首页

> 学术期刊知识库

首页 学术期刊知识库 问题

大数据教育论文参考文献

发布时间:

大数据教育论文参考文献

大数据论文参考文献回答于2018-09-14现今人们的生活到处充斥着大数据给我们带来的便利,那么大数据论文参考文献有哪些呢?小编为方便大家特意搜集了一些大数据论文参考文献,希望能帮助到大家。大数据论文参考文献一:[1] 陈杰. 本地文件系统数据更新模式研究[D]. 华中科技大学 2014[2] 刘洋. 层次混合存储系统中缓存和预取技术研究[D]. 华中科技大学 2013[3] 李怀阳. 进化存储系统数据组织模式研究[D]. 华中科技大学 2006[4] 邓勇强,朱光喜,刘文明. LDPC码的低复杂度译码算法研究[J]. 计算机科学. 2006(07)[5] 陆承涛. 存储系统性能管理问题的研究[D]. 华中科技大学 2010[6] 罗东健. 大规模存储系统高可靠性关键技术研究[D]. 华中科技大学 2011[7] 王健宗. 云存储服务质量的若干关键问题研究[D]. 华中科技大学 2012[8] 余雪里. 金属氧化物pn异质结对光电响应与气体敏感特性的作用[D]. 华中科技大学 2014[9] 王玮. 基于内容关联密钥的视频版权保护技术研究[D]. 华中科技大学 2014[10] 韩林. 云存储移动终端的固态缓存系统研究[D]. 华中科技大学 2014[11] 田宽. 宫内节育器用Cu/LDPE复合材料的表面改性研究[D]. 华中科技大学 2013[12] 聂雪军. 内容感知存储系统中信息生命周期管理关键技术研究[D]. 华中科技大学 2010[13] 王鹏. 低密度奇偶校验码应用于存储系统的关键技术研究[D]. 华中科技大学 2013[14] 刁莹. 用数学建模方法评价存储系统性能[D]. 哈尔滨工程大学 2013[15] 符青云. 面向大规模流媒体服务的高性能存储系统研究[D]. 电子科技大学 2009[16] 王玉林. 多节点容错存储系统的数据与缓存组织研究

