首页

> 学术期刊知识库

首页 学术期刊知识库 问题

高中有关数学的论文范文

发布时间:

高中有关数学的论文范文

在高中数学教学过程中,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。本文是我为大家整理的关于高中数学教学论文 范文 ,欢迎阅读! 高中数学教学论文范文篇一:高中数学教学 反思 一、与时俱进的更新教学理念 教师要积极的与时俱进,转变原有的教学观念。以往的高中数学教学过程中,大多侧重于对各种数学知识的讲授。在新课程大背景下,教师要积极的更新教学理念,将教学重点放在培养学生的学习能力上。因此,在具体的教学活动中,教师应该大胆的抛弃以往的“注入式”教学模式,积极开展“启发式”教学。引导学生分析各种数学问题,并启发学生思考问题,并运用学过的数学知识来解决实际问题。同时,教师还要注意对学生的学习过程进行反思,思考学生的学习效果以及存在的问题等,然后予以合理的 总结 和引导。 二、营造良好的教学氛围 在高中数学教学过程中,良好的教学气氛十分重要。因此,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。在高中阶段,学生需要学习的科目较多难度较大,整体学习压力较大。而且,很多学生都认为高中数学十分枯噪乏味,甚至晦涩难懂,学习积极性不高。加上数学本身具有较强的严谨性院,因此实际课堂气氛往往会流于便沉闷,无法调动起学生的学习积极性院。所以,在具体的教学实践中,教师便要注意准确的把握学生的实际情况,并结合教材内容,联系学生日常生活中较为熟悉的各种数学问题展开教学。尽可能的激发学生的兴趣,提高教学效率。 三、充分保证学生的主体地位 在教学过程中,学生是主体,所有教学活动的开展都要紧密围绕学生这个中心。但是,就目前的实际情况来看,在很多高中数学教学活动中,教师仍然占据着主体地位,主宰着整个课堂。处于这样的模式之下,学生只能十分被动的、机械的跟随教师的脚步,接受教师对各种数学知识的讲授。在这样的教学模式下,学生显然无法很好的开展学习活动。所以,教师要注意积极的转变自身的角色,充分保证学生的主体地位。时刻将自己放在服务者和引导者的位置上,并始终围绕学生为主体这个中心来开展各项教学活动。并积极的通过各种方式,为学生提供足够的发挥自身主体性院的空间。例如,在课堂上,教师要注意和学生进行互动,并鼓励学生随时举手发表自己的意见。 四、积极完善 教学 方法 俗话说,“教无定法”。对高中数学来讲,涉及到大量的数学知识,每节课的具体教学内容和教学任务以及教学目标等都各不相同。因此,教师要注意积极的完善教学方法,针对不同的教学内容和教学目标等,选用合适的教学方法,展开针对性较强的教学。例如,在讲解立体几何相关知识的时候,教师便可以应用演示法,向学生展示各种几何模型。并借助教学模型,更好的引导学生理解各种几何结论。而且,在一节课中,按照实际教学需要,教师还可以积极的将多种教学方法结合在一起使用。同时,教师还要注意全面把握学生的实际情况,尽可能的提高教学方法的针对性。总之,只要能够为教学活动服务,都是好的教学方法。 五、将现代化技术引课堂 随着时代的发展,越来越多的现代化技术开始被大量的应用到高中数学的教学过程中,因此,教师要注意熟练掌握一定的现代化教学技术,并将其合理的应用于教学活动中。高中数学涉及到大量的概念和公式等,单纯由教师进行口头讲授,学生大多会感到十分枯噪乏味。对于一些难度较大的知识点,还会出现难于理解的现象,影响教学效果。此时,教师便可以积极的将各种现代化技术利用引入课堂。课前,教师可以先对教学内容进行深入的分析,然后将教学内容制作成PPT,并从网络上收集一些有趣的教学素材和案例等,制作出内容丰富,趣味十足的课件。然后,在教学过程中,教师便可以适时的将PPT展示给学生们观看。并带领学生一起观察课件内容,分析各种数学问题。这样一来,不但有效的增加了课堂容量,还可以提高学生的兴趣,有效提高教学的效率。例如,在讲解立体几何中一些问题的时候,教师便可以利用多媒体技术,将题目和相关图形直观的展示在学生们的面前。在讲解棱锥体积公式推导过程的时候,也可以利用电脑进行演示。 高中数学教学论文范文篇二:高中数学信息技术的运用 一信息技术在高中数学教学中应用的必要性 信息技术在高中数学教学中的运用,能够形成动态的数学知识,帮助学生更好地理解有关知识,提高学生对问题的观察、分析和解决能力。高中数学的内容与图形有关的较多,高中生的各方面能力发展还不完善,教师要进行适当的引导,帮助其理解难度较大的图形问题,运用信息技术,能够使这些抽象的知识具体化,使原本静态的图形“动起来”,将复杂的问题简单化。如在教学立体图形三视图时,以长方体为例,教师借助多媒体教学设备向学生展示一些生活中的长方体,让学生对长方体的直观图有所了解,然后从这些生活物品中分离出的长方体直观图,让学生对长方体的高、长、宽有初步的认识,同时让学生找出屏幕上长方体的高、长、宽,并进行三视图的绘画。此外,还可以让学生找出生活中的长方体,培养学生的空间 想象力 。因此,在高中数学教学中运用信息技术有助于提高教学的质量,培养学生的综合能力,对教学有很大的促进作用。 二高中数学教学中运用信息技术的策略分析 1.对软件进行模拟,将抽象的数学知识具体化 高中数学的教学,其实质是学生在教师的正确引导下,探究解决问题的办法,并进行创新的过程。信息技术的应用,给高中数学教学提供了丰富的教学资源。如在教学空间四边形时,假如教师单纯地在黑板上为学生展示空间四边形的平面图,学生很容易形成空间四边形的对角线是相交的这一错误观念。教学时借助几何画板可为学生画出立体的空间四边形,并向学生展示旋转的空间四边形。通过这种方式,使学生对空间四边形有了形象具体的认识,使学生的空间感得到增强,提高了其想象力和观察力,对异面直线的知识有了更好的理解。 2.利用信息技术设置有效的教学情境,激发学生的学习兴趣 在传统的高中数学教学中,教师通常是通过对旧知识的复习引入本节知识的内容,有时直接提出本节课程要学习的知识,数学知识的抽象性较强,理解起来有一定的难度,这种方式使课堂变得枯燥乏味,很难调动学生学习的积极性,不能激发起学生的兴趣。学生只有对数学产生了兴趣,学习才会有动力,才能主动学习,教学中忽视对学生兴趣的培养将会降低教学的最终效果。利用信息技术,将声音、动画和视频进行有效的结合,为学生设置生动的教学情境,将学生吸引到课堂中,可激发学生的学习兴趣。如在“等比数列求和”的教学过程中,借助信息技术为学生讲述象棋发明的小 故事 。将学生的注意力吸引到教学中,从而引出本节要学习的等比数列求和知识,有效地激发学生对要学习知识的兴趣,让学生进行思考,国王是否有足够的能力满足发明者提出的要求,让学生自主研究等比数列的求和方法。 三总结 本文首先阐述了信息技术在高中数学教学中运用的必要性,再结合笔者的实际教学情况,说明了应用信息技术的具体策略,希望能够帮助广大的高中数学教师在教学中运用好信息技术,提高数学课的教学效果。 高中数学教学论文范文篇三:高中数学新课程实践 一、高中数学教学内容的转变 现在新课程高中数学教材分为选修和必修,有不同的版本,其中又分为不同的模块,不同的学生可以根据自己的发展和需要选学不同的模块和内容,满足个性化的发展,摒弃了以前的高中数学教材以往所有高中生一种教材的教学诟病。其特点突出学生是主体,教师为主导;突出双基,删除了过时的内容并且补充了适合学生发展和社会进步的新内容,注重对数学思维能力的提高;强调发展学生的数学应用意识;体现数学的 文化 价值;注重现代信息技术与课程的整合,较好的把握了新的课程标准对高中数学内容的要求。例如,必修3中新增了算法的内容。“算法”在当今数学和科学技术中的作用已经凸现出来,他是数学及其应用的重要组成部分,是计算机科学的重要基础。在社会发展中发挥着越来越大的作用,已融入社会生活的方方面面。此外,学习和体会算法的基本思想对于理解算理、提高 逻辑思维 能力、发展有条理的思考和表达也是十分重要和有效的。在教学中,我们要让学生结合具体实例,感受、学习和体会算法的基本思想;学习和体验算法的程序框图、基本算法语言;并将算法的思想方法渗透到高中数学的有关内容中,学习分析、解决问题的一种方法。 二、高中数学教学方式的转变 在传统的高中数学教学中,大多数教师教学观念陈旧,把教科书当成学生学习的惟一对象,照本宣科,不加分析的满堂灌,学生则听得很乏味,感觉有点看电影。改变教与学的方式,是高中新课程标准的基本理念,在高中数学教学中,教师应把学生当成学习的主人,充分挖掘学生的潜能,处处激发学生学习数学的兴趣。教师不能大包大揽,把结论或推理直接展现给学生,而是要让学生独立思考,在此基础上,让师生、生生进行充分的合作与交流,努力实现多边互动。积极倡导“自主、合作、探究”的教学模式。同时,由于学生认知方式、水平、思维策略和学习能力的不同,一定会有个体差异,所以教师要实施“差异教学”使人人参与,人人获得必需的数学,这样也体现了教学中的民主、平等关系。 三、高中数学教学结构的转变 传统的封闭式教学,所有问题皆在课堂内解决(尤其高中数学课),学生时时处在被动接受的地位。在新的课程理念要求下,高中数学课由封闭式转变为开放式,给学生广阔的学习时空。教师开放组织形式,如教学统计知识时,教师可以组织学生调查单位、厂矿里各种生产情况、入口年龄分布情况等把课堂延伸到课外。开放教学内容,新课程教材在一定程度上与生产生活实践相结合,如个人所得税的计算等。为此,教师应引导学生走向家庭、社会寻找鲜活的数学内容,开放教学形式,允许学生根据学习需要,课前自学、尝试练习、提出疑问、小组合作等不受限制。开放教学过程。教师应给学生充分的探究机会,时刻关注并捕捉教学过程中师生互动产生的新情况、新问题,及时调整教学进程。 四、高中数学教学手段的转变 随着新课程实验的深入,它呼唤课堂教学要走向现代化,取而代之的是现代信息技术手段的广泛应用:多媒体教学平台的使用、 网络技术 的应用等,一改以往只凭“一张嘴、一支粉笔、一本书”的传统的课堂教学模式。例如,教学必修3中“统计”中的“数据收集和整理”的习题时,教师利用电脑设计教学情境,把课本上的插图变成实景,屏幕上有声有色地出现一辆辆摩托车、小汽车、大客车、载重车通过一路口,学生在实景中搜集数据,解决了课本难以解决的问题,学生的注意力集中,学习兴趣高涨,充分体会到实地收集数据的快感,收到事半功倍的效果,还有如教学必修4中探究函数y=Asin(ωx+φ)的图象,利用多媒体展现图象的平移、变换实况,学生能直观的看到变化的过程情景,自然容易接受。教学实践证明,运用现代信息技术手段,对改变学生学习数学的方式,激发学生学习数学的兴趣,提高课堂高中数学教学效率将产生重大的影响。运用现代信息技术手段教学不仅可以帮助学生理解数学概念、探索数学结论,还应鼓励学生使用现代技术手段处理繁杂的计算、解决实际问题,以取得更多的时间和精力去探索和发现数学的规律,培养创新精神和实践能力。 五、高中数学教学评价的转变 如今新的课程标准下,充分发挥了评价的整体性、激励性、发展性功能,注重评价主体多元、评价内容多元、评价方法多元、评价标准多元。一改以往以分数论英雄的学生学习成果评价体系和教师教学效果评价体系。作为高中数学教学的评价,要求建立合理、科学的评价体系,既关注数学学习结果,也关注数学学习过程,既关注数学学习的水平,也关注数学学习活动中的情感态度变化,再者,客观上,由于所选模块的不同,班与班,学生与学生失去可比性,在新的评价体系中,还引入了模糊的等级评价以及评价内容的多元化,如选课时数、平时成绩、模块成绩等占不同比例,对评价发生了巨大变化。新课程下的高中数学教学评价更趋科学合理,对转变应试 教育 为素质教育有积极的推动作用,当然对未来高考的改革、人才的选拔方式也提出了更高的要求。总之,高中课程改革是一项复杂的系统工程,任重道远。就高中数学课程改革而言,目前遇到的困难只是暂时的,我们不能怨天尤人。高中数学课程必须改,但怎么改,不仅是专家的事,每一个高中数学教师都要自觉学习、贯彻课改新理念,反思、改进自己的教学行为,客观冷静地分析和对待高中课程改革中出现的新情况,争取尽快走出一条适合自己的改革之路。

