首页

> 学术期刊知识库

首页 学术期刊知识库 问题

金黄色普通球菌耐药机制研究论文

发布时间:

金黄色普通球菌耐药机制研究论文

因为细菌的传代时间很短,几小时甚至更短就可进行一次传代,也就是复制一次。(这就像PCR一样,复制的新生链不能保证完全和模板序列一样,这涉及保真性的问题。)这就为它突变制造了非常有利的条件。当加入某种药物后,由于细菌在很短的时间就可传代一次,这样就有很多突变,如果某种突变正好能够耐受这种药物,它就活了下来并大量繁殖。而其他不耐药的就死掉,这样最后就只剩耐药的了。(达尔文进化论)扩展阅读:细菌在生物界几乎是传代时间最短的生物了。人传代时间最短的细胞是胃(每2个星期便会更新一次),而神经细胞可活几十年,所以神经细胞破坏了也不易修复,因为它的细胞周期太长了。

不好意思啊。 分子生物学就是在分子水平上研究生命现象的科学。通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程。 应该就是生物产生的物质的角度吧,我也不太清楚了细菌耐药性 1.细菌耐药性的产生 细菌耐药性是细菌产生对抗生素不敏感的现象,产生原因是细菌在自身生存过程中的一种特殊表现形式。天然抗生素是细菌产生的次级代谢产物,用于抵御其他微生物,保护自身安全的化学物质。人类将细菌产生的这种物质制成抗菌药物用于杀灭感染的微生物,微生物接触到抗菌药,也会通过改变代谢途径或制造出相应的灭活物质抵抗抗菌药物。 2.耐药性的种类 耐药性可分为固有耐药(intrinsic resistance)和获得性耐药(acguired resistance)。固有耐药性又称天然耐药性,是由细菌染色体基因决定、代代相传,不会改变的,如链球菌对氨基糖苷类抗生素天然耐药;肠道G-杆菌对青霉素天然耐药;铜绿假单胞菌对多数抗生素均不敏感。获得性耐药性是由于细菌与抗生素接触后,由质粒介导,通过改变自身的代谢途径,使其不被抗生素杀灭。如金黄色葡萄球菌产生β-内酰胺酶类抗生素耐药。细菌的获得性耐药可因不再接触抗生素而消失,也可由质粒将耐药基因转移个染色体而代代相传,成为固有耐药。 3.耐药的机制 产生灭活酶:细菌产生灭活的抗菌药物酶使抗菌药物失活是耐药性产生的最重要机制之一,使抗菌药物作用于细菌之前即被酶破坏而失去抗菌作用。这些灭活酶可由质粒和染色体基因表达。β-内酰胺酶:由染色体或质粒介导。对β-内酰胺类抗生素耐药,使β-内酰胺环裂解而使该抗生素丧失抗菌作用。β-内酰胺酶的类型随着新抗生素在临床的应用迅速增长,详细机制见β-内酰胺类抗生素章。氨基苷类抗生素钝化酶:细菌在接触到氨基苷类抗生素后产生钝化酶使后者失去抗菌作用,常见的氨基苷类钝化酶有乙酰化酶、腺苷化酶和磷酸化酶,这些酶的基因经质粒介导合成,可以将乙酰基、腺苷酰基和磷酰基连接到氨基苷类的氨基或羟基上,是氨基甘类的结构改变而失去抗菌活性;其他酶类:细菌可产生氯霉素乙酰转移酶灭活氯霉素;产生酯酶灭活大环内酯类抗生素;金黄色葡糖球菌产生核苷转移酶灭活林可霉素。 抗菌药物作用靶位改变:由于改变了细胞内膜上与抗生素结合部位的靶蛋白,降低与抗生素的亲和力,使抗生素不能与其结合,导致抗菌的失败。如肺炎链球菌对青霉素的高度耐药就是通过此机制产生的;细菌与抗生素接触之后产生一种新的原来敏感菌没有的靶蛋白,使抗生素不能与新的靶蛋白结合,产生高度耐药。如耐甲氧西林金黄色葡萄球菌(MRSA)比敏感的金黄色葡萄球菌的青霉素结合蛋白组成多个青霉素结合蛋白2a(PBP2a);靶蛋白数量的增加,即使药物存在时仍有足够量的靶蛋白可以维持细菌的正常功能和形态,导致细菌继续生长、繁殖,从而对抗抗菌药物产生耐药。如肠球菌对β-内酰胺类的耐药性是既产生β-内酰胺酶又增加青霉素结合蛋白的量,同时降低青霉素结合与抗生素的亲和力,形成多重耐药机制。 改变细菌外膜通透性:很多光谱抗菌药都对铜绿假单胞菌无效或作用很弱,主要是抗菌药物不能进入铜绿假单胞菌菌体内,故产生天然耐药。细菌接触抗生素后,可以通过改变通道蛋白(porin)性质和数量来降低细菌的膜通透性而产生获得性耐药性。正常情况下细菌外膜的通道蛋白以OmpF和OmpC组成非特异性跨膜通道,允许抗生素等药物分子进入菌体,当细菌多次接触抗生素后,菌株发生突变,产生OmpF蛋白的结构基因失活而发生障碍,引起OmpF通道蛋白丢失,导致β-内酰胺类、喹诺酮类等药物进入菌体内减少。在铜绿假单胞菌还存在特异的OprD蛋白通道,该通道晕粗亚胺培南通过进入菌体,而当该蛋白通道丢失时,同样产生特异性耐药。 影响主动流出系统:某些细菌能将金土菌体的药物泵出体外,这种泵因需能量,故称主动流出系统(active efflux system)。由于这种主动流出系统的存在及它对抗菌药物选择性的特点,使大肠埃希菌、金黄色葡萄球菌、表皮葡萄球菌、铜绿假单胞菌、空肠弯曲杆菌对四环素、氟喹诺酮类、大环内酯类、氯霉素、β-内酰胺类产生多重耐药。细菌的流出系统由蛋白质组成,主要为膜蛋白。这些蛋白质来源于4个家族:①ABC家族(ATP-binding cassettes transporters);②MF家族(major facilitator superfamily);③RND家族(resistance-nodulation-division family);④SMR家族(staphylococcal mulitdrug resistance family)。流出系统有三个蛋白组成,即转运子(efflux transporter)、附加蛋白(accessory protein)和外膜蛋白(outer membrane channel ),三者缺一不可,又称三联外排系统。外膜蛋白类似于通道蛋白,位于外膜(G-菌)或细胞壁(G+菌),是药物被泵出细胞的外膜通道。附加蛋白位于转运子与外膜蛋白之间,起桥梁作用,转运子位于胞浆膜,它起着泵的作用。

