首页

> 学术期刊知识库

首页 学术期刊知识库 问题

势阱中粒子运动状态研究论文定稿

发布时间:

势阱中粒子运动状态研究论文定稿

■ 一维无限深势阱中一个粒子,若质量较大即为经典粒子,它在阱内做无规则热运动,粒子在阱内各点出现的概率相等;若质量很小它遵守薛定谔方程,波函数运动规律为正弦函数或余弦函数。■ 一维介质中粒子 从左→至右 按顺序上下振动形成水平传播机械波。一个粒子在势阱中东蹦西跳能形成正弦波吗?薛定谔方程求解结果确为正弦波。量子力学创始人之一波恩认为这种正弦波为概率波,波函数表示这粒子在某个坐标(x)附近出现的概率: 一个粒子在(x)坐标处出现的概率,居然满足数学逻辑规律,出现严谨的周期性正弦分布,大自然好神奇!

按照经典物理,粒子会静止或者在壁间来回反弹,反弹是完全弹性的,因为边界势能梯度无限大,运动在未碰壁时是匀速的,这时候速度方向不受限制,因为没有竖直方向势能梯度。应该注意无限深势阱的内部是不存在任何力作用的,这和我们的重力场不一样,只有运动到边界时弹性碰撞返回。

半导体中的电子状态 电子状态指的是电子的运动状态又常简称为电子态,量子态等。半导体之所 以具有异于金属和绝缘体的物理性质是源于半导体内的电子运动规律。 半导体内 的电子运动规律又是由半导体中的电子状态决定的。 晶体是由周期性地排列起来的原子所组成的。 每个原子又包含有原子核和电 子。本章的目的就是研究这些粒子的运动状态。 周期性势场 晶体中原子的排列是长程有序的,这种现象称为晶体内部结构的周期性。晶体内部 结构的周期性可以用晶格来形象地描绘。 晶格是由无数个相同单元周期性地重复排列组 成的。这种重复排列的单元称为晶胞。晶胞的选取是任意的,其中结构最简单,体积最 小的晶胞叫做原胞。三维晶格的原胞是平行六面体。二维晶格的原胞是平行四边形。一 维晶格的原胞是线段。原胞只含有一个格点,格点位于元胞的顶角上。 (例:二维晶格 和一维晶格的原胞) a r b Rm r′ a2 a1 c d 。。 二维晶格元胞 Rm=3a1+ a2 以任一格点为原点,沿原胞的三个互不平行的边,长度分别等于三个边长的一组矢 量称为原胞的基矢量,简称为基矢。记作 a1 , a2 , a3 。 晶格可以用基矢量来描述。矢量 1 Rm = m1a1 + m2 a2 + m3 a3 = ∑ mi ai i =1 3 ( m1,m2,m3 是任意整数 ) (1-1) 确定了任一格点的位置,称为晶格矢量。 r 和 r = r + Rm 为不同原胞的对应点。二者相 ' 差一个晶格矢量。可以说不同原胞的对应点相差一个晶格矢量。反过来也可以说相差一 个晶格矢量的两点是不同原胞的对应点。通过晶格矢量的平移可以定出所有原胞的位 置,所以 Rm 也叫做晶格平移矢量,晶体内部结构的周期性也叫做晶体的平移对称性。 晶体内部结构的周期性意味着晶体内部不同原胞的对应点处原子的排列情况相同, 晶体的微观物理性质相同。因此,不同原胞的对应点晶体的电子的势能函数相同,即 V (r ) = V (r ' ) = V (r + Rm ) (1-2) 式(1-2)是晶体的周期性势场的数学描述。图 1-1 给出一维周期性势场的示意图。 V1 , V2 , V3 …,分别代表原子 1,2,3,…,的势场,V 代表叠加后的晶体势场。周期性势场中的电子可以有两种运动方式,一是在一个原子的势场中运动,二是 在整个晶体中运动。比如具有能量 E1 或 E2 的电子在可以在原子 1 的势场中运动,根据 量子力学的隧道效应,它还可以通过隧道效应越过势垒 V 到势阱 2,势阱 3,…,中运 动。换言之,周期性势场中,属于某个原子的电子既可以在该原子附近运动,也可以在 其它的原子附近运动, 即可以在整个晶体中运动。 通常把前者称为电子的局域化运动 (相 应的电子波函数称为原子轨道) ,而把后者称为共有化运动(相应的电子波函数称为晶 格轨道) 。局域化运动电子的电子态又称为局域态。共有化运动的电子态又称为扩展态。 晶体中的电子的运动既有局域化的特征又有共有化特征。 如果电子能量较低, 例如图 1-1 中的 E2,在该能态电子受原子核束缚较强,势垒 V-E2 较大。电子从势阱 1 穿过势垒进 入势阱 2 的概率就比较小。对于处在这种能量状态的电子来说,它的共有化运动的程度 就比较小。但对于束缚能较弱的状态 E1,由于势垒 V-E1 的值较小,穿透隧道的概率就 比较大。因此处于状态 E1 的电子共有化的程度比较大。价电子是原子的最外层电子, 受原子的束缚比较弱,因此它们的共有化的特征就比较显著。在研究半导体中的电子状 态时我们最感兴趣的正是价电子的电子状态。 2 V1 V2 V1 V3 V2 V3 V E1 V V V E2 1 2 3 原子 图 周期势场示意图 -2 -a 0 a 2 图 周期为 a 的一维周期性势场 图 周期势场示意图 周期性势场中电子的波函数 布洛赫(Bloch)定理 布洛赫( ) 布洛赫定理给出了周期性势场中电子的运动状态, 提供了研究晶体中电子运动的理 论基础。 单电子近似(哈崔 福克 Hartree-Fock 近似) 单电子近似(哈崔-福克 近似) 晶 体 是 由 规 则 的 ,周 期 性 排 列 起 来 的 原 子 所 组 成 的 ,每 个 原 子 又 包 含 有 原子核和核外电子。原子核和电子之间、电子和电子之间存在着库仑作用。 因 此 ,它 们 的 运 动 不 是 彼 此 无 关 的 ,应 该 把 它 们 作 为 一 个 体 系 统 一 地 加 以 考 虑 。也 就 是 说 ,晶 体 中 电 子 运 动 的 问 题 是 一 个 复 杂 的 多 体 问 题 。为 使 问 题 简 化 ,可 以 近 似 地 把 每 个 电 子 的 运 动 单 独 地 加 以 考 虑 ,即 在 研 究 一 个 电 子 的 运 动 时 ,把 在 晶 体 中 各 处 的 其 它 电 子 和 原 子 核 对 这 个 电 子 的 库 仑 作 用 ,按 照 它 们 的 几 率 分 布 ,平 均 地 加 以 考 虑 。也 就 是 说 ,其 它 电 子 和 原 子 核 对 这 个 电 子 3 的 作 用 是 为 这 个 电 子 提 供 了 一 个 势 场 。这 种 近 似 称 为 单 电 子 近 似 。单 电 子 近 似 方 法 也 被 称 之 为 哈 崔 -福 克 方 法 。 这 样 , 一 个 电 子 所 受 的 库 仑 作 用 仅 随 它 自 己 的 位 置 的 变 化 而 变 化 。或 者 说 ,一 个 电 子 的 势 函 数 仅 仅 是 它 自 己 的 坐 标 的 函 数 。于 是 它 的 运 动 便 由 下 面 仅 包 含 这 个 电 子 的 坐 标 的 波 动 方 程 式 所 决 定 2 2 + V (r )ψ (r ) = E ψ (r ) 2m 式中 2 2 — 电子的动能算符 2m ( 1-3) V (r ) — 电子的势能算符,它具有晶格的周期性 — 电子的能量 — 电子的波函数 E ψ (r ) = h , 2π h 为普朗克常数, 称为约化普朗克常数 布 洛 定 理 布 洛 定 理 指 出 : 如 果 势 函 数 V (r ) 有 晶 格 的 周 期 性 , 即 V (r ) = V (r + Rm ) 〔 公 式 ( 1-2) 〕则 方 程 式 ( 1-3) 的 解 ψ (r ) 具 有 如 下 形 式 ψ k (r ) = eik r uk (r ) 式 中 函 数 u k (r ) 具 有 晶 格 的 周 期 性 , 即 ( 1-4) uk (r + Rm ) = uk (r ) 以上陈述即为布洛定理。 ( 1-5) 布 洛 定 理 中 出 现 的 矢 量 Rm 为 式 ( 1-1) 所 定 义 的 晶 格 平 移 矢 量 。 矢 量 k 4 称 为 波 矢 量 ,是 任 意 实 数 矢 量 。 k = 2π λ 称为波数, λ 为电子波长。 k 是标志 电 子 运 动 状 态 的 量 。 由 式 ( 1-4) 所 确 定 的 波 函 数 称 为 布 洛 赫 函 数 或 布 洛 赫 波。 由于 ψ k (r + Rm ) = eik (r +R )uk (r + Rm ) m = = 即 eik Rm eik r uk (r ) eik Rmψ k (r ) ψ k (r + Rm ) = eik R ψ k (r ) m ( 1-6) 式 ( 1-6) 是 布 洛 赫 定 理 的 另 一 种 表 述 。 式 ( 1-6) 说 明 , 晶 体 中 不 同 原 胞 对 应点处的电子波函数只差一个模量为 1 的因子 e ik Rm 也就是说,在晶体中各 个 原 胞 对 应 点 处 电 子 出 现 的 概 率 相 同 ,即 电 子 可 以 在 整 个 晶 体 中 运 动 — 共 有 化运动。 我 们 现 在 考 察 波 矢 量 k 和 波 矢 量 k = k + Kn 标 志 的 两 个 状 态 。 ' 式中 K n = n1b1 + n2b2 + n3b3 = ∑ ni bi i =1 3 (1-7) 叫 做 倒 格 矢 ( reciprocal lattice vector) b1 , b2 , b3 叫 做 与 基 矢 a1 , a 2 , 。 a3 相 应 的 倒 基 矢 。 n1 , n2 , n3 为 任 意 整 数 。由 b1 , b2 , b3 所 构 成 的 空 间 称 为倒 空 间 (reciprocal space)或 倒 格 子 ( reciprocal lattice) b1 , b2 , b3 与 。 a1 , a 2 , a3 之 间 具 有 如 下 的 正 交 关 系 2π , i = j bi a j = 2πδ ij = 0, i ≠ j 且 ( i, j = 1, 2, 3) b1 = 2π (a 2 × a3 ) 5 b2 = b3 = 式中 2π (a3 × a1 ) 2π (a1 × a 2 ) = a1 ( a 2 × a 3 ) 为晶格原胞的体积。 (举例:晶格常数为 a 的一维晶格和它的倒格子: b = 2π / a 。 a ≈ , b ≈ 108 cm 1 )晶 格 平 移 矢 量 Rm 和 倒 格 矢 K n 之 间 满 足 如 下 关 系 eiKn Rm = 1 利用上式,有 i k + K n Rm e ( ) = eiKn Rm eik Rm = eik Rm 由 于 波 矢 量 k 是 标 志 电 子 状 态 的 量 ,可 见 ,相 差 倒 格 矢 K n 的 两 个 k 代 表 的 是 同 一 个 状 态 。 举 例 :倒 空 间 一 维 波 矢 量 ) ( 。因 此 ,为 了 表 示 晶 体 中 不 同 的 电 子态只需要把 k 限制在以下范围 0 ≤ k1 < 0 ≤ k2 < 0 ≤ k3 < 2π a1 2π a2 2π a3 即可。为对称起见,把 k 值限制在 6 或写作 π a1 ≤ k1 < ≤ k2 < ≤ k3 < π a1 π a2 π a2 π a3 π a3 π ≤ k i ai < π ( 1-8) 公 式 ( 1-8) 所 定 义 的 区 域 称 为 k 空 间 的 第 一 布 里 渊 ( 1st Brillouin Zone) 区。 布里渊区是把倒空间划分成的一些区域。布里渊区是这样划分的:在 倒 空 间 ,作 原 点 与 所 有 倒 格 点 之 间 连 线 的 中 垂 面 ,这 些 平 面 便 把 倒 空 间 划 分 成 一 些 区 域 ,其 中 ,距 原 点 最 近 的 一 个 区 域 为 第 一 布 里 渊 区( 1stBZ),距 原 点 次 近 的 若 干 个 区 域 组 成 第 二 布 里 渊 区 ,以 此 类 推 。这 些 中 垂 面 就 是 布 里 渊 区的分界面。 在 布 里 渊 区 边 界 上 的 k 的 代 表 点 , 都 位 于 到 格 矢 Kn 的 中 垂 面 上 , 它 们 满足下面的平面方程: k (Kn / Kn ) = 即 1 Kn 2 k Kn = 1 2 Kn 2 ( 1-9) k 取遍 k 空间除原点以外的所有所有 k 的代表点。可以证明,这样划分的布里渊区,具有以下特性: 1.每 个 布 里 渊 区 的 体 积 都 相 等 , 而 且 就 等 于 一 个 倒 原 胞 的 体 积 。 7 2. 每 个 布 里 渊 区 的 各 个 部 分 经 过 平 移 适 当 的 倒 格 矢 K n 之 后 ,可 使 一 个 布 里 渊区与另一个布里渊区相重合。 3. 每 个 布 里 渊 区 都 是 以 原 点 为 中 心 而 对 称 地 分 布 着 而 且 具 有 正 格 子 和 倒 格 子的点群对称性。布里渊区可以组成倒空间的周期性的重复单元。 根 据 以 上 分 析 ,对 于 周 期 为 a 的 一 维 晶 格 ,第 一 布 里 渊 区 为 [ 第二布里渊区为[ π π 2π π π 2π , )和[ , ) 余此类推。 。 a a a a , ) 。 a a 值得注意的是布里渊区边界上的两点相差一个倒格矢,因此代表同一个 状态。 常见金刚石结构和闪锌矿结构具有面心立方晶格,其第一布里渊区如图 1-2 所 示 。布 里 渊 区 中 心 用 Γ 表 示 。六 个 对 称 的 <100>轴 用 表 示 。八 个 对 称 的 <111>轴 用 ∧ 表 示 。 十 二 个 对 称 的 <110>轴 用 ∑ 表 示 。 符 号 X、 L、 K 分 别 表 示 <100>、 <111>、 <110>轴 与 布 里 渊 区 边 界 的 交 点 。 其 坐 标 分 别 为 X: 2π 2π 1 1 1 (1, 0, 0) , L: ( , , ) a a 2 2 2 K: 2π 3 3 ( , , 0) a 4 4 在六个对称的 X 点中,每一个点都与另一个相对于原点同它对称的点相 距 一 个 倒 格 矢 ,它 们 是 彼 此 等 价 的 。不 等 价 的 X 点 只 有 三 个 。同 理 ,在 八 个 对称的 L 点中不等价的只有四个。 L Γ Χ ky K kx 8 图 1-2 面 心 立 方 格 子 的 第 一 布 里 渊 区 图 下面我们来证明布洛赫定理。 引入电子的哈蜜顿算符 H=- 2 2 + V (r) 2m 则 波 动 方 程 ( 1-3) 可 以 简 写 成 Hψ (r) = Eψ (r) ( 1-10) 引 入 平 移 算 符 T ( Rm , 其 定 义 为 , 当 它 作 用 在 任 意 函 数 f( r ) 上 后 , 将 函 Rm) 数 中 的 变 量 r 换 成 ( r +Rm ,得 到 r 的 另 一 函 数 f( r +Rm ,即 Rm) Rm) Rm Rm Rm)f(r )=f( r +Rm Rm) T (Rm Rm r Rm (1-11) 平 移 算 符 彼 此 之 间 可 以 交 换 。 