随着新课改的全面推进,一场更新 教育 观念,改革教学内容、 教学 方法 的运动正在兴起。教育呼唤教师教学方式的转变,对学生自身的学习能力也提出了更高的要求。 下面是我为大家整理的 高一数学 论文 范文 ,供大家参考。

《 高中数学个性化教学探讨 》

个性化教学是指,在课堂教学中教师充分尊重学生的个性,根据每个学生不同的个性,包括兴趣、特长等,因材施教.教师授课的观念已经不是传统的传授知识,而是带动学生自主学习,把教学方式由“苦力”转化为“技术”,给学生提供充足的学习空间,培养学生的学习能力,提升教学质量和水平.这样,对学生优良的评价已经不是根据学生能够记忆多少知识,而是学生的获取信息、分析信息以及信息加工的能力.个性化教学是实现这样的教学目标的关键所在.教师由“知识的传授者”转变为“学生学习的协作者”,传授学生学习的方法,促进教育个性化发展.个性化教学需要从“多元化”“以生为本”出发,通过具体教学活动体现每个学生的个性、兴趣、特长等.

一、高中数学个性化教学存在的问题

1.学校方面.学校以及教育部门的重视程度不高,学校的管理观念落后,一味追求学生的成绩和整体的升学率,而忽视了对学生的多元化教育,将学习成绩列为评定学生优劣的唯一标准.这是不恰当的,只会逐步消磨学生的个性.

2.教师方面.教师个性化教学能力相对低下.在个性化教学中,教师需要具备数学知识、 基本素养 、心理学以及教育多元化思想结构、个性化教育方法等,但是只有少数教师能够达标,尤其是在乡镇比较落后的地区,几乎没有教师能够在多元化、个性化教学方面达到标准.

3.学生方面.由于学生长期受到“填鸭式”教学方式的影响,基本数学知识和理论的掌握理解程度不一.在这样的环境下,学生大都对学习产生功利性.比如,大多数学生的刻苦努力都是冲着应付考试、取得好名次,或者是为了评先、评优而刻苦学习的.

4.课程和教材方面.教学目标缺乏一定的层次性,教学方法简单机械,教学内容乏味无趣;教材的设置和知识点的配置很难与实际生活和应用达成一致,使学生学习教材知识点仅仅是为了考高分,从而使教学变得没有意义.

二、高中数学个性化教学策略

1.加强对高中数学个性化教学的重视.学校方面应该逐步加强对学生个性化教学的认识和重视,需要在教学理念上予以革新,在管理制度上给予重视.例如,在学校组织多种多样的个性化教学的培训和交流活动,使个性化教学的目标与过程深入到学校各个环节的教育工作者心中,使个性化教学充分展现在校园中.

2.教师提高个性化教学能力.一方面,教师应该提高自身教学素质,形成个性化教学的能力.例如,在讲“椭圆方程”时,教师可以这样开展个性化教学:从教学目标的制定方面将整个章节作为一个大的教学目标,再将大章节分散成小章节,将大问题分解成若干小问题,借助多媒体课件展示椭圆定义的实质,将整个概念浮现在学生记忆里,通过让学生自己动手,独立思考,自主探索,自己提出问题,利用各种教学资源进行观察、分析、实验、探究,找到解决问题的途径.教师可以提出问题:到两定点的距离之和为定值的点的集合一定是椭圆吗?通过课件演示和自主观察,学生得出初步结论,最后由教师进行讲解与集体验证,挖掘其内涵,使该知识点在学生记忆中留下深刻印象.这样,能够提高学生学习的积极性,从而提高教学质量.

3.引导学生适应个性化教学.在高中数学教学中,教师要创造个性化教学环境,引导学生个性化学习,大胆质疑,勇于表达,开展个性化探究活动.例如,在讲“椭圆”时,教师可以准备一根细绳和两根钉子,在给出椭圆定义之前,在黑板上任意取两个点(注意两点之间的距离要小于绳子的长度),让两个学生按照教师的要求在黑板上画椭圆,学生通过自主画椭圆的过程, 总结 出椭圆应该具备的具体特征,之后教师根据学生推测出来的椭圆的特点进行讲解,将椭圆的数学定义与学生总结出来的椭圆的特点进行对比,总结 经验 和教学.这样,每个学生脑海中都会存在椭圆的定义和椭圆的基本形态,提高学习效果.