细菌对抗菌药物产生耐药性的机制主要有以下几类: 一、钝化酶的产生 耐药菌株通过合成某种钝化酶作用于抗菌药物,使其失去抗菌活性。 1、β-内酰胺酶 对青霉素类和头孢霉素类耐药的菌株产生此酶,可特异的打开药物β-内酰胺环,使其完全失去抗菌活性.分为四类; 2、氨基糖苷类钝化酶 通过磷酸转移酶,乙酰转移酶,腺苷转移酶的作用,使抗菌药物分子结构发生改变,失去抗菌活性。由于氨基糖苷类抗生素结构相似,故有明显的交叉耐药现象; 3、氯霉素乙酰转移酶 该酶由质粒编码,使氯霉素乙酰化而失去活性; 4、甲基化酶 金黄色葡萄球菌携带的耐药质粒产生,使50S亚基中的23SrRNA上的嘌呤甲基化,产生对红霉素的耐药性。 二、药物作用的靶位发生改变 1、链霉素 结合部位是30S亚基上的S12蛋白,若S12蛋白的构型改变,使链霉素不能与其结合而产生耐药性; 2、红霉素 靶部位是50S亚基的L4或L12蛋白,当染色体上的ery基因突变,使L4或L12蛋白构型改变,便会出现对红霉素的耐药性; 3、利福平 作用点是RNA聚合酶的β基因,当其突变时,就产生了耐药性; 4、青霉素 靶部位是细胞膜上的青霉素结合蛋白(PBPs),PBPs具有酶活性,参与细胞壁的合成,是β-内酰胺类抗生素的作用靶位,细菌改变了PBPs的结构,可导致耐药性; 5、喹诺酮类药物 靶部位是DNA旋转酶,当基因突变引起酶结构的改变,阻止喹诺酮类药物进入靶位,可造成喹诺酮类所有药物的交叉耐药; 6、磺胺药 细菌可使药物靶位酶发生改变,使其不易被抗菌药物所杀灭。 三、细胞壁通透性的改变和主动外排机制 1、改变细胞壁通透性 由于革兰阴性菌细胞壁外膜的屏障作用,使其对一些结构互不相同的药物,产生非特异性低水平的耐药性,是通过改变细胞壁通透性来实现的; 2、主动外排机制 可因基因突变而提高耐药水平; 例如:铜绿假单胞菌对抗菌药物耐药性强的原因 (1)对抗生素的通透性比其他革兰阴性菌差; (2)菌体内存在能将四环素,β-内酰胺抗生素和喹诺酮类药物从胞内排出胞外的主动外排机制; (3)该菌存在三种不同的外排系统,naIB型,nfxB型和nfxC型,各型的耐药谱存在差异. 四、抗菌药物的使用与细菌耐药性的关系。 耐药菌株的出现与抗菌药物的使用无直接关系.抗菌药物的作用只是选择耐药菌株,淘汰敏感菌株。

真菌耐药性研究现状论文

细菌的抗药性是大家都非常熟悉的话题,部分小学生都知道致病细菌中的一些“刺儿头”可能由于发生突变而产生对抗生素的抵抗能力。也正是基于这种“全民都知道一点名词,但是没有几个人确实完全了解真相”的现状,民众一提到抗生素马上就想到“滥用”和“耐药性”,使用抗生素的时候也小心翼翼,已然成为惊弓之鸟。

然而,细菌抗药性的话题到目前还没被掰扯清楚,耐药真菌又隆重登场。2019年4月6日,美国《纽约时报》以“致命真菌,治疗无解”为引子报道了一种名为“耳念珠菌”的真菌。这种真菌在短短10年时间内在世界各地相继现身,并且仍然在不断开疆拓土。感染者约有半数在90天内死亡,最终死亡率达到60%,且目前仍无特效药物,甚至全世界最顶级的医疗机构都无能为力。

《纽约时报》关于致命真菌的报道截图

那么,这种可怕的神秘真菌是何时开始现身的?促成它们在世界各地同时出现的诱因又是什么?这次的锅又是抗生素来背?如此高的死亡率会不会造成如中世纪黑死病一般的严重灾难?谜团背后,除却感叹渺小生物亦有的顽强求生本能,人类与环境和其它生物间复杂而微妙的相互作用着实叫人细思极恐。

真菌?细菌?病毒?别傻傻分不清楚

在耐药真菌的故事开始之前,我们有必要重新复习一下初中生物课上学习过的这三种微生物。

首先,从结构上来说,病毒最简单,细菌次之,真菌比细菌还要更复杂。如果把病毒比作人力平板车的话,那细菌起码是电三轮,真菌可能就得是小汽车了。

其次,三者都可能导致人类患上疾病,并且治疗时需要采取不同的方式。大部分抗生素都只针对细菌感染,病毒性疾病需要用抗病毒药物来治疗,而真菌感染也有相对应的抗真菌药物。