对 于 任 意 两 个 平 移 算 符 T (Rm Rm)和 T (Rn Rn), Rm Rn 有 =T(Rm+Rn) T(Rm)T(Rn) =T(Rn)T(Rm) =T(Rm Rn) 证明如下: T(Rm)T(Rn)f(r)=T(Rm)f(r T(Rm)T(Rn)f(r)=T(Rm) (r+ Rn) (r =f(r +Rn Rm r Rn Rm) Rn+Rm =T (r +Rn Rm T r Rn Rm)f( r ) Rn+Rm (1-12) 9 =T (r +Rm Rn T r Rm Rn)f( r ) Rm+Rn =T (Rn T Rn Rn)f(r + Rm r Rm) = T ( Rn T ( Rm f(r ) Rn) Rm) r 这 说 明 两 个 平 移 操 作 接 连 进 行 的 结 果 ,不 依 赖 于 它 们 的 先 后 次 序 ,即 平 移 算 符彼此之间是可以交换的。 在 周 期 性 势 场 中 运 动 的 电 子 的 势 函 数 V(r ) 具 有 晶 格 的 周 期 性 [ 公 式 r ( 1-2) ]因 而 有 2 2 T(R m )Hψ (r) = (∑ ) + V (r + R m ) ψ (r + R m ) 2 2m j ( x j + m j a j ) 2 2 = + V (r) ψ (r + R m ) 2m = HT(R m )ψ (r) 上 式 表 明 , 任 意 一 个 晶 格 平 移 算 符 T (Rm Rm)和 电 子 的 哈 密 顿 算 符 H 彼 此 间 两 两 Rm 可交换,即 Rm)H HT Rm) HT(Rm T (Rm H =HT Rm Rm (1-13) 根据量子力学的一个普遍定理,这些线性算符可以有共同的本征函数。 或者说,存在这样的表象,在此表象中,这些算符的矩阵元素同时对角化。 容易说明,为了选择 H 的本征函数,使得它们同时也是所有平移算符的 本 征 函 数 , 只 需 要 它 们 是 三 个 基 本 平 移 算 符 T (a 1 ) ,T ( a 2 ), T (a 3 )的 本 征 a T a 函 数 就 够 了 。 也 就 是 说 , 如 果 ψ ( r ) 是 基 本 平 移 算 符 T ( a j ) ,T ( a 2 ), T (a 3 ) T a 的 本 征 函 数 , 则 它 也 是 平 移 算 符 T (Rm Rm)的 本 征 函 数 。 证 明 如 下 : 选 择 ( 1-3) Rm 10 的 解 ψ (r ) 是 基 本 平 移 算 符 的 本 证 函 数 , 即 T(a1 )ψ (r) = ψ (r + a1 ) = C (a1 )ψ (r) T (a2 )ψ (r ) = ψ (r + a2 ) = C (a2 )ψ (r ) T (a3 )ψ (r ) = ψ (r + a3 ) = C (a3 )ψ (r ) 或 T (a j )ψ (r ) = ψ (r + a j ) = C (a j )ψ (r ), ( j = 1, 2,3) 其 中 C ( a1 ), C ( a2 ), C ( a3 ) 分 别 是 三 个 基 本 平 移 算 符 的 本 征 值 。 T ( Rm )ψ (r ) = m1a1 + m2 a2 + m3 a3 )ψ (r ) T( = ψ ( r + Rm ) = T ( a1 ) 1 T ( a2 ) 2 T ( a3 ) 3 ψ (r ) m m m = C ( a1 ) 1 C ( a2 ) 2 C ( a3 ) 3ψ ( r ) m m m =λ ψ ( r ) ( 1-14) 可 见 , 若 C ( a1 ), C ( a2 ), C ( a3 ) 分 别 是 三 个 基 本 平 移 算 符 的 本 征 值 。 则 λ = C ( a1 ) 1 C ( a2 ) 2 C ( a3 ) 3 就 是 平 移 算 符 T (Rm Rm)的 本 征 值 。 因 此 , 若 ψ ( r ) 是 三 个 Rm m m m 基 本 平 移 算 符 T (a 1 ) ,T ( a 2 ), T (a 3 )的 本 征 函 数 , 则 它 也 是 平 移 算 符 T (Rm Rm) a T a Rm 的 本 征 函 数 。 我 们 就 这 样 来 选 择 波 动 方 程 ( 1-3) 的 解 , 使 它 们 同 时 也 是 所 有 平 移 算 符 的 本 征 函 数 。或 者 说 通 过 寻 找 平 移 算 符 的 本 征 函 数 去 找 到 波 动 方 程 ( 1-3) 的 解 。 11 由 于 平 移 算 符 T (Rm Rm)和 H 可 以 交 换 ,所 以 若 ψ ( r ) 是 H 的 本 征 函 数 ,则 经 Rm 过 平 移 后 的 函 数 ψ ( r + Rm ) 一 定 也 都 是 H 的 本 征 函 数 。 求 这 些 函 数 都 要 满 足 要 归 一 化 条 件 , 因 而 它 们 之 间 的 比 例 系 数 的 绝 对 值 必 须 等 于 1, 即 C (a1 ) m1 C (a2 ) m2 C (a3 ) m3 该式成立的充分必要条件是 =1 ( m1 , m2 , m3 是任意整数) C (a1 ) = 1, C (a2 ) = 1, C (a3 ) = 1 。 即要求这三个常数只可能是模量为 1 的复数。它们一般可以写成 C (a1 ) = ei 2πβ1 , C (a2 ) = ei 2πβ2 , C (a3 ) = ei 2πβ3 或者 C (a j ) = e 这里 i 2πβ j ( j=1, 2, 3) ( 1-15) β1 , β 2 , β3 为 三 个 任 意 实 数 。 以 这 三 个 实 数 为 系 数 , 把 三 个 倒 基 矢 线 性 组 合 起 来 , 得 到 一 个 实 数 矢 量 K: k = β1b1 + β 2b2 + β 3b3 根据正基矢与倒基矢之间的正交关系 3 (1-16) k a j = ∑ βi bi a j = 2πβ j i =1 可 以 把 式 ( 1-15) 改 写 成 C (a1 ) = eik a1 , C (a2 ) = eik a2 , C (a3 ) = eik a3 或者 12 C (a j ) = e 代替 ik a j ( 1-17) β1 , β 2 , β3 , 引 入 了 矢 量 K 。 在 量 子 力 学 中 ,如 果 算 符 代 表 一 定 的 物 理 量 ,其 本 征 值 是 实 数 ,相 应 的 算 符 为 厄 米 算 符 。平 移 算 符 只 是 一 种 对 称 操 作 ,不 代 表 物 理 量 ,不 具 有 厄 米 算 符的性质,因此其本征值可以是复数。 将 ( 1-17) 代 入 ( 1-14) 得 到 , ψ (r + Rm ) = eik R ψ (r ) m ( 1-18) 式 ( 1-18) 即 为 式 ( 1-6) 是 布 洛 赫 定 理 的 另 一 种 形 式 。 , 利 用 波 函 数 ψ ( r ) , 可 以 定 义 一 个 新 的 函 数 u (r ) , u (r ) = e ik rψ (r ) ( 1-19) 根 据 波 函 数 的 性 质 式 ( 1-18) 容 易 看 出 , 函 数 u (r ) 具 有 晶 格 的 周 期 性 : , u (r + Rm ) = e ik ( r + Rm )ψ (r + Rm ) = e ik rψ ( r ) = u (r ) ( 1-20) 于 是 , 由 式 ( 1-19) 可 以 将 周 期 性 势 场 中 电 子 的 波 函 数 表 示 为 , ψ (r ) = eik r u (r ) 其 中 u (r ) 具 有 晶 格 的 周 期 性 。 根 据 以 上 分 析 ,周 期 性 势 场 中 电 子 的 波 函 数 可 以 表 示 成 一 个 平 面 波 和 一 13 个 周 期 性 因 子 的 乘 积 。 平 面 波 的 波 矢 量 为 实 数 矢 量 k, 它 可 以 用 来 标 志 电 子 的 运 动 状 态 。不 同 的 k 代 表 不 同 的 电 子 态 ,因 此 k 也 同 时 起 着 一 个 量 子 数 的 作 用 。 为 明 确 起 见 , 在 波 函 数 上 附 加 一 个 指 标 k ,写 作 ψ k (r ) = eik r uk (r ) 至此,布洛赫定理得证。 相 应 的 本 征 值 — 能 量 谱 值 为 E=E( k ) 。 根 据 公 式 ( 1-21) 可 以 看 出 : ( 1-21) 1. 波 矢 量 k 只 能 取 实 数 值 ,若 k 取 为 复 数 ,则 在 波 函 数 中 将 出 现 衰 减 因 子 , 这样的解不能代表电子在完整晶体中的稳定状态。 2.平 面 波 因 子 e ik r 与自由电子的波函数相同, 描述电子在各原胞之间的 它 运动—共有化运动。 3.因 子 uk ( r ) 则 描 述 电 子 在 原 胞 中 的 运 动 — 局 域 化 运 动 。它 在 各 原 胞 之 间 周期性地重复着。 4.根 据 式 (1-18), ψ k (r + Rm ) 2 = ψ k (r ) 2 (1-22) 这说明电子在各原胞的对应点上出现的概率相等. 需 要 指 出 的 是 , 由 于 晶 体 中 电 子 的 波 函 数 不 是 单 纯 的 平 面 波 ,而 是 还 乘 以一个周期性函数。 以它们的动量算符 所 与哈密顿算符 H 是不可交换的。 i 因 此 , 晶 体 中 电 子 的 动 量 不 取 确 定 值 。由 于 波 矢 量 k 与 约 化 普 朗 克 常 数 的 乘 积 是 一 个 具 有 动 量 量 纲 的 量 , 对 于 在 周 期 性 势 场 中 运 动 的 电 子 ,通 常 把 14 p = k (1-23) 称 为 晶 体 动 量 crystal momentum) 或 电 子 的 准 动 量 (quasimomentum)” “ ( ” “ . 周 期 性 边 界 条 件 ( 玻 恩 - 卡 曼 边 界 条 件 ) 在 讨 论 电 子 的 运 动 情 况 时 ,我 们 没 有 考 虑 晶 体 边 界 处 的 情 况 ,就 是 说 我 们 把 晶 体 看 作 是 无 限 大 的 。对 于 实 际 晶 体 ,除 了 需 要 求 解 波 动 方 程 之 外 ,还 必 须 考 虑 边 界 条 件 。根 据 布 洛 赫 定 理 ,周 期 场 中 的 电 子 的 波 函 数 可 以 写 成 一 个 平 面 波 与 一 个 周 期 性 因 子 相 乘 积 。平 面 波 的 波 矢 量 k 为 任 意 实 数 矢 量 。当 考虑到边界条件后,k 要受到限制,只能取分立值。本节我们将根据晶体的 周期性边界条件,对 k 作一些更深入的讨论。 实 际 的 晶 体 其 大 小 总 是 有 限 的 。电 子 在 晶 体 表 面 附 近 的 原 胞 中 所 处 的 情 况 与 内 部 原 胞 中 的 相 应 位 置 上 所 处 的 情 况 不 同 ,因 而 ,周 期 性 被 破 坏 ,给 理 论 分 析 带 来 一 定 的 不 便 。 为 了 克 服 这 一 困 难 , 通 常 都 采 用 玻 恩 -卡 曼 的 周 期 性边界条件。 玻 恩 -卡 曼 的 周 期 性 边 界 条 件 的 基 本 思 想 是 ,设 想 一 个 有 限 大 小 的 晶 体 , 它 处 于 无 限 大 的 晶 体 中 ,而 无 限 晶 体 又 是 这 一 有 限 晶 体 周 期 性 重 复 堆 积 起 来 的 。由 于 有 限 晶 体 是 处 于 无 限 晶 体 之 中 ,因 而 ,电 子 在 其 界 面 附 近 所 处 的 情 况 与 内 部 相 同 ,电 子 势 场 的 周 期 性 不 致 被 破 坏 。假 想 的 无 限 晶 体 只 是 有 限 晶 体 的 周 期 性 重 复 ,只 需 要 考 虑 这 个 有 限 晶 体 就 够 了 ,并 要 求 在 各 有 限 晶 体 的 相 应 位 置 上 电 子 运 动 情 况 相 同 。或 者 说 ,要 求 电 子 的 运 动 情 况 ,以 有 限 晶 体 为 周 期 而 在 空 间 周 期 性 地 重 复 着 。于 是 ,问 题 便 得 到 了 解 决 。这 就 是 所 谓 周 期性边界条件。 设 想 所 考 虑 的 有 限 晶 体 是 一 个 平 行 六 面 体 , 沿 a1 方 向 有 N1 个 原 胞 , 沿 a2 方 向 有 N2 个 原 胞 , 沿 a3 方 向 有 N3 个 原 胞 , 总 原 胞 数 N 为 N=N 1 N 2 N 3 . ( ) 15 周 期 性 边 界 条 件 要 求 沿 aj 方 向 上 , 由 于 以 N ja j 为 周 期 性 , 所 以 ψ k (r + N j a j ) = ψ k (r ). ( j=1, 2, 3) ( ) 将 晶 体 中 的 电 子 波 函 数 公 式 ( ) 代 入 这 一 条 件 后 , 则 要 求 e ik ( r + N j a j ) uk (r + N ja j ) = eik r uk (r ). 考 虑 到 函 数 uk ( r ) 是一个具有晶体周期性的函数,因而,要上式成立,只需 ik N j a j e =1 即要求 k N j a j 为 2π的整数倍。 将波矢量 k 的表示式 k = β1b1 + β 2b2 + β 3b3 代入上式, 并利用正交关系 biaj=2πδij ,上面的条件可改写为 k N j a j = β j N j 2π = l j 2π , (l j 为任意整数)或者 β j = l j / N j , ( j = 1, 2, 3) 即 β1 = l1 / N1 , β 2 = l2 / N 2 , β3 = l3 / N 3 ,( l1 l2 l3 为任意整数) () 由于 l j 为整数,所以 β j 只能取分立值。将式()代入式() ,则发现在周期性 边界条件限制下,波矢量 k 只能取分立值, 3 l l l1 l j b1 + 2 b2 + 3 b3 = ∑ b j N1 N2 N3 j =1 N j k= () 16 ( l1 l2 l3 为任意整数) 。 而与这些波矢量 k 相应的能量 E (k)也只能取分立值,这给理论分析上带来很大 的方便。 在倒空间中每个倒原