4.形成个性化教学策略.首先,教师要按照不同学生的具体水平制定不同的教学目标,再按照各个层次不同基础学生的学习状态以及学习要求选择层次分明的教学方法,有针对性地对不同阶段学生进行不同方式的教学.其次,引入综合性的教学办法.最后,对高中数学的教学内容进行拓展,培养学生的 发散思维 ,形成多元化的教学评价.总之,个性化教学关键在于教师.在“以生为主”的基础上,突出教师的主导作用,不失时机地引导学生,从学生内心完成其对教学方法的认可,帮助学生对数学知识的掌握以及知识框架的梳理.通过教学方法来指导学生的学习,通过学生的学习来完善教学方法.

《 高中数学互动教学探讨 》

教学过程是师生双边性的活动,是师生沟通交流、共同发展的互动过程。随着新课改的不断深入,高中数学课堂从表面也变得活跃起来,但数学教师并没有从本质上激发学生学习数学的兴趣,没有充分挖掘学生的数学潜能。新课程改革对高中数学教学提出了新的要求,其更加重视学生在学习中的主体性,也要求教师维持课堂活力,通过更有效的互动交流提高教学的有效性。这就要求教师要高度重视与学生的互动交流,在互动的过程中注重培养学生的独立自主性、思维创造性,引导他们真正成为学习的主人。在此,笔者对高中数学互动教学作了一定的探讨。

一、转变教师角色,师生平等参与数学教学活动

师生平等,老师不是居高临下的“说教者”,而是作为引导者,引导学生自主完成学习任务。我们知道,教育作为人类重要的社会活动,其本质是人与人的交往。教学过程中的师生互动,既体现了一般人际之间的关系,又在教育情景中“生产”着教育,推动教育的发展。根据交往理论,交往是主体间的对话,主体间对话是在自主的基础上进行的,而自主的前提是平等的参与。因为只有平等参与,交往双方才可能向对方敞开精神,彼此接纳,无拘无束地交流互动。因此,实现真正意义上的师生互动,首先应是师生完全平等地参与到教学活动中来。应该说,通过各种学习,尤其是课改理论的学习,我们的许多教师都逐步地树立起了这种平等的意识。但是在实际问题当中,师生之间不平等的情况仍然存在。教师闻道在先,术业专攻,是先知先觉,很容易在学生面前就有一种优越感。年龄比学生大,见识比学生多,认识比学生深刻,有时就很难倾听学生那些还不那么成熟、幼稚,甚至错误的意见。尤其是遇到一些不那么驯服听话的孩子,师道的尊严就很难不表现出来。因此,师生平等地参与到教学活动中来,其实是比较难于做到的。怎样才有师生间真正的平等,这当然需要教师们继续学习,深切领悟,努力实践。但师生间的平等并不是说到就可以做到的。很难设想,一个高高在上的、充满师道尊严意识的教师,会同学生一道,平等地参与到教学活动中来。要知道,历史上师道尊严并不是凭空产生的,它其实是维持传统教学的客观需要。这里必须指出的是,平等的地位,只能产生于平等的角色。只有当教师的角色转变了,才有可能在教学过程中,真正做到师生平等地参与。转变教育观念,改变学习方式,师生平等地参与到教学活动中来,实现新课程的培养目标,是这次课程改革实施过程中要完成的主要任务,这也正是纲要中提出师生积极互动的深切含义。为什么我们要强调纲要提出的师生互动绝不仅仅是一种教学方式或方法,其理由就在于此。

二、构建教学场景,师生在融洽氛围中深刻互动

情感渲染学指出,和谐师生关系、融洽生生关系,需要外在良好教学情境和氛围的渲染和支持。师生之间深入参与,积极互动,一方面需要积极的心理情态进行“驱动”,另一方面需要适宜的场景氛围进行“渲染”。部分教师轻视情感氛围的营造,强调教师的讲解指导功效,学生的主体意识淡化,参与情感淡薄,师生互动也只是“逢场作戏”,形式主义。笔者认为,教师应注重外在环境因素的应用,利用高中数学教材的生活应用特性、趣味生动特性、历史特点等,通过适宜融洽教学环境的“外因”,催化学生主动参与互动的“内因”,促使师生之间进行深入互动。如“等比数列的前n项和”新知讲解环节,教者发现,以往的“直接讲授法”教学模式限制了高中生掌握其知识内涵的“深度”,学生只有“参与其中”,深入互动,真切交流,采用场景激励法,设置了“古代印度国王准备对 国际象棋 的发明者给予麦子奖赏,而发明者提出了在第一格放1粒麦子,第二格放2粒麦子,第三格放4粒麦子,以此类推,放到象棋盘上的最后一格,将所用到的麦子全部奖赏给他”的现实案例,并利用教学课件进行动态演示展示,为学生营造具有真实感、现实感的场景氛围,贴合高中生认知实际,带着积极情感参与师生深刻互动。

三、注重综合评价,促进高中数学互动教学

在高中数学互动教学中,教师需要注重对学生进行综合全面的评价。只有通过有效的评价,教师才能对互动教学进行总结,才能够进一步激发学生的信心,使课堂教学氛围变得更加和谐。一方面,教师要评价的是师生互动中学生的收获与表现出的不足,要通过评价指出学生的得失,使学生能够在日后的学习中有意识的改正缺点并发挥优点。另一方面,教师要评价学生的能力与具体表现,要善于发现学生的闪光点,并通过正面的评价对其进行认可与肯定,达到巩固学生学习信心的目的。例如,在函数的单调性的教学中,教师利用课堂提问的方式引导学生进行思考与学习,同时在互动中了解学生掌握知识的情况。教师发现,部分学生能够在研究函数时有意识的利用数形结合的方法将抽象的条件放入函数图像中解析,并且能够从不同的角度思考问题分析问题。此时,教师并不能只看到学生在学习中取得的收获,而应该肯定意识和能力,要对学生表现出的能力进行肯定与认可。基于此,学生才能在与教师的互动中感受到教师对自己的关注与重视,才能在日后的交流中变得更加主动,同时有意识的发扬自己的优点,使其成为个人独特的能力。

有关高一数学论文范文推荐:

1. 高中数学论文范文

2. 高中数学评职称论文范文

3. 有关高中数学论文范文

4. 浅谈高一数学相关论文

5. 数学系毕业论文范文

6. 关于高中数学论文

7. 浅谈高中数学模型论文

8. 高中数学教育教学论文

数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文

有关高中数学的论文

数学中,数列的教学思想是一座桥梁,能够将复杂的问题巧妙地转化成简单的解题方法,让教师在教学中和学生学习的过程中更清晰、更简洁。下面是我为你整理的高中数学数列论文,一起来看看吧。

【摘要】随着新课标在我国的全面实施,高中数学教学中心课改的理念如何体现,才能适应新课改的要求?成为高中数学教学实践的重点目标。高中数学数列方面的内容,是高中数学的基础内容,很多重要的数学问题通过数列都可得到圆满解决。因此教好数列、学好数列对提高学生未来解决数学问题的能力有重要的实践意义。从教师角度看,优良的数列教学课堂设计对教学目标和教学效果的实现举足轻重。

【关键词】高中数学;数列;课堂教学

高中数学中,数列占有很重要的教学地位,数列在数学领域隶属于离散函数的范畴,是解决现实中很多数学问题的重要工具。数列问题是高二年级数学教学的基础。数列问题学习可以培养学生对数学问题的思考、分析和归纳的能力。并对以后阶段的数学知识有启蒙作用。数学教师必须重视数列教学实践对学生的启发作用。

一、数列部分教学内容概述

数列这一部分主要介绍了数列的概念,并对数列根据其特点进行了分类。接着引出了数列通项的概念。高中二年级主要学习等差、等比数列的概念,通项公式,前n项和。并对数列在现实生活中的意义进行了介绍,主要有分期付款等储蓄问题。本章介绍的数学公式较多,主要涉及数列的通项公式和前n项和公式。教学中,对公式的推导过程和变形种类要重点讲解。以便让学生从数学原理的角度对数列的相关概念做深入理解。如何灵活的运用数列的性质来对综合性题目进行解答是本章的重点教学任务。数列的相关问题的认识,要贯穿函数的思想来向学生传递。