例如,由于病毒结构简单,不存在细胞壁也不自行合成蛋白质,那么以攻击细胞壁或者阻碍蛋白质合成为抗菌手段的抗生素就无法对病毒发生作用。

此外,不是所有抗生素都能够针对各种细菌,如绿脓杆菌,它的细胞壁上开孔较小,很多抗生素无法侵入其内部因而对其杀灭效果有限。

形形色色的抗生素

最后,虽然三者中都有危害人类健康的“大敌”,但也有人类生活不可或缺的盟友。多种真菌在酿造和发酵工业中不可或缺,很多细菌对人类消化和生物圈的物质循环有重要作用,病毒中也有噬菌体可以协助人类杀灭细菌或者帮助人类进行蛋白质合成等等。

肆虐全球的超级真菌:耳念珠菌

接下来,让我们揭开耐药真菌“耳念珠菌”的真容。

耳念珠菌可引起侵袭性念珠菌病,如念珠菌菌血症、心包炎、泌尿道感染和肺炎等。由于其多重耐药性、致死性高、感染诊断困难,它也被称为“超级真菌”。目前,美国疾病控制与预防中心已将耳念珠菌列入“紧急威胁”名单。

2005年,日本组织科研力量对境内的真菌群落进行了一次集中的普查。当时,东京都健康长寿医疗中心的医护人员从一名70岁的日本妇女耳道中采集到了某个样品。在之后持续多年的分析鉴定过程中,科学家们发现这件样品无法归类于现存的任何一种真菌。于是,日本科学家于2009年首次报道了这种被命名为“耳念珠菌”的新真菌。谁料在那之后,亚洲和欧洲多国都爆发了耳念珠菌感染引发的重症案例。

培养皿中的耳念珠菌

美国的第一例病例出现在2013年。当时纽约一处医院救治了一名自诉呼吸不全症状的女性。这位出生于阿联酋的61岁妇女在入院一周后检出耳念珠菌阳性,并最终在不久后去世。不过,鉴于当时耳念珠菌还没有目前这么大的影响力,该医院并未将情况上报,直到2016年美国疾病预防控制中心才接到了来自院方的病例报告。

真正让耳念珠菌开始进入大众视野的是2016年的英国皇家布朗普顿医院集中爆发的感染事件。当时,该院一时间出现了72名感染病例,ICU也因此关闭了长达两周之久。由于院方初期对情况严重程度的估计不足,没有在第一时间对社会公开院内情况。

然而,据事后披露的情况显示,早在媒体大规模介入报道之前的数个月,该院已经在内部发出过相关警报,并尝试对疫情出现的区域进行除菌操作。作业人员用专用的气雾剂向收治过受该真菌感染患者的区域附近喷洒过氧化氢溶液,理论上这种喷剂的蒸汽会浸透到房间的每个角落。

这些房间维持过氧化氢气雾的饱和状态达一周之久,之后研究人员在房间中央放置一个表面皿,并观察其底部培养基内微生物的生长情况。令人感到恐怖的是,即便如此,仍然有一个耳念珠菌群落在培养皿中现身。然而,这一事件最终被病院隐瞒了下来……

仅仅在过去五年间,耳念珠菌就在美国、西班牙、委内瑞拉、印度、巴基斯坦、南非乃至中国等地的医院中出现,而其中尤以西班牙巴伦西亚大学医院发生的大型感染事件最为惨烈。这所拥有992张病床的大型医院在当时总共出现了372名感染病例,其中85人发生念珠菌菌血症,其中的41%在30天内死亡。

多地几乎同时爆发:耐药真菌的神秘起源

耳念珠菌从2009年被发现以来,短短十年间已经在全球多地造成多次杀伤。但真正令研究人员感到费解的是该种真菌的神秘起源及其在全球的传播路径。鉴于最早的病例报告于亚洲,最初科学家们推测,亚洲出现的毒株引发了全球其它地区的疫情。然而,对采集自南亚、委内瑞拉、南非和日本的毒株进行遗传信息比对后,研究人员们惊奇地发现,它们属于四个独立的分支,彼此之间不存在亲缘关系。

进一步的基因序列对比结果显示,这四个分支大约在数千年前从同一个祖先处分离出来,并在世界各地的环境中以无害菌落的形式存在着,直到大约十年前开始同时出现耐药性菌株。也就是说,流行于全球各地的耳念珠菌其实是在几乎一瞬间内同时出现在不同地方,几种菌株分别在各地独立演化,且它们之间平行传播的可能性很小。到底是什么原因让它们像约好了一样一起冒出来为祸人间呢?

耳念珠菌病例出现地区分布图

遗憾的是,确切的原因目前仍然不得而知。

研究人员最初以耐药细菌产生的原因作为参考,自然地认为,抗真菌药剂在临床治疗上的过量使用是造成真菌出现耐药性的主要原因。但是,临床上治疗真菌感染的药剂种类虽然不多,但致命性的真菌感染其实发病率很低,且抗真菌药的应用场景和抗药性问题暂时也不如细菌普遍。

那么,如果这锅不让滥用抗真菌药来背?到底又是什么因素造成耳念珠菌的突然爆发呢?确切答案虽然还不得而知,然而,用于杀灭植物真菌的农药很可能是背后的真实原因。

贵圈太乱!真菌、人类、抗真菌药、农药间的相爱相杀

真菌不光可能危害动物健康,同样会危害植物正常生长。农作物种植过程中,离不开抗真菌药物的使用,土豆、豆类、小麦等作物都需要定期杀灭土壤中的致病真菌。与抗生素的名目繁多不同,抵抗真菌感染的药物种类很少,并且绝大多数都是唑类化合物。而杀灭植物真菌的农药同样含有与唑类化合物类似的结构,这就导致在自然环境中栖息的真菌很可能在农药的作用之下发生耐药性突变,一旦感染人体,与农药结构类似的抗真菌药物也就无法发挥作用了。

其实,人类对耐药真菌的认识达到如今的程度也经历了一个曲折的发展历程。

大约在1997年,一种称为烟曲霉菌的常见真菌开始显现耐药性,由耐药烟曲霉菌引发的肺炎死亡率高达60%。起初,医学工作者自然地认为,治疗过程中抗真菌药剂的使用是造成真菌菌株发生耐药性变异的原因,治疗中对耐药菌株占总菌株比例的监测事实也似乎证实了这一猜测。