首先得先知道坐标怎么定的,从波函数的对称性考虑,势阱应该是x=0到a处先求归一化常数A积分(0到a)|Ψ(x)|^2 dx=积分(0到a)A^2 x^2(a-x)^2 dx=A^2*a^5/30==1A^2=30/a^5算出|Ψ(x)|^2 就是概率密度,阱外都是0=积分(0到a)Ψ*(x) H Ψ(x) dxH是哈密顿算符,这里就是 -h^2/(2*pi)^2/2m d^2/dx^2=积分(0到a)Ax(a-x) 2A h^2/(2*pi)^2/2m dx=A^2*h^2/(2*pi)^2/m *[积分(0到a)x(a-x)dx ]=5h^2/(2 pi)^2/m/a^2 Ψ*(x) 指共轭函数,在这里就是本身。基本概念要知道,对归一化波函数|Ψ(x)|^2 就是概率密度。力学量的平均值=积分(Ψ*(x) F Ψ(x) dx), F是力学算符

中药配方颗粒研究现状论文

浅谈传统中药汤剂与中药配方颗粒【关键词】 传统汤剂;中药配方颗粒;中药饮片传统中药汤剂是以中药饮片为原料,按中医处方调剂混合后,加水煎煮,使药物之间充分相互作用,达到防病治病的目的。中药汤剂作为中医临床用药的主要剂型,具有组方灵活、随证加减、起效快、易吸收的特点,但中药质量不可控的问题是制约其发展的瓶颈。其重要原因就是中药材质量不稳定,一些不符合质量标准的药材以次充好,假劣现象严重;且药材在市场上周转时间长,既不卫生又不易保管;调剂时劳动强度大,称量误差大,患者难以核对。随着科学技术的高速发展,现代人快节奏的生活方式,中药汤剂显得跟不上需求,传统的“老三包”需患者自行煎煮,既无加工工艺,又无质量标准,自然疗效很难保证。由于煎煮不方便,一些急症急病很难立即服到中药,从一定意义上讲中药饮片剂型的落后已严重阻碍了中医药事业的发展。另外,传统中药汤剂的使用方式也使西方患者难以接受和掌握而不被国际市场接受,也阻碍了中医中药的科学化、国际化进程,故汤剂的改革势在必行。1 中药配方颗粒的由来随着时代的发展、科学技术的不断进步,传统中药饮片也在发生着变化,也就有了新型中药饮片的产生,中药配方颗粒就是其中之一。中药配方颗粒也称“单味中药浓缩颗粒”、“中药新型颗粒饮片”、“免煎饮片”等,是以符合炮制规范的中药饮片为原料,经现代工艺提取、浓缩、干燥、制粒精制而成的纯中药产品系列。将单味中药饮片提取浓缩成颗粒剂,配成复方用水溶化服用,因其使用方法快捷简单,故在韩国、日本、台湾地区较为流行。2001年我国原国家药品监督管理局发布了《中药配方颗粒管理暂行规定》,中药配方颗粒从2001年12月1日起纳入中药饮片管理范畴,实行批准文号管理。2 中药配方颗粒国外发展现状中药配方颗粒是一种适应时代变化、适应市场需求的产品。在国外,特别是我们的近邻——日本、韩国、新加坡等国家,早在20世纪80年代初就对中药饮片的改进进行了多种探索,并形成了一定的市场规模。日本自20世纪80年代以来汉方颗粒剂发展加快,并将颗粒剂列为国民健康保险基金的使用范围,多数汉方药厂的骨干剂型即为汉方颗粒剂,目前约有2/3的日本医生在临床中应用颗粒剂。日本在浓缩颗粒剂的开发研究领域取得了瞩目的成就,研究的复方中药浓缩颗粒剂有200余种,单味中药浓缩颗粒剂200余种,根据临床随证配方,产品销往欧洲等地。韩国的中药浓缩颗粒剂使用于20世纪90年代,现已发展到300多个品种,并将其列入健康保险用药范围。3 中药配方颗粒的优势 符合中医临床用药要求,保持了中医辨证论治的特色中医的学术水平体现在临床辨证论治中,其诊治水平越高,整体观念越强,辨证越仔细,处方就越灵活。配方颗粒符合中医辨证论治的需要,可以随意组方,加减配伍,既保持了中医辨证论治之长,又具有中成药服用方便之美。它符合中药饮片炮制要求,经提取、浓缩、干燥制粒、分装等工艺过程精制而成,不添加糖、防腐剂及其他赋形剂,保持传统中药饮片的原汁原味。中药配方颗粒每小袋药量即为中医处方的1日常用量,与中药饮片相等量经测定后而得的,装量准确,避免了中药饮片调配过程中分计量误差现象。 中药配方颗粒与传统中药饮片临床药效无显著性差异按照国家中医药管理局《单味中药浓缩颗粒研制指南》中所指的关于“分煎、合煎的药效实验比较”的方法要求,进行免煎饮片与传统饮片药效比较研究,国内不少学者做了大量的工作,初步表明无显著差异。 有利于中药饮片质量标准化管理中药饮片的内在质量受诸多因素的影响,包括药材产地生长环境、自然条件、仓储保管、饮片加工炮制工艺等。中药配方颗粒是将炮制符合要求的中药饮片经提取、浓缩、干燥、制粒等工艺制成的,其生产工艺标准化,并制定了产品质量控制标准、生产工艺的技术参数,使配方颗粒内在质量稳定。 中药配方颗粒服用方便中药配方颗粒不需煎煮,用开水溶化即可服用。不但可以省却煎煮过程,又可以保持中药饮片的气味和功能,同时在制剂过程中采取现代指纹图谱等先进技术,使中药真正做到安全、高效、方便、可控。国际天然植物药市场年交易额已近200亿美元,且以每年10%以上速度增长,随着人类疾病和健康观念的变化,“绿色药品”、“天然保健”的概念逐渐深入人心,中医中药正在被越来越多的消费者认可和接受。剂量小、疗效高、起效快,服用、携带、储藏方便,有科学数据可查,符合外国人治病、保健的需要,潜在的国际市场相当广阔。4 阻碍中药配方颗粒发展的几个问题 生产工艺方面存在着一定的局限性饮片需适度粉碎的品种范围仍有待进一步研究,某些药材不宜打碎,经干燥打碎后可能会损失一部分有效成分(如挥发油成分),甚至可能发生异变,从而影响疗效。粉碎成粗颗粒的最佳粒度需根据具体药材具体确定,颗粒过粗不利于机械化包装;颗粒过细则又易糊化,不利于药汁的滤出。现行的中药配方颗粒从内在质量到外观包装都尚有不足之处,有待于提高。 对中药配方颗粒的认识还未完全统一迄今学术界对中药配方颗粒的认识尚未完全统一,客观上影响了主管行政部门管理政策的出台,使相关的宣传力度不够。患者对中药配方颗粒的接受性存在差异。有些老年患者长期形成的用药习惯不易改变,且他们有充裕的时间,所以“节省时间、即冲即饮”的配方颗粒在这一阶层中不占优势。另外,受教育程度的高低、经济收入的差异也会影响不同职业患者的接受性。这虽由多种因素造成,但患者对经加工精制后的配方颗粒是否真能保持原药材的性味和功效存在疑问是一重要因素。 价格因素中药配方颗粒与传统饮片相比,在价格、让利上处于不利地位,影响推广使用。由于中药配方颗粒制备工艺复杂,投入成本高,使其价格平均比生产工艺简单、低成本的传统饮片要高30%~50%,造成了患者的经济负担。另外,中药配方颗粒仍未进入公费医疗目录,须患者自费承担,使中低收入的患者难以接受。总之,只有解决以上的问题,才能使传统汤剂的改革变成现实。在中药的制剂领域,中药配方颗粒相对于中药传统饮片是一种进步,现代科学技术为这种进步提供了飞跃的翅膀。中药配方颗粒现在尚处于饮片市场的补充角色,但我们有理由相信,其取代传统饮片势在必行。政府部门、医院、中医药界人士应更给予政策、科技和实践等方面的支持,加快发展中药配方颗粒。

中药论文,不知道医学论文可以不,如果可以,你可以上网搜搜,有些网站是专门给医生提供晋升平台的,上面关于医学类的知识很全,我前两天听朋友就说过,有个网站听好的,创新医学网,你可以去看看,希望可以帮到你!