教育理解:教育大数据的意义维度原创:吴南中夏海鹰等世界在你手中,概念的创造图摘要:文章聚焦什么是教育理解、什么是教育理解、什么是教育理解三个问题,探索了教育大数据对教育理解的意义。围绕这三个问题,文章首先对教育理解进行了界定,指出教育大数据视角下的教育理解是教育工作者围绕“文本”释义把握教育育人意义的过程。 随后,文章指出,教育理解是教育大数据支撑下教育创新发展的新动能。最后,文章从智能教育生态布局、教育大数据技术发展、“理解资源”建设、教学过程优化等四个方面探讨了基于教育大数据的教育理解实践策略此外,还讨论了教育理解的局限性,认为教育大数据伦理和教育大数据技术分别限制了教育理解的深度、广度。文章的研究旨在提高教育工作者依靠教育大数据进行教育理解的能力。关键词:教育理解; 教育大数据; 学习过程; 视域融合自教育学诞生以来,教育学科学化成为教育研究者孜孜不倦的追求,教育学史上许多著名教育家试图通过量化来摆脱教育学研究中的纯洁性思辨,Comenius,Herbart,Meumann,Thorndike,OConnor但是,有些教育行为无法用准确的工具量化。 例如,学习者对人的精神、心灵等问题的内在理解、反思性感知等,很难找到有说服力的证据,只能从输入、输出的角度来判断教育的效果,而教育过程中的转换机制如何不清晰在此背景下,极难追求教育理解理论所表达的“解释”、“释义”、“应用”、“洞察”、“移情”、“自觉”等[1],甚至具有一定的幻想性和迷惑性,有“玄虚”之嫌同时,由于缺乏真正的理解,教育“唤起”学习者的效用发挥和时机选择也在一定程度上受到了影响。随着学习者的学习环境从传统的物理课堂向在线领域和虚实融合环境的转变,以及可穿戴设备和情境感知技术在教育教学中的应用,学习者的行为和特征逐渐具备了数据化的能力。研究者们对于如何捕捉、分析、利用学习和生活各方面的数据展开了大量的研究,能够有效地挖掘各种隐藏的、无法测量的教育关系,将原本的“黑匣子”变成一种“看不见”“就像医学上有‘核磁共振成像’技术一样”[3],学习过程是可以测量的。本研究聚焦教育理解是什么、教育理解是什么、教育理解是什么三个问题,探索教育大数据对教育理解的意义。灯泡之间看起来是灰色的一什么是教育理解:教育大数据视角1理解与理解教育在西方,理解来自解释学。《圣经》由不同时期的不同文本组合而成,用同一意义体系来阐释其文本内涵,会产生相互矛盾的解释。为了避免这种现象,Schleiermacher提出了他的“普遍解释学”思想。 即“先划分理解过程和理解对象,再区分他人的理解和辩证理解”[4]。在Heidegger[5]看来,只有在生活的“周围困境”中才能产生有意义的理解,个人的文化背景、社会经验、传统观念等都会干扰这种理解。在中国,根据《辞海》的解释,理解是指“应用现有知识暴露事物联系、认识新事物的过程,其水平因暴露的联系性质和人的认知能力而异。[6]但《朗曼当代英语词典》对“理解”有不同的解释,更多地体现了对理解的行为和判断。在此基础上,诠释学提出“理解是基于历史多元性主体对话结构的实践过程”[7]、“富有思想的人比缺乏思想的人更能展现出对他人在具体环境下的真正理解”[8]。在这些“理解”解释的支撑下,学者们开始用“解释”、“释义”、“应用”、“洞察”、“移情”、“自觉”来描述理解,并据此解释教育现象,形成了理解课程观。将理解课程观应用于教学,可以说是理解教育[10]。在理解教育的影响下,教育者不是全部强加于作为学习主体的学习者,而是通过积极的支持和指导,通过“唤起”学习者来使教育发挥作用。同时,“唤起”释放人们对目标、事实、记忆、概括、实验、真理探索的分析和叙述,以学习情景为教学要素的关键,构建与学习情景形成相关的“学习场域”、“学习空间”、“学习环境”也成为教育研究关注的重点围绕创造学习者的学习环境等的后续教育、教育行为,以学习者的现有状态,也就是Gadamer[11]中所说的“偏见”为起点。“偏见”影响理解效率和效果——现代教学理论有类似的观点,表现为以前的经验和知识对教学设计有决定性的作用,“混合学习中教学设计的起点是找人”[12]。那么,如何找到学习者呢? 如何把握学习者的学习状态? 如何判断学习者的认知风格? 教育大数据找到了解决这些问题的方法。机电一体化2教育大数据和教育理解大数据是继云计算、物联网之后的重大技术变革。在美国,大数据被认为是与“信息高速公路”具有同等地位的重要科技行动[13]。大数据的价值通过“量”与“全”的占有,进行各种数据的交换、整合、分析,发现新知识,创造新价值,带来大知识、大科技、大效益、大发展[14]。在教育领域,教育大数据通过对教育过程数据的捕获和记录、分析和利用,解决教育过程中课程资源建设、学习环境的形成、教育科学评价和教师能力的提高等问题。教育的根本作用是育人,表现方式是教育,教育教学的一切活动都是以“育人”为中心派生的。因此,教学理解是以学习者为对象的理解,应该涵盖学习者对自身、课程、教学过程、评价等的认识,并在此基础上设计相应的教学环节,实现育人效果。可以推断教育教学问题的本源是学习者理解能力的不足。教育大数据通过挖掘数据,帮助教育工作者直观、准确地理解和认识教育及其过程,掌握学习者的“偏见”和“唤起”条件,精准跟踪学习者的情感价值观、认知能力、知识结构和技术技能的变化,达到“沸沸扬扬”在教育大数据的支持下,教师可以更积极地调动资源,改变交流方式,实施教育支持,成为“精神交流盛宴”的主体。在教师的积极作用下,师生冲突状态转变为融合状态,师生精神水平提高,学习者自主学习能力、创造能力、自我适应能力也显著提高。结合以上分析,本研究重新界定了教育理解——教育大数据视角下的教育理解是教育工作者围绕“文本”的释义。 “文本”是本研究中教学过程中的多种载体,是呈现给学习者后可以通过视觉、听觉、触觉等感知到的内容。 (是把握教育育人意义的过程,其内涵主要表现在以下四个方面。 )教育理解是教育实践导向的内在调控机制。教育理解活动及其结果是对教育实践产生促进作用的内因,理解的实践导向是理解不是主观臆断,不是融于自我意识的怪影和荒诞想象之中,而是基于教育大数据相关性的各种理性预测,调动各种资源教育理解是基于历史的理解。学习者“偏见”中的“以前的经历”等因素,可以在历史中找到答案。但历史不是一部空白的历史,而是联系着过去的种种,是现实的客观存在和对未来的显现。由于历史的不可避免性和选择性,同一门课在不同的时间会产生不同的理解。 学习者既不能脱离历史创造条件,也不能自然而然地摆脱历史的制约。教育理解是有价值的理解。教育大数据要通过对学习者的全域考察,体现时代精神多元化包容的特点,教育理解也要从时代精神中找到调整的方向,促进教育理解意义的不断生成。教育理解是一种动态的理解。教学实践是教育工作者与学习者的互动,师生在互动过程中有新的体会,教学理解也随着对话的进一步深入而实现水平的提高。二什么是教育理解:教育大数据支撑的教育创新发展新动力2017年6月20日,每日科技网报道了阿里巴巴在支付上脱离手机的技术。 他认为,这一技术开创了新“颠覆”——这次“颠覆”的主要技术,是物联网和图像识别技术。其实,技术尤其是信息技术已经受到各个国家的关注,如美国未来学家Rifkin[15]在《第三次工业革命》一书中提出了具有影响力的“五大支柱学说”。 英国《经济学家》杂志发表《专题报告》,提出了“制造业数字化”第三次工业革命的特点[16]德国提出了“工业战略”; 我国提出了“中国制造2025计划”等。在教育研究者看来,新工业革命需要关注人才培养的理念、目标、内容、方法与途径、体系重点等系列化转型[17]。 核心是实现教育的根本任务,“让学生意识到自己是同一个生物圈的一部分,从而思考、活动身体”。 具体体现在:破除批量化、标准化、固定化育儿理念,实行个性化、定制化、分散协同化,注重人的个性化和差异化发展,培养创新意识、合作意识、发展意识、服务意识、终身学习能力、社会情绪能力,注重人与人之间的关怀使这些变化发生,其根本要求是更加关注人,这也是理解教育的出发点。1创新型人才的培养需要教育大数据的紧密支撑。 “创新型人才”是指具有创新意识、创新精神、创新思维、创新能力并能取得创新成果的人才。( 18 )从实践看,创新行为是在内在优势和外部环境的双重影响下,结合知识体系和环境体系的内外作用而产生的,而问题发现能力、批判性思维、资源整合能力、问题解决能力是创新行为发生的关键。理想的创新型人才教育,需要教育者首先明确不同个性学习者的不同兴趣爱好和不同的学习需求,并提供相应的学习内容和方式,引导学习者正确分析、勇于尝试,不断地将学习过程过渡到“学习型创造”过程。随着传统课堂学习向混合学习、在线学习的转变,更多的学习行为会通过大数据出现在教师身上,教师可以通过大数据找到创新人才的发展需求,提供相应的学习资源,设计特定的教学环境。在教育大数据的紧密支撑下,创新型人才培养的客观规律和总体模式将被人们更加合理、准确地认识。2文化多样性需要通过教育大数据捕捉学习者的移情状态。 不同种族、宗教、语言群体之间的联系日益紧密,原本封闭的民族文化受到冲击,学习者对各种事物有着多元的理解。 在教育实施过程中要抓住学习者的移情状态,实施“入心”教育。在传统的教学范式中,研究者把这种基于学生状态进行教学的教学设计称为“生成式”设计。教育大数据通过情境感知装置将学习者的“心动”转化为实时“可视”,让教师在此基础上有目的地呼叫资源、激发兴趣、调节情绪,让学生不再是课堂上的“弃儿”。 师生在对话中产生共鸣,产生教育理解所需的“视域融合”。3复杂的新型人才培养需要教育大数据提供过程的支撑,Piaget[19]指出,传统认知论只重视高级认知,即只重视认知的最终结果,看不到认知的建构过程。与此相似,量化数据在传统教学中的主要作用是判断“输入”与“输出”的关系。换句话说,就是判断通过量化数据,提供什么样的教育,得到什么样的结果,通过教育输出了什么样的可测量的结果,对于输入后对学习者的作用过程不知道。即使在现代教育中,人才培养的实际效果也没有明确的证据有力地说明教育创新的合理性和科学性。教育大数据通过描述学习者的全方位数据,用教育大数据支持的“分析”替代了教育过程的复杂性。 教师为学习者创造的视野不是教师想象中的视野,而是基于教育大数据的“可视化”视野。 师生之间出现共鸣,甚至发生视域的融合,在融合过程中引导学习者的学习、工作、人、发展。4人才评价的成长潜能评价需要为教育大数据提供反馈,评价具有世俗意义的人才的“选拔”功能,既是教育理解的目标,也是下一阶段理解产生的基础。以考核为手段的评估,缺乏评估所需的全面性、准确性、可靠性的教育大数据提供了准确记录学习过程、学习效果、学习效率的功能,在一定程度上可以衡量学习者的潜能。在此基础上,教育大数据从“学习量”到“学习能力”、“学习效率”等全面反映学习者潜能的数据进行评估,帮助教育工作者构建个性化的支持机制,最大限度地发挥学习者的潜能。同时,用人单位或较高级别的教育机构也可以通过教育大数据全面考察学习者的状态、特征和发展潜能,选拔必要的合适人才,实现人才选拔功能。大数据三、如何进行教育理解:基于教育大数据的实践策略“拥抱新范式,总是需要重新定义相应的科学。[20]我们在思考教育大数据理解价值的同时,要基于以下教育大数据实践策略,指导教育实践改革,促进教育研究范式的转变: 1利用教育大数据促进教育理解以发挥教育大数据的理解价值不是一个不言自明的话题。相反,教育大数据理解效用的发挥需要几个前提条件。在数据获取上,只有从传统课堂场转向面向未来的“虚实融合场”,最终目标转向“智慧学习场”,才能及时捕捉教育大数据。“智力学习场”的目标是建立可感知学习的环境,以识别学习者的特征,提供适当的资源和方便的交互工具,记录学习过程,评估学习成果,最终促进有效的学习[21]。利用教育大数据捕获技术和设备,设置相应的采集条件,配置便于获取教育大数据的智慧教育生态,为后期的数据捕获、利用和创新提供数据支撑,可以更好地发挥教育大数据的理解价值。2发展教育大数据技术,支持教学过程与学习者视域融合的商业大数据特征清晰,数据模型简单,应用价值清晰。教育大数据要产生应用价值,需要将自然语言、外部环境、人文基础、资源特征等所有相关因素转换为形式逻辑,通过转换体系以简单易行的方式为教师提供讲解文本、图表等支持。其中,教育大数据技术起到的作用非常重要,因此:开发情境感知技术和设备,准确掌握学习者的生命体征变化数据和学习过程相关变化数据等; 探索连接学习系统的智能穿戴设备与学习状态之间的联系,掌握学习者的情绪变化(表现为心率、肢体语言、脑电等变化),帮助教师对学习者的理解。 探索建立基于大数据的及时反馈机制,通过调整教学方式,促进学习者回到学习的“舒适境界”,使教师和系统能快速感知学习者的适应度。3依托教育大数据,建设“资源理解”“资源理解”,本质是学习者乐于学习的资源,是能够与学习者视域融合的资源,是基于学习者的生活经历、人文素养、期望和想象力等个人状态,通过与资源的交流而构建的“学习世界”“资源理解”的构建可以从以下几个方面入手:教育大数据对学习者的“期望”理解度是“资源理解”构建的基础。教育大数据是教育工作者提高资源“生命质量”的有效支撑。学习者在与资源交互过程中的动作特征、交互特征、过程特征和反馈特征等可以通过数据方式来捕捉,哪里是难点,需要更多的案例来帮助学习者理解; 哪里有点无聊,就需要增加资源趣味性哪里简单,就需要提高认知负荷水平等等——这些问题都可以通过流程数据,以仪表的方式通过平台反馈给资源建设者挖掘促进理解的“空白点”。提高“理解境界”,需要设置“空白点”引发学习者的“失落”情绪,从而激发探索、填充、完善资源的意愿,提高理解水平。但是,如何发现这样的“空白”,考验着教育者的智慧。 ——一般来说,热潮兴起时的“突然冷却”、平凡奇特时的“突然脱落”、兴致勃勃时的“突然停滞”等都有“空白”的效果。认清这些状态,在教育大数据技术进步的前提下,具有更多的可能性。教师应该依托教育大数据,通过“空白点”将认知范畴内的理解水平与学习者相关联,建立“理解资源”。4发挥教育大数据精准支撑,优化教学过程教育大数据通过支持教学过程优化对教学理解产生作用:教育大数据帮助教师正确认识教学过程。理解教育理念后,认为教学过程是课程专家、教师、学习者、技术人员在特定场域进行的创新协同活动。通过教育大数据技术,可以完全展现教育过程的直接、客观、准确、真实等特点; 通过严密严密的逻辑推理和联动的云数据,教师对学习者在学习过程中的认知变化、能力变化、情感变化等及其影响因素的认识也更加合理,这为优化教学过程提供了条件。教育大数据为教师如何介入、何时支持提供了依据。教学文本性质、认知方式、学习者情境不同,理解过程会产生偏差,教师需要嵌入一定的支持以纠正偏差,形成共识。教育大数据可以及时捕捉无节奏的键盘敲击、焦虑的斜视、与学习者的无序互动等各种“非正常信息”,这些信息有助于教师有意识地调整教学,开展针对性的学习支持。教育大数据可以改变教育理解的“主观性”,促进基于量化的客观判断。亚里士多德认为,理解只是一种判断,它“不是永恒存在和永恒不变的,而是引起怀疑和关怀的”[22]。由于理解的主观性模糊了学习输入,教育大数据需要收集相应的信息,基于现有特征判断教育干预和支持是否合理。总之,教育大数据的理解意义在于找到人,看清人的状态,提供相应的资源、过程等学习支持,可以优化学习过程,促进理解的发生。大数据会从连接的移动设备上分析大量数据。白色背景上的手智能手机四教育理解限度:伦理与技术双重约束1教育大数据伦理:制约教育理解的深层教育数据伦理是对教育数据产生、收集、存储、分析利用过程中应具有的道德信念和行为规范的理性审视[23]。在教育理解领域,教育大数据的基本运作方式是收集学习者关于学习过程、社会生活、身体状态、精神情感等方面的数据。随着数据采集技术的飞速发展,数据在“洞察”学习者学习过程、提高学习者理解水平的同时,“也是学习者隐私失控的开始”[24]。 例如,教育大数据的大规模使用会泄露学习者的隐私,永久存储的数据可能会对学习者进行固化标记,数据驱动模式容易导致学习者潜能的挖掘不充分[26]等。因此,教育大数据的发展需要在道德和秩序两个体系的规范要求下发展,需要遵循安全原则、公平原则、知情同意原则等伦理标准,避免数据采集的无序; 对大量数据的挖掘要保持一定的敬畏,不要越过伦理的“底线”。2教育大数据技术:广泛制约教育理解的教育数据技术是教育大数据发展和应用的“新引擎”,但现有教育数据技术存在情境感知能力不强、生命体征识别能力不高等不足。另外,教育领域在教育大数据方面的技术研发投入较少,限制了大数据技术对教育的发展,制约了教育大数据理解价值的发挥。总的来说,教育理解的价值在于提供更好的教育,教育大数据技术的出现支撑着教育理解的加深。值得注意的是,教育大数据技术作为工具性的存在,无论提供多么全面的学习者信息,捕捉数据的技术多么强大,实现了多么准确的反馈,都不能替代教师对学习者的理解,更不能替代教师和教育团队的自我理解尽管如此,教育大数据还是可以为教育理解的产生和理解水平的提高提供技术支撑,帮助师生实现自我理解、自我超越,从而在教与学上出现更大的突破,实现个人的生命意义。虚拟形象教育软件参考文献[1]McTighe J, [ m ].Alexandria, VA:associationforsupervisionandcurriculation 1999:19.[2] [ 26 ]吴南中、夏海鹰.教育大数据范式的基本理念与建构策略[J] .电化教育研究,2017,2017 2018、2019、2018, 2019]涂子沛.大数据:正在到来的数据革命,以及政府、商业,2013:12,33.[4]洪汉鼎.诠释学——其历史与现代发展[M] .北京:人民出版社,2001:74.[5] 靳玉乐.理解教学[M] .成都:四川教育出版社,2006:3.[8] (加)马克斯范梅南著.李树英译.教学机智——教育智慧的含义[M] .北京:教育科学出版社,2001:4454 (3) 29 )8)3-8.[11] (德)汉斯格奥尔格加尔达马着.洪汉鼎译.真理与方法——哲学解释学的基本特征)上1999:355,28.[ 12 ]吴南中.混合学习视域下的教学设计框架重构3——兼教学[5]:18-24.[13]何克抗.大数据面面观[J] .电化教育研究孙豫宁译.第三次工业革命[M] .北京:中信出版社,2012:32.[ 16 ] Rothko 2011 )鲍成中.第三次工业革命与人才培养模式变革[J] .教育研究,2013,2010 (4- 9,43.[ 18 ]任飏,陈安.论创新型人才及其行为特征[J] .教育研究,2017, (1) 149-153.[ 1995:3.[20] (美) .库恩着.李宝恒,纪树立译.科学革命的结构( m ) .上海:上海科学技术出版社,1980:44.[21]陈卫东,叶新东(5) 42-49.[22] )古希腊)亚里士多德着.廖申白译.尼各马可伦理学( m ) .北京:商务印书馆,2003:183.[23]刘三娘牙,杨宗凯,李卿.教育数据伦理(大本文仅用于理念共享,无商业用途。 尊重原作者的创作,如有侵权立即删除。自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费领取复习资料:

