖底色,有良好的使用感和防晒功效;溶剂则分为水系和非水系两类;作为媒介的分散剂又有亲水性(适用于水系)和亲油性(适用于非水系)两类。因此系统有多种组合方式。 用于分散剂的表面活性剂很多既是乳化剂又是分散剂,如脂肪醇聚氧乙烯醚、失水山梨醇脂肪酸酯、脂肪醇聚氧乙烯醚磷酸盐、烷基醚羧酸盐和烷基磺酸盐等,它们都有很好的分散性能。为使粉体在液体中充分分散,必须使液体能很好地润湿粉体的表面。因此,在选择表面活性剂时,首先要考虑粉体表面与分散介质的HLB。通常在水基体系中使用亲油性粉体时,应主要使用亲水性表面活性剂。 4)清洁作用 作为清洁用的个人用品主要有香波、沐浴露和洗面奶等。除了要求具有清洁、发泡和润湿功能外,目前主要考虑的是对皮肤的温和性,这就要求表面活性剂不损伤表皮细胞,不对皮肤的蛋白质发生作用,不渗透或少渗透到皮肤中去,使皮肤油脂及皮肤本身保持正常状态。 阴离子型表面活性剂用于清洗已有很久的历史。肥皂的去污能力是其他洗涤剂难以比拟的。十二烷基硫酸钠是清洗系列化妆品中常用的原料,它能使皮肤达到良好的清洁效果。两性型表面活性剂咪唑啉、椰油酰胺基丙基甜菜碱和氨基酸类均是温和的清洁用表面活性剂,而且是配制高档洗面产品、护发香波及婴儿香波等不可缺少的组分。 5)柔软和抗静电作用 护发素、润发一类的头发调理产品中,阳离子表面活性剂是主要的调理剂,它有很好的柔软和抗静电能力,在毛发柔顺调理剂中起着独特的作用。最普遍应用的阳离子表面活性剂是单烷基及双烷基季铵盐类,即C16~18单烷基铵盐、双C16~18烷基季铵盐及烷基苄基季铵盐。不对称的牛油基、辛基二甲基季铵盐以及3一鲸蜡基甲基铵盐,这类季铵盐对头发干梳、湿梳和去黏性效果很好。最近引人注目的是从羊毛脂肪酸中衍生出来的季铵盐类,它的刺激性小,兼具了羊毛脂的保水性能、润湿性能及阳离子型表面活性剂的特点,能赋予头发湿润和柔软等独特的触感。 6)润湿和渗透作用 作为化妆品,不仅要有美容功效,使用起来还应有舒适柔和的感觉,这些都离不开表面活性剂的润湿作用。在这方面生物表面活性剂取得了显著的成果。磷脂作为生物细胞的重要成分,在细胞代谢和细胞膜渗透|生调节中起着重要的作用,对人体肌肤有很好的保湿性和渗透性。槐糖脂类生物表面活性剂对皮肤有奇特的亲和性,可使皮肤具有柔软和湿润的肤感。采用生化合成等方法制备出相应的生化活性物质和维生素衍生物、酶制剂、细胞生长因子(EGF、DFGF)、胶原蛋白、弹性蛋白、神经酰胺和透明质酸等,这些物质用于化妆品中可渗透进皮肤,参与皮肤细胞组织的代谢,改变皮肤组织结构等,从而达到防皱、抗衰老和增白的效果。8化妆品用表面活性剂的发展趋势 21世纪化妆品工业将通过融合近代多学科的高新科技成果,提高化妆品的安全性、功效性和环保性,开发新的化妆品原料,采用绿色环保型的表面活性剂,这些都是化妆品研究的热点。另外,生物化学的活性物质在化妆品中也已被广泛应用。 1)生物表面活性剂 生物表面活性剂是20世纪70年代后期国际生物工程领域中发展起来的一个新课题。生物表面活性剂以其生产原料来源广、价廉、表面活性高、乳化能力强、起泡性好、无毒、环境友好、能被生物完全降解、生物相容性好、不致敏和可消化等优点而备受人们的青睐。 2)烷基糖苷烷基糖苷(简称APG)是一种以脂肪醇和葡萄糖等可再生性植物为原料合成的非离子表面涪陛剂,现已成为性能优越的新一代非离子表面活性剂的代表。从结构上来看,APG是一种集非离子和阴离子两类表面活性剂的特性于一身的新型表面活性剂。APG不仅表面活性高,泡沫丰富而稳定,去污力强,而且无毒,无刺激性,与皮肤的相容性好,生物降解快而彻底,与其他表面活性剂的相容性好,复配具有协同增效作用以及对头发具有调理和发型保持效应等。