随着时代的发展、科学技术的不断进步,传统中药饮片也在发生着变化,也就有了新型中药饮片的产生,中药配方颗粒就是其中之一。中药配方颗粒也称“单味中药浓缩颗粒”、“中药新型颗粒饮片”、“免煎饮片”等,是以符合炮制规范的中药饮片为原料,经现代工艺提取、浓缩、干燥、制粒精制而成的纯中药产品系列。我国中药配方颗粒处于“试生产”阶段,产品优势明显市场不断扩容,国家药监局共批准了六家中药配方颗粒试生产企业,1200种商品中药材中超过一半的品种已经实现单方颗粒工业化大生产,我国中药配方颗粒产能将大幅度提高。2012年市场容量达到40亿元,同比增速,可以说整个中药配方颗粒行业处于一个快速增长期。中药作为我国医药行业“十二五”规划的重点发展产业之一,新医改和国家发布的《意见》都表明了我国对中药行业的发展导向和相应的扶持政策,未来各方资金都将会加快向中药行业倾斜,以促进中药产业的发展。配方颗粒销售规模小、市场潜力大、主要生产企业均着手产能扩增,未来几年中药配方颗粒仍将保持30%左右增速,到2016年市场整体规模有望突破110亿元,至2018年将快速增长到188亿元。

微观粒子研究论文

微观世界中的轮盘赌——量子论如果说光在空间的传播是相对论的关键,那么光的发射和吸收则带来了量子论的革命。我们知道物体加热时会放出辐射,科学家们想知道这是为什么。为了研究的方便,他们假设了一种本身不发光、能吸收所有照射其上的光线的完美辐射体,称为“黑体”。研究过程中,科学家发现按麦克斯韦电磁波理论计算出的黑体光谱紫外部分的能量是无限的,显然发生了谬误,这被“紫外线灾难。”1900年,德国物理学家普朗克提出了物质中振动原子的新模型。他从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光量子,简称光子。根据这个模型计算出的黑体光谱与实际观测到的相一致。这揭开了物理学上崭新的一页。量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不仅给光学,也给整个物理学提供了新的概念,故通常把它的诞生视为近代物理学的起点。量子假说与物理学界几百年来信奉的“自然界无跳跃”直接矛盾,因此量子理论出现后,许多物理学家不予接受。普朗克本人也十分动摇,后悔当初的大胆举动,甚至放弃了量子论继续用能量的连续变化来解决辐射的问题。但是,历史已经将量子论推上了物理学新纪元的开路先锋的位置,量子论的发展已是锐不可挡第一个意识到量子概念的普遍意义并将其运用到其它问题上的是爱因斯坦。他建立了光量子理论解释光电效应中出现的新现象。光量子论的提出使光的性质的历史争论进入了一个新的阶段。自牛顿以来,光的微粒说和波动说此起彼伏,爱因斯坦的理论重新肯定了微粒说和波动说对于描述光的行为的意义,它们均反映了光的本质的一个侧面:光有时表现出波动性,有时表现出粒子性,但它既非经典的粒子也非经典的波,这就是光的波粒二重性。主要由于爱因斯坦的工作,使量子论在提出之后的最初十年里得以进一步发展。在1911年,卢瑟福提出了原子的行星模型,即电子围绕一个位于原子中心的微小但质量很大的核,即原子核的周围运动。在此后的20年中,物理学的大量研究集中在原子的外围电子结构上。这项工作创立了微观世界的新理论,量子物理,并为量子理论应用于宏观物体奠定了基础。但是原子中心微小的原子核仍然是个谜。原子核是微观世界中的重要层次,量子力学是研究微观粒子运动规律的理论,是现代物理学的理论基础之一,是探索原子核奥秘所不可缺少的工具。在原子量子理论被提出后不久,物理学家开始探讨原子中微小的质量核-原子核。在原子中,正电原子核在静态条件下吸引负电子。但是什么使原子核本身能聚合在一起呢?原子核包含带正电质子和不带电的中子,两者之间存在巨大的排斥力,而且质子彼此排斥(不带电的中子没有这种排斥力)。使原子核聚合在一起,并且克服侄子间排斥力的是一种新的强大的力,它只在原子核内部起作用。原子弹的巨大能量就来自这种强大的核力。原子核和核力性质的研究对20世纪产生了巨大的影响,放射现象、同位素、核反应、裂变、聚变、原子能、核武器和核药物都是核物理学的副产品。丹麦物理学家玻尔首次将量子假设应用到原子中,并对原子光谱的不连续性作出了解释。他认为,电子只在一些特定的圆轨道上绕核运行。在这些轨道上运行时并不发射能量,只当它从一个较高能量的轨道向一个较低轨道跃迁时才发射辐射,反之吸收辐射。这个理论不仅在卢瑟福模型的基础上解决了原子的稳定性问题,而且用于氢原子时与光谱分析所得的实验结果完全符合,因此引起了物理学界的震动。玻尔指导了19世纪20到年代的物理学家理解量子理论听起来自相矛盾的基本结构,他实际上既是这种理论的“助产师”又是护士。玻尔的量子化原子结构明显违背古典理论,同样招致了许多科学家的不满。但它在解释光谱分布的经验规律方面意外地成功,使它获得了很高的声誉。不过玻尔的理论只能用于解决氢原子这样比较简单的情形,对于多电子的原子光谱便无法解释。旧量子论面临着危机,但不久就被突破。在这方面首先取得突破的是法国物理学家德布罗意。他在大学时专业学的是历史,但他的哥哥是研究X射线的著名物理学家。受他的影响,德布罗意大学毕业后改学物理,与兄长一起研究X射线的波动性和粒子性的问题。经过长期思考,德布罗意突然意识到爱因斯坦的光量子理论应该推广到一切物质粒子,特别是光子。1923年9月到10月,他连续发表了三篇论文,提出了电子也是一种波的理论,并引入了“驻波”的概念描述电子在原子中呈非辐射的静止状态。驻波与在湖面上或线上移动的行波相对,吉它琴弦上的振动就是一种驻波。这样就可以用波函数的形式描绘出电子的位置。不过它给出的不是我们熟悉的确定的量,而是统计上的“分布概率”,它很好地反映了电子在空间的分布和运行状况。德布罗意还预言电子束在穿过小孔时也会发生衍射现象。1924年,他写出博士论文“关于量子理论的研究”,更系统地阐述了物质波理论,爱因斯坦对此十分赞赏。不出几年,实验物理学家真的观测到了电子的衍射现象,证实了德布罗意的物质波的存在。沿着物质波概念继续前进并创立了波动力学的是奥地利物理学家薛定谔。他从爱因斯坦的一篇论文中得知了德布罗意的物质波概念后立刻接受了这个观点。他提出,粒子不过是波动辐射上的泡沫。1925年,他推出了一个相对论的波动方程,但与实验结果不完全吻合。1926年,他改而处理非相对论的电子问题,得出的波动方程在实验中得到了证实。1925年,德国青年物理学家海森伯格写出了一篇名为《关于运动学和力学关系的量子论重新解释》的论文,创立了解决量子波动理论的矩阵方法。玻尔理论中的电子轨道、运行周期这样古典的然而是不可测量的概念被辐射频率和强度所代替。经过海森伯格和英国一位年轻的科学家狄喇克的共同努力,矩阵力学逐渐成为一个概念完整、逻辑自洽的理论体系。波动力学与矩阵力学各自的支持者们一度争论不休,指责对方的理论有缺陷。到了1926年,薛定谔发现这两种理论在数学上是等价的,双方才消除了敌意。从此这两大理论合称量子力学,而薛定谔的波动方程由于更易于掌握而成为量子力学的基本方程。海森伯格不确定原则是量子论中最重要的原则之一。它指出,不可能同时精确地测量出粒子的动量和位置,因为在测量过程中仪器会对测量过程产生干扰,测量其动量就会改变其位置,反之亦然。量子理论跨越了牛顿力学中的死角。在解释事物的宏观行为时,只有量子理论能处理原子和分子现象中的细节。但是,这一新理论所产生的似是而非的矛盾说法比光的波粒二重性还要多。牛顿力学以确定性和决定性来回答问题,量子理论则用可能性和统计数据来回答。传统物理学精确地告诉我们火星在哪里,而量子理论让我们就原子中电子的位置进行一场赌博。海森伯格不确定性使人类对微观世界的认识受到了绝对的限制,并告诉我们要想丝毫不影响结果,我们就无法进行测量。量子力学的奠基人之一薛定谔在1935年就意识到了量子力学中不确定性的问题,并假设了一个著名的猫思维实验:“一只猫关在一钢盒内,盒中有下述极残忍的装置(必须保证此装置不受猫的直接干扰):在盖革计数器中有一小块辐射物质,它非常小,或许在1小时中只有一个原子衰变。在相同的几率下或许没有一个原子衰变。如果发生衰变,计数管便放电并通过继电器释放一个锤,击碎一个小小的氰化物瓶。如果人们使这整个系统自在1个小时,那么人们会说,如果在此期间没有原子衰变,这猫就是活的。第一次原子衰变必定会毒杀了这只猫。”常识告诉我们那只猫是非死即活的,两者必居其一。可是按照量子力学的规则,盒内整个系统处于两种态的叠加之中,一态中有活猫,另一态中有死猫。但是有谁在现实生活中见过一个又活又死的猫呢?猫应该知道自己是活还是死,然而量子理论告诉我们,这个不幸的动物处于一种悬而未决的死活状态中,直到某人窥视盒内看个究竟为止。此时,它要么变得生气勃勃,要么立刻死亡。如果把猫换成一个人,那么详谬变得更尖锐了,因为这样一来,监禁在盒内的那位朋友会自始至终地意识到他是健康与否。如果实验员打开盒子,发现他仍然是活的,那时他可以问他的朋友,在此观察前他感觉如何,显然这位朋友会回答在所有的时间中他绝对活着。可这跟量子力学是相矛盾的,因为量子理论认为在盒内的东西被观察之前那位朋友仍处在活死迭加状态中。玻尔敏锐地意识到它正表征了经典概念的局限性,因此以此为基础提出“互补原则”,认为在量子领域总是存在互相排斥的两种经典特征,正是它们的互补构成了量子力学的基本特征。玻尔的互补原则被称为正统的哥本哈根解释,但爱因斯坦一直不同意。他始终认为统计性的量子力学是不完备的,而互补原理是一种绥靖哲学,因而一再提出假说和实验责难量子论,但玻尔总能给出自洽的回答,为量子论辩护。爱因斯坦与玻尔的论战持续了半个世纪,直到他们两人去世也没有完结。薛定谔猫实验告诉我们,在原子领域中实在的佯谬性质与日常生活和经验是不相关的,量子幽灵以某种方式局限于原子的阴影似的微观世界之中。如果遵循量子理论的逻辑到达其最终结论,则大部分的物理宇宙似乎要消失于阴影似的幻想之中。爱因斯坦决不愿意接受这种逻辑结论。他反问:没有人注视时月亮是否实在?科学是一项不带个人色彩的客观的事业,将观察者作为物理实在的一个关键要素的思想看来与整个科学精神相矛盾。如果没有一个“外在的”具体世界供我们实验与测量,全部科学不就退化为追逐想象的一个游戏了吗量子理论革命性的特点,一开始就引起了关于它的正确性及其解释内容的激烈争论,在20世纪中这个争论一直进行着。自然法则从根本上将是否具有随机性?在我们的观察中是否存在实体?我们又是否受到了观察的现象的影响?爱因斯坦率先从几个方面对量子理论提出质疑。他不承认自然法则是随机的。他不相信“上帝在和世界玩骰子”。在和玻尔的一系列著名的论战中,爱因斯坦又一次提出了批判,试图结实量子理论潜在的漏洞、错误和缺点。玻尔则巧妙地挫败了爱因斯坦的所有攻击。在1935年的一篇论文中,爱因斯坦提出了一个新证据:断言量子理论无法对自然界进行完全的描述。根据爱因斯坦的说法,一些无法被量子理论预见的物理现象应该能被观测到。这一挑战最终导致阿斯派特做了一系列著名的试验,准备用这些试验解决这一争论。阿斯派特的实验详尽地证明了量子理论的正确性。阿斯派特认为,量子理论能够预见但无法解释一些奇妙的现象,爱因斯坦断言这一点是不可能的。由此似乎信息传播地比光速还快-很明显地违背了相对论和因果律。阿斯派特的实验结论仍有争议,但它们已促成了关于量子论的更多的奇谈怪论由玻尔和海森伯格发展起来的理论和哥本哈根派的观点,尽管仍有争论,却逐渐在大多数物理学家中得到认可。按照该学派的观点,自然规律既非客观的,也非确定的。观察者无法描述独立于他们之外的现实。就象不确定律和测不准定律告诉我们的一样,观察者只能受到观察结果的影响。按自然规律得出的实验性预见总是统计性的而非确定性的。没有定规可寻,它仅仅是一种可能性的分布。电子在不同的两个实验中表现出的波动性和粒子性这一表面上的矛盾是互补性原理的有关例子。量子理论能够正确地、连续地预测电子的波动性或粒子性,却不能同时对两者进行预测。按照玻尔的观点,这一矛盾是我们在对电子性质的不断探索中,在我们的大脑中产生的,它不是量子理论的一部分。而且,从自然界中只能得到量子理论提供的有限的、统计性的信息。量子理论是完备的:该理论未能告诉我们的东西或许是有趣的猜想或隐喻。但这些东西既不可观测,也不可测量,因而与科学无关。哥本哈根解释未能满足爱因斯坦关于一个完全客观的和决定性的物理定律应该是什么样的要求。几年后,他通过一系列思维推理实验向玻尔发起挑战。这些实验计划用来证明在量子理论中的预测中存在着不一致和错误。爱因斯坦用两难论或量子理论中的矛盾向玻尔发难。玻尔把问题稍微思考几天,然后就能提出解决办法。爱因斯坦男买内过分地看重了一些东西或者忽略了某些效应。有一次,具有讽刺意味的是爱因斯坦忘记了考虑他自己提出的广义相对论。最终,爱因斯坦承认了量子理论的主观一致性,但他仍固执地坚持一个致命的批判:EPR思维实验。1935年,爱因斯坦和两个同事普多斯基和罗森合作写了一篇驳斥量子理论完备性的论文,在物理学家和科学思想家中间广为流传。该论文以三个人姓氏的第一个字母合称EPR论文。他们假设有两个电子:电子1和电子2发生碰撞。由于它们带有相同的电荷,这种碰撞是弹性的,符合能量守衡定律,碰撞后两电子的动量和运动方向是相关的。因而,如果测出了电子1的位置,就能推知电子2的位置。假设在碰撞发生后精确测量电子1的位置,然后测量其动量。由于每次只测量了一个量,测量的结果应该是准确的。由于电子1、2之间的相关性,虽然我们没有测量电子2,即没有干扰过它,但仍然可以精确推测电子2的位置和动量。换句话说,我们经过一次测量得知了电子的位置和动量,而量子理论说这是不可能的,关于这一点量子理论没有预见到。爱因斯坦及其同事由此证明:量子理论是不完备的。玻尔经过一段时间的思考,反驳说EPR实验非但没有证否量子理论,而且还证明了量子理论的互补性原理。他指出,测量仪器、电子1和电子2共同组成了一个系统,这是一个不可分割的整体。在测量电子1的位置的过程中会影响电子2的动量。因此对电子1的测量不能说明电子2的位置和动量,一次测量不能代替两次测量。这两个结果是互补的和不兼容的,我们既不能说系统中一个部分受到另一个部分的影响,也不能试图把两个不同实验结果互相联系起来。EPR实验假定了客观性和因果关系的存在而得出结论认为量子理论是不完备的,事实上这种客观性和因果性只是一种推想和臆测。尽管人们对量子理论的含义还不太清楚,但它在实践中获得的成就却是令人吃惊的。尤其在凝聚态物质——固态和液态的科学研究中更为明显。用量子理论来解释原子如何键合成分子,以此来理解物质的这些状态是再基本不过的。键合不仅是形成石墨和氮气等一般化合物的主要原因,而且也是形成许多金属和宝石的对称性晶体结构的主要原因。用量子理论来研究这些晶体,可以解释很多现象,例如为什么银是电和热的良导体却不透光,金刚石不是电和热的良导体却透光?而实际中更为重要的是量子理论很好地解释了处于导体和绝缘体之间的半导体的原理,为晶体管的出现奠定了基础。1948年,美国科学家约翰·巴丁、威廉·肖克利和瓦尔特·布拉顿根据量子理论发明了晶体管。它用很小的电流和功率就能有效地工作,而且可以将尺寸做得很小,从而迅速取代了笨重、昂贵的真空管,开创了全新的信息时代,这三位科学家也因此获得了1956年的诺贝尔物理学奖。另外,量子理论在宏观上还应用于激光器的发明以及对超导电性的解释。而且量子论在工业领域的应用前景也十分美好。科学家认为,量子力学理论将对电子工业产生重大影响,是物理学一个尚未开发而又具有广阔前景的新领域。目前半导体的微型化已接近极限,如果再小下去,微电子技术的理论就会显得无能为力,必须依靠量子结构理论。科学家们预言,利用量子力学理论,到2010年左右,人们能够使蚀刻在半导体上的线条的宽度小到十分之一微米(一微米等于千分之一毫米)以下。在这样窄小的电路中穿行的电信号将只是少数几个电子,增加一个或减少一个电子都会造成很大的差异美国威斯康星大学材料科学家马克斯·拉加利等人根据量子力学理论已制造了一些可容纳单个电子的被称为“量子点”的微小结构。这种量子点非常微小,一个针尖上可容纳几十亿个。研究人员用量子点制造可由单个电子的运动来控制开和关状态的晶体管。他们还通过对量子点进行巧妙的排列,使这种排列有可能用作微小而功率强大的计算机的心脏。此外,美国得克萨斯仪器公司、国际商用机器公司、惠普公司和摩托罗拉公司等都对这种由一个个分子组成的微小结构感兴趣,支持对这一领域的研究,并认为这一领域所取得的进展“必定会获得极大的回报”。科学家对量子结构的研究的主要目标是要控制非常小的电子群的运动即通过“量子约束”以使其不与量子效应冲突。量子点就有可能实现这个目标。量子点由直径小于20纳米的一团团物质构成,或者约相当于60个硅原子排成一串的长度。利用这种量子约束的方法,人们有可能制造用于很多光盘播放机中的小而高效的激光器。这种量子阱激光器由两层其他材料夹着一层超薄的半导体材料制成。处在中间的电子被圈在一个量子平原上,电子只能在两维空间中移动。这样向电子注入能量就变得容易些,结果就是用较少的能量就能使电子产生较多的激光。美国电话电报公司贝尔实验室的研究人员正在对量子进行更深入的研究。他们设法把量子平原减少一维,制造以量子线为基础的激光器,这种激光器可以大大减少通信线路上所需要的中继器。美国南卡罗来纳大学詹姆斯·图尔斯的化学实验室用单个有机分子已制成量子结构。采用他们的方法可使人们将数以十亿计分子大小的装置挤在一平方毫米的面积上。一平方毫米可容纳的晶体管数可能是目前的个人计算机晶体管数的1万倍。纽约州立大学的物理学家康斯坦丁·利哈廖夫已用量子存储点制成了一个存储芯片模型。从理论上讲,他的设计可把1万亿比特的数据存储在大约与现今使用的芯片大小相当的芯片上,而容量是目前芯片储量的1·5万倍。有很多研究小组已制出了利哈廖夫模型装置所必需的单电子晶体管,有的还制成了在室温条件下工作的单电子晶体管。科学家们认为,电子工业在应用量子力学理论方面还有很多问题有待解决。因此大多数科学家正在努力研究全新的方法,而不是仿照目前的计算机设计量子装置。宏观世界的定律保持着顽固的可验证性,而微观世界的定律具有随机性。我们对抛射物和彗星的动态描述具有明显的视觉特征,而对原子的描述不具有这种特征,桌子、凳子、房屋这样的世界似乎一直处于我们的观察中,而电子和原子的实际的或物理性状态没有缓解这一矛盾。如果说这些解释起了些作用的话,那就是他们加大了这两个世界之间的差距。对大多数物理学家来说,这一矛盾解决与否并无大碍,他们仅仅关心他们自己的工作,过分忽视了哲学上的争议和存在的冲突。毕竟,物理工作是精确地预测自然现象并使我们控制这些现象,哲学是不相关的东西。广义相对论在大尺度空间、量子理论在微观世界中各自取得了辉煌的成功。基本粒子遵循量子论的法则,而宇宙学遵循广义相对论的法则,很难想象它们之间会出现大的分歧。很多科学家希望能将这两者结合起来,开创一门将从宏观到微观的所有物理学法则统一在一起的新理论。但迄今为止所有谋求统一的努力都遭到失败,原因是这两门20世纪物理学的重大学科完全矛盾。是否能找到一种比现有的这两种理论都好的新理论,使这两种理论都变得过时,正如它们流行之前的种种理论遇到的情况那样呢?