大数据对高校教育的推动作用论文

当代社会互联网发达,信息技术广泛应用与社会各个领域。当然,利用信息技术来推动高校教育发展也是在信息化教育进程之中。信息技术的发展迅速,大数据也就迅速堆积,大数据记录了信息技术发展的脚步,同样有利于信息技术在社会上的有效发展。高校作为发展人才的地方,自然少不了大量数据累积,信息量巨大,大数据对高校教育也就有着非常大的影响,它不仅推动着高校教育的发展,同时也反映着高校教育数据累积的过程,这类数据与外界环境的共享,一起发挥着大数据对高校教育的推动作用。

1大数据 发挥出在高校教育的发展中的推动作用

高校教育在多年的发展中,逐渐适应了信息化的快速发展进程,将高校教育信息化是必然的条件,这对于高校教育的改革和完善具有完全有效的作用。高校教育信息化同样对提高教学质量,引导创新教学模式,发挥着重要作用。高校教育信息化有利于加强校园文化建设,促进教育高水平发展,有利于改善教学方法,发挥教育各项职能,有利于人才培养,有利于信息交流和教学环境改善。高校教育信息化是教育发展和提升的必要条件,大量的信息交流必定会产生众多数据,针对大数据进行数据收集和处理,方便数据检索和查询。高校教育本身就具有信息量大、数据多样,繁琐的鞥、特点,所以很好的利用大数据为高校教育发展做贡献,一定能更好的推动高校教育的发展。大数据在课堂上的应用,能够改变传统的教学模式,发挥信息技术的无限潜能,不管是时间还是空间的阻碍,都能被信息技术所打破,这将有利于学生更好的融入课堂,使学生更适应课堂,从而使理解知识变得容易。大数据的广泛应用,同样适用于科学研究方面,大数据的全面信息的应用对于信息的共享和交流具有关键推进作用,现代信息技术在社会科学中的应用将改善传统的研究方法,这样不但能提升结果的可信度,更能够提升工作效率,再者,大数据在服务人们方面的应用,高校能够更好的掌握社会需求,了解社会对人才的渴求,从而培养适应社会的人才。这样的好处还有能够加强高校和社会的联系,使得高校能够更好地履行社会职能。大数据还有利于高校建设校园文化与文化传承。高校对于优秀民族和世界文化都有责任和义务传播给更多学生,高校作为文化载体,有更好的条件进行文化教育,通过信息技术手段,方便文化沟通,以及技术交流等。

2大数据与高校教育之间的联系

大数据与高校教育之间不只是简单的应用关系,高校也绝不是被动的接受大数据,其实高校与大数据之间是相互依靠,相互促进的,高校教育的发展同时也是大数据的发展,同时,大数据的发展,也同样推动了高校教育的发展进程。大数据可以说是一种工具,一是顺应了高校教育的发展进程,同时也为高校教育发展做出了许多改善与提升。比方说大数据推动了高校对人才培养的进程,有利于高校选拔适合社会的高等人才,挖掘人才潜在价值,更好的为社会服务,也是为人们服务,帮助学生找到自身优势,使得人才发展变得顺利。前面说的,大数据帮助高校建立完善的文化体系,有助于高校进行文化传承,教育形式改革与创新。大数据有助于高校了解社会需求,发展与培养适应社会的全能人才。反过来,高校教育对大数据的发展也具有非常重要的推进作用。高校由于信息量巨大,也有相对完整的记录和完善形式,对于数据的收集等方面也有非常完善的系统,所以高校教育对于大数据的发展也有积极作用。高校通过长时间的数据利用,自然会产生许多有效的数据分类和整理办法,对数据的研究也非常细致和详细,对数据也会进行补充和完善,分析和创新数据记录办法,所以高校教育方面对数据的整理利用工作也会对大数据的发展做出更多贡献。说完了高校教育与大数据之间的相互利用,还应考虑大数据与高校教育之间的共同发展。许多高校在建立了比较完善的大数据处理和利用方式之后,通常会比较频繁的与外界进行数据处理办法和收集方式的交流和共享,大部分的'数据处理工作都是有目的性的,比方说在网上的数据检索工作,都是在先想好需要什么才去网上搜索的,所以对数据的分类整理工作至关重要。高校教育通常分为大体上的文科和理科,那再往下细分还有工科医科师范类商学类等等。不同的数据有不同的处理方式,不同的数据门类之间有时候也是互通的,所以大数据的处理办法和整体思维都是有分别的,也是有联系的,需要研究者长时间的分析和整理。大数据的使用需要专业的认可,不然的话就会造成资源浪费,看来社会上的机构大概也只有高校和研究员具有资格认证大数据的作用了。大数据广泛应用了信息技术和社会科学等多种学科的资源,在保证数据真实可靠地情况下,为更多数据使用者提供良好的数据参考作用。换句话说,高校教育过程中对数据的使用情况直接影响了大数据的利用率,高校对大数据提供了更多的技术支持,同时也限制了大数据的发展,所以大数据与高校教育之间的这种关系影响了两者之间的共同发展。