二、数列教学的有效性策略简析

数列的教学应该遵循有效性原则来进行。我们在教学中应该用先进的教学理念来指导教学。数学的思维模式主要是逻辑性思维为主,因此有效的方式方法一旦为学生所领会,那教学的过程会变得相当的容易。

1.对比数学问题,归纳共性特点,培养探究习惯和能力

在认识数列时,应该同时引入函数的动态认识数列的方法,利用对函数的研究方法来类比到数列问题中来。对于数列的表示法的讲解,可通过函数的表示方法引申过来。而对等差数列,等比数列的单调性性质,也可通过以往学过的函数的相关性质来类比讲解;在求和问题的最值研究中,可从抛物线等二次函数中的变量演化过程类比讲解求函数最值。等差数列和等比数列的概念、性质、通项等,我们可通过两个类型数列的异同点来进行研究。如:从数列的特点来说,前一项与后一项的之间的差异对等差数列来说,两项间是加减法的关系,每两项之间都相差一个固定的数值,而对等比数列来说,则是乘除法的关系,每相邻两项之间是倍数的关系。对中项的概念来说,等差中项概念与相邻项的关系同样的加减法的规则,而等比数列的中项则是插入一个固定比例的关系。而两个等差数列,仍然为等差数列。而两个等比数列的对应项的乘积也为等比数列。这种数列之间的项与项的数量关系的实质要为学生开解明白。

2.与其他数学知识相综合,建立数学知识体系的网络化综合化

数学中任何一个概念都不了独立的,在整个的数学知识体系里面,每个知识点都与其他的结点有关联性,因此在数列教学中,要把数列、函数、不等式、解析几何等概念有机的结合起来进行讲解。数列其实是函数的特殊化,研究函数有普遍性的意义,而研究数列是研究函数的特殊化。因此在数列教学中建立函数的概念,有助于改变学生的静态思维。另外还有,数列与不等式,数列与导数,数列与算法等的综合运用,都要在数列教学中对学生加以讲解。

3.通过练习和小测试来巩固课堂教学的效果

传统教学模式中,有一项是“题海战术”,可见习题在数学教学中的作用是不容忽视的。尽管目前的教育模式不支持教师对学生施以题海战术,但选取具有代表性的习题,开拓学生的数学思想和知识点延伸,是有极大好处的。首先通过习题,可以巩固学生的基础知识结构,加强知识点之间的有机结合,从而提高学生对数学问题的分析能力。举个简单的例子,求数列an-n。通过前面的知识的学习,我们可以知道,这道题目,分为两部分数列的综合计算而成。前半部分是一个等比数列,而后半部分,我们可以看成负自然数的数列。等比数列的求和公式是形成的,而自然数的和在初中的高斯定理就已学过,通过这样的拆解,为学生解答综合性的问题提供了行之有效的途径。其次,同样一个题目如果能,应当鼓励学生用更多的方法来进行解答,这样可以培养学生的发散性思维,在考试中碰到的问题即使一时想不出来,至少学生能够想到很多种解题的方案,这其中说不定就有通往正确答案的途径。第三,公式的变形要加强练习,只有这样,学生才能够触类旁通,同一类问题的解决途径往往稍加变形,但其解法本质上是殊途同归的,通过这种锻炼,学生解题的能力得到了很大的提高,学到的知识体系也进一步得到巩固。第四,题目解决了,并不是学习的终结,要培养学生“回头看题”的习惯。这种习惯的养成有助于学生对题目的知识点进行全面把握。

三、高中数学数列部分课堂教学设计要点

课堂教学设计是高中教学中的重中之重,课堂教学设计的水平在某种意义上决定了课堂教学的效果和学生学习的成果。在课堂教学方案的设计中,笔者通过多年的教学经验和实践认为应该包括以下要素:

1.要细致了解学生在数列学习和解决数列问题中的切身体验

应该说,学生之间对数学问题的认知和理解能力确实存在着差异性。到了高中阶段,学生们都经历了近十年的数学学习经历,长期的学习中会对某一类知识点相当的敏感,而对另外的一些知识点却有盲点。有的学生在逻辑思维方面有特长,而另外的一些学生对计算情有独钟,对知识点掌握程度的不同会造成学生解题习惯和解题思路的差异。教师在课堂教学设计中也充分考虑大部分学生的群体差异。

2.要注重数列部分概念本质的强化记忆和理解,对基础知识的传授要夯实,避免短板

数学中,不仅仅是数列,其他的概念也如此,其描述的方式,往往通过文字性的描述来说明。这种方式比较抽象,我们在设计课堂教学时,对概念性的东西要注意辅以实例来讲解。以便激发学生的猎奇心理和探索问题的欲望。

3.重视数学史渗透和用数学工具解决实际问题的能力

数学的发展史源远流长,每种数学问题的提出和最后的解决都有其历史的背景。数列教学中穿插数学史知识的传授,有利于学生对知识的来龙去脉在熟稔中学习。另外数学问题的提出往往有其实践的背景,或者是人民集体智慧的结晶,或者是某一时期特殊问题的解决之道,教师在课堂教学的过程中要努力挖掘现实问题的应用。学以致用,当学生认识到自己学习的数列知识在现实生活中确实能解决很多问题的时候,学习的欲望和学习的效果自然而然就出来了。

4.重视数列学习中组合学习的魅力

人以群分,物以类聚。在数学学习的过程中,教师应该将不同层次的学生进行分组,这种分组的教学行为,可以让学生在相同的起点上进行学习。通过对班级内不同的学生的特点和能力进行分析,对其学习的目标,任务等精心设置,发挥团队学习的效用。

5.教师应该注重自我提高,从别人的课堂教学中汲取营养

老师在教学中不能固步自封,应该走出去,在同事中加强听课和学习。完善自我的课程教学缺陷,在不断的学习中,但课堂教学方案日趋完美。

四、结束语

高中数学中数列的教学内容虽然比较少,但其教学思想却在高中数学中占有很重要的地位,数学教学,应当立足于学生对数学知识的学习特点,以先进的教学理论为指导,对课堂教学方案设计精益求精,才能获得应有的教学效果。

摘要:数列是高中数学教学中重要的内容,其在高中数学中占据着重要的地位,同时在生活中也具有非常大的应用价值。本文介绍了高中数学学习数列的重要性及新时期如何提高高中数学数列教学质量和学习能力。

关键词:高中数学;数列;教学

一、引言

在高中数学的数列教学的过程中,教师不但要让学生懂得数列问题的知识点,还要让学生能够根据掌握的相关知识熟练地解决数学问题。困此教师要以生为本,以学定教,让学生在不同的数学环境巾积极思考,推进能力的提升,并让学生在各种数学数列问题的训练中学会自主学习数学的能力。

二、高中数学数列教学体会

1、以生为本,以学定教

1)以生为本,实时掌握在数学教学过程中学生的基本的数学能力在高中数学数列教学的过程中不但每一个班的综合数学能力不同,而且就是同一个班级中的学生的数学能力也不尽相同。在这种条件下,教师不论是在新接手班级还是在教学的过程中,都要通过各种有效的数学考查方式掌握学生的实际能力,确定学生的数学层次。在这个基础上教师将不同的数学层次的学生组合成组,方便学生进行合作交流的学习。

2)以学定教,采用适合本班同学的数学教学方式进行有效教学

在高中数学数列教学的过程中,教师在选择教学方法以及教学策略的时候,要能根据本班同学的不同数学层次特点进行确定,教师要紧紧把握住学生旧知与新知的链接点,寻找能够激发学生主动思维的教学方式进行教学。同时教师还要善于选择学生喜欢的教学模式,引发学生主动探究、合作交流,并在教学的过程中要巧妙使用课堂生成,使教学能够在师生之间、生生之间的思维碰撞中引领学生对数学知识的掌握。

2、善用多媒体课件辅助教学,促使学生能够更好地理解数学知识

1)多媒体课件辅助教学具有传统的课堂教学所无法比拟的教学优势,在数列教学的过程中,很多数列问题如数列与不等式综合问题中的放缩问题、解决递推数列问题等数学问题,单凭教师一张嘴,一支粉笔并不容易将抽象的数学知识让学生透彻地理解。而在这个过程中随着信息时代的到来,计算机以及互联网络的使用让多媒体课件走入了高中数列教学的课堂。