电磁学的实践研究 (仅供参考)电磁现象是自然界存在着的一类极为普遍的现象,它涉及到常广泛的领域。人类对电磁现象的观察与了解虽然可以追溯到十分遥远的古代,但是真正对它们进行比较系统的研究却是从16世纪下半叶才开始的,而且只限于定性的研究阶段,直到18世纪后,得力于社会生产力的发展,人类在自然科学领域展开了积极的实验探索,逐步建立了较为系统的自然科学体系,电磁学的发展也有了很好的基础。与此同时,电磁学的发展反过来双大大地促进了社会管理部门力的进一步释放,可以说,电磁学的发展是自然科学发展的必然结果,也是自然科学进一步发展的前提,是社会生产力发展的结果,也是社会进步的巨大推动力。一、电磁现象的本源──物质的电结构人类很早就知道摩擦过的琥珀能吸引轻小物体的现象。人们发现有很多物质都能由于相互摩擦而带电,并且带电物体之间存在着相互排斥或相互吸引的作用。大量的实验研究还表明,摩擦后的物体所带的电荷只有两种,同种电荷相斥,异种电荷相吸。美国物理学家富兰克林(B.Franklin,1706~1790)把它们分别命名为正电荷和负电荷。近代物理学的理论和实验证明,通常所见的各种物体(实物)由原子、分子所组成的,而原子则由带正电的原子核和围绕原子核运动的带负电的电子组成。原子核由带正电的质子和不带电的中子组成。质子的电量和电子的电量等值异号。在正常状态下,原子内的电子总数等于原子核内的质子总数,因而宏观物体或者物体的任何一部分包含的电子总数和质子总数是相等的,所以不显电性。某一质料的物体分别与其他一些质料不同的物体摩擦时,得到或失去电子的情况是不同的,在与某些质料的物体摩擦时可以得到电子,而在与另一些质料的物体摩擦时则要失去电子不.仅仅是摩擦起电,我们所观察到的所有电现象和磁现象,都是基于物质具有上述的电结构以及其中的带电粒子的相互作用及其运动而产生的,所以我们说,物质的电结构是自然界电磁现象的本源。二、电磁过程是构成自然界各种纷繁复杂过程的基本过程之一1820年,奥斯特(H.C.Oersted,1771~1851)发现了电流的磁效应,它的逆效应──电磁感应定律也在1831年被法拉第发现,人类开始认识到电现象和磁现象之间存在着联系。电磁感应定律和电流的磁效应为制造更加有效的电源和动力机提供了科学依据,展现了电磁现象的规律在技术上可以获得重要应用的崭新前景。在法拉第等人工作的基础上,19世纪50年代到60年代,英国物理学家麦克斯韦(J.C.Maxwe11,1831~1879)建立了电磁学的理论体系,得到了今天以他的姓氏命名的电磁场方程组,并推论电磁作用以波的形式传播。从这一理论中得出的电磁波在真空中的传播速度与光在真空中的实际测定的传播速度相同,促使他预言光是电磁波。电磁过程不仅渗透到物理科学的各个领域,成为研究各种物理过程的必不可少的基础,同时,它也是研究化学和生物学一些基元过程的基础。今天,人们已深切地感受到,无论是人类自身的生活,还是科学技术活动以及物质生产等各种纷繁复杂的过程,都不可能离开电磁过程。并且人们深信,在人类社会的未来,电磁理论的绚丽之花仍将盛开。三、电磁场是物质世界的重要组成部分电磁感应定律和场的观念为电磁现象的统一理论准备了条件,而其大功告成者则是英国卓越的物理学家麦克斯韦。麦克斯韦在把握住电磁现象本质后,舍弃了电磁以太模型,明确提出了“电磁场”的概念。他写道:“我所提议的理论可以称为电磁场理论,因为它必须涉及电或磁物体附近的空间”。通过对麦克斯韦方程组的求解,可以研究电磁场的运动状态、电磁场的能量和动量以及电磁场可以独立于场源而存在和传播等问题,这就表明电磁场不仅仅是一种描述电磁现象的方法和手段,而且和实物一样,是物质存在的一种形式,即电磁场是物质世界的重要组成部分。四、电磁作用是自然界的基本相互作用之一人类对自然界各种物质之间的相互作用的研究由来已久,但把这种研究引上科学舞台的则是17世纪牛顿对万有引力的研究。一切具有质量的物体之间都存在的吸引力称为万有引力,它是一种长程力,在所有基本相互作用中它是最弱的。由于它与质量有关,因而在微观粒子相互作用的研究中通常可以忽略不计,但在天体物理研究中,引力却起着决定性的作用。倘若不存在引力,地球上的物体都将飞离地球,地球和其它行星也都将飞离太阳。甚至太阳和星系也将不复存在,那是一个怎样的“世界”呀?带电物体或具有磁矩的物体之间的相互作用称为电磁作用,它的规律总结在麦克斯韦方程组和洛伦兹力公式之中。电磁作用也是一种长程力,其强度要比引力大得多,而且也是目前人类研究得最为清楚的一种力。原子核和电子结合成原子,原子结合成分子,分子结合成凝聚态物质都是靠电磁作用。宏观的摩擦力、弹性力、粘滞力以及各种化学作用实质上也都是电磁作用的表现。因此可以想见,如果没有电磁作用,不要说原子、分子以及凝聚态物质将不复存在,就是以化学作用为基础的生命体,包括人类自身也都将化为乌有!后来,物理学又在原子核衰变过程中发现一种仅在微观尺度上起作用的力程甚短的弱相互作用;在质子、中子以及其它一些亚核粒子的相互作用中发现一种力程也较短的强相互作用力。近代物理学认为,这四种基本相互作用决定了物质世界中的一切过程。与此同时,构建一种能够对各种相互作用给予统一说明的理论,也是近代物理学继续研究的方向