3大数据在推动高校教育发展过程中遇到的问题

不可否认,大数据在推动高校教育的发展过程做出了很多贡献,但是在大数据推动高校教育的过程中,仍会出现某些问题,阻止了大数据的推动作用,造成大数据没有完全发挥其应有的功能,没有很好的为高校教育做出更大贡献。首先是高校对于大数据的利用率低,主要体现在进行数据搜索和收集过程中,对需求的认识面太过狭隘,导致数据收集工作不完善,收据收集的不完全,在应用过程中就会有困难,造成信息缺失和资源不足,所以究其原因还是数据收集工作者工作中存在纰漏,或者对数据手机方法不正确不规范,造成了数据缺失情况出现。其次出现大数据利用不完全的问题是因为数据运用者技术不规范和操作不当造成数据使用不完全。和传统的数据使用方法相比,现代的利用大数据进行数据检索和使用工作已经如虎添翼,通过科技手段可以毫不费力的从大量的数据库中筛选出自己所需要的数据来进行利用。这不但大大降低了操作难度,同时也节省了很多时间,我们都知道数据挖掘工作复杂而且繁琐,更需要数据挖掘工作者认真细致的到位的工作态度,一点马虎不得。但是通过技术手段,以及先进的互联网技术,可以很好的解决很多工作中可能会出现的问题。但是机器就是机器,永远不可能有人的思维,就算有那也是人给他格外添加的,永远不可能超过人的思维,所以机器所犯的错误可能也会有很多,这就需要人来利用外力对数据采集处理等工作进行监督,一点失误就会造成数据错误,影响数据的使用。

4提升大数据推动高校教育有效性的对策

针对以上几点问题,首先提出的解决办法就是使人们充分认识大数据的作用,这样从根本上让人们建立起对大数据的作用的基本概念,才能仍大数据更好地为人们服务。大数据实在信息大爆炸的现代社会中人们必不可少的一种数据收集处理方式,对于社会的快速发展,必然会伴随数以万计的数据,那么对于这么多眼花缭乱的数据,要想提取出真正对自己有用的数据,就要利用科技手段,建立完整的数据库,方便人们的数据提取和利用。在认识了大数据的作用之后,就要合理的利用好大数据,正确的使用大数据,在大数据使用过程中应当规范使用办法,避免使用者滥用大数据,检索和分类过程也应当认真细致的操作,因为不仅仅是一次失误,之后的每一个步骤都有可能会对数据处理工作造成误解和偏差,造成大数据的错误使用。为了更好的使用大数据,推动大数据对高校教育的发展,高校应建立完善的大数据使用平台,让使用者能够有地方可查,有资源可用,提高大数据的使用率。至于校园内的配置,应当及时维护,对大数据的保管工作也应时常监督和完善,进一步加强数据使用效率,发挥其应有的价值。在人员配置选拔方面,要认真仔细筛选真正有用的人才,对数据进行分类处理和详细整理,更好的帮助校园内数据使用者进行数据使用程序。

5总结

在当下数据大爆炸的时代,能够更好的使用信息的人,将信息为己所用,那么就是发挥了大数据的真正价值。正确看待大数据,合理利用大数据,将大数据与高校教育有机的结合在一起,尽力发挥大数据应有的价值,有利于人们探索未知的知识和学问,有效的利用好大数据,就是发挥了大数据对高校教育的推动作用。

参考文献 :

[1]邱仁宗,黄雯,翟晓梅.大数据技术的伦理问题[J].科学与社会,2014(01).

[2]王成红,陈伟能,张军,宋苏,鲁仁全.大数据技术与应用中的挑战性科学问题[J].中国科学基金,2014(02).

[3]祝智庭,管珏琪.教育变革中的技术力量[J].中国电化教育,2014(01).

大数据意义

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[10]阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。[11]

有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。[12]

大数据的价值体现在以下几个方面:

(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;

(2)做小而美模式的中小微企业可以利用大数据做服务转型;

(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。

在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:

(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。

(3)分析所有SKU,以利润最大化为目标来定价和清理库存。

(4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

(5)从大量客户中快速识别出金牌客户。

(6)使用点击流分析和数据挖掘来规避欺诈行为。

大数据应用教育论文参考文献

大数据对高校教育的推动作用论文

当代社会互联网发达,信息技术广泛应用与社会各个领域。当然,利用信息技术来推动高校教育发展也是在信息化教育进程之中。信息技术的发展迅速,大数据也就迅速堆积,大数据记录了信息技术发展的脚步,同样有利于信息技术在社会上的有效发展。高校作为发展人才的地方,自然少不了大量数据累积,信息量巨大,大数据对高校教育也就有着非常大的影响,它不仅推动着高校教育的发展,同时也反映着高校教育数据累积的过程,这类数据与外界环境的共享,一起发挥着大数据对高校教育的推动作用。

1大数据 发挥出在高校教育的发展中的推动作用

高校教育在多年的发展中,逐渐适应了信息化的快速发展进程,将高校教育信息化是必然的条件,这对于高校教育的改革和完善具有完全有效的作用。高校教育信息化同样对提高教学质量,引导创新教学模式,发挥着重要作用。高校教育信息化有利于加强校园文化建设,促进教育高水平发展,有利于改善教学方法,发挥教育各项职能,有利于人才培养,有利于信息交流和教学环境改善。高校教育信息化是教育发展和提升的必要条件,大量的信息交流必定会产生众多数据,针对大数据进行数据收集和处理,方便数据检索和查询。高校教育本身就具有信息量大、数据多样,繁琐的鞥、特点,所以很好的利用大数据为高校教育发展做贡献,一定能更好的推动高校教育的发展。大数据在课堂上的应用,能够改变传统的教学模式,发挥信息技术的无限潜能,不管是时间还是空间的阻碍,都能被信息技术所打破,这将有利于学生更好的融入课堂,使学生更适应课堂,从而使理解知识变得容易。大数据的广泛应用,同样适用于科学研究方面,大数据的全面信息的应用对于信息的共享和交流具有关键推进作用,现代信息技术在社会科学中的应用将改善传统的研究方法,这样不但能提升结果的可信度,更能够提升工作效率,再者,大数据在服务人们方面的应用,高校能够更好的掌握社会需求,了解社会对人才的渴求,从而培养适应社会的人才。这样的好处还有能够加强高校和社会的联系,使得高校能够更好地履行社会职能。大数据还有利于高校建设校园文化与文化传承。高校对于优秀民族和世界文化都有责任和义务传播给更多学生,高校作为文化载体,有更好的条件进行文化教育,通过信息技术手段,方便文化沟通,以及技术交流等。

2大数据与高校教育之间的联系

大数据与高校教育之间不只是简单的应用关系,高校也绝不是被动的接受大数据,其实高校与大数据之间是相互依靠,相互促进的,高校教育的发展同时也是大数据的发展,同时,大数据的发展,也同样推动了高校教育的发展进程。大数据可以说是一种工具,一是顺应了高校教育的发展进程,同时也为高校教育发展做出了许多改善与提升。比方说大数据推动了高校对人才培养的进程,有利于高校选拔适合社会的高等人才,挖掘人才潜在价值,更好的为社会服务,也是为人们服务,帮助学生找到自身优势,使得人才发展变得顺利。前面说的,大数据帮助高校建立完善的文化体系,有助于高校进行文化传承,教育形式改革与创新。大数据有助于高校了解社会需求,发展与培养适应社会的全能人才。反过来,高校教育对大数据的发展也具有非常重要的推进作用。高校由于信息量巨大,也有相对完整的记录和完善形式,对于数据的收集等方面也有非常完善的系统,所以高校教育对于大数据的发展也有积极作用。高校通过长时间的数据利用,自然会产生许多有效的数据分类和整理办法,对数据的研究也非常细致和详细,对数据也会进行补充和完善,分析和创新数据记录办法,所以高校教育方面对数据的整理利用工作也会对大数据的发展做出更多贡献。说完了高校教育与大数据之间的相互利用,还应考虑大数据与高校教育之间的共同发展。许多高校在建立了比较完善的大数据处理和利用方式之后,通常会比较频繁的与外界进行数据处理办法和收集方式的交流和共享,大部分的'数据处理工作都是有目的性的,比方说在网上的数据检索工作,都是在先想好需要什么才去网上搜索的,所以对数据的分类整理工作至关重要。高校教育通常分为大体上的文科和理科,那再往下细分还有工科医科师范类商学类等等。不同的数据有不同的处理方式,不同的数据门类之间有时候也是互通的,所以大数据的处理办法和整体思维都是有分别的,也是有联系的,需要研究者长时间的分析和整理。大数据的使用需要专业的认可,不然的话就会造成资源浪费,看来社会上的机构大概也只有高校和研究员具有资格认证大数据的作用了。大数据广泛应用了信息技术和社会科学等多种学科的资源,在保证数据真实可靠地情况下,为更多数据使用者提供良好的数据参考作用。换句话说,高校教育过程中对数据的使用情况直接影响了大数据的利用率,高校对大数据提供了更多的技术支持,同时也限制了大数据的发展,所以大数据与高校教育之间的这种关系影响了两者之间的共同发展。