APG在安全性和环境相容性方面都具有许多卓越的性能。3)壳聚糖 壳聚糖(Chitosan,学名聚脱乙酰氨基葡萄糖)是甲壳质经脱乙酰基而得到的一种天然阳离子多糖,是一种资源丰富、价格低廉的天然高分子化合物。壳聚糖可溶于稀酸,高度脱乙酰化产物可溶于水,分子中的多个氨基和羟基等活性基团经化学修饰可表现出新的性能。壳聚糖具有良好的抗菌|生、抑菌性、表面活性、吸湿和保湿性、成膜性和絮凝性等特性。由于壳聚糖是自然界中少见的带正电荷的高分子聚合物,从而在许多领域内具有独特的功能。这类多糖具有可降解性、良好的成膜性、良好的生物相容性及一定的抗菌等优异性能,在化妆品中具有与乳化剂很好的复配性和稳定性。用于美发产品能保持头发的光泽、柔软、易梳理和抗静电性;用于护肤美容产品能使皮肤具有良好的调理陛能,广泛应用于化妆品、医药、食品、化工和环保等行业,素有万能多糖的美誉。壳聚糖、壳聚糖衍生物以及低聚壳聚糖都可用于各种化妆品中。壳聚糖用于化妆品将成为今后化妆品行业的一个新趋势,其优异的保湿性、抗菌眭和生理活性以及优良的配伍性都将使其在化妆品中有着广泛的应用前景。 4)蔗糖脂肪酸酯 蔗糖脂肪酸酯是用C12~22脂肪酸和蔗糖作用生成的酯,是一种安全、无毒、无污染,并可l00%生物降解的非离子表面活性剂。蔗糖脂肪酸酯无毒、无臭、不刺激皮肤与黏膜,且易生物降解。通过控制蔗糖脂肪酸酯中脂肪酸残基的碳数和酯化度,或者把不同酯化度的蔗糖酯进行混配,即可获得大范围HLB的系列产品,这使它既可成为0/W型又可成为W/0型表面活性剂。蔗糖脂肪酸酯具有乳化、增溶和起泡等多种性能。国外从20世纪60年代就已将其广泛应用于日化、食品和医药等行业,而国内关于蔗糖脂肪酸酯的研究还存在许多问题,所以应积极采取措施开发多元化产品,稳定制造工艺,进行更深入地理论研究,以拓宽蔗糖脂肪酸酯的应用领域。 5)卵磷脂 卵磷脂是一种天然生物表面活性剂,被誉为“脑黄金”,不少研究者称之为“21世纪最伟大的保健食品”。磷脂类表面活性剂有表面活性,又有生物活性,是特种表面活性剂,其应用领域已延伸到食品、医药、化妆品和多种工业助剂中。卵磷脂在化妆品中能起到活化皮肤、保持皮肤湿润和防止皮肤干燥等作用。同时卵磷脂还可以提高化妆品的分散性和起泡性,用于头发润滑剂可使头发光亮、润泽和柔软。 6)特种表面活性剂 特种表面活性剂是指含有氟、硅、磷和硼等元素的表面活性剂。有机硅表面活性剂具有低毒性、氧化稳定性和热稳定性、润滑性、抗静电性、消泡性和稳泡性、剥离性好以及生理隋性等优点,并有很强的降低表面张力的性能,是表面活性剂中一类具有特殊功能的品种。有机硅用在化妆品中能增加皮肤的润滑感和抗水性,增加产品的光泽。有机硅表面活性剂具有很高的生理惰性,用于化妆品时具有较高的安全|生。在化妆品中,硅氧烷表面活性剂以其滑爽、柔软、光泽和飘逸等优异性能得到了广大消费者的喜爱。这是我找到的供你参考

会计在生活中的应用论文

告诉我邮箱,给个好评,我给你发过去

摘要:随着市场经济的发展,企业会计准则体系的国际趋同,财会人才应该是一个学历高层型会计专业型电算网络型操作合作型新型管理型终身学习型职业道德型素质综合型的具有研究分析决策管理能力的复合型财会人才 关键词:市场经济;现代企业;财会;复合型人才 知识经济对会计领域产生的冲击,思考着知识经济对会计人才能力的新要求在新的市场经济条件下,企业更需要学历高层型会计专业型电算网络型操作合作型新型管理型终身学习型职业道德型素质综合型的具有研究分析决策管理能力的复合型财会人才 1 