光和微观粒子的波粒二象性如何统一的问题是人类认识史上最令人困惑的问题 ,至今不能说问题已经完全解决(物质的结构是核式的,原子如此,光子、电子、质子、大到天体都有自己的核心,都有绕核心运动的物质存在,每个核式结构体在运动中由于核式结构的特点,都做具有波动的直线运动,都有测不准的因素存在,都有量子化的物理特征,各有能级的存在,各有特定的能量吸收才可以发生跃迁。张各高中物理教师提出的自己的观点,欢迎指正)1926年M.玻恩提出概率波解释,较好地解决了这个问题。按照概率波解释,描述粒子波动性所用的波函数Ψ(x、y、z、t)是概率波,而不是什么具体的物质波;波函数的绝对值的平方|ψ|2=ψ*ψ表示时刻t在x、y、z处出现的粒子的概率密度,ψ*表示ψ 的共轭波函数。在电子通过双孔的干涉实验中,|ψ|2=|ψ1+ψ2|2=|ψ1|2+|ψ2|2+ψ1*ψ2+ψ1ψ2*,强度|ψ|2大的地方出现粒子的概率大 ,相应的粒子数多,强度弱的地方,|ψ|2小 ,出现粒子的概率小,相应的粒子数少,ψ1*ψ2+ψ1ψ2*正是反映干涉效应的项,不管实验是在粒子流强度大的条件下做的,还是粒子流很弱,让粒子一个一个地射入,多次重复实验,两者所得的干涉条纹结果是相同的。在粒子流很弱、粒子一个一个地射入多次重复实验中显示的干涉效应表明,微观粒子的波动性不是大量粒子聚集的性质,单个粒子即具有波动性。于是,一方面粒子是不可分割的,另一方面在双孔实验中双孔又是同时起作用的,因此,对于微观粒子谈论它的运动轨道是没有意义的。由于微观粒子具有波粒二象性,微观粒子所遵从的运动规律不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。

物理学力学论文篇3 浅析物理力学的产生及其发展 摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。 关键词:物理力学;产生;发展 一、物理力学发展需要解决的问题分析 在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。 在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。 针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。 在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。 还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。 二、新技术不断推动物理力学的发展 物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。 人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。 本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。 参考文献: [1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02). [2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02). [3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。 [4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06). 物理学力学论文篇4 试谈物理力学的产生及其发展分析 摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。 关键词:物理力学;产生;发展 一、物理力学发展需要解决的问题分析 在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。 在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。 针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。 在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。 还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。 二、新技术不断推动物理力学的发展 物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。 人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。 本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。 参考文献: [1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02). [2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02). [3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。 [4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06). 猜你喜欢: 1. 物理学史论文3000字 2. 高中物理力学论文范文 3. 物理学生论文力学 4. 物理学术论文3000字

中文论文投稿状态

1.未审退回:这个情况发生在编辑认为论文不符合期刊范畴或投稿要求,于是在未送交外审的情形下退回稿件。有另一种可能是论文里的语言错误太多,索性期刊编辑在退回的时候会说明原因,作者有机会在重投或改投前改善语言。 2.建议改投其他期刊:当期刊编辑认为论文不适合原投稿期刊时,有可能建议改投别家期刊,如果是同一个出版商旗下的期刊,待作者同意后,投稿移转会在期刊内部进行,作者不需要另外操作,但如果是建议不同出版社的期刊,那么就完全是看作者本身愿不愿意改投其他期刊。 3.送交同行评审:在初步审查中编辑会确认论文是否符合期刊范畴、遵守期刊投稿各项要求,一旦检查没有问题,编辑便会送交同行评审,一般都会邀请2到3位审稿人进行审稿。 论文在经过同行评审后,同行评审员会提出决策建议还有相关意见,编辑会根据这些意见做出最后决定,如同先前已经提过的,虽然同行评审意见很重要,但对期刊编辑来说仍然是参考作用,即使审稿人提出负面意见,如果编辑认为论文可信,还是可以接受论文,又或者,审稿人提出正面反馈,编辑也可能认为论文不值得发表而拒绝。 4.小修后接受:这个决定也称作有条件接受,表示论文需要进行一些细微的修改后就能被期刊接受,小修后接受的论文可能不需要再次经历审稿,一般期刊编辑会自己检查后做出裁决,不过,作者还是要记得“小修后发表”不保证一定会接受,还是要让编辑对你的修改满意才行。 5.大修后接受:当编辑认为论文需要大幅度的修改就会做出这个决定,作者在返还修改稿的时候需要附上给审稿意见的逐点回复,修稿后的论文也可能再送外审,通常会交给第一轮的审稿人,但,当然,编辑也有权选择不同的审稿人,第二轮的审稿,有些期刊称作“再审稿”,结果如何是根据作者针对评审和编辑意见进行的修改还有回复来决定,如果作者没有完整回复所有的意见,那就有可能再有修改,甚至有可能会拒稿。 6.修改后重投:有时候编辑拒稿,但是愿意在作者进行修改的前提下接受重新投稿,这时候重投算是新的投稿,如果作者接受的话,必须先根据评审和编辑意见修改论文,然后在再投稿的时候附上含有前次投稿稿件编号以及修改说明的信函,编辑在检查修改后的论文还有相关信息之后,决定是否要将论文送交同行评审。 7.拒稿:直接拒绝,大部分的情况下,就算论文进行大幅度的修改,期刊编辑也不会考虑发表论文

 to Journal

当文章上传结束后,显示的状态是Submitted to Journal,这个状态是自然形成的无需处理。

 editor:若投稿时未要求选择编辑,则先到主编处,主编会分派给副主编或者其他编辑。这当中会出现另外两个状态:

(1)Awaiting Editor Assignment:指派责任编辑。(注:Editor assigned是把你的文章分给一个编辑处理了。)

(2)Editor Declined Invitation:如果编辑接手处理了就会邀请审稿人了。

3. With editor:后送审可能出现的两种状态(Decision Letter Being Prepared或Reviewers invited):

提示一:Decision Letter Being Prepared就是编辑没找审稿人就自己决定了,一般情况下比较悲剧。一来可能是英文太差,需要语言sci润色。二来可能是内容太差。

提示二:Reviewer(s) invited代表找到审稿人了,就开始审稿。

4. Under review:审稿中,此过程的等待较为漫长。

SCI论文投稿都经历了哪些状态SCI论文投稿都经历了哪些状态

SCI论文审稿流程及状态解读对于初次投稿的作者,审稿流程以及审稿状态是其主要关注的,了解审稿流程,不仅可以掌握自己稿件的随时状态,以及状态背后所隐藏的信息,进而做到心中有数,今天为大家分享一篇SCI论文审稿流程的详细介绍。参与审稿的人:(1)Editor in Chief(EIC),主编,对稿件有最终决定权。(2)ADM- (可能是) Administrator,协助主编日常工作。(3)Associated Editor(AE)副编辑,其会在审稿人(reviewers)意见的基础上对文章作个综合评价后,给主编一个recommendation。一般主编都会按照AE的意见写最终的decision letter。(4)Reviewer--审稿人,对你的文章进行审稿,并将审稿意见提交给AE。Articlesubmitted后(即论文提交后):1、awaiting 一般3-4天后就会安排主编。2、awaiting reviewerassignment 等待指定审稿人。主编在选择审稿人,等待审稿人回复是否同意审稿。一般在一周以内。看审稿人回复速度。3、awaiting reviewerscores 等待审稿人审稿意见。一般会要求审稿人三周内给审稿意见。但是审稿人觉得时间不够,可以写信给主编要求延长审稿期限。这个时间长短要取决于审稿人是否有空看你的文章,还要看他是否守时。一般三周左右。4、awaiting AEassignment 等待AE的指派。编辑部在选择/联系AE。一般1-3天左右。5、awaiting AErecommendation 等待AE的推荐。有些杂志要求AE三周内给结果。基本都是期限的最后一两天才给结果。6、awaiting EICdecision -激动人心的时刻。等待主编的决定。一般3-4天。EIC的最终决定也分以下几种情况:1-Accept2-accept after minorrevision(withour re-review不需要再送审)3-reconsiderationafter major revision.(要再送审,即要再经过审稿流程3-6)4-reject and resubmit(论文现在状态不能接受,但可以修改后重新再投。要重新经过审稿流程1-6)5-reject (没有希望了,尽快改投其它期刊)很多作者在投稿后,对自己论文的后续审稿状态不是很了解,心里一直坎坷不安,其实,熟悉审稿流程及各状态情况,可以消除您的不安,也在出现不希望看到的结果后,能及时转变投稿方向,这对于作者是非常必要的。参考资料:查尔斯沃思论文润色

国内陶粒研究现状论文

粉煤灰陶粒的混凝土力学性能:(一)物理力学性能 1.强度(Mpa) 抗压~;抗折~;抗拉~;棱柱; 2.弹性模量(Mpa) ×105~×105 3.导热系数(千卡/米·时·度) ~ 4.干容重(千克/米3) 1500~1650 5.收缩率(%) 6.抗渗性 A、试验水压(Mpa) B、加压制度(小时/Mpa) C、渗放透厚度 7.抗冻性 A、冻融循环(次)20、50、100 B、强度损失(%)2、、 (二)弹性模量 粉煤灰陶粒混凝土同其它陶粒混凝土的弹性模量一般为×105~×105 Mpa/厘米2,比普通混凝土低30~40%。这是因为在相同应力阶段,陶粒混凝土的变形比普通混凝土大,变化大的原因分析有下述两点: 1.陶粒内部有很多细微气孔,与碎石比较,颗粒软弱,在相同应力状态下变形也较大,使陶粒混凝土变形也增大,这是主要原因。 2.配制同标号混凝土时,陶粒混凝土的水泥用量略高于普通混凝土(每立方米多15~35千克);水泥砂浆在混凝土内所占体积也相应增加,在应力状态时,水泥砂浆变形比碎石大,使陶粒混凝土的变形也随之增加。 粉煤灰陶粒混凝土、无熟料陶粒混凝土、标准砖、空心砌块、多孔砖、地面砖、保温隔热墙板等,基本不存在以上缺陷。 (三)抗渗性 据天津市建筑科学研究所等单位的试验和实践证明,粉煤灰陶粒混凝土的抗渗性能比普通混凝土好得多。其主要原因分析如下: 1.粉煤灰陶粒可以在混凝土中与水泥砂浆一起水化反应,使液体从陶粒与砂浆粘结面处渗透的可能性大大降低。 2.粉煤灰陶粒能较多的吸取水泥砂浆中的水分,引起了陶粒周围的“自真空”状态(吸附作用),使水泥颗粒在“自真空”作用下进入陶粒表面的孔隙中,将孔隙紧密填充,从而提高了抗渗性。 3.陶粒混凝土养护时,陶粒中的水分又能逐渐放出,产生混凝土内部自养,使水泥砂浆有更充分的水化反应条件,随着水化反应更进一步完全,粉煤灰陶粒和水泥基体形成了一个整体,具有非常强的结合力而导致粉煤灰陶粒混凝土抗渗性提高。 (四)抗冲击性能 粉煤灰陶粒混凝土的抗冲击性能好。在同样冲击荷载作用下,粉煤灰陶粒混凝土板的裂缝宽度比普通混凝土板较细,构件挠度比普通混凝土板小。卸载后回弹比较快。冲击试验后24小时,两种板的变形已基本回弹,这时,粉煤灰陶粒混凝土板的裂缝肉眼已不易看到,而普通混凝土板的裂缝仍然很明显。 粉煤灰陶粒混凝土板在冲击荷载下的裂缝荷载为20千克,而普通混凝土板为13千克。