3大数据在推动高校教育发展过程中遇到的问题

不可否认,大数据在推动高校教育的发展过程做出了很多贡献,但是在大数据推动高校教育的过程中,仍会出现某些问题,阻止了大数据的推动作用,造成大数据没有完全发挥其应有的功能,没有很好的为高校教育做出更大贡献。首先是高校对于大数据的利用率低,主要体现在进行数据搜索和收集过程中,对需求的认识面太过狭隘,导致数据收集工作不完善,收据收集的不完全,在应用过程中就会有困难,造成信息缺失和资源不足,所以究其原因还是数据收集工作者工作中存在纰漏,或者对数据手机方法不正确不规范,造成了数据缺失情况出现。其次出现大数据利用不完全的问题是因为数据运用者技术不规范和操作不当造成数据使用不完全。和传统的数据使用方法相比,现代的利用大数据进行数据检索和使用工作已经如虎添翼,通过科技手段可以毫不费力的从大量的数据库中筛选出自己所需要的数据来进行利用。这不但大大降低了操作难度,同时也节省了很多时间,我们都知道数据挖掘工作复杂而且繁琐,更需要数据挖掘工作者认真细致的到位的工作态度,一点马虎不得。但是通过技术手段,以及先进的互联网技术,可以很好的解决很多工作中可能会出现的问题。但是机器就是机器,永远不可能有人的思维,就算有那也是人给他格外添加的,永远不可能超过人的思维,所以机器所犯的错误可能也会有很多,这就需要人来利用外力对数据采集处理等工作进行监督,一点失误就会造成数据错误,影响数据的使用。

4提升大数据推动高校教育有效性的对策

针对以上几点问题,首先提出的解决办法就是使人们充分认识大数据的作用,这样从根本上让人们建立起对大数据的作用的基本概念,才能仍大数据更好地为人们服务。大数据实在信息大爆炸的现代社会中人们必不可少的一种数据收集处理方式,对于社会的快速发展,必然会伴随数以万计的数据,那么对于这么多眼花缭乱的数据,要想提取出真正对自己有用的数据,就要利用科技手段,建立完整的数据库,方便人们的数据提取和利用。在认识了大数据的作用之后,就要合理的利用好大数据,正确的使用大数据,在大数据使用过程中应当规范使用办法,避免使用者滥用大数据,检索和分类过程也应当认真细致的操作,因为不仅仅是一次失误,之后的每一个步骤都有可能会对数据处理工作造成误解和偏差,造成大数据的错误使用。为了更好的使用大数据,推动大数据对高校教育的发展,高校应建立完善的大数据使用平台,让使用者能够有地方可查,有资源可用,提高大数据的使用率。至于校园内的配置,应当及时维护,对大数据的保管工作也应时常监督和完善,进一步加强数据使用效率,发挥其应有的价值。在人员配置选拔方面,要认真仔细筛选真正有用的人才,对数据进行分类处理和详细整理,更好的帮助校园内数据使用者进行数据使用程序。

5总结

在当下数据大爆炸的时代,能够更好的使用信息的人,将信息为己所用,那么就是发挥了大数据的真正价值。正确看待大数据,合理利用大数据,将大数据与高校教育有机的结合在一起,尽力发挥大数据应有的价值,有利于人们探索未知的知识和学问,有效的利用好大数据,就是发挥了大数据对高校教育的推动作用。

参考文献 :

[1]邱仁宗,黄雯,翟晓梅.大数据技术的伦理问题[J].科学与社会,2014(01).

[2]王成红,陈伟能,张军,宋苏,鲁仁全.大数据技术与应用中的挑战性科学问题[J].中国科学基金,2014(02).

[3]祝智庭,管珏琪.教育变革中的技术力量[J].中国电化教育,2014(01).

大数据意义

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[10]阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。[11]

有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。[12]

大数据的价值体现在以下几个方面:

(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;

(2)做小而美模式的中小微企业可以利用大数据做服务转型;

(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。

在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:

(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。

(3)分析所有SKU,以利润最大化为目标来定价和清理库存。

(4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

(5)从大量客户中快速识别出金牌客户。

(6)使用点击流分析和数据挖掘来规避欺诈行为。

大数据时代下高中数学教学探讨论文

摘要: 大数据时代的到来,为人们的生产生活带来了极大的便利,也为教育教学的创新以及发展带来很大的影响。因此,在大数据时代下,要分析大数据的相关概念,然后对大数据时代下的高中数学教学方式的创新以及应用进行研究,以此来提高高中数学教学的有效性。

关键词: 大数据时代;高中数学;教学方式

信息技术的发展促使了大数据时代的到来,不仅增加了知识获取的途径,也改变了传统的学科教学方式,对促进高中数学教学改革的推进具有重要影响。因此,在大数据时代下,高中数学教师要利用大数据的技术优势,对现存的教学模式进行改革,突出数学教学的时代性,使学生在数学学习中既能够获得相应的知识,还能够树立正确的价值观念,促进高中生数学综合素养的形成,从而促进高中数学学科的健康发展。下面本文将对其进行详细论述。

1大数据相关概念

第一,大数据概念。数据是知识的来源,也是信息的一种记载方式。随着社会的发展和科学的进步,数据数量不断增多,对数据进行记录、测量以及分析的范围也就不断扩大,这标志着人类已经获得越来越多的知识和信息。大数据可以从宏观和微观两个角度去理解,多数学者都是从宏观上对大数据概念进行定义的,即用新的处理模式提高数据出来的执行力,洞察能力以及海量信息的优化能力。大数据具有数据信息量大、种类多种多样、真实性以及实效性强等特点。

第二,大数据分析概念。大数据分析简单来说就是要对大规模的数据进行科学分析,而对这些庞大的数据资源进行分析最根本的目的就是要发现和总结出这些数据中存在的规律以及模式,然后再利用数据的动态性特征去预测事物的未来发展趋势。

2大数据时代下高中数学教学方式的应用

利用大数据转变教师的教学角色

第一,应用大数据技术为教师教学模式的创新提供了机会。大数据时代的到来,传统的教学方法弊端逐渐显现,不仅体现出了与现代社会的不适应,也影响了学生学习积极性的提高。因此,在大数据时代,教师要利用大数据技术开展例如合作探究、个性化教学等多样化的教学方式,丰富课堂教学形式和内容,使学生不再死板地接受学习内容,而教师也能够根据学生的不同阶段开展针对性的.教学活动。教师教学角色和教学模式的转变,强调了学生在课堂中的主体地位,对活跃课堂气氛,提升课堂教学的有效性具有重要作用。例如:在学习“集合”这节课时,教师就可以采用合作探究的教学方式。首先,结合学生的差异性,将学生分成不同的小组,然后设计不同的问题组织学生进行探究,如:①用什么对集合进行表示?可以用一个元素表示集合吗?集合与元素之间有什么关系呢?②集合都有哪些特征呢,结合具体题目进行判断。之后,小组之间对研究结果进行互相交流。再后教师设计突出本节课重点的习题,给学生锻炼的机会。通过这样的教学方式,不同的学生组织到一起集思广益,互相帮助,不仅有利于促进学生思维的发散,还转变了教师的教学角色,提升了课堂学习效率。

第二,应用大数据技术对学生的学习情况进行深入了解。在传统的课堂教学形式下,教师过于侧重学生学习成绩的提升,忽视对学生的了解,导致教学针对性不强,影响教学效果。通常情况下,教师对学生了解是通过考试以及随堂测试的形式进行侧面分析,但这种分析得出的结果并不准确。但在大数据时代,利用大数据技术教师能够对学生的真实情况进行挖掘,然后根据学生之间的个性差异,对学生进行充分的了解,同时教师利用网络技术能够对学生的兴趣点和薄弱点进行准确判断,从而使自己的教学活动与学生的学习需求相吻合,突出数学教学的针对性。