学历高层型由于历史的原因,过去会计专业的教育滞后,造成会计专业人才短缺,加上人们对会计专业的技术性认识不足常常出现会计岗位上多是一些没有会计专业学历,甚至只有初中学历,仅经过短期的培训或跟随老会计学习一阵,就匆忙上岗的现象,造成整个会计行业学历偏低随着市场经济转型的需要,许多高等院校开始恢复或开设会计专业,同时,在岗的会计人员又都在积极地进修学习,提高学历因此,会计岗位的高学历比例不断提高与前些年相比,近年来,会计人员的学历层次正在稳步提高 2 会计专业型多年来,我国会计人员大多理论知识贫乏,业务素质不高,不适应会计发展的需要财政部从 年开始直接组织高层次会计人才培训,计划用年左右的时间,培养和造就一批高素质复合型领军会计人才同时,国家还通过组织会计从业资格考试会计技术职称考试会计执业资格考试( 等)以及组织选拔高层次会计人才培训等方式,正在逐步建立完善科学客观的会计人才评价选择机制和积极向上的激励机制,并从大批高校会计本专科生中不断充实会计队伍,使专业型的会计人才大大增加 3 电算网络型随着以计算机技术为平台的信息技术和网络技术的迅猛发展,使会计处理技术发生了质的飞跃,实现了记账算账报账电算化这就要求现代会计必须具有现代化会计网络意识,以适应会计工作网络化管理的新环境提高认识,转变观念,学好计算机知识,并学好一门外语,努力提高外语水平,熟悉相关学科知识,扩展专业视野等,要求会计人员不仅要掌握必不可少的专业知识,更要掌握随时代发展的边缘知识 4 操作合作型随着经济的迅速发展,会计工作越来越多样化和复杂化,会计人才不仅要掌握现代核算工具。 而且还要有良好的沟通能力和协作能力团队合作精神 在现代会计工作中显得非常重要因此,现代会计工作要求会计人员在工作中能相互衔接相互配合相互理解相互支持在财务机构内部,有效地避免重复工作,提高工作效率;在外部,能密切财务机构与财政税务机关 银行 会计师事务所的关系 5 新型管理型计划经济体制下,会计工作仅是核算型,知识经济促使生产的知识化信息化,也促使行业管理中的会计管理方法在适应性灵活性创造性等方面向多变多维的方向转化,形成一种新的会计观,即会计不再是一个单一的信息加工系统,而是一个组织监督协调控制经济活动的管理系统;会计工作不再是以核算为主体的工作,而是以内部控制为核心的管理;网络经济时代,使得管理在空间时间效率上都发生改变,形成具有网络程序化实时动态化的管理经济的不断发展,对会计人员能力的要求越广泛越全面越多样因此,现代的会计人员应当是既懂核算,又懂财务管理,具有创新性适应性的复合型管理会计人才 6 终身学习型随着知识经济时代的到来和信息技术的快速发展,对于会计人员的知识更新提出了更高的要求具备不断学习的能力就成为会计人员成功的必备条件这种学习能力既是专业知识的深入学习能力,也有综合知识的博览能力,若把前者叫专业技能,则后者可称为复合技能有资料显示:一个人的专业技能知识只有1来源于学校,其余的则取决于日后的不断学习和积累,所以提高会计人员的能力需要终身学习,不断进取。 7 职业道德型职业道德是一个合格的会计人员应具备的最基本的前提条件同时,职业道德也直接左右着会计人员主观能动性的发挥在市场经济的前期,对会计工作要求只是一般职业要求,并没有上升到职业道德高度,造成有些会计人员为维护小集体的利益,不顾国家利益和法律;只接受本单位负责人的指令,置会计制 度于不顾,弄虚作假,致使会计信息失真,成为社会公害随着经济管理规则和会计法的健全,会计制度进一步完善,加强会计人员的敬业爱岗 实事求是 恪守诚信严于律已操守为重的职业品德教育,树立崇高的职业道德观念和人生价值观就显得尤为重要因此,会计人员必须对自身角色与职能进行重新审视,并加以调整,努力提高职业道德求实讲真恪守会计职业道德是社会对会计人才的第一要求以诚信为本做好会计工作,是会计人员职业道德最基本的准则,是会计人员特 殊职责赋予的崇高历史使命。