2)多媒体课件辅助教学可以让学生更加直观地理解数学知识

教师巧妙利用多媒体课件进行教学,使原有的抽象的数学问题变得可观可感,能够最大限度地调动学生多种感官的有效参与,极大地提高了学生学习的积极性,使得学生能够在课堂上跟着教师的引导积极思维、主动探究。如:在人教版高中数学数列教学“等差数列的前n项和”的教学过程中,教师通过多媒体课件出尔:“有一堆钢管,最底下放了15根,上一层是14根,再上一层是13根,……最顶层是3根。这堆钢管共有多少根?”这个问题,同时教师出示钢管的图像,并在和学生讨论思考的过程中将讨论的结果逐步出示,或者将学生解决问题的不同方案通过多媒体课件有效地呈现出来,引发学生的积极思考,让学生能够更直观地看到不同的解题方法的过程,并在这个过程中获得数学能力的不断提升。如果教师只是采用传统的教学方式进行讲解的话,那么学生也许很难理解教师的教学思路。多媒体课件辅助教学大大提高了教师的教学效率,解决了学生对抽象的数学知识无法理解的难题,并促使学生能够在这个过程中,形成数学架构的时间的缩短。

3、高中数学数列教学的创新

数列、一般数列、等差数列、等比数列是高中数学数列教学的主要内容。其中,等差数列和等比数列是数列教学内容中的重点。主要包括对数列的定义、基本特点、通项公式、分类方法、具体应用等知识点的学习。传统的教学观念中,教学设计作为一种系统化过程,是用系统的教学方法将数列教学理论,同学习理论原理进行转换,使之成为教学活动和教学资料的具体计划。创新理念的数列教学设计解决了“教学成果”、“教学方法”、“教学目的”等问题,通过教学设计来解决教学问题,探究总结问题的解决方法和步骤,形成新的教学方案。并在新的教学方案实施以后及时的对教学效果进行分析,规划操作其过程程序,判断其实施的价值。这一过程也是教学优化的的过程,能够提高教学成果,创造出更加合理高效的教学方案。

(一)数列教学应注重问题情境的创设

为调动学生主动、合作、探索学习的积极性,实现师生互动,我们教师营造自主、合作、探索的学习环境显得很重要。在数列的教学中首先要注重数学问题情境的创设。我们创设问题情况可以考虑以下方面:学生的已有知识与生活经验及数学的趣味性、教学内容、新旧知识的衔接点以及自身的教学特色。

(二)创新理念下的“数学概念”

对数学对象本质属性进行反映的思维方式,是数列的数学概念。我们知道数列的概念是按一定次序排列的一列数称为数列。对一个数学概念的学习,应记住其名称、了解其涉及到的范围、简述其本质属性并运用其概念进行判断。数学概念包括等差数列、等比数列、通项公式和数列。

在对这些陈述性概念进行设计时,设计者应对上述概念体现的概念特点进行描述。并且在高中数学数列教学中,为了能够激发学生对数列学习的兴趣,体会数列实际应用的价值,则可以通过将生活中实际的问题引入到课程教学中,从而将抽象的数学知识转变为实际需要解决的问题,使学生学生对所要研究的内容有所认识。并且在数列学习中可以结合其他知识点进行学习。比如数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列,这样不仅能够引导学生通过多方面解决问题,而且对提高学生运用知识的能力也具有重要的意义。我们还以等差数列的定义教学为例,如:增加判断某数列是否成等差数列的题目来促进概念理解。再如:把一次函数和等差数列通项公式相联系,利用函数概念同化等差数列的概念,凸显函数思想;让学生自己列表、画图象,用“形”感受函数与数列之间联系;用方程与等差数列基本量的运算相结合来加深了对概念的理解和巩固。此外我们在教学中还要明理强化,实践探究,注重激励评价,引申探究。