利用大数据发挥学生的主体作用

第一,应用大数据提升学生的学习兴趣。在以往的教学方式下,学生是知识的接受者,部分教师为了提高教学效率甚至一味地向学生进行知识传输,殊不知这种填鸭式的教学方式,不仅无法激发学生的学习兴趣,还会造成学生的抵触情绪,对学习产生厌烦心理,进而影响数学学科教学效率的提升。因此,在大数据时代下,要充分发挥大数据的优势,利用大数据技术去激发学生的学习兴趣,丰富数学课堂的内容,使学生产生主动求知的欲望,能够积极主动地参与到教师组织的教学活动中来。大数据技术的具体应用可以从以下几个方面进行。首先,教师可以利用计算机平台设计预习内容,然后学生能够通过计算机平台自己完成教师布置的习题,教师之后可以借助大数据进行数据分析,这样教师在授课之前就能够找到学生学习的弱点以及难懂点。例如,教师可以利用大数据对学生在“函数”知识中存在的问题进行分析,然后了解到学生易错点和薄弱的地方,之后据此设计相应的课程教案。这样在课堂上学生就能够根据教师针对性的教学设计进行学习,以此来提升课堂教学的有效性。

第二,应用大数据提升学生的学习自主性。学科教学最关键的就是要提高学生的学习积极性,所以在高中数学教学中教师要注重学生自主性的提升。在高中数学教学中,课后知识巩固与习题练习是提高学生学习成绩的重要组成部分,但以往学生通常都是靠手抄错题的形式进行习题纠错和解答的,这种方式取得的效果并不显著,一是浪费了较多的学习时间,二是形式枯燥,学生学习自主性不高,在整理之后查漏补缺效果也不好。所以在此环节可以应用大数据技术为学生的课后自主学习提供平台。在大数据技术的支持下,教师可以将学生之前做好的试卷或者解答过程的问题输入到计算机系统当中,之后学生通过网络进行问题的下载和解答,以便于学生对问题进行查漏补缺。这种方式相比于传统的纠错形式,具有实时性的特征,有利于学生对纠错内容进行更好的掌握。

第三,应用大数据开展分层式的教学形式。目前我国多数高中数学课堂教学采取的都是班级统一上课的教学形式,模式单一固定,缺乏创新性,不仅不利于激发学生的学习积极性,还会影响学生的个性发挥,进而影响学生的潜能的挖掘。“因材施教”是孔子提出的教学思想,所以在大数据环境下,教师要利用大数据技术采取分层式教学的方式,结合每个学生的差异性,开展不同类型的教学活动。每个学生都是独立存在的个体,在思想、能力以及身心发展上都具有差异性,所以针对不同学生的不同特性开展分层教学活动,不仅能够满足学生层次化的学习需求,还能够有效地激发学生的学习兴趣。同时,教师在数学教学中尝试不同的教学方法,应用创新型的教学模式,也能够很好地活跃课堂氛围,调动学生的课堂参与度,从而达到提升学生学习效果的目的。

利用大数据拓宽学生获取知识的途径

大数据时代下,数据量和知识信息不断扩大,学生能够接触和学习到的内容也不断增多,所以教师要利用网络信息技术,在网络上搜集和整理更多的学习资料和信息,然后结合具体的教学目标和学习内容进行这些信息的分析和处理,以此来提高教师的教学效果。而在大数据环境下,学生也能够利用网络技术自行进行数学资源的获取,不断丰富自身的学习的内容,对抽象的数学知识进行简化。另外,在大数据环境下,教师要为学生提供真实、可靠的数据教学服务,引导学生养成善于开发和应用数据的意识和能力,能够根据自身的需要进行数据的获取,这也能够为教师教学互动的开展提供针对性,促进师生间的共同进步。例如:在学习“数列”这节课时,教师可以在课前引导学生利用网络自己进行课前的预习,对数列这节课的知识有个简单的认识,并能够对基本的知识点以及概念进行理解。之后,在课堂上教师可以利用多媒体技术开展具体的教学活动,将教学知识点直观、形象地展现在学生的面前,在课程结束之后,教师组织学生对自己设计的随堂测试问题进行解答,然后对错题进行整理。这种一系列的教学活动,能够提高学生大数据技术的利用与开发能力,对拓宽学生的知识获取途径,提高学生的学习效率具有关键作用。

利用大数据为家长提供教育平台

家庭在学生教育中具有非常重要的作用,家庭是学生的第一所学校,但以往的高中数学教学对家庭教育并不重视,家长没有广泛地参与到学校教育中去,而学校也没有为家长提供更多学习教育的机会,除了每次家长会之外,教师其他时间很少能见到家长,也就很少能参与学生的学习。但大数据时代,网络技术的应用为家长与学校教育的沟通提供了很宽广的平台,家长可以通过固定的软件进行账号的绑定,然后随时对自己家孩子的上课以及课后情况进行了解,进而更好地了解学生近期的表现情况。同时,家长也可以利用这些软件与教师进行交流,对学生的学习和生活情况进行了解,与教师进行充分的沟通和互动。使家长能够更好地配合学校的教育活动,在提高学生数学学习效果的同时,促进学生的健康成长。

3结语

综上所述,大数据时代下数据数量不断增多,网络技术的应用越发广泛,在此种环境下开展高中数学教学活动,不仅有利于创新教师的教学思想和教学方式,也有利于激发学生的学习兴趣,提高学生对数学学科的学习热情,从而达到大数据促进学科教学效果提升的目的。高中数学是一门综合性学科,能够培养学生的逻辑思维和推理能力,同时数学也是一门与人们日常生活密切相关的一门学科。所以在大数据时代,教师要利用好大数据信息,发挥好信息技术在教学中的优势,不断改善自身的教学角色,突出学生的主体地位,拓宽学生获取知识的途径,加强家长与学校的沟通等,使学生在大数据环境下能够养成乐于学习的好习惯和科学的学习方法,推动高中数学教学效果的有效提升,促进学生身心健康成长。

参考文献

[1]孟越飞.大数据背景下的高中数学教学[J].中小学电教(下半月),2018(1):22.

大数据论文参考文献

大数据论文【1】大数据管理会计信息化解析

摘要:

在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

同时也面临着一些问题。

本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。

关键词:

大数据;管理会计信息化;优势;应用现状;问题

在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。

而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。

一、大数据时代下管理会计信息化的优势及应用现状

在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。

而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,

不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,

以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。

需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对

供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。

(一)预算管理信息化

在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。

正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。

这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。

虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。

企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,

从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。

然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,

大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。

所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。

(二)成本管理信息化

企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。

而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。

而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。

企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,

使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。

以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。

同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的

每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。

虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。

然而信息化在成本控制方面的实施效果并不是很理想。

(三)业绩评价信息化

业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,

也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。

而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。

企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。

对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。

然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。

其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。

所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。

二、大数据时代下管理会计信息化存在的主要问题

(一)企业管理层对管理会计信息化不重视

我国企业管理层对企业管理会计信息化建设存在着不重视的问题。

首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。

再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。

(二)管理会计信息化程度较低

大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。

(三)管理会计信息化理论与企业经管机制不协调

虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。

很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。

三、管理会计信息化建设的措施

(一)适应企业管理会计信息化发展的外部环境

企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。

在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。

管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。

(二)管造合适的管理会计信息化发展内部环境

企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。

树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,

有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。

再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。

同时,为企业管理会计信息化建设提供强大的资金保障。

最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。

(三)开发统一的企业信息化管理平台

在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。

四、结束语

管理会计信息化已经成为企业发展的重要趋势。

同时也面对着一些问题。

因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。

作者:李瑞君 单位:河南大学

参考文献:

[1]冯巧根.

管理会计的理论基础与研究范式[J].

会计之友,2014(32).

[2]张继德,刘向芸.

我国管理会计信息化发展存在的问题与对策[J].

会计之友,2014(21).

[3]韩向东.

管理会计信息化的应用现状和成功实践[J].

会计之友,2014(32).