8 素质综合型由于我国经济处于转型时期,传统的记账算账单一能力型的会计人员已经无法适应这种新型经济形态这就要求会计人员必须打破原先束缚个人思维能力发展的桎梏,主动积极地去适应这一社会经济形态的重大变迁,重新审视自身的业务素质,重视知识,对自身能力进行一次革命,融入到综合素质型会计人才的社会主流,才能在激烈社会竞争中取得优势。 总之,随着市场经济的发展,企业会计准则体系的国际趋同,市场经济条件下现代企业更需要复合型财会人才王军副部长强调:一个人的视野有多大,事业就有多大要真正成为行业领军人才,必须具备开阔的思想,宽广的胸怀;应关注会计以外的学科,跳出就会计论会计的定式只有更多更好地反作用于母体学科及经济社会,会计学科才能对其他社会科学有所贡献,会计的社会价值才会更好地体现因此,时代要求会计人才应该是一个具有研究 分析 决策 管理能力的复合型会计人才。 就我看来随着经济的发展,会计的职能在不断的扩大。 建立高素质、复合型财会人员队伍,已成为市场经济的迫切要求。 随着社会主义市场经济体制的不断发展,对高校产生了深远的影响.高校在深化体制改革和内部挖潜的同时,面向教育市场,优化教育资源配置,多模式、多层次发展高等教育.高校发展环境的多元化,使得高校财务逐步呈现出多元化、复杂化、多变化特点,如何加强学习,建立学习型的高校财会队伍,提高管理水平,增强管理能力,以"管理出效益、管理促发展",日益成为各高校财务关注的热点之一.所以,会计人员应由以往的记录型人才飞跃为适合现代经济发展的管理型人才。 面向21世纪,高校财会人员队伍建设要注重群体结构优化、建立新型的管理体制,提高他们的综合素质,并且使引进人才与现有财会人员的培训相结合,以适应现代化高等教育管理制度改革的需要.

会计实习也要有工作部门的,你的方向性太大。

以财佐政 天道酬勤------浅谈会计职业操守与能力提升的若干思考目 录一、写在前面的话写作要旨,会计与职业操守,会计职业道德练就思考。二、会计职业的正确认知会计日常工作,杂乱无章经济业务分门别类,确认,计量,记录,报告。会计与经济同驻,圆融着会计人爱岗敬业的精神。三、会计职业理念的培养会计经济管理活动,会计团队协作精神,兢兢业业,独立挑战性工作。会计人崇尚:恪尽职守,操守为重。四、会计职业的操守信念会计职业道德规范,不断学习,改造锻炼,进步提高,正确掌握会计法规航向,会计人学会感恩,知恩图报。五、会计职业与“五养”教育 一、写在前面的话:葡萄藤的故事。南宁市大明山麓有一座山,酷似一箱大蒸笼,谓之独甑山。相传独甑山洞内有地下暗河,有一条千年葡萄藤倚架着,对面有成堆成堆、取之不尽的金银财宝。行人借助于这条古藤通过暗河,目睹、甚至可以触摸到财宝,但要捡拾金银回来可困难喔。听乡里长者说:很久以前的一天,为了取到金银财宝,千万人来到独甑山脚,蜂拥入洞。奇了,就一根古藤,任凭人群拥挤踩踏,都能够平安过河。面对堆积成山、熠熠闪闪的金子银锭,所有人顿时都傻了眼……耙啊耙,抢啊抢!肩挑手提,人人尽可能多取金银财宝。准备回来了,个个得意洋洋,忘乎所以,正当行走到藤桥中间,古藤不堪重负,葡萄藤折断,挑金客全部跌落暗河。一会儿,葡萄藤又复原了!原来这是一条成仙古藤,后面挑着金子的人十分恐惧,当中一部分人,索性从担子里放弃(搬出来)一些金子银锭,祈祷保佑,之后小心翼翼地过河……。谁知,当他们鱼贯地行走到藤桥的中间,古藤咔嚓咔嚓地作响,挑金客纷纷翻落暗河……。岸边上的人,个个心惊胆战,不敢逾越半步……“统统的不要了!”踉踉跄跄、连爬带滚地摸藤过河,听说丢弃金子、担子的人安然无事……。