在高中数学实际教学过程中,有些教师严重忽视了教师扮演的角色,出现过分重视学生独立学习的现象,这是高中数学 教育 工作者不容忽视的问题!下面是我为大家整理的高中数学教学问题探究论文,欢迎阅读! 高中数学教学问题探究论文篇一 1、关于存在的问题 学生接受不了容量较大、难度较强的高中教材。初中学习数学时,初中教材内容简单通俗,题型较少比较容易,学生很轻松的掌握数学知识的来龙去脉,教材对概念描述简单,一些数学定理根本没有论证,教材之间衔接较缓。高中教材内容极为抽象,注重于变量、字母的研究,注重计算、分析理论、注重逻辑性、抽象性的知识呈现。例如高一就出现集合、映射、函数等众多的抽象概念,符号极多,定义、定理教材叙述极为严格,具有高起点、难度很大,容量有多的特点。近几年教材的调整,初中教材降低的幅度较大,高中教材也降低了一些,但是由于受高考的制约,教师不能也不敢降低难度,直接造成了高中数学教学的难度根本没有降低,可以肯定说,调整后的高中教材不但没有降低难度,反而难度更大了。高中一年级时间紧,数学容量大,教学进度极快,学生不适应高中数学学习也就不足为怪了。 学生不适应初中与高中课标中部分知识点的衔接。初中数学课程标准对一些知识要求简单理解,高中教材也没有进行适当补充,一些初中学生应该掌握的知识,学生只知道肤浅的内容,或者只知道一个结论而已,结论是怎样来的,用结论解答什么问题,解答的途径 方法 等一概不知。出现了高一学生上课时常遇到没有学过的知识。例如:初中内容一元二次方程的判别式,根与系数的关系,二次函数的图像解二次不等式诸多问题,课程标准要不高,学生接触过简单知识点,高中学习感到特别难以接受。一些教师没有办法,只有进行补充,占据了大量时间,为完成教学任务,只有加快速度。导致了初中数学知识没掌握,高中数学知识被落下了的惨剧。 学生不能很快适应高中老师的教学方式。初中教材内容少多、难度不大、要求较低,教师教学进度不快,一些重点、难点,反复讲解,多次练习,逐一击破。一些教师为了学生中考取得好的成绩,不厌其烦的进行演练,有的问题达到了炉火纯青的地步。造成了有的学生学习数学积极性的丧失,出现了学生“重知识,轻能力”、“重试卷,轻书本”的错误。学生进入高中学习,教材的丰富容量、要求较高、进度很快、信息广泛、难度加深,知识的重点难点就更不用说了。新课程标准的高中教学通过设导、设问、设陷、设变,启发引导学生去思考、去解答,注重学生思想方法的渗透,思维品质能力的培养,提倡学生自主学习。刚刚入学的高中生很难适应这种教学形式,跟不上教师的讲课,严重影响了数学的学习。 学生没有及时调整自己的心理及 学习方法 。高中一年级学生面对一切都是新的:新环境、新教材、新同学、新教师、新集体……,学生一定有一个由陌生到熟悉的经历。紧张而残酷的中考,进入了理想的高中学习,一些学生有松口气的心理,入学后不紧张,优哉游哉。一些学生中考前就听到高中数学如何难学的信息,产生了敬而远之的心理。高中数学一些抽象的概念例如映射、集合、异面直线更让学生无所适从,影响了高一新生的学习质量。初中教师讲解得很细,训练的熟练,学生经过训练,概念、公式、题型了如指掌,只要对号入座即可取得好成绩。学生围着老师转,完全听命于老师,不注重自主思考、归纳 总结 。高中学习内容较多,学习时间较少,要求学生必须归纳总结,掌握数学思维方法,触类旁通。高一学生学习数学,仍然使用 初中学习方法 ,造成学习阻力很多,完成老师当天布置的作业都很艰难,预习、复习时间没有了,严重影响学习质量的提高。 新课程的辅导资料不尽完善。新课程改革进行几年了,书市上教辅资料繁多,这些教辅资料和老教材教辅资料一脉相承,有的只是对顺序做了调整而已。内容可谓涛声依旧,没有体现新课程标准理念,让师生对学好数学提出异议。 2、关于几项对策 措施 掌握学生学情,进行有效衔接。高一开学伊始,召开新生座谈会,调查学生入学成绩,进行相关测试,了解学生学习基础,什么学习习惯,初中数学教师讲课特点。研究初中高中教学大纲、教材,掌握初高中知识体系,找到初高中知识最佳衔接点,有的放矢对学生讲授,进行有效衔接。 激发学生学习的兴趣,实现心理衔接。教师必须发挥情感和心理的积极作用,兴趣是进行有效活动的必要条件,要让学生学好数学,一定要激发学习数学的兴趣,运用多媒体教学手段,调动学生学习数学的欲望,让学生树立学好的信心,注重良好的学习习惯培养,鼓励学生大胆质疑,标新立异,自主学习,提倡探究学习,让学生适应高中数学学习,学生的每一次成功。教师要及时肯定表扬鼓励,实现心理衔接。 关于教材内容的衔接。高一教学中把重点放在基础知识上,不能过分强调难题、偏题、高考题,让学生接受数学,喜欢数学,完成数学知识的学习,践行新课程理念,教师教学采用“低起点、小梯度、多训练、分层次”进行,温习初中旧知识,学习高中新知识,实现初高中教材内容的衔接。 关于教学方式的衔接。高中数学要求学生观察、类比、归纳、分析、综合建立严密的概念, 教学方法 上必须实现较好的衔接。发挥教师的主导作用,突出学生的主体主用,让学生自主探索、合作交流,真正理解和掌握数学知识和数学思想方法,直接获得数学活动 经验 。 关于学法指导、良好学习习惯的培养。必须体现学生为本的理念。彻底改变学习方式,倡导学生在教师的指导,互相交流、主动参与。激发学生想象思维,鼓励课堂上踊跃发言,培养学生养成良好的学习习惯,加强学习方法的指导,提高教学质量。 关于培养学生数学思维品质。教师一定注重加强学生的 思维训练 ,开展有效思维活动,摒弃思维惰性,把学生分析问题能力上的衔接好。 作者:张宇欣 工作单位:吉林省公主岭市怀德第一中学 高中数学教学问题探究论文篇二 一、高中数学教学现状 目前,在高中数学的教学实践中,学生主要采用题海战术以及死记硬背的方式,培养学生自主解决问题的能力,搜集各种的题目让学生去练习,并且对解题方法进行死记硬背,然后在碰到类似题型的时候就机械的模仿其解题套路,不自己寻找问题解决的办法。而教师则采用传统的满堂灌式的教学方法,将不同类型的数学习题与具体的解题思路全部告知学生,长此以往,学生失去了对数学学习的主动性与积极性,极大的影响到学生自主解题能力与 创新思维 能力的培养,一旦遇到以前没有接触过的题目类型,就变得束手无策。因此,在新课标的倡导下,教师与学生都需要积极的转变观念,注重对问题解决能力的培养,从而提高高中数学教学的有效性。 二、学生问题解决能力的培养 首先,巩固基础知识的教学,为学生自主解决问题提供必要的保障。通过对知识与能力两者的内在关系进行分析,发现学生“自主解决问题”的能力的培养与有效提高主要取决于两个因素:一,教师在实践教学中,对学生整个知识基础与技能状况的准确把握;二,在此基础之上,为学生“自主解决问题”能力的培养,提供必要的知识与技能的准备。因此,在高中数学的实践教学中,教师不仅需要通过各种途径全面的把握学生对知识的掌握程度,而且还需要采取有效的措施为学生在新旧知识间架出一座“桥梁”,注重对学生既基础知识与技能的教学,从而为学生学习新的数学知识并解决新的数学问题提供智力方面的支持。同时,在教学中,教师还需要注重对知识的积累,帮助学生进行知识的分类与整理,从而为其自主的分析问题与解决问题创造良好的条件。其次,创设问题情境,引导学生自主发现问题。