然而,研究过程中却发现不少从未经过唑类化合物治疗的患者体内也发现了耐药性菌株,这说明耐药性菌株在真菌感染患者之初就已经存在了。

据此,研究人员开始怀疑环境中本来就已经有耐药菌株的存在,而随后的实验结果佐证了这一猜测。

研究人员在医院周围的花坛、草丛以及空调系统中都发现了耐药菌株的存在,土壤样品中耐药菌株占比高达12%。另外,与医用唑类药物结构类似的抗真菌用脱甲基抑制剂(DMI)类农药在世界农药市场中所占份额高达三分之一,而耐药菌株对DMI类农药也表现出了相应的抵抗能力。

培养皿中的真菌菌落,样品全部来源于土壤

虽然这些观测事实还不足以断定农药应用是真菌耐药性产生的直接原因,但可以断定的是,自然界中已经存在大量的耐药性真菌,并且它们的威力与耳念珠菌不相上下。真菌感染原本以侵袭免疫力低下人群为主,当药物能够正常发挥作用时,感染会很快得到有效抑制。一旦抗药性真菌出现,“人类武器库”中原本就有限的选择就会捉襟见肘,从而造成易感人群的较高死亡率。

新型抗真菌药将从农药中找灵感

未来,研究人员除了进一步探究真菌耐药性、抗菌药物和农药间的关联性,开发抑菌机理迥异的新型抗真菌药同样迫在眉睫。

然而,由于真菌和人类细胞同属真核细胞,两者间存在诸多联系,对真菌细胞有杀灭作用的药物也往往会伤害人体正常细胞,所以人类目前仅能从有限的几个人类与真菌细胞的不同之处出发,来设计抗真菌药物。不幸的是,这些药物中的大部分已经不能有效杀灭耐药菌株了。

不过,有不少学者却提出人类其实可以从抗真菌农药中寻找灵感。这是因为除去DMI类药剂,还有若干种农药可以在有效杀灭真菌的情况下保持较低的人体毒性。而这些农药中的相当一部分至今仍处于杀菌机理并未完全解明的状态。从这些行之有效的抗真菌农药中寻找药物设计灵感的思路不失为合理的选择。

食用菌类也属于真菌的一种

事实上,抗药性在抗生素、抗病毒药物、抗真菌药物、抗寄生虫药物乃至抗癌药等各种化学疗法领域都是长久以来存在的问题,是无法回避的宿命。我们要明白人类与微生物的博弈过程将是一场长期而且不断升级的战斗。在这一过程中,我们既要合理使用抗菌药剂,又要避免因药物不适当应用造成的抗药性。同时,我们还需要将人类与致病微生物所在的整个生态系统都纳入到研究和讨论的范围之内。

参考文献:

1. Mysterious Drug-Resistant Germ Deemed An "Urgent Threat" Is Quietly Sweeping The Globe

2. 真菌感染症分野か直面している耐性の状

3. 真菌の耐性化の状は? そして今後は?