从此以后,再也没有谁敢冒险入洞了。上世纪七十年代,山底村,几名南宁插队知识青年,为了帮助生产队进入山洞寻找水源,一天早晨,他们带着干粮、行军壶、镰刀、加长手电筒,跟随当地向导卧爬入洞……。不知山洞有多深,也不知行走多远路程,手电筒照射光亮忽然闪暗下来,估计电池快没电了,向导呼唤赶快原路折返。当他们疲惫地爬出洞口,此时,日头已经西斜。后来问及此事,有知青说:洞内漆黑一团,伸手不见五指,哪里看见金银财宝!蝙蝠粪土堆积如山。向导解释,将要走到暗河边了,远远传来潺潺流水的声音,估计水源就在前方。今天的独甑山,依然耸立在大明山麓之中,山洞是否存在古藤倚河迹象,是否有金银财宝?传说中金银财宝就是粪土?“葡萄藤的故事与会计职业道德牛马风不相及吗?完全不是。”会计工作是一支富于团队协作,并强调岗位、个人战斗力精神的行业。有学者言之,会计人工于操作、严于核算、谨于记账、慎于支出。当下功利社会,会计职业操守如何炼就?“葡萄藤的故事”将引申出会计职业的七彩历程。二、会计职业的正确认知财务会计日常工作。会计工作1家3口:资产负债表、利润表、现金流量表。会计假设4匹马拉4车:会计主体、连续经营、会计分期、币计量;会计核算对会计要素进行确认、计量、记录、报告。会计要素6根柱子:资产、负债、所有者权益、收入、费用、利润。会计核算方式7个小矮人:设置账户、复式记账、编制会计凭证、登记会计账簿、成本核算、财产清查、编制会计报表和财务分析。会计核算基本原则的13条独桥:客观性、实质重于形式、相关性、可比性、一贯性、及时性、明晰性、划分收益性支出与资本性支出的界限、权责发生制、配比性、历史成本、谨慎性、重要性原则。会计科目156功阵。换言之,会计日常工作,就是公司企业的经济业务,进行全面地、连续地、系统地、综合地确认,计量,记录,报告,会计是经济工作的综合反映。会计核算是会计法人单位经济业务活动的集合。会计主体确立了会计确认、计量和报告的空间范围。会计核算的全面性规定:凡是本公司的一切经济活动,不论其金额大小,都要通过本公司会计核算,反之不归本公司会计核算。会计分期明确了会计确认、计量和报告的时间范围。会计核算假设公司长期持续经营下去,不会破产。现实情况并非如此,当下,每天会有公司企业竣工开业,也有工厂矿山停工歇业、破产倒闭。会计核算的连续性是指:公司企业以正常生产经营为前提,所适用的会计核算制度。会计分门别类核算,注重部门成本管理,不能作糊涂账。“肉熟烂在锅里,三年不算账,钱也不会跑到外国去,”旧体制提法过时了。现代企业成本核算划分:直接材料、人工成本、直接费用,制造费用,管理费用,销售费用,财务费用等。行政事业单位会计核算划分:公务费用、职工工资,物料费用,车辆费用等。会计货币计量为确认、计量和报告提供了必要的手段,会计核算经济业务运用综合价值计量。公司企业会计核算主要以货币为主要计量单位,而在实际生产经营主要以实物形态展示经营成果,诸如:矿山年产量、钢铁产量、船舶制造、制糖生产能力、农业粮食产量、畜产品产量等。工厂车间使用的原材料、燃料动力、水电汽等物料实物计量,劳动工时各不相同,必须统一运用综合价值核算---货币计量单位,用于确认、记录和报告工厂生产经营成果,计算公司企业的利润。会计是技术,也是艺术。会计人运用经济画笔成就艺术,彰显艺术画卷。若有人提问假账投机取巧,正义回答:这不是艺术!假账是对会计准则最大的猥亵,假账从会计学中开除出去!若又有人提出:说印度有位会计师能把公司的利润计算没有了,别的审计师竟然没有发现?专家解释:会计师能把企业的利润算没了,充其量算作审计师之间的技术博奕,并不是会计艺术。会计艺术在那里?会计是一种经济管理活动,会计是技术,会计人同时也创造艺术美……会计职业操守美德。