大数据论文【2】大数据会计信息化风险及防范

摘要:

随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。

但大数据时代下会计信息化的发展也存在一定的风险。

本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计

信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。

关键词:

大数据时代;会计信息化;风险;防范

前言

近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。

大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、

交叉重复使用而形成的智力能力资源和信息知识服务能力。

大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数

据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。

但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。

一、大数据时代对会计信息化发展的影响

(一)提供了会计信息化的资源共享平台

进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。

而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,

提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。

但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。

1.[期刊论文]数据科学与大数据技术专业的教材建设探索期刊:《新闻文化建设》 | 2021 年第 002 期摘要:随着大数据时代的到来,信息技术蓬勃发展,国家大力推进大数据产业的发展,鼓励高校设立数据科学和数据工程相关专业。在趋势的推动下,许多高校成立了数据科学与大数据技术专业。本文通过研究数据科学与大数据技术专业的发展现状,探索新专业下人才培养的课程设置及教材建设等问题,同时介绍高等教育出版社在数据科学与大数据技术专业教材建设方面的研发成果。关键词:数据科学与大数据技术专业;课程设置;教材建设链接:.[期刊论文]数据科学与大数据技术专业课程体系探索期刊:《科教文汇》 | 2021 年第 002 期摘要:该文阐述了数据科学与大数据专业的设置必要性、专业的培养目标和知识能力结构,最后探索了数据科学与大数据专业的技术性课程体系设置方法.希望该文内容对数据科学与大数据技术专业的培养方案制订和课程体系构造具有一定的指导意义和参考价值.关键词:数据科学;大数据技术;课程体系链接:.[期刊论文]数据科学与大数据技术专业实验实践教学探析期刊:《长春大学学报(自然科学版)》 | 2021 年第 001 期摘要:近些年各种信息数据呈爆炸式增长,在这种背景下,国家在2015年印发了关于大数据技术人才培养的相关文件,每年多个高校的大数据相关专业获批.数据量的增长对数据处理的要求越来越高,各行业涉及信息数据的范围越来越广,对大数据专业人才的需求越来越多.为了应对社会需求,如何科学地规划数据科学与大数据专业的本科教育,尤其在当前注重实践操作的背景下,如何制定适合的实验实践教学方案,更好满足社会需求.关键词:数据科学;大数据;实践教学链接:

大数据论文参考文献参考文献

大数据论文【1】大数据管理会计信息化解析

摘要:

在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

同时也面临着一些问题。

本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。

关键词:

大数据;管理会计信息化;优势;应用现状;问题

在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。

而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。

一、大数据时代下管理会计信息化的优势及应用现状

在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。

而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,

不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,

以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。

需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对

供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。

(一)预算管理信息化

在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。

正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。

这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。

虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。

企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,

从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。

然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,

大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。

所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。

(二)成本管理信息化

企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。

而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。

而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。

企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,

使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。

以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。

同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的

每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。

虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。

然而信息化在成本控制方面的实施效果并不是很理想。

(三)业绩评价信息化

业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,

也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。

而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。

企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。

对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。

然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。

其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。

所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。

二、大数据时代下管理会计信息化存在的主要问题

(一)企业管理层对管理会计信息化不重视

我国企业管理层对企业管理会计信息化建设存在着不重视的问题。

首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。

再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。

(二)管理会计信息化程度较低

大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。

(三)管理会计信息化理论与企业经管机制不协调

虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。

很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。

三、管理会计信息化建设的措施

(一)适应企业管理会计信息化发展的外部环境

企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。

在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。

管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。

(二)管造合适的管理会计信息化发展内部环境

企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。

树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,

有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。

再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。

同时,为企业管理会计信息化建设提供强大的资金保障。

最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。

(三)开发统一的企业信息化管理平台

在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。

四、结束语

管理会计信息化已经成为企业发展的重要趋势。

同时也面对着一些问题。

因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。

作者:李瑞君 单位:河南大学

参考文献:

[1]冯巧根.

管理会计的理论基础与研究范式[J].

会计之友,2014(32).

[2]张继德,刘向芸.

我国管理会计信息化发展存在的问题与对策[J].

会计之友,2014(21).

[3]韩向东.

管理会计信息化的应用现状和成功实践[J].

会计之友,2014(32).

大数据论文【2】大数据会计信息化风险及防范

摘要:

随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。

但大数据时代下会计信息化的发展也存在一定的风险。

本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计

信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。

关键词:

大数据时代;会计信息化;风险;防范

前言

近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。

大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、

交叉重复使用而形成的智力能力资源和信息知识服务能力。

大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数

据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。

但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。

一、大数据时代对会计信息化发展的影响

(一)提供了会计信息化的资源共享平台

进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。

而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,

提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。

但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。

毕业论文参考文献可以从图书馆或者中国知网上找。

毕业论文指的是你在大学期间对你所学专业的现实或理论问题进行科学探索且是有一定意义的论文,一般大学生在大三下半学期就可以为毕业论文做准备了,因为大四的上半学期要准备实习,下半学期要准备毕业答辩,等大四再去慢慢准备毕业论文时间是很仓促的。毕业论文的撰写过程要求是相当高的,学生要在相关教师的指导下,选定要写的课题才行,这也是从总体上考察一名大学生大学四年的学习成果。

毕业论文一般都包含以下部分:题目、署名、中文摘要、中文关键词、英文摘要、英文关键词(其中英文摘要和关键词要与中文摘要和关键词相对应)、引言(前言)、正文、参考文献、致谢辞和附录。其中对参考文献的要求和格式都特别严格,查找参考文献的过程也特别浪费时间,下面我将讲讲一些找参考文献的方法。

1.确定方向

不管你要找什么类型的参考,首先都要确定你的毕业论文写作方向,然后根据根据你的毕业论文主题去寻找你所需要的参考文献。所以,定方向是至关重要的一步。

2.找信息

找信息这一步是最耗费心血也是工作量最大的一步了,因为就算你明确了你要找的参考文献目标,但是这一类的参考文献实在太多了,所以找起来也不方便。这些都是你要面临的挑战。找参考文献的话主要有两种方法:①图书馆。不过这个图书馆的范围就有点大了,你可以利用学校的图书馆,毕竟每一所高校的图书馆都提供了很多的资源供大家使用。同时要是学校图书馆的还是不能找到你所需的参考文献,你也可以去当地的图书馆,每一个县级以上的地区都设有它们专门的图书馆,你可以去看看。

②网站信息。随着大数据时代的来临,我们查找资料也越来越方便了,只用动动手指就可以在网上查找到你所需要的资料。现在网上也有专门的网站为大家提供寻找参考文献的便利。比如中国知网和全国学术快报等。

3.信息来源

毕业论文的参考文献不仅仅是局限于一些专著,它还可以包括论文集、辞书、研究报告、期刊文章和报纸文章等。

所以其实找毕业论文的参考文献其实有多种途径,能找的文献也很多,只是在找的过程中比较麻烦,还有就是一定不要抄袭,要是在毕业论文出现抄袭现象后果是很严重的。

在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!计算机与大数据的相关论文篇一 浅谈“大数据”时代的计算机信息处理技术 [摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。 [关键词]大数据时代;计算机;信息处理技术 在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。 一、大数据时代信息及其传播特点 自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。 大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。 二、大数据时代的计算机信息处理技术 (一)数据收集和传播技术 现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。 (二)信息存储技术 在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。 (三)信息安全技术 大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。 (四)信息加工、传输技术 在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。 结语: 在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。 参考文献 [1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107. [2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50. [3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI [4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110 计算机与大数据的相关论文篇二 试谈计算机软件技术在大数据时代的应用 摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。 关键词:计算机 大数据时代 容量 准确 价值 影响 方案 1 概述 自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。 大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。 2 大数据时代的数据整合应用 自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。 企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。 3 企业信息解决方案在大数据时代的应用 企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA: Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。 在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。 如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。 在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。 4 结束语 在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。 参考文献: [1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009. [2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007. [3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994. [4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999. [5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000. [6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊. [7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02). [8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01). 计算机与大数据的相关论文篇三 浅谈利用大数据推进计算机审计的策略 [摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。 [关键词]大数据 计算机审计 影响 前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。 一、初探大数据于CAT影响 影响之机遇 大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。 影响之挑战 大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。 二、探析依托于大数据良好推进CAT措施 数据质量的有效保障 依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。 公共数据平台的建立 依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。 审计人员的强化培训 依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。 三、结论 综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。 猜你喜欢: 1. 人工智能与大数据论文 2. 大数据和人工智能论文 3. 计算机大数据论文参考 4. 计算机有关大数据的应用论文 5. 有关大数据应用的论文

写论文的时候,通常要求大家以后写十篇左右的参考文献。参考文献的要求应该和你写的题目有关。你写的是会计论文,后面的参考文献是体育论文,是完全不行的。下面和小编一起来了解论文怎么查参考文献? 论文参考文献通常需要10~15个左右,有些学校需要两个英文参考文献。参考文献通常有自己独特的格式,参考文献主要分为期刊和论文。许多学生不知道如何查看这些参考文献,其实并不难。最简单的方法就是直接从查重报告上抄下来。小编推荐的查重系统是Paperfree,将论文上传到该系统进行查重,通常等待15-30分钟左右,会有详细的查重报告。本查重报告将列出本文引用的一些参考文献,因此您只需将本查重报告上的一些参考文献原封不动地复制到您的论文中。这种查找参考文献的方法是最简单方便的,可以原封不动的复制,也可以保证参考文献的格式不会出错。 另一种方法是在早期写论文时阅读大量的参考文献,许多学生会记录这些参考文献的名称。您还可以阅读以前做的阅读笔记,并将这些参考文献摘录到论文中。