4. 感染した人の半分か「打つ手かないまま死亡する」史上最の耐性真菌

分类 按化学结构抗真菌药物分为 棘白菌素类 多烯类 嘧啶类 作用于真菌细胞膜上麦角甾醇的抗真菌药物 烯丙胺类 氮唑类 [编辑本段]作用 能抑制或杀灭真菌的药物。除一些古老的抗真菌外用药如水杨酸、雷琐辛、碘剂、硫黄等外,抗真菌作用显著的新药有抗生素和合成药两大类。①抗生素。主要有灰黄霉素、制霉菌素和二性霉素B等。灰黄霉素只对皮肤癣菌病有效,主要是头癣、体癣、股癣、手足甲癣等,口服时,20~30天为一个疗程,需合并外用治癣药物。长期使用有少数浅部真菌产生耐药菌株,可换用酮康唑。制霉菌素治疗胃肠道念珠菌病,外用治疗皮肤粘膜念珠菌感染,也可制成坐药。二性霉素B主要治疗深部真菌病,如系统性念珠菌病、隐球菌病、曲霉病、结合菌病、芽生菌病、巴西副球孢子菌病、球孢子菌病和组织胞浆菌病等。将此药加入5%葡萄糖溶液中,缓慢静脉滴注。②合成药。包括:咪唑类药物(如克霉唑、益康唑、咪康唑和酮康唑等)、氟胞嘧啶、丙烯胺衍生物。5-氟胞嘧啶治疗念珠菌病、隐球菌病和着色芽生菌病。克霉唑、益康唑和咪康唑基本供外用。咪康唑也可静脉滴注。酮康唑也可口服。外用时主要治疗皮肤真菌病和皮肤念珠菌病。口服和静脉滴注主要治疗深部和浅部的真菌病。 抗真菌药容易影响白细胞及肝功能,长期使用造成一过性GPT上升或白细胞下降,停药可愈。5-氟胞嘧啶从尿中排泄,肾功能不良者可在血中聚集,引起中毒,故肾功能差者应禁用或慎用。二性霉素B可损伤肾脏,并引起血钾降低,有人有发冷、发热反应,少数人可引起血栓性静脉炎。酮康唑应特别注意肝脏受损问题。长期使用可引起血中雄激素水平降低和肾上腺皮脂功能受到抑制。 5-氟胞嘧啶易产生耐药性,为避免耐药性的产生,一开始就使用大剂量,也可与二性霉素B合并使用,二药有协同作用。5-氟胞嘧啶也可与酮康唑合并使用。二性霉素B不能与酮康唑合用,因二药有相互干扰的作用。 临床试用的依特拉康唑抗菌谱广,毒性小 ,优于酮康唑,治疗曲霉病、隐球菌病、组织胞浆菌病、念珠菌病、孢子丝菌病、着色芽生菌病和皮肤癣菌病等,均有较好疗效。供外用的还有联苯苄唑、氟康唑、环吡氧胺和萘替芬等。 真菌感染可分为浅表真菌感染和深部真菌感染两种。自从第一个抗真菌药物两性霉素B 问世以来,人类与真菌的斗争已持续了40多年。迄今,人们在预防和治疗浅表真菌病方面已取得了很大的进展,在深部真菌病的研究方面也获得了一定的成效[1-2]。然而,随着免疫抑制剂、广谱抗生素、抗肿瘤药物的广泛应用,腹膜透析、血透和移植工作的开展以及免疫缺陷性疾病的出现,导致条件致病菌感染剧增,真菌病的发生率也随之大幅度上升。因此,寻求新型、高效、安全抗真菌药物的研究迫在眉睫。 1 抗真菌药物的发展史[3] 20世纪30年代末,从微生物发酵代谢产物中分离得到灰黄霉素,第1个发现并被用于临床; 1944年报道了唑类化合物的抗真菌作用;1960年两性霉素B被用于临床; 1981年酮康唑口服制剂在美国上市,第1个烯丙胺类药物萘替芬进入临床试验; 1990~1992年氟康唑和依曲康唑开始在美国使用; 1993~1995年报道了第2代三唑类抗真菌药物; 1995~1996年上市了第2 个烯丙胺类药物特比萘芬,以及两性霉素B脂质体制剂。 1997年通过了依曲康唑口服溶液制剂; 2001~2002 年上市了2个刺白菌素类药物卡泊芬净和米卡芬净。 2003 磷氟康唑在日本上市 2 主要抗真菌药物临床应用现状及进展 抗真菌抗生素[4-6] 多烯类抗生素 近年报道的多烯大环内酯有高轮烯(takana- waene)、3841 H1、H3、AB023、AB400 与TPU-0043等近10种。七烯大环内酯3874H1 与H3抗真菌谱广,活性稍强于两性霉素B。此外尚未见抗菌活性与急性毒性明显优于两性霉素B者。 两性霉素B抗真菌谱广,对隐球菌、念珠菌、芽生菌、球饱子菌、荚膜组织胞浆菌、抱子丝菌、曲霉、毛霉等引起的内脏或全身感染有确切疗效,缺点是毒副反应较强,但至今依然是治疗全身性真菌病的最有效的药物。通过对两性霉素B进行结构改造可以降低其毒性。 AmBisome在欧洲得到广泛的验证,但因其昂贵的价格限制了其广泛应用。有人建议将两性霉素B与“脂肪乳”合用,可降低费用,且容易制备。但这些“自产”的两性霉素B的脂质复合物没有标准化,尚未有质量控制标准。这些药物似乎更不稳定,肾毒性可能会更大。另外,制霉菌素的脂质复合物正在进行临床试验,但目前尚没有关它与两霉素B对比的数据[7]。 近年来,国外对其剂型改造后,在临床上继续发挥着良好作用。目前有三种不同脂质体剂型的两性霉素B供患者应用。 ①两性霉素B脂质体是用脂质体将两性霉素B包裹而成的药物,由美国明日之星公司研制开发,1991年首先在英国和爱尔兰上市,商品名AmBisome,而后相继进入欧洲13个国家以及北美和亚洲市场,1997年8月11日获得FDA批准。两性霉素B脂质体在国外应用了多年,主要经营厂商是Gilead Sciences和日本藤泽公司,2000年的销售额分别为亿美元和亿美元。 ②两性霉素B脂质复合物(ABLC)是脂质体与两性霉素B交织而成的药物,商品名Abelcet。1995年11月20日获得FDA批准,首先在英国上市,次年已在欧美部分国家上市,目前主要由爱尔兰的伊兰公司销售,2000年该产品在全球排第455位,市场份额为亿美元。 ③两性霉素B胶质分散体(ABCD)商品名为Am-photec,是用硫酸胆因醇与等量的两性霉素B混合包裹而成,已在欧洲和美国广泛用于临床。 