积极培养学生的“自主解决问题”的首要任务就是让学生在学习中,自主的发现问题,并提出问题。问题是思维的起源,任何一个思维过程都指向了一个具体的问题,而且问题也是创造的基础,一切的创造也从问题开始[1]。在高中数学的教学实践中,创设一个“问题情境”,就是相当于建立一个良好的学习环境,它能够有效的激发广大学生学习的主动性与积极性,从儿进行自主的思考与探讨,积极的发现问题。因此,在数学课堂中,教师就需要对学生的“最近发展区”实施全面的把握,并在此基础之上创设出一些“问题情境”,使学生能够“跳一跳”就能自主的发现并提出问题。如在对“等比数列”这一知识开展教学的时候,教师就可以这样创设“问题情境”:有一天,兔子与乌龟赛跑,乌龟在兔子前方1公里处,而已知兔子的速度是乌龟的10倍,当兔子向前追1公里时,乌龟同样前景了1/10公里;而当兔子追到1/10公里处的时候,乌龟又向前走了1/100公里;当兔子赶到1/100公里处时候,乌龟又向前走了1/1000公里……问:在相同的时段内,兔子与乌龟各自的路程是多少?兔子能追上乌龟吗?通过这种形式的问题情境的创设,让学生观察到数列的特点,进而引出有关等比数列的概念,激发学生的学习兴趣,从而引导学生发现相应的问题并提出问题。最后,培养创新思维,挖掘新型的数学思维方法,为学生“自主解决问题”提供条件。在高中数学的学习过程中,创新思维是分析问题与解决问题的重要构成部分,对开发学生的智力有着重要的作用,因此,在高中数学的实践教学中,教师要积极培养学生的创新思维,鼓励学生进行大胆的猜想,从而提出问题[2]。同时,教师还需要积极鼓励学生挖掘新型的数学思维方法,并将其进行全面的把握与应用,从而真正体会到数学学习的本质,并将其运用到实际的数学问题的解决当中,使整个数学的解题的思维能力可以得到有效的培养的提高,进而发展学生的“自主解决问题”的能力。 三、结束语 数学作为一门基础的应用学科,要求学生具备较强 想象力 、 逻辑思维 能力与推理的能力。然而在实际的学习过程中,由于学生缺乏对问题的自主解决能力,导致学生一般都认为数学比较难学,不愿意学习数学,进而产生“厌学”心理。因此,在高中数学的教学实践中,教师要注意对学生的“自主解决问题”能力的充分培养,从而有效的提高学生对数学问题的解决能力,进而提高学习效果[3]。 作者:冯春瑞 工作单位:甘肃省华亭县教育局 高中数学教学问题探究论文篇三 1高中数学教学过程中存在的若干问题 过分重视学生的自主学习,忽略教师的引导作用 在高中数学教学过程中,丰富学生的学习风格以及方法,能够促使学生更加会学习,为之后他们一生的学习与发展打下良好的基础。除此之外,在高中数学实际教学过程中,严重忽视了教师扮演的角色、过分重视学生独立学习的现象。由于教师角色的缺失,学生的认知水平,只是在原地徘徊,导致课堂教学。教学过程是学生自主建构的统一和教师指导。当学生遇到困难,教师要引导学生认为,当学生的思维是窄的,教师应该开阔自己的思维。总之,教师的指导是确保学生学习的方向和有效性的重要前提。 教学课堂上缺乏对学生进行正面教育 高中数学新课程强尊重个性差异和学生的学习,鼓励学生积极参与。学习有困难,贫困学生给予及时的表扬和鼓励的自信,但这并不意味着学生盲目歌颂。赞美和批评的完整的识别和动机。一方面,我们要善于发现学生的闪光点,思想,及时,适当的表扬和鼓励,让学生得到发挥;另一方面,学生的错误意见,明确指出,要澄清模糊数学问题。 教学课堂上教师的角色缺乏平衡性 新数学课程要求提高学生主动观察,实践,猜测,推理,数学教学和学习活动的验证和交换。学生的学习风格,阅读,实践,自主探索,合作交流等。但老师指导,合作者和促进者,成为课堂教学的领导者。新课程倡导民主,开放性,科学课程,强调“教师即课程”。这就要求教师不仅要成为课程的实施,应该成为课程的建设者和开发者。新课程与旧课程之间的比较,它们之间的根本区别在于新课程要求培养学生的创新精神和促进教学过程中的学生的个性发展,强调学生在自己的感情,并引导他们进行自己的意见,让他们成为数学学习的主人,不仅是对传统的教学方法,在教学转移。然而,在实际的学习项目,因为学生的认知上的局限性和个体差异,不可避免地会出现各种意想不到的问题,就必须充分发挥教师的主导作用,教师应及时评价,正确处理学生的经验,多了解,理解和共识,多元 文化 的普世价值之间的关系。此外,在新课程把太多的重点放在对个性差异的尊重和学习的学生,鼓励学生积极参与,以夸张赞美的激励效果,忽略错误校正LED,培养学生的自信心理,影响了他们的身心健康。 2高中数学教学内容存在的若干问题 教学内容难度进一步加大 新课程理念下,我们使用的是人教版教材编写的一个,与旧教材相比似乎难度降低,但也增加了一些新的内容,而这些困难的部分新增加的不小。我觉得新课程教材是完全按照市重点高中学生的实际情况,制备,不考虑农村学生。如算法初步内容,涉及的知识在计算机语言,具有较高的逻辑相关的知识,抽象和专业。这些内容在农村的学生很难学,因为地区的差异,他们计算机知识的掌握是不够的,甚至可以说,这方面的知识是没有的。新的数学课程,所需的内容分为五个模块,高中完成所要求的5个模块和两个选修模块。教学内容的增加,教师为了完成教学任务,一味追求教学进度,有时一类的两个或三个小时的内容,没有实践,没有消化,没有巩固,使学生了解不全面,甚至能记住的知识不了解或不了解的深入,当然不会解决问题,这势必增加,学习的难度。 教学过程中没有充分发挥教师的引导作用 在实际教学中,重视学生的学习自主性,而忽视教师的积极引导,一些教师认为,新课程是要充分发挥学生的主动性,让学生自己学习,而忽视了教师的必要的,模糊的积极引导,数学知识的准备接受课程的学生,降低了课堂教学的有效性。 新课改背景下淡化了教学素材的实际作用 在新课程的要求,在高中数学教学中,充分利用各种资源,完成补充材料,以扩大,延伸,组合,并把它们放进学生的实际生活,但由于教师个体的差异和课程资源的认识程度,在教学实践中,教学资源教师片面发展未能完全控制的教学内容,教学内容的泛化,甚至出现模糊现象,面对这种情况,教师要合理利用现代化的教学手段,充分利用教学书的配套光盘制作高质量课件来丰富他们的教学。我们应该根据教学内容的特点,并充分发挥计算机辅助,精心制作多媒体课件的适用,以达到最佳的教学效果。 过分强调计算机与信息技术教学 随着信息网路技术的日益盛行,计算机辅助教学,信息技术是数学教育现代化的重要手段。例如,在几何中的高中数学教学过程中,进行适当的教学课件,利用多媒体辅助教学手段充分,从而能够达到更好的教学效果。由此可见,计算机教学在高中数学教学过程中,具有十分重要的教学辅助作用,从而、在当前高中数学教学课堂教学中,使用计算机信息技术教学成为教学的主要手段,安全忽略其使用是否过量。计算机技术教学纵使再好也不能什么事情都依赖于多媒体网络,如基本的算术,想象力,学生数学活动的逻辑推理,数学证明应该依靠自己来完整的,因此,我认为掌握好教学信息技术与传统教学之间的平衡,注重有效的整合,整合最好的。 3结语 综上所述,高中数学教学过程中仍旧存在部分不足,需要进一步加强对教学问题的解决,为广大师生进行教学和学习提供一个良好的学习环境,尽最大可能的去规避这些不足点的再次出现。 作者:王俊民 工作单位:甘肃省白银市平川中学