大数据论文参考文献大全

1.[期刊论文]数据科学与大数据技术专业的教材建设探索期刊:《新闻文化建设》 | 2021 年第 002 期摘要:随着大数据时代的到来,信息技术蓬勃发展,国家大力推进大数据产业的发展,鼓励高校设立数据科学和数据工程相关专业。在趋势的推动下,许多高校成立了数据科学与大数据技术专业。本文通过研究数据科学与大数据技术专业的发展现状,探索新专业下人才培养的课程设置及教材建设等问题,同时介绍高等教育出版社在数据科学与大数据技术专业教材建设方面的研发成果。关键词:数据科学与大数据技术专业;课程设置;教材建设链接:.[期刊论文]数据科学与大数据技术专业课程体系探索期刊:《科教文汇》 | 2021 年第 002 期摘要:该文阐述了数据科学与大数据专业的设置必要性、专业的培养目标和知识能力结构,最后探索了数据科学与大数据专业的技术性课程体系设置方法.希望该文内容对数据科学与大数据技术专业的培养方案制订和课程体系构造具有一定的指导意义和参考价值.关键词:数据科学;大数据技术;课程体系链接:.[期刊论文]数据科学与大数据技术专业实验实践教学探析期刊:《长春大学学报(自然科学版)》 | 2021 年第 001 期摘要:近些年各种信息数据呈爆炸式增长,在这种背景下,国家在2015年印发了关于大数据技术人才培养的相关文件,每年多个高校的大数据相关专业获批.数据量的增长对数据处理的要求越来越高,各行业涉及信息数据的范围越来越广,对大数据专业人才的需求越来越多.为了应对社会需求,如何科学地规划数据科学与大数据专业的本科教育,尤其在当前注重实践操作的背景下,如何制定适合的实验实践教学方案,更好满足社会需求.关键词:数据科学;大数据;实践教学链接:

关于零售营销的参考文献

一篇论文中几乎自始至终都有需要引用参考文献之处。如论文引言中应引上对本题最重要、最直接有关的文献;在方法中应引上所采用或借鉴的方法;在结果中有时要引上与文献对比的资料;在讨论中更应引上与 论文有关的各种支持的或有矛盾的结果或观点等。以下就是我为大家带来的关于零售营销的参考文献,希望大家喜欢!

[1]. Michael Morris,Minet Schinde hutte,Jeffrey Allen. The entrepreneur's business model toward aunified perspective[J].Journal of Business Research,2003(6)

[2]. Thomas W. Malone,Peter Weill. Do some business models perform better than others[J].MIT SloanWorking Paper, 2006(5)

[3]. . Ostenwalder,Y. Pigneur,and . Tucci .Clarifying business of the modles:origins,present,andfuture of the concept[J] .Communication Association for Information Systems,2005(15)

[4]. 张兵.传统零售企业的战略转型[J].企业改革与管理,2000

[5]. 毕红毅,孙明岳.我国零售业发展现状、存在问题及发展思路[J].山东财政学院学报,2009

[6]. 李嶙屹.电子商务环境下苏宁电器战略转型的研究[D].上海:华东理工大学,2011

[7]. 张向阳.我国传统零售企业转型网上零售模式的问题与对策研究[J],2012

[8]. 汪孔文.互联网环境下零售商业模式创新[D].福建:华伦大学,2011

[9]. Martin V. Deise.电子商务管理者指南从战术到战略[M].黄京华译,北京:清华大学出版社,2002

[10].Ravi Kalakota,Andrew B Whinston.电子商务管理指南[M].陈雪美译,北京:清华大学出版社,2005

[11].宋倩,王能.互联网条件下国内零售企业商业模式创新[J].电子商务,2013

[12].Zhang Shanshan. A Comparative Study on Online Retailing of and [D].Liaoning:LiaoNing,Dongbei University of Finance and Economics,2011

[13].姚远.我国大型网上零售企业的网络营销策略研究[D].辽宁:东北财经大学,2001

[14].沈瑞山.电子商务的发展对市场营销的影响[J].华东经济管理,2004,18(3)

[15].陈捷.传统中小企业电子商务模式初探[J].电子商务,2010,(6)

[16].刘苗.电子商务模式及其发展策略分析[J].我国商贸,2010,(20)

[17].张秋蓉.试论企业电子商务的风险控制[J].云南则一贸学院学报,2001,(S2)

[18].Amit R,Zott C. Value creation in e-business[J].Strategic Man Journa1,2001,(22)

[19].张喜征,傅荣,胡湘云,胡南相.网络营销中的信任传递模式与策略分析[J].商业研究,2006,(9)

[20].菲利普科特勒.营销管理[M].北京:我国人民大学出版社,2009

[21].高世宁.典型零售企业盈利模式分析[J].当代经济研究,2007(03)

[22].戚安邦.项目评估学[M].天津:南开大学出版社,2006

[23].Viktor Mayer-SchSnberger,Kenneth Cukier.大数据时代:生活、工作与思维的大变革[M].盛杨燕,周涛译.杭州:浙江人民出版社,2013

[24].2013 年度我国网络零售市场数据监测报告[R].杭州:我国电子商务研究中心,2014

[25].李雨妇.家电连锁产业的行业集中度发展研究[J].现代商业,2012(20)

[26].袁峰,宿恺.电子商务企业风险防范体系研究[J].物流科技,2004(6)

[27].黄敏学.电子商务[M].北京:高等教育出版社.2001

[28].章佳元.传统零售企业线上线下协同发展的商业模式研究:以苏宁为例[D].浙江工业大学经贸学院,2013

[29].程光.我国大型百货业电子商务发展研究[D].北京:首都经济贸易大学经济学院,2012

[30].Efraim Turban,David King.电子商务:管理视角(原书第 5 版)[M].严建援译,北京:机械工业出版社,2010

拓展:大数据论文参考文献

[1] 陈杰. 本地文件系统数据更新模式研究[D]. 华中科技大学 2014

[2] 刘洋. 层次混合存储系统中缓存和预取技术研究[D]. 华中科技大学 2013

[3] 李怀阳. 进化存储系统数据组织模式研究[D]. 华中科技大学 2006

[4] 邓勇强,朱光喜,刘文明. LDPC码的.低复杂度译码算法研究[J]. 计算机科学. 2006(07)

[5] 陆承涛. 存储系统性能管理问题的研究[D]. 华中科技大学 2010

[6] 罗东健. 大规模存储系统高可靠性关键技术研究[D]. 华中科技大学 2011

[7] 王健宗. 云存储服务质量的若干关键问题研究[D]. 华中科技大学 2012

[8] 余雪里. 金属氧化物pn异质结对光电响应与气体敏感特性的作用[D]. 华中科技大学 2014

[9] 王玮. 基于内容关联密钥的视频版权保护技术研究[D]. 华中科技大学 2014

[10] 韩林. 云存储移动终端的固态缓存系统研究[D]. 华中科技大学 2014

[11] 田宽. 宫内节育器用Cu/LDPE复合材料的表面改性研究[D]. 华中科技大学 2013

[12] 聂雪军. 内容感知存储系统中信息生命周期管理关键技术研究[D]. 华中科技大学 2010

[13] 王鹏. 低密度奇偶校验码应用于存储系统的关键技术研究[D]. 华中科技大学 2013

[14] 刁莹. 用数学建模方法评价存储系统性能[D]. 哈尔滨工程大学 2013

[15] 符青云. 面向大规模流媒体服务的高性能存储系统研究[D]. 电子科技大学 2009

[16] 王玉林. 多节点容错存储系统的数据与缓存组织研究[D]. 电子科技大学 2010

[17] 田敬. 对等存储系统中的数据可用性与安全性研究[D]. 北京大学 2007

[18] 傅颖勋,罗圣美,舒继武. 安全云存储系统与关键技术综述[J]. 计算机研究与发展. 2013(01)

[19] 杨黎. 金属氧化物半导体多孔膜材料气敏过程中的导电行为研究[D]. 华中科技大学 2013

[20] 聂雪军. 内容感知存储系统中信息信息生命周期管理关键技术研究[D]. 华中科技大学 2011

[21] 周可,张江陵,冯丹. Cache对磁盘阵列性能的影响[J]. 电子学报. 2003(09)

[22] Liping Xiang,Yinlong Xu,John C. S. Lui,Qian Chang,Yubiao Pan,Runhui Li. A Hybrid Approach to Failed Disk Recovery Using RAID-6 Codes[J]. ACM Transactions on Storage (TOS) . 2011 (3)

[23] Liping Xiang,Yinlong Xu,John . Lui,Qian Chang. Optimal recovery of single disk failure in RDP code storage systems[J]. ACM SIGMETRICS Performance Evaluation Review . 2010 (1)

[24] Bianca Schroeder,Garth A. Gibson. Understanding disk failure rates[J]. ACM Transactions on Storage (TOS) . 2007 (3)

[25] Lakshmi N. Bairavasundaram,Garth R. Goodson,Shankar Pasupathy,Jiri Schindler. An analysis of latent sector errors in disk drives[J]. ACM SIGMETRICS Performance Evaluation Review . 2007 (1)

[26] 任劲,谢长生,李为. iSCSI协议及其Linux下的实现[J]. 小型微型计算机系统. 2003(07)

相关百科

热门百科

首页
发表服务