工厂生产各种各样的产品供应市场,企业创造丰富多样的物质奉献社会,会计人为之不辞辛苦默默地劳作。会计象出色的画家,又象梦幻的魔术师,会计能将票子核算成房子,将资金绘画成小桥流水、亭阁舞榭,将权益演绎成火车、轮船、飞机,将版权编辑成百科全书、影视动画,乃至变幻成五彩斑斓的大千世界。会计与经济同驻,会计的魅力在于会计的艺术所在,圆融着会计人爱岗敬业的精神。三、会计职业理念的培养会计人要用心工作。如何用心工作?老师说:“心字是一把铁勺子。在炒几颗豆,豆子会蹦啊!炒啊炒,两颗豆子掉在外边,只有一颗留在勺里。”每一个人的成长、学习、生活环境可能不尽相同,但是为了工作共同走到一起来了,工作中需要互相谦让。每一个单位有各自的优良传统,你必须学会尊重理解、宽容谅解他人,才有可能取得他人的尊重和宽容,这是相互的。社会感悟,年轻人犯错误连上帝也会原谅,只要认真,没有什么不可以。会计是一项经济管理活动,会计业务富有团队协作精神,又要求独立挑战性的岗位工作。财务管理是公司企业各项经济管理之中枢。一方面,工厂生产经营流程从资本投入、公关营销、物料供应、生产加工、支付费用、产品检验、商品销售、收回货款等一系列资金循环,生产经营每一环节都与财务会计息息相关,更体现公司企业集体荣誉。另一方面,财务会计日常业务处理,具体工作要求落实到各个岗位、各个人员。会计工作可能有多个岗位一人操作,也可能出现一个岗位多人操作,但是,会计制度规定,设置不兼容岗位,“自己工作,自己干,容不得他人进入。”这就是会计专业锋利的要求,也是会计技术的独立性。何谓天道酬勤。南宁市上林县不孤村,村前有一张约5、6百亩水面的荷莲池塘。夏日,池塘波光涟漪,鱼翔浅底,绿风摇曳,一望无边。池塘旁边挨着一个百米见方的小湖泊,当地称之马猴凌。马猴凌湖面石礁崎磷怪异,水深无底,冬季,湖水会一直往湖底消耗下去,每年冬至,村民将池塘水引入马猴凌,约莫个把月时间,这小小的马猴凌能将数十万立方的池塘水吸干,这样,村民就可以开塘,捉鱼挖藕了。新一年开春,马猴凌湖水又会突奇地上涨,湖水带着鱼虾回流到广袤的池塘中去,一直流满到池塘与湖面的水平,年复一年,太神奇了。这一自然景观,似乎给人们揭示了某些事物的偶然性与必然性,以及事物的相互依赖关系。会计人“恪尽职守,操守为重”的信条,何尝不是如此。会计耐得清贫、耐得寂寞、耐得诱惑,会计工作荣辱感,多读书,多思考,善于识辩,舍得放下,社会活动,拓宽知识面,像吃饭一样,不要贪杯啊!不要只见树木不见树林。有位会计人:几十年一直在同一家工厂从事财务工作,工厂产品会年复一年地源源不断地向社会输送,企业的高楼大厦一栋栋耸立在城市之中,酒店的美味佳肴让食客留下难忘的回忆。会计人留下什么呢?会计好象清道夫,将公司企业杂乱无章的账单发票分门别类地整理好,日复一日,年复一年地记账算账,算账记账……每一天不断地从复着同样的操作。伴随岁月的痕迹是会计人的银丝皱纹,仅仅留下一把旧算盘,尘封着小小的U盘和薄薄的碟片,及至堆积成山的会计凭记、会计账簿、会计报表。天巧自然、人工秀权,两者异曲同工,可谓天道酬勤。四、会计职业的操守信念淡练会计人生。“人人为我,我为人人”它诠释了人类生活的自然规律。人类从一出生,呱呱落地……母乳滋养、一天天成长,呀呀学语,家人看护,入学教育,社区教育,社会教育,等等。一个人的生活成长经历,无一不是从父母、家人,从他人、社区、社会得到的。到了十八岁,长大成人,逐步学习、工作,学会帮助家人,帮助他人,报答国家,报答社会。会计职业道德实践,同样适合“人人为我,我为人人”的哲理。会计人依照会计职业道德原则,通过学习,改造锻炼,进步提高,达到回报家人,回报社国,回报社会的过程。