一.粉煤灰陶粒混凝土的性能(一)物理力学性能1.强度(Mpa)抗压~;抗折~;抗拉~;棱柱;2.弹性模量(Mpa)×105~×1053.导热系数(千卡/米·时·度)~.干容重(千克/米3)1500~16505.收缩率(%).抗渗性A、试验水压(Mpa)、加压制度(小时/Mpa)、渗放透厚度.抗冻性A、冻融循环(次)20、50、100B、强度损失(%)2、、(二)弹性模量 粉煤灰陶粒混凝土同其它陶粒混凝土的弹性模量一般为×105~×105 Mpa/厘米2,比普通混凝土低30~40%。这是因为在相同应力阶段,陶粒混凝土的变形比普通混凝土大,变化大的原因分析有下述两点: 1.陶粒内部有很多细微气孔,与碎石比较,颗粒软弱,在相同应力状态下变形也较大,使陶粒混凝土变形也增大,这是主要原因。 2.配制同标号混凝土时,陶粒混凝土的水泥用量略高于普通混凝土(每立方米多15~35千克);水泥砂浆在混凝土内所占体积也相应增加,在应力状态时,水泥砂浆变形比碎石大,使陶粒混凝土的变形也随之增加。粉煤灰陶粒混凝土、无熟料陶粒混凝土、标准砖、空心砌块、多孔砖、地面砖、保温隔热墙板等,基本不存在以上缺陷。(三)抗渗性 据天津市建筑科学研究所等单位的试验和实践证明,粉煤灰陶粒混凝土的抗渗性能比普通混凝土好得多。其主要原因分析如下: 1.粉煤灰陶粒可以在混凝土中与水泥砂浆一起水化反应,使液体从陶粒与砂浆粘结面处渗透的可能性大大降低。 2.粉煤灰陶粒能较多的吸取水泥砂浆中的水分,引起了陶粒周围的“自真空”状态(吸附作用),使水泥颗粒在“自真空”作用下进入陶粒表面的孔隙中,将孔隙紧密填充,从而提高了抗渗性。 3.陶粒混凝土养护时,陶粒中的水分又能逐渐放出,产生混凝土内部自养,使水泥砂浆有更充分的水化反应条件,随着水化反应更进一步完全,粉煤灰陶粒和水泥基体形成了一个整体,具有非常强的结合力而导致粉煤灰陶粒混凝土抗渗性提高。(四)抗冲击性能 粉煤灰陶粒混凝土的抗冲击性能好。在同样冲击荷载作用下,粉煤灰陶粒混凝土板的裂缝宽度比普通混凝土板较细,构件挠度比普通混凝土板小。卸载后回弹比较快。冲击试验后24小时,两种板的变形已基本回弹,这时,粉煤灰陶粒混凝土板的裂缝肉眼已不易看到,而普通混凝土板的裂缝仍然很明显。 粉煤灰陶粒混凝土板在冲击荷载下的裂缝荷载为20千克,而普通混凝土板为13千克。

食品加工质量安全管理工作是保障企业产品质量安全符合质量标准的关键、是维护企业市场信誉的关键,是企业在现代激烈市场竞争中赢得市场竞争力的关键。下面是我为大家推荐的食品加工论文,供大家参考。

食品加工论文 范文 一:食品工业泡沫分离技术的应用

泡沫分离又称泡沫吸附分离技术,是以气泡为介质,以各组分之间的表面活性差为依据,从而达到分离或浓缩目的的一种分离 方法 [1].20世纪初,泡沫分离技术最早应用于矿物浮选,后来应用于回收工业废水中的表面活性剂.直到20世纪70年代,人们开始将泡沫分离技术应用于蛋白质与酶的分离提取[2-3].目前,在食品工业中,泡沫分离技术已经应用于蛋白质与酶、糖及皂苷类有效成分的分离提取.由于大部分食品料液都有起泡性,泡沫分离技术在食品工业中的应用将越来越广泛.

1泡沫分离技术的原理及特点

泡沫分离技术的原理

泡沫分离技术是依据表面吸附原理,基于液相中溶质或颗粒之间的表面活性差异性.表面活性强的物质先吸附于分散相与连续相的界面处,通过鼓泡形成泡沫层,使泡沫层与液相主体分离,表面活性物质集中在泡沫层内,从而达到浓缩溶质或净化液相主体的目的.

泡沫分离技术的特点

优点

(1)与传统分离稀浓度产品的方法相比,泡沫分离技术设备简单、易于操作,更加适合于稀浓度产品的分离.(2)泡沫分离技术分辨率高,对于组分之间表面活性差异大的物质,采用泡沫分离技术分离可以得到较高的富集比.(3)泡沫分离技术无需大量有机溶剂洗脱液和提取液,成本低、环境污染小,利于工业化生产.

缺点

表面活性物质大多数是高分子化合物,消化量比较大,同时比较难回收.此外,溶液中的表面活性物质浓度不易控制,泡沫塔内的返混现象会影响到分离效果[4].

2泡沫分离技术在食品工业中的应用

蛋白质的分离

在分离蛋白质的过程中,表面活性差异小的蛋白质,吸附效果受到气-液界面吸附结构的影响,因此蛋白质表面活性的强度是考察泡沫分离效果的主要指标.谭相伟等[5]研究了牛血清蛋白与酪蛋白在气-液界面的吸附,并发现酪蛋白对牛血清蛋白在气-液界面处的吸附有显著影响.此后,Hossain等[6]利用泡沫分离技术对β-乳球蛋白和牛血清蛋白进行分离富集,结果得到96%β-乳球蛋白和83%牛血清蛋白.Brown等[7]采用连续式泡沫分离技术从混合液中分离牛血清蛋白与酪蛋白,结果表明酪蛋白的回收率很高,而大部分的牛血清蛋白留在了溶液中.Saleh等[8]研究了利用泡沫分离法从乳铁传递蛋白、牛血清蛋白和α-乳白蛋白3种蛋白混合液中分离出乳铁传递蛋白,在牛血清蛋白和α-乳白蛋白的混合液中加入不同浓度的乳铁传递蛋白,并不断改变气速,优化了最佳工艺条件.结果得出:在最佳工艺条件下,87%的乳铁传递蛋白留在溶液中,98%牛血清蛋白和91%α-乳白蛋白存在于泡沫夹带液中.由此可见,利用泡沫分离法可以有效地从3种蛋白质混合液中分离出乳铁传递蛋白.Chen等[9]利用泡沫分离技术从牛奶中提取免疫球蛋白.考察了初始pH值、初始免疫球蛋白浓度、氮流量、柱的高度及发泡时间等因素对反应的影响,结果表明:采用泡沫分离方法可以有效地从牛奶中分离出免疫球蛋白.Liu等[10]从工业大豆废水浓缩富集大豆蛋白,最佳工艺条件:温度为50℃,pH值为,空气流量为100mL?min-1,装载液体高度为400mm,得到大豆蛋白富集比为等[11]为了提高泡沫析水性,研发了一种新型的利用铁丝网进行整装填料的泡沫分离塔,利用铁丝网整体填料塔泡沫分离法对牛血清蛋白进行分离.通过研究填料对气泡大小、持液量、富集比和在不同条件下以牛血清蛋白水溶液作为一个参考物的有效收集率的影响,评价填料的作用.结果表明,填料可以加速气泡破裂、减少持液量、提高泡沫析水性和牛血清蛋白的富集比.研究表明,在积液量为490mL,空气流速为300mL?min-1,牛血清蛋白初始浓度为,填料床高度为300mm和初始pH值为的条件下,最佳的牛血清蛋白富集比为,是控制塔条件下富集比的倍.刘海彬等[12]以桑叶为原料,采用泡沫分离法对桑叶蛋白进行分离,并分析了影响分离效果的主要因素,结果测得桑叶蛋白回收率为、富集比为.由此可见,利用泡沫分离法对桑叶进行分离可得到含量较高的桑叶蛋白.与传统的叶蛋白分离方法如酸(碱)热法、有机溶剂法相比较[13-14],泡沫分离法分离效果好,避免了加热导致蛋白质变性以及减少有机溶剂带来的环境污染等问题.李轩领等[15]以亚麻蛋白浓度、NaCl浓度、原料液pH值以及装液量为主要考察因素,用响应面法优化了从未脱胶亚麻籽饼粕中泡沫分离亚麻蛋白的工艺条件.在最佳工艺条件下,得到的亚麻蛋白质,而多糖的损失率仅为.可见,采用泡沫分离技术可以从未脱胶亚麻籽饼粕中有效分离出亚麻蛋白.

酶的分离

蛋白质属于生物表面活性剂,包含极性和非极性基团,在溶液中可选择性地吸附于气-液界面.因此,从低浓度溶液中可泡沫分离出酶和蛋白质等物质.Linke等[16]研究了从发酵液中泡沫分离胞外脂肪酶,考察了通气时间、pH值及气速等主要因素对回收率的影响,研究得出通气时间为50min、pH值为及气速为60mL/min时,酶蛋白回收率为95%.Mohan等[17]从啤酒中泡沫分离回收酵母和麦芽等,结果表明,分离酵母和麦芽所需的时间不同,而且低浓度时更加容易富集.Holmstr[18]从低浓度溶液中泡沫分离出淀粉酶,研究发现在等电点处鼓泡,泡沫夹带液中的淀粉酶活性是原溶液中的4倍.Lambert等[19]采用泡沫分离技术考察了β-葡糖苷酶的pH值与表面张力之间的关系,研究表明,纤维素二糖酶和纤维素酶的最佳起泡pH值分别为和6~等[7]利用泡沫分离技术对牛血清蛋白与溶菌酶以及酪蛋白与溶菌酶的混合体系分别进行了分离纯化的研究.结果表明,溶菌酶不管与牛血清蛋白混合还是与酪蛋白混合,回收率都很低,但是由于溶菌酶可提高泡沫的稳定性,从而提高了牛血清蛋白与溶菌酶的回收率.Samita等[20]对牛血清蛋白与酪蛋白、牛血清蛋白与溶菌酶两种二元体系分别进行了研究,发现在牛血清蛋白与酪蛋白的蛋白质二元体系中酪蛋白在气-液界面处的吸附占了大部分的气-液界面,从而阻止了牛血清蛋白在气-液界面处的吸附.而在牛血清蛋白与溶菌酶的二元体系中,研究表明溶菌酶提高了牛血清蛋白的回收率,同时提高了泡沫的稳定性.针对这种现象,Noble等[21]也采用泡沫分离法分离牛血清蛋白与溶菌酶的二元体系,研究发现泡沫夹带液中存在少量的溶菌酶,提高了泡沫的稳定性,牛血清蛋白溶液在低浓度下本来不能产生稳定泡沫,溶菌酶的存在使得其也能产生稳定的泡沫.这些研究表明,泡沫分离技术可以在较低的浓度下分离具有表面活性的蛋白质,为泡沫分离技术在蛋白质分离中的应用研究开辟了新的领域.国内泡沫分离技术已应用在酶类物质分离中,范明等[22]设计了泡沫分离装置,利用泡沫分离技术分离脂肪酶模拟液和实际生产生物柴油的水相脂肪酶溶液,对水相脂肪酶进行回收并富集.考察了通气速度、进料酶浓度及水相脂肪酶溶液中pH值等主要因素对分离效果的影响,当通气速度为10L/(LH)、进料酶浓度为、pH值为时,蛋白和酶活回收率接近于100%,富集比为.研究表明,初始脂肪酶浓度对泡沫分离的富集比和蛋白回收率有显著影响,pH值对富集比、蛋白和酶活回收率无显著影响,而气速是影响蛋白回收速率的一个重要因素.回收水相脂肪酶的过程中酶活性无损失.可见,泡沫分离是一个回收液体脂肪酶的有效方法[22].

糖的分离

糖一般存在于植物和微生物体内,可根据糖与蛋白质或者其他物质的表面活性差异性,利用泡沫分离技术对糖进行分离提取[23].Fu等[24]采用离心法从基隆产的甘薯块中分离提取可溶性糖和蛋白,得到的回收率分别为和;而采用泡沫分离法时,可溶性糖和蛋白的回收率分别为和等[25]采用泡沫分离法富集假单胞菌生产的鼠李糖脂,最佳工艺条件下得到鼠李糖脂97%,富集比为洲[26]利用间歇式泡沫分离法从美味牛肝菌水提物中分离牛肝菌多糖,考察了pH值、原料液浓度、空气流速、表面活性剂用量及浮选时间等主要因素对分离效果的影响,以回收率为指标评价分离的效果,并优化了分离牛肝菌多糖的工艺条件.在最佳工艺条件下,牛肝菌多糖回收率为.国内关于食用菌多糖的提取一般利用水提醇析法,但是该法需要消耗大量的乙醇,操作周期长,能耗大[27-28],而泡沫分离法具有快速分离、设备简单、操作连续、不需高温高压及适合分离低浓度组分等优势,因此间歇式泡沫分离法是提取食用菌多糖的一种有效方法.

皂苷类有效成分的分离

皂苷包含亲水性的糖体和疏水性的皂苷元,具有良好的起泡性,是一种优良的天然非离子型表面活性成分,因此可采用泡沫分离法从天然植物中分离皂苷[29].泡沫分离法已广泛用于大豆异黄酮苷元、人参皂苷、无患子皂苷、竹节参皂苷、文冠果果皮皂苷等有效成分的分离.