脂肽类、糖脂类 微生物产生的环状脂肽棘球康定、纽莫康定、牡仑康定、阿枯菌素、孢利芬净、FR-901469与WF11899A等选择地抑制β-1,3-D-葡聚糖合成酶,阻断真菌细胞壁合成。为了增大此等天然物的水溶性,降低毒性,设计合成并筛选出多种半合成脂肽,其中卡帕芬净与米卡芬净已相继上市,还有一些品种正在研究开发中。 卡泊芬净 由纽莫康定BO半合成制得,对β-1,3-D-葡聚糖合成酶的抑制活性比原抗生素强70~100倍。具有较强的抗曲霉菌属、念珠菌属与丝状真菌活性,对荚膜组织胞浆菌、新型隐球菌、链孢菌属、毛霉属、皮癣菌属与结合菌亚纲等真菌无作用。制剂用二醋酸盐,单剂静脉滴注70mg,血药浓度(Cmax)μg/mL,消除半衰期(t1/2) 9~10h。适应证为侵袭性曲霉菌病与念珠菌病。在治疗侵袭性曲霉菌病中,对其他药物治疗无效和不能耐受的患者有效率分别为36%和70%,不良反应发生率为%。对念珠菌感染的疗效约90%优于两性霉素B约67%,不良反应发生率约8%明显低于两性霉素B约25%。 米卡芬净 由纽莫康定AO修饰制得。对念珠菌属、曲菌属具有广泛抗真菌作用,对耐氟康唑与依曲康唑的念珠菌亦有作用,但对荚膜组织胞浆菌、新型隐球菌、链孢菌属、毛霉属、皮癣菌属与结合菌亚纲等真菌无作用。每日静脉点滴其钠盐1次(75mg),第4天达到稳态,Cmax为μg/mL,消除半衰期为。治疗侵袭性曲霉菌病、慢性坏死性曲霉菌病、念珠菌血症与食道念珠菌病等在日本与欧美的有效率分别为71%与%,不良反应发生率各为%(不包括临床化验值异常例)与%(包括临床化验值异常例)。 吡咯类抗真菌药物 咪唑类 咪唑组中常用的有酮康唑,其次有克霉唑、咪康唑、益康唑等,临床常用于局部用药。 酮康唑 酮康唑是治疗浅部真菌感染的首选药物,但对血脑屏障的穿透性较差,不适宜用于治疗真菌性脑膜炎,对曲霉菌、毛霉菌或足分枝菌的抗菌作用不佳,因此在临床上不适于治疗上述真菌感染。酮康唑的肝脏毒性较大,一般情况下停药后可逐步恢复,但近年来有多例引起严重肝毒性甚至死亡的报道。因此临床应谨慎使用。现常用剂型多为洗剂、霜剂、软膏剂等外用剂型。在我国上市的酮康唑剂型主要有胶囊、片剂、乳膏剂、软膏剂和洗剂等。 益康唑 该药主要用于湿疹、由真菌或革兰氏阳性菌感染所致的细菌し舨〉闹瘟啤D壳坝τ米疃嗟氖怯裳钌?埔┕?狙兄坪铣傻囊恢滞庥酶捶饺楦啵ㄏ跛嵋婵颠?曲安奈德),商品名:派瑞松(Pevisone),是西安杨森推出的又一主导产品,1997年才引进中国,经过短短的三年时间就以其良好的渗透功效,使杀菌成分能够深入到皮肤深层消灭病源,而确定了其在皮肤病用药市场的领先地位,也是西安杨森在皮肤病领域内又一个核心产品。 三唑类 主要品种有氟康唑和伊曲康唑。其为第三代抗真菌药物,是目前临床上治疗深部真菌感染的首选药物[8]。 氟康唑 氟康唑与真菌细胞膜上细胞色素P450酶的铁原子结合而导致真菌死亡。属广谱抗真菌药,但其体内抗菌活性明显高于体外。体内抗真菌活性比酮康唑强5~20 倍。口服易吸收且分布广,半衰期长达30h,脑脊液中浓度为血药浓度的60%,生物利用度达90%以上,不受胃酸与进食的影响,组织分布广,主要经肾小球滤过,80%以上的药物以原形从尿中排出。由于氟康唑在尿液中的浓度是血液中峰浓度的10倍,所以对由白色念珠菌属、酵母菌属等起的泌尿系统真菌感染都有很好的疗效。主要用于各种念珠菌、隐球菌病及各种真菌引起的脑膜炎及艾滋病患者口腔、消化道念珠菌病等。 伊曲康唑 伊曲康唑对真菌的细胞色素P450的作用更加专一,比酮康唑毒性更低,疗效更强,它与酮康唑一样,在艾滋病人及骨髓移植病人的吸收不好。当它与食物同服时,吸收明显增加,与某些饮料同服时,吸收增加。当它与某些经CYP代谢的其他药物同用时,将会发生严重的药物相互作用。值得重视的是,它与特非那丁、阿司氮唑或cisapride合用时会发生危及生命的室性心律失常。 伊曲康唑已成为非致命性的组织胞浆菌病和芽生菌病的首选药物。两性霉素B仍然用来治疗艾滋病人中危及生命的组织胞浆菌病。但是伊曲康唑能有效的控制病情,并用于长期维持治疗。 伊曲康唑未获准用来治疗丛霉菌感染和孢子丝菌病,便它仍被用来治疗一些不常见的真菌感染。 丙胺类 该类抗真菌药物是通过抑制角鲨烯环氧化酶,使角鲨烯积聚,导致麦角甾醇的生物合成受阻,从而引起细胞死亡。因角鲨烯环氧化酶不依赖细胞色素P450,故该类药物的毒性比三氮唑类小。该类药物具有良好的抗真菌活性和新颖的结构特征,而受到重视。它们并非以底物形式产生抑制作用,与酶结合无位置特异性,可以抑制整个酶系统。代表药物有萘替芬和特比萘芬。 特比奈芬 特比奈芬是一种烯丙胺类化合物,对皮肤真菌及一些局部真菌感染有效。它的软膏剂及口服制剂在欧洲已上市,片剂在美国则刚被用来治疗甲癣及其他癣病。通过抑制角鲨烯环氧化酶而起作用,它能杀灭包括曲霉菌在内的绝大多数丝状真菌,并能在指甲及有角质层处富集。它对皮肤真菌的效果优于对念珠菌病,对皮肤念珠菌感染也有效。副作用很小,包括味觉异常,胃肠道不适,极少出现肝炎及斑疹。 3 结束语 抗真菌治疗的巨大进展可概括为:1.三唑类口服药物用于治疗地方性和机会性真菌病;2.伊曲康唑被发现对曲霉菌病有效;3.氟康唑被证实对全身性念珠菌病和隐球菌病有效;4.氟康唑成为球孢子菌笥脑膜炎的治疗药物;5.地方性睦菌病的门诊治疗成为常规;6.低毒性的两性霉素B的脂质复合物用于临床;7.酵母菌的体外抗真菌敏感性试验标准化。当前,抗真菌药物毒副作用的降低和耐药性的改善仍然是抗真菌药物研究的主题。此外,中草药的抗真菌活性越来越受到关注,寻找和利用药用植物中天然抗真菌活性成分为母体设计新型抗真菌药物也是研究的一个方向