当年,广西财经学校七八级工业会计班一群学生,有幸来到那洪三皮(市制革、皮鞋、皮件厂)参加毕业实习。高兴时同学们哼唱着一首毕业歌《走向生活》记得其中几句歌词:“阳光照耀着平原和山冈,歌声飞扬在祖国的大地上。七月的熏风吹送着我们的青春,我们愉快地走出大学校门。田野的稻穗向我们招手,工厂的汽笛为我们歌唱,我们是劳动人民的儿子,决不辜负祖国的希望,假如祖国需要我们去到那里,我们就展开翅膀向那里飞翔。”会计给人们指明了一条通往技术与财富的金光大道。时光荏苒,春秋几何。今天回想起来,却象昨天刚发生的事情一样,当年同学们满腔热情地志愿到工厂去锻炼,决心将《工业会计》服务于工厂、服务于企业、服务于社会……让会计青春与心飞扬。“我是队里的红管家,打起算盘噼哩啪啦响。”今天,会计人选择了会计这个职业,自己对这个专业有认识、有悟性、有兴趣、有志向,工作就有干劲,就有方向。正确掌握会计法规航向的风帆起航,会计人要学会感恩,知恩图报。何谓职业判断。会计人通过会计职业道德规范的认识和体验,使自己形成稳定的正确区别职业行为中的善良与丑恶、诚实与虚伪等内心信念。培养会计人行为规范和职业品德。就会计职业操守而言,神话小说《西游记》唐僧、孙悟空、猪悟能、沙悟净四个人,哪一位最适合做会计工作呢?“在唐僧师徒在蓬莱天国取经那一段:管理员阿傩敲竹杠,缴化斋铜钵,用无字天书来忽悠取经队伍。”老总唐僧对佛忠于职守,有宽容之心,为人友善,规章制度,这几点唐僧似乎符合会计红管家的人选,只是,有一次在荒野之外,悟空去化斋前划了一个圈,请师徒仨别乱跑,好色老猪经不起诱惑,收了“美女”小红包(一件背心)而越界,唐僧也迷糊了,会计法规的圈子可不许越界啊!《西游记》中那人、那事,给予会计职业道德修养的哪些启迪?人无完人,唐僧通过反思,以后再也没有犯从前的错误了。“孙悟空三打白骨精”唐僧之所以犯了三次同样的过失,每一次都是悟空为之挡箭牌,但化解风险之后,老总却误解财务总监,欲将其处分。最后,老总忍无可忍,把财务总监给撤了。白骨精原形毕露,唐僧被虏走了。在商业交易中,类似教训还真不少见哩!有些公司老总一而再,再而三地出现差错,财务人员为其把关防止风险,老总却认为是误了他的好事。“经济越发展,会计越重要”当今社会纷繁复杂,功名禄利诱惑,会计人可要擦亮眼睛。会计人要坚守一方湿地,耐得清贫、耐得寂寞、耐得诱惑,不是一朝一夕的情事。很古以前,人们就诠释了“送鱼与吃鱼”的辩关系,会计职业道德与现代功利主义,职业判断格外重要。“领导吃得你就吃得?”那就错了!心平气和地想一想,天下没有免费的午餐。你是哪一个单位,你主管哪一方面工作,对方凭什么请你吃饭,人家凭什么给你好处?请相信天上不会掉下馅饼。五、会计职业与“五养”教育教养、培养、素养、涵养、修养,简称“五养”教育。教育未来学认为:教养强调环境因素;培养旨在内心提高;素养热衷职业悟性;涵养体现博大气度;修养注重锻炼提高,培育熏陶学成。专业入门从学步开始,做事情讲究规则,灵活思考、用心做事与德、勤、政的关系。教养、培养、素养、涵养、修养对于会计职业操守将得到那些启迪。湿地在哪里,湿地在心里。生态文明,生态自然,是一种自然现象,也是一种社会现象,是人们在生产活动中与自然的一种社会关系。尊重自然,保护自然,而不是一味主宰自然。工业生产,过度捕捞、砍伐挖掘、开发建筑,这不是文明的进步。大跃进时期,西北某地,方圆几十平方公里,原先好大一片湿地草甸子,气候宜人,候鸟栖息,土肥草嫩。为了垦地播种,种草养羊,当地人把沼泽湿地开渠放水、围湖造田,种草养羊。开始,似乎还土肥草美,各家各户大批量养羊,多年之后,地干了,羊多,草光了,吃草根,草没了。养殖超过自然和环境承载能力,现在全部沙漠化了。