大豆异黄酮苷元的分离Liu等[10]

采用泡沫分离与酸解方法从大豆乳清废水中分离大豆异黄酮苷元,指出从工业大豆乳清废水中提取的异黄酮苷元主要以β-苷元的形式存在,并利用傅里叶变换红外光谱分析发现大豆异黄酮和大豆蛋白以复合物的形式存在.研究结果表明,利用泡沫分离技术可以从大豆乳清废水中有效地富集大豆异黄酮,分离出大豆异黄酮苷元和β-苷元.

无患子总皂苷的分离魏凤玉等[30]

分别采用间歇和连续泡沫分离法分离纯化无患子皂苷,利用正交试验,考察了原始料液浓度、气体流速、温度、pH值等因素对无患子皂苷回收率的影响,确定了泡沫分离最佳工艺条件.林清霞等[31]采用泡沫分离技术分离纯化无患子皂苷,利用紫外分光光度计测定无患子皂苷含量,通过富集比、纯度及回收率判断分离纯化的效果.在进料浓度为、进料量为150mL、气速为32L/h、温度为30℃、pH值为时,得到富集比为,纯度与回收率分别为和.研究结果表明:无患子皂苷的回收率随着进料浓度的增大而减小,随着气速、进料量的增大而增大;富集比随着进料浓度、气速及进料量的增大而减小,pH值对富集比的影响较小;纯度随着进料浓度、气速的增大而降低,进料量、pH值对纯度的影响较小.

竹节参总皂苷的分离

竹节参的主要成分皂苷是一种优良的天然表面活性剂,而竹节参中的竹节参多糖、无机盐及氨基酸等是非表面活性剂,因此可根据表面活性的差异,采用泡沫分离技术对竹节参皂苷进行分离纯化[32-34].张海滨等[35]考察了气泡大小、pH值、原料液温度及电解质物质的量浓度等主要因素对泡沫分离竹节参总皂苷的影响,以富集比、纯度比及回收率等为指标分析分离纯化的效果,得出最佳工艺条件:气泡直径为,pH值为,温度为65℃,电解质NaCl浓度为.在最佳工艺条件下,总皂苷富集比为,纯度比为,回收率为,能够得到较好的分离.张长城等[36]研究了利用泡沫分离技术对竹节参中皂苷进行分离纯化的方法与条件,指出泡沫分离技术分离纯化竹节参皂苷具有产品回收率高、工艺简单、能耗低及不使用有机溶剂等优点,为竹节参皂苷的开发利用提供了技术支持.

文冠果果皮皂苷的分离

文冠果籽油是优质的食用油,含油率达35%~40%[37],同时可作为生物柴油的原料.文冠果果皮含有皂苷~.研究表明,文冠果果皮皂苷具有抗肿瘤、抗氧化及抗疲劳等功效[38].文冠果果皮皂苷的开发利用带来的附加价值可以有效地降低生物柴油的生产成本.在生产生物柴油的过程中需要处理大量的果皮,因此需要寻求一种简单可行、成本低、收率高以及对环境污染小的皂苷分离方法.吴伟杰等[39]使用自制起泡装置,研究了泡沫分离技术分离文冠果果皮总皂苷的可行性及最佳反应条件.研究得出泡沫分离文冠果皂苷的最佳工艺条件为:料液气体流速为,初始浓度为2mg?mL-1,温度为20℃,pH值为5.与泡沫分离人参、三七等皂苷的气体流速相比较,文冠果果皮的气体流速较低,这样可以更大限度地降低能耗、节约成本.同时,泡沫分离文冠果果皮皂苷可在室温条件下进行,降低了加热所需的能耗.此外,由于文冠果果皮皂苷的水溶液pH值在5左右,泡沫分离时无需调节pH值.在最佳工艺条件下,得到富集比为,回收率为,纯度为.研究表明,泡沫分离文冠果果皮皂苷可以达到较高的富集比、回收率和纯度,对于大力开发利用生物能源、综合利用文冠果以及降低生物柴油的成本有着重要意义.

3展望

泡沫分离技术是一种很有发展前景的新型分离技术,在食品工业中的应用将会越来越广泛,今后在天然产物及稀有物质的分离提取等方面有着更加广泛的应用.同时,泡沫分离技术也存在一定的局限性,为促进泡沫分离技术在食品工业中的应用发展,应该在以下方面进行深入研究:(1)对泡沫分离复杂物料实际分离过程的泡沫形成情况建立理论模型,对标准表面活性剂的分离提取建立标准数据库,对标准表面活性剂和非表面活性物质间的分离建立指纹图谱;(2)如何减少泡沫分离非表面活性物质时的表面活性剂消耗量;(3)如何解决泡沫分离高浓度产品时回收率低的问题;(4)目前泡沫分离设备存在局限性,应研究开发新型的适合食品工业分离的泡沫分离设备,提高泡沫分离的效果[40].

食品加工论文范文二:食品工业废水处理节能研究

食品工业包括制糖、酿造、肉类、乳品加工等,食品工业的废水主要来源于原料的处理、洗涤、脱水、过滤、脱酸、脱臭和蒸煮过程中产生的,这些废水含有大量的有机物、蛋白质、有机酸和碳水化合物,具有很强的耗氧性,如果不经处理直接排入水体会大量消耗水中的溶解氧,从而造成水体缺氧,造成水生生物的死亡。食品工业废水油脂含量高,多伴随大量悬浮物随废水排出,其中动物性食品加工排出的废水还可能含有病菌,此外,这些废水还含有铜、锰、铬等金属离子。近年来,随着食品加工业的快速发展,每年由此产生的废水量也呈现快速增长态势,许多废水未经有效处理便被直接排放,给环境产生了十分严重的破坏。因此,探讨食品工业废水处理对于生态环境保护具有非常重要的现实意义。

1食品工业废水处理工艺现状

目前,国内外对于食品工业废水的处理过程中主要采用的是生物处理工艺,其中主要包括有好氧生物处理工艺、厌氧生物处理工艺,以及由好氧生物处理工艺与厌氧生物处理工艺相结合的处理工艺。在好氧生物处理工艺方面,主要有活性污泥法(目前实际应用较为广泛的主要有SBR法)和生物膜法(具有代表性的是曝气生物滤池法)。由于厌氧生物处理工艺相较于好氧生物处理工艺无论在后期的运行管理费用还是前期的基建投资方面的费用都有较大优势,其中比较具有典型的处理工艺有厌氧颗粒污泥膨胀床(EGSB)工艺、第三代厌氧处理工艺———厌氧内循环反应器(IC)被广泛应用到了食品工业废水处理中。此外,厌氧生物处理工艺在处理食品工业废水方面具有良好的处理效果[1]。

2各种工艺特点及应用效果分析

目前国内外,食品工业废水的处理以生物处理[2]为主。在实际中运用较广,技术较为成熟的主要有厌氧接触法、厌氧污泥床法、浅层曝气、延时曝气、曝气沉淀池法等等。

好氧生物处理工艺

好氧生物处理是在不断供氧的环境中,利用好氧微生物来氧化有机物。在好氧过程中,微生物对复杂的有机物进行分解,一部分被转化为稳定的无机物CO2、H2O和NH3,一部分则由微生物合成为新细胞,最后去除污水中的有机物。

法,即间歇式活性污泥系统(又叫序批式间歇活性污泥法)。SBR法目前在国内外应用较为广泛,生物反应池中集中了生物降解过程、沉淀过程以及污泥回流功能为一体,这种工艺比较简单,它是在以前间歇式活性污泥工艺基础上发展来的一种新工艺,采用SBR法处理废水的运行过程一般包括了进水、充氧曝气、静止沉淀、排水和排泥五个步骤。与连续性活性污泥工艺相比,该工艺具有的有点主要有:曝气池兼具二沉池的功能,不设二沉池,也没有污泥回流设备,系统结构简单,易于管理;耐冲击负荷,一般无需设置调节池;反应推动力大,较为简便的得到优质出水水质;污泥沉淀性能好,SVI值较低,便于自控运行,后期维护管理也较为简便。居华[3]通过SBR法在酱油、酱菜食品废水处理中的应用研究后得出,原废水CODcr在2000mg/L~4000mg/L范围内,经SBR法处理后出水水质得到了二级标准,去除率达96%以上,没有出现污泥膨胀现象,而且操作管理方便,占地面积小,运行的费用也低。

法,即曝气生物滤池法。这种工艺最早可以追溯上个世纪80年代,是由欧美等国家应用和发展起来的,大连马栏河污水处理厂是我国最早采用BAF工艺。该工艺是在生物接触工艺基础上,在滤池中填装陶粒、石英砂等粒状填料,以填料及其附着生产生物膜为介质,发挥生物的代谢功能,通过物理过滤功能,发挥膜和填料的截留吸附作用从而实现污染物的高效处理。廖艳[4]等采用混凝—ABR与曝气生物滤池(BAF)联合处理工艺,对某市肉联厂高浓度废水化学需氧量和氨氮的去除研究后发现,化学需氧量和氨氮的去除效果从原水时的1500mg/L~4500mg/L、30mg/L~85mg/L,经处理后出水COD<100mg/L,氨氮<50mg/L,达到了国家一、二级排放标准,取得良好的环境和社会效益。

法,即膜生物反应器法。是上个世纪90年代逐渐发展起来的一种废水处理技术,该工艺是将膜组件替代传统的二沉池,实现固相和液相分离。其实质是把细菌和微生物以生物膜的方式附着在固体表面上,以污水中的有机物为营养物进行新陈代谢和生长繁殖,从而达到实现净化污水的效果。该工艺具有较强的抗冲击力,对水质和水量变化具有较强适应性;污泥产量较低且沉降性能优,易于固液分离;对于低浓度污水也可以进行处理,在正常运行时可以把原水中的BOD5由20mg/L~30mg/L降至5mg/L~10mg/L;运行费用也不高,管理方便。张亮平,王峰[5]以MBR在湖北某食品厂废水处理中的应用为例进行研究后发现,采用MBR-活性炭-杀菌联合工艺,出水COD和BOD的去除率达到了99%以上,系统工艺能耗低,运行稳定。

厌氧生物处理工艺

在食品废水处理过程中,厌氧处理法与好氧处理法相比由于产生的污泥少,动力流耗小,管理简便,既能节能又能降低成本,逐渐在高浓度有机废水行业———食品工业广泛推崇。

法,即升流式厌氧污泥床法。该种工艺是由高活性厌氧菌体构成的粒状污泥,在UASB装置内随上升的气流呈向上流动的状态。处理效率高、性能可靠、能耗低,也不需要填料和载体,运行成本低等优点,既可以处理高负荷废水,也不会产生堵塞等优点。也是当前应用最为广泛的高速反应器之一。王炜,何好启[6]研究发现,食品废水经由UASB+接触氧化法工艺处置后,CODcr、BOD5、SS和植物油由原水浓度的1170mg/L、570mg/L、600mg/L、150mg/L,处置后的效果为、、40mg/L和3mg/L,出水水质达到了《污水综合排放标准》中的一级标准,且工程的经济运行效益也良好,总运行费用约为元/m3,工艺占地小,处理成本低,运行方式灵活,值得推广。

反应器,即膨胀颗粒污泥床反应器。该工艺是在UASB基础上发展起来的一种新厌氧工艺,与UASB工艺相比,EGSB增加了出水的回流,提升了反应器中水流的速度,其速度可以达到5m/h~10m/h,比UASB的~高出近10倍。李克勋[7]等以天津某淀粉厂采用EGSB处理淀粉废水为例,EGSB的厌氧反应器对COD的去除率超过了85%,出水水质达到了国家一级排放标准,大量有机物被去除,后续单元的处理压力被减轻,此外,厌氧反应器的介入使用,可以产生沼气作为能源进行二次利用,降低运行费用(总运转费用为元/m3?d),具有良好的环境效益和社会效益。

法,即厌氧序批式活性污泥法。ASBR厌氧序批式活性污泥法最早诞生于上世纪90年代的美国,是在SBR基础上发展起来的,该工艺的显著特点是以序批间歇运行,按次序分为进水、反应、沉淀和排水四个步骤,与连续流厌氧反应器相比,该工艺由于不需要大阻力的配水系统,因此极大地减少了系统的能耗,也不会产生断流和短流,运行灵活,抗击能力较强,实现厌氧功能,也同时兼有了SBR的优点。

3厌氧生物处理工艺优势分析

与好氧生物处理工艺相比,在食品工业废水处理方面,厌氧生物处理工艺具有很多优势:工艺运行时污泥的剩余量非常少,由于不需要附加氧源而降低运行管理费用;食品工业废水有机物浓度高,而厌氧生物处理工艺拥有良好的抗高浓度有机物的冲击负荷力优势,能够做到间接性排放;另外,厌氧生物处理工艺能够产生沼气,实现资源的二次利用,真正实现了 变废为宝 ,降低能耗,因此,厌氧处理工艺在食品工业废水处理中是一种节能型废水处理工艺。作为低能耗而且能够产生二次能源的厌氧生物处理工艺必将成为食品工业废水处理的主流方向[8]。

相关百科

热门百科

首页
发表服务