肾癌靶向药物耐药机制研究论文

你好很高兴回答你的问题;1.靶向药一般是针对特定的分子遗传学改变及其引起相应的细胞信号通路异常改变的药物(如酪氨酸激酶抑制剂伊马替尼等药物),也有一些靶向药物如单克隆抗体利妥昔单抗是针对细胞表面的标志物通过免疫相关机制发挥作用,后者可因细胞抗原下调发生耐药。2.肿瘤细胞增殖活跃,且往往存在体细胞高频突变,特定的靶向药物所针对的蛋白的某一具体位点可因基因突变发生改变,,从而使该药物失去作用。3.即使是同一个体,同一部位的肿瘤中,肿瘤细胞间也存在异质性,即存在大量对靶向药物敏感性不同的细胞克隆群体,靶向药物可以筛选对药物耐药的细胞克隆,此克隆群体慢慢累积,最终肿瘤细胞中主要的克隆群体对靶向药物耐药。4.说白了和细菌对抗生素的耐药机制是大同小异的。

美国宾夕法尼亚州费城Fox Chase Cancer Center上周发表了一篇Nature子刊《british journal of cancer》分的文章,我们一起来学习一下吧~ 文章研究思路 酪氨酸激酶抑制剂(TKIs)舒尼替尼是晚期透明细胞肾细胞癌(ccRCC)一线治疗药物。但是四分之一的ccRCC患者对靶向治疗药物无效,而且大部分ccRCC患者会在治疗一年后复发。为了找到治疗舒尼替尼耐药的靶点和药物,研究者构建了ccRCC癌细胞株的全基因组KO文库,筛选到了与舒尼替尼耐药有关的差异基因——法尼基转移酶基因,通过si抑制法尼基转移酶和细胞凋亡实验,初步验证了该耐药基因的抑制可以增强舒尼替尼的抑癌效果。随后,搜索临床试验登记网站找到该耐药靶点的抑制剂lonafarnib,细胞活力检测找到处理细胞最佳的抑制剂浓度。Lonafarnib和舒尼替尼药物联合处理细胞并做细胞活力分析、混合药物分析软件、凋亡实验验证两种药物具有协同作用。Lonafarnib治疗的机制方面,研究者通过激光共聚焦和流式检测观察Lonafarnib可以减少舒尼替尼被溶酶体吞噬。单基因敲除细胞株验证,另一条mTOR耐药通路蛋白的法尼基转移酶修饰位点失活以后,舒尼替尼治疗的细胞凋亡明显增加。最后,通过动物实验验证了两种药物组合抑癌效果最优,证明了Lonafarnib具有成药价值。 ❶   全基因组KO文库+舒尼替尼药物处理,筛选与舒尼替尼耐药有关的靶点 为了确定与舒尼替尼耐药有关的细胞因子,用786-O ccRCC细胞构建了人CRISPR KO文库细胞。将786-O细胞与舒尼替尼在10μM下培养12天(约培养6代),该浓度相当于舒尼替尼在人肿瘤标本中的肿瘤内浓度(±μmol/ L),通过舒尼替尼筛选,将那些对舒尼替尼产生抗性的基因的细胞淘汰掉(耐药基因被敲除后,细胞无法存活)。接下来,在存活的细胞群体中鉴定出sgRNA及其相应的基因靶标。每个sgRNA都充当一个单独的DNA条码,用于通过测序来计数携带sgRNA的细胞数量。与舒尼替尼处理前细胞相比,筛选出处理后存活细胞中减少的(underrepresented)sgRNA作为可能与舒尼替尼耐药有关基因。 ❷  舒尼替尼耐药治疗靶点基因(法尼基转移酶)的鉴定和验证 研究者从这些舒尼替尼耐药有关的基因中选择了以前尚未报道过基因:法尼基转移酶(farnesyltransferase)。法尼基转移酶是由FNTA和FNTB基因编码的α和β亚基组成的异二聚体。为了验证法尼基转移酶是否在舒尼替尼耐药中起重要作用,在786-O和PNX0010细胞中进行了该酶β亚基(FNTB)的siRNA抑制24小时后(图2a),接着加10μM舒尼替尼处理siRNA转染的细胞48小时。如图2b所示,抑制法尼基转移酶加强了ccRCC细胞对舒尼替尼介导的凋亡(DNA断裂)作用。 ❸  舒尼替尼耐药治疗靶点的药物和验证 通过搜索确定了几种抑制法尼基转移酶功能的药物,用CellTiter细胞活力检测(ATP检测法)在786-O和PNX0010(肾细胞癌细胞株)中验证这些药物组合的协同抗肿瘤作用。使用XLFit (Excel里的曲线拟合工具)找到两种药物的有效剂量(EDs)(图3a)。用CalcuSyn 软件(目前市场上运用最广泛的混合药物分析软件)做数据分析,验证lonafarnib和舒尼替尼之间存在协同作用(图3b,c),APO-BRDU凋亡试剂盒检测发现,lonafarnib和舒尼替尼的联合治疗使786-O和PNX0010细胞发生严重的DNA断裂(图3d)。 ❹  lonafarnib通过抑制舒尼替尼被溶酶体消化提高抗肿瘤活性 为了进一步确定lonafarnib增强舒尼替尼药效的机制,研究者检测lonafarnib能否抑制舒尼替尼被溶酶体消化。由于舒尼替尼是一种荧光化合物。因此可以很方便地监测其在细胞内的定位。如图4a,b所示,用lonafarnib治疗后,含舒尼替尼的溶酶体数量显着减少了,同时,lonafarnib不会减少舒尼替尼在细胞中积累的总量(图 4c)。 ❺  mTOR耐药通路蛋白的法尼基转移酶修饰位点失活以后,舒尼替尼治疗的细胞凋亡明显增加 研究者之前的体外和体内实验结果表明,mTORC1抑制剂的联合给药可以克服肾癌和前列腺癌细胞中舒尼替尼的耐药性。mTORC1的激活需要结合Rheb(一种GTP酶)。Rheb的溶酶体膜定位和mTORC1信号激活需要依赖Rheb的法尼基化修饰。FTIs通过抑制Rheb法尼基化,从而抑制mTOR信号传导,解除耐药性。为了单独研究Rab7a、Rab25和Rheb蛋白在翻译后法尼基化修饰(异戊二烯化修饰)在耐药机制中的作用,研究者构建3株Rab7a、Rab25和Rheb的786O-KO细胞株:通过KO切割这些蛋白的CAAX基序的C端,使Rab7a、Rab25和Rheb蛋白的异戊二烯化功能失活,然后用舒尼替尼处理。如图 5所示在舒尼替尼处理后,Rheb蛋白失活的细胞凋亡更明显。这些数据表明mTORC1抑制在FTI介导的ccRCC细胞对舒尼替尼的疗效增强中起关键作用。而在没有舒尼替尼处理时,Rab7a失活蛋白的786-O细胞凋亡水平较低,说明Rab25蛋白异戊二烯化功能的失活可以增强舒尼替尼的促凋亡作用(图5)。 ❻  联合用药加强了舒尼替尼的抑癌疗效 研究者接下来使用皮下接种ccRCC(PNXC0010)肿瘤的小鼠研究了舒尼替尼联合lonafarnib的抗肿瘤作用。如图6所示 ,舒尼替尼或lonafarnib的单药治疗显示有一定抑制肿瘤生长的效果,不过舒尼替尼和lonafarnib的联合治疗组的肿瘤生长的抑制作用更为明显。这些结果表明,联合用药有可能成为ccRCC肿瘤的舒尼替尼耐药新的治疗策略。