北京、上海……人口的集聚功能存在,要人们不去城市可能吗。这样一来便造成人口多,汽车过量,道路阻塞,楼房林立,垃圾满地,污水横流,臭气宣天。专家指出;水源、土地的承载能力,群体功能,不考虑适合,到头来必然要走弯路。湿地你在哪里,鸟儿说:湿地在心里。远古以来华夏民族,为什么有这么多的山落村庄,因为周边有河流、水田,丘陵、山林,河流等必须生活、生产功能。罗布泊绿洲,楼兰古城今何在?空间结构,城市空间,农业空间,生态空间少了。以前,看见天上飘来一朵乌云,立即就会下雨,现在,有时候也看见大块雨云飘过来,可天老爷就是不下雨,为什么呢?因为地面上没有水分(绿树)向上蒸发。很明显,为什么青秀山、五象岭上空会积雨云,经常下雨,道理就在这里。几千年农耕文明,将被小城镇化所代替。劈山开路建房,有时候幸福却感觉不到。地下水污染了、耕地污染了,空气污染了,环境污染了,结果造成气候干燥,而个别地方山洪瀑发,沙尘暴,灰霾天气的恶性循环,最后造成食品也污染了。长期挖掘建设,功过历史评说。经济过度增长,既要金山银山,又要绿水青山,实际就很难。产能过盛,工业有边界,而服务业没有边界。美丽中国,中国梦。不希望山蹦地裂,污水横流,尘土飞扬。还我天蓝地绿,人欢笑。会计这块处女地,要成为美丽的绿洲、肥沃的良田,需要辛勤的播种、耕耘、浇水、施肥。做人办事,应守本分。明朝洪武初年,朝上财政困难,百业待兴。有位智者,以工代赈,为朝政开凿一条通往长江的水路。智者因此捞取到第一桶金,高攀皇亲国戚,在建业(今南京)成立第一家市政工程公司,生意真是好得不得了。正当智者富得头上流油,工程建设如日中天的时候,扬言:给皇上军队官兵每人发10两银子。话传朝政,激怒了朱元璋,问何人如此放肆?员外禀报“富不富,富不过周庄沈万三,此人正是沈……。”皇上旨要除之!员外曰:沈毕竟是央企民营,曾为修筑运河作贡献,最后,好说歹说,疆役他算了。沈踩着芭蕉皮,员外相助,躲过了一劫。此后,沈被流放于滇,继续拨弄“金算盘”靠小本买卖度日……。至今,云南昆明一带居民擅长经商做生意,是否与沈相关呢?不得而知;但“金算盘的传说”却被保留了下来。后人戏说,沈万三给“皇家军队每人10两银子,你以为你是谁,你是皇帝?”自古以来,商道就有“西方讲究诚信,东方童叟无欺”的说法,开公司、办企业讲究合法经营,诚守信用。做人要低调,办事守本分,能否给会计职业操守带来灵感,为我所用?会计职业道德修养的过程,既是学习的过程,又是自我改造的过程。宽容之心,实践中来,职业道德修养包括专业技巧,思想觉悟、品德等多方面的陶冶和锻炼,自身的修养水平,养成正确的待人处事态度的认知、行为。毛主席说:“人的正确思想是从哪里来的?是从天上掉下来的吗?不是。是头脑里固有的吗?不是。是从社会实践中来,是从人民群众生活中来。”宽容之心,从实践中来,从日常生活,团队协作中来。逆境可以锻炼人的意志,也可以削弱人的意志。这时,给予别人的一点宽容、理解,十分受用。但遇到这种情况,谁来给自己宽容和理解呢?这就是“无字真经”的意义所在。会计之家需要会计人具备精良的专业素质,需要营造良好的团队协作氛围,需要良好的经营实践活动。比如:与人相处、互相打招呼,会有许多奥妙之处。当下,经济发展社会,会计人有必要稍微冷静地思考。尤其是刚参加工作的年轻人,不经意间就染上饮酒、吸烟俗习,这一点请不要随大流。俗话说:酒色财气四堵墙,人人都往窝里藏,谁能跳出这圈子,智也。会计人敬业执着,应该放在学好知识、做好专业,注意修身养性,保持宽厚的精神情操,要知道公司银行存款可是资金。资金……投资人的资本,债权人的利益,债务人的义务,所有者的盈亏归属。

相关百科

热门百科

首页
发表服务