1.肾癌发病率和死亡率逐年上升,70%的病人年龄在40~70岁之间。2.肾癌临床表现变化多端,可无任何症状,但此时肿瘤在体内已有广泛进展。血尿、腰痛、和肿块为肾癌的三大主要症状,有时还有肾外表现,如发热、肝功能异常、贫血、高血压、红细胞增多症和高血钙症等。3.肾癌转移最好的部位是肺,55%~75%出现肺转移,其次是淋巴结、肝、骨、肾上腺、对侧肾、脑、心、脾、肠、皮肤、和隔肌等,常与肾癌症状出现之前发生血行转移。4.肾癌的癌细胞类型主要为透明细胞癌、颗粒细胞癌和未分化癌等,其中以透明细胞癌最为常见。5.手术是治疗肾癌的主要局部手段,放疗多用于术后,化疗对肾癌效果较差,现代中药可明显提高肾癌的远期疗效。6.肾癌是全身疾病的局部表现,早期发现、综合治疗、特异性抗癌、全身用药、个体化治疗是治疗肾癌的基本原则,应贯穿于治疗始终。7.在制定治疗方案时应详尽了解治疗经过,目前病情状况及其它脏器情况,所制定的治疗方案每三月调整一次,力争使患者病情持续稳定三年以上。8.术后患者的治疗在用药时要特别注意避免使用肾脏毒性药物,确保健侧肾功能。9.患者平稳度过头三年后长期生存机会明显增多。10.发病头两年每两月复查一次B超、胸部X线、CT等,肾癌的预后有显著的个体差异,大多数发展缓慢,与肿瘤的大小、数目、肿瘤的病理级别及侵润范围有关。309国际肿瘤治疗中心特色治疗方案及优势:氩氦超冷刀微创手术+生物细胞免疫治疗中晚期肾癌特色治疗方案的优势:1、 疗效确切,明显延长了患者生命,甚至达到临床治愈的效果。2、 对患者伤害小,恢复快,可反复多次治疗,对较大病灶同样适用。3、 无毒副作用,患者生活质量高。4、 术后无须长时间住院,总体费用低。5、 生物细胞免疫治疗能进一步消除氩氦刀微创手术后残留的微小病灶和癌细胞,达到深入治疗,防止发展的目的。

论述抗菌药物耐药性研究进展论文

不是 是抗生素环境选择了产生耐药性的菌株

年的影印平板实验好像是可以证明微生物抗药性突变是在接触药物前就已自发产生的。

抗菌药包含抗生素。一般来说,抗菌药是指一类对细菌有抑制或杀灭作用的药物,除一部分来自于自然界某种微生物的抗生素外,还包括人工合成的抗菌药,比如磺胺类、喹诺酮类等。青霉素、链霉素等有抗细菌作用的抗生素是抗菌药,一部分来源于微生物的抗肿瘤药物也属于抗菌药。产生耐药性,要根据个人体质,长期大剂量使用,就会产生耐药性。

多重耐药菌毕业论文

多重耐药菌的流行病学主要包括三个环节1.传染源2.传播途径3.易感人群传染源主要为多重耐药菌感染的患者和接触多耐后未做消毒的医生或护士,还有被污染的医疗器械。传播途径医院内大多是接触传播,其次为飞沫或气溶胶。易感人群为免疫力低下的患者,长期卧床的及医护人员。

病情分析:这可以根据药物敏感试验选择药物治疗的。这种产ESBL的大肠杆菌是多重耐药菌,注意内裤需要煮沸10分钟或用消毒水浸泡消毒。使用的洗浴用具和家人分开。否则有接触感染的可能。指导意见:继续使用头孢哌酮舒巴坦做治疗,这药物应该是医生根据药敏试验选择用来做治疗的。用药时间可能需要一周或更长,用药后培养转阴了可以停药。医生询问:

(1)对甲氧西林和苯唑西林耐药的葡萄球菌。(2)对青霉素耐药的肺炎链球菌和其他链球菌。(3)对糖肽类耐药的肠球菌。(4)多重耐药的非肠道革兰阴性杆菌(铜绿假单胞菌、嗜麦芽窄食单胞菌stenotrophomonasmaltophiloa,不动杆菌属)。(5)产生AmPC酶的肠杆菌、枸橼酸杆菌。(6)产超广谱β-内酰胺酶的大肠埃希菌和克雷伯菌属。(7)对青霉素耐药的奈瑟菌(竞争性改变青霉素结合蛋白和产生β-内酰胺酶)。(8)对氨苄西林耐药的流感嗜血杆菌。

由于抗生素的广泛使用及滥用和治疗不当导致耐药菌产生,这种细菌对抗生素不敏感,临床上称“超级菌”,被这种细菌感染临床上很难治疗,对这种细菌的流行的研究就是多重耐药菌的流行病学。

相关百科

热门百科

首页
发表服务