在高中数学教学过程中,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。本文是我为大家整理的关于高中数学教学论文 范文 ,欢迎阅读! 高中数学教学论文范文篇一:高中数学教学 反思 一、与时俱进的更新教学理念 教师要积极的与时俱进,转变原有的教学观念。以往的高中数学教学过程中,大多侧重于对各种数学知识的讲授。在新课程大背景下,教师要积极的更新教学理念,将教学重点放在培养学生的学习能力上。因此,在具体的教学活动中,教师应该大胆的抛弃以往的“注入式”教学模式,积极开展“启发式”教学。引导学生分析各种数学问题,并启发学生思考问题,并运用学过的数学知识来解决实际问题。同时,教师还要注意对学生的学习过程进行反思,思考学生的学习效果以及存在的问题等,然后予以合理的 总结 和引导。 二、营造良好的教学氛围 在高中数学教学过程中,良好的教学气氛十分重要。因此,教师要注意积极的营造出良好的课堂氛围,从而有效的激发出学生的学习积极性。在高中阶段,学生需要学习的科目较多难度较大,整体学习压力较大。而且,很多学生都认为高中数学十分枯噪乏味,甚至晦涩难懂,学习积极性不高。加上数学本身具有较强的严谨性院,因此实际课堂气氛往往会流于便沉闷,无法调动起学生的学习积极性院。所以,在具体的教学实践中,教师便要注意准确的把握学生的实际情况,并结合教材内容,联系学生日常生活中较为熟悉的各种数学问题展开教学。尽可能的激发学生的兴趣,提高教学效率。 三、充分保证学生的主体地位 在教学过程中,学生是主体,所有教学活动的开展都要紧密围绕学生这个中心。但是,就目前的实际情况来看,在很多高中数学教学活动中,教师仍然占据着主体地位,主宰着整个课堂。处于这样的模式之下,学生只能十分被动的、机械的跟随教师的脚步,接受教师对各种数学知识的讲授。在这样的教学模式下,学生显然无法很好的开展学习活动。所以,教师要注意积极的转变自身的角色,充分保证学生的主体地位。时刻将自己放在服务者和引导者的位置上,并始终围绕学生为主体这个中心来开展各项教学活动。并积极的通过各种方式,为学生提供足够的发挥自身主体性院的空间。例如,在课堂上,教师要注意和学生进行互动,并鼓励学生随时举手发表自己的意见。 四、积极完善 教学 方法 俗话说,“教无定法”。对高中数学来讲,涉及到大量的数学知识,每节课的具体教学内容和教学任务以及教学目标等都各不相同。因此,教师要注意积极的完善教学方法,针对不同的教学内容和教学目标等,选用合适的教学方法,展开针对性较强的教学。例如,在讲解立体几何相关知识的时候,教师便可以应用演示法,向学生展示各种几何模型。并借助教学模型,更好的引导学生理解各种几何结论。而且,在一节课中,按照实际教学需要,教师还可以积极的将多种教学方法结合在一起使用。同时,教师还要注意全面把握学生的实际情况,尽可能的提高教学方法的针对性。总之,只要能够为教学活动服务,都是好的教学方法。 五、将现代化技术引课堂 随着时代的发展,越来越多的现代化技术开始被大量的应用到高中数学的教学过程中,因此,教师要注意熟练掌握一定的现代化教学技术,并将其合理的应用于教学活动中。高中数学涉及到大量的概念和公式等,单纯由教师进行口头讲授,学生大多会感到十分枯噪乏味。对于一些难度较大的知识点,还会出现难于理解的现象,影响教学效果。此时,教师便可以积极的将各种现代化技术利用引入课堂。课前,教师可以先对教学内容进行深入的分析,然后将教学内容制作成PPT,并从网络上收集一些有趣的教学素材和案例等,制作出内容丰富,趣味十足的课件。然后,在教学过程中,教师便可以适时的将PPT展示给学生们观看。并带领学生一起观察课件内容,分析各种数学问题。这样一来,不但有效的增加了课堂容量,还可以提高学生的兴趣,有效提高教学的效率。例如,在讲解立体几何中一些问题的时候,教师便可以利用多媒体技术,将题目和相关图形直观的展示在学生们的面前。在讲解棱锥体积公式推导过程的时候,也可以利用电脑进行演示。 高中数学教学论文范文篇二:高中数学信息技术的运用 一信息技术在高中数学教学中应用的必要性 信息技术在高中数学教学中的运用,能够形成动态的数学知识,帮助学生更好地理解有关知识,提高学生对问题的观察、分析和解决能力。高中数学的内容与图形有关的较多,高中生的各方面能力发展还不完善,教师要进行适当的引导,帮助其理解难度较大的图形问题,运用信息技术,能够使这些抽象的知识具体化,使原本静态的图形“动起来”,将复杂的问题简单化。如在教学立体图形三视图时,以长方体为例,教师借助多媒体教学设备向学生展示一些生活中的长方体,让学生对长方体的直观图有所了解,然后从这些生活物品中分离出的长方体直观图,让学生对长方体的高、长、宽有初步的认识,同时让学生找出屏幕上长方体的高、长、宽,并进行三视图的绘画。此外,还可以让学生找出生活中的长方体,培养学生的空间 想象力 。因此,在高中数学教学中运用信息技术有助于提高教学的质量,培养学生的综合能力,对教学有很大的促进作用。 二高中数学教学中运用信息技术的策略分析 1.对软件进行模拟,将抽象的数学知识具体化 高中数学的教学,其实质是学生在教师的正确引导下,探究解决问题的办法,并进行创新的过程。信息技术的应用,给高中数学教学提供了丰富的教学资源。如在教学空间四边形时,假如教师单纯地在黑板上为学生展示空间四边形的平面图,学生很容易形成空间四边形的对角线是相交的这一错误观念。教学时借助几何画板可为学生画出立体的空间四边形,并向学生展示旋转的空间四边形。通过这种方式,使学生对空间四边形有了形象具体的认识,使学生的空间感得到增强,提高了其想象力和观察力,对异面直线的知识有了更好的理解。 2.利用信息技术设置有效的教学情境,激发学生的学习兴趣 在传统的高中数学教学中,教师通常是通过对旧知识的复习引入本节知识的内容,有时直接提出本节课程要学习的知识,数学知识的抽象性较强,理解起来有一定的难度,这种方式使课堂变得枯燥乏味,很难调动学生学习的积极性,不能激发起学生的兴趣。学生只有对数学产生了兴趣,学习才会有动力,才能主动学习,教学中忽视对学生兴趣的培养将会降低教学的最终效果。利用信息技术,将声音、动画和视频进行有效的结合,为学生设置生动的教学情境,将学生吸引到课堂中,可激发学生的学习兴趣。如在“等比数列求和”的教学过程中,借助信息技术为学生讲述象棋发明的小 故事 。将学生的注意力吸引到教学中,从而引出本节要学习的等比数列求和知识,有效地激发学生对要学习知识的兴趣,让学生进行思考,国王是否有足够的能力满足发明者提出的要求,让学生自主研究等比数列的求和方法。 三总结 本文首先阐述了信息技术在高中数学教学中运用的必要性,再结合笔者的实际教学情况,说明了应用信息技术的具体策略,希望能够帮助广大的高中数学教师在教学中运用好信息技术,提高数学课的教学效果。 高中数学教学论文范文篇三:高中数学新课程实践 一、高中数学教学内容的转变 现在新课程高中数学教材分为选修和必修,有不同的版本,其中又分为不同的模块,不同的学生可以根据自己的发展和需要选学不同的模块和内容,满足个性化的发展,摒弃了以前的高中数学教材以往所有高中生一种教材的教学诟病。其特点突出学生是主体,教师为主导;突出双基,删除了过时的内容并且补充了适合学生发展和社会进步的新内容,注重对数学思维能力的提高;强调发展学生的数学应用意识;体现数学的 文化 价值;注重现代信息技术与课程的整合,较好的把握了新的课程标准对高中数学内容的要求。例如,必修3中新增了算法的内容。“算法”在当今数学和科学技术中的作用已经凸现出来,他是数学及其应用的重要组成部分,是计算机科学的重要基础。在社会发展中发挥着越来越大的作用,已融入社会生活的方方面面。此外,学习和体会算法的基本思想对于理解算理、提高 逻辑思维 能力、发展有条理的思考和表达也是十分重要和有效的。在教学中,我们要让学生结合具体实例,感受、学习和体会算法的基本思想;学习和体验算法的程序框图、基本算法语言;并将算法的思想方法渗透到高中数学的有关内容中,学习分析、解决问题的一种方法。 二、高中数学教学方式的转变 在传统的高中数学教学中,大多数教师教学观念陈旧,把教科书当成学生学习的惟一对象,照本宣科,不加分析的满堂灌,学生则听得很乏味,感觉有点看电影。改变教与学的方式,是高中新课程标准的基本理念,在高中数学教学中,教师应把学生当成学习的主人,充分挖掘学生的潜能,处处激发学生学习数学的兴趣。教师不能大包大揽,把结论或推理直接展现给学生,而是要让学生独立思考,在此基础上,让师生、生生进行充分的合作与交流,努力实现多边互动。积极倡导“自主、合作、探究”的教学模式。同时,由于学生认知方式、水平、思维策略和学习能力的不同,一定会有个体差异,所以教师要实施“差异教学”使人人参与,人人获得必需的数学,这样也体现了教学中的民主、平等关系。 三、高中数学教学结构的转变 传统的封闭式教学,所有问题皆在课堂内解决(尤其高中数学课),学生时时处在被动接受的地位。在新的课程理念要求下,高中数学课由封闭式转变为开放式,给学生广阔的学习时空。教师开放组织形式,如教学统计知识时,教师可以组织学生调查单位、厂矿里各种生产情况、入口年龄分布情况等把课堂延伸到课外。开放教学内容,新课程教材在一定程度上与生产生活实践相结合,如个人所得税的计算等。为此,教师应引导学生走向家庭、社会寻找鲜活的数学内容,开放教学形式,允许学生根据学习需要,课前自学、尝试练习、提出疑问、小组合作等不受限制。开放教学过程。教师应给学生充分的探究机会,时刻关注并捕捉教学过程中师生互动产生的新情况、新问题,及时调整教学进程。 四、高中数学教学手段的转变 随着新课程实验的深入,它呼唤课堂教学要走向现代化,取而代之的是现代信息技术手段的广泛应用:多媒体教学平台的使用、 网络技术 的应用等,一改以往只凭“一张嘴、一支粉笔、一本书”的传统的课堂教学模式。例如,教学必修3中“统计”中的“数据收集和整理”的习题时,教师利用电脑设计教学情境,把课本上的插图变成实景,屏幕上有声有色地出现一辆辆摩托车、小汽车、大客车、载重车通过一路口,学生在实景中搜集数据,解决了课本难以解决的问题,学生的注意力集中,学习兴趣高涨,充分体会到实地收集数据的快感,收到事半功倍的效果,还有如教学必修4中探究函数y=Asin(ωx+φ)的图象,利用多媒体展现图象的平移、变换实况,学生能直观的看到变化的过程情景,自然容易接受。教学实践证明,运用现代信息技术手段,对改变学生学习数学的方式,激发学生学习数学的兴趣,提高课堂高中数学教学效率将产生重大的影响。运用现代信息技术手段教学不仅可以帮助学生理解数学概念、探索数学结论,还应鼓励学生使用现代技术手段处理繁杂的计算、解决实际问题,以取得更多的时间和精力去探索和发现数学的规律,培养创新精神和实践能力。 五、高中数学教学评价的转变 如今新的课程标准下,充分发挥了评价的整体性、激励性、发展性功能,注重评价主体多元、评价内容多元、评价方法多元、评价标准多元。一改以往以分数论英雄的学生学习成果评价体系和教师教学效果评价体系。作为高中数学教学的评价,要求建立合理、科学的评价体系,既关注数学学习结果,也关注数学学习过程,既关注数学学习的水平,也关注数学学习活动中的情感态度变化,再者,客观上,由于所选模块的不同,班与班,学生与学生失去可比性,在新的评价体系中,还引入了模糊的等级评价以及评价内容的多元化,如选课时数、平时成绩、模块成绩等占不同比例,对评价发生了巨大变化。新课程下的高中数学教学评价更趋科学合理,对转变应试 教育 为素质教育有积极的推动作用,当然对未来高考的改革、人才的选拔方式也提出了更高的要求。总之,高中课程改革是一项复杂的系统工程,任重道远。就高中数学课程改革而言,目前遇到的困难只是暂时的,我们不能怨天尤人。高中数学课程必须改,但怎么改,不仅是专家的事,每一个高中数学教师都要自觉学习、贯彻课改新理念,反思、改进自己的教学行为,客观冷静地分析和对待高中课程改革中出现的新情况,争取尽快走出一条适合自己的改革之路。

有关高中三角函数的论文范文

基于网络环境下《三角函数的图像和性质》课堂教学的探讨数学论文 摘 要:互联网的出现,教育模式将有革命性的变化,基于网络环境下的教学已成为当今教学改革的核心,也更能够体现新课程标准精神。基于网络环境下的数学教学,有助于突破难点,真正实现分层教学和因材施教,从而提高教学效益。基于网络环境下的数学教学应处理好网络与学生的和谐关系,网络与教师的关系,教师与学生的关系。关键词:教学 数学 网络 新课标传统的教育模式的教学方法、教学手段和教学评价已不能适应社会发展和人们学习的需要,基于网络环境下的学科教学和课堂评价的出现和普及,极大的丰富了教学改革的内容,充分有效的利用了教学资源,基于网络环境下的课堂教学与评价把文本、图像、图形、视频、音频、动画整合在一起,并通过互联网进行处理、控制传播、为学生提供了最理想的学习环境。 一、基于网络环境下的数学教学的含义 基于网络环境下的数学课堂教学,根据新课程标准的教学内容和教学目标需要,继承传统教学的合理成分,打破传统教学模式,全天候,不间断,因材施教的新型教学方法,教学与评价的信息在互联网上传输与反馈,极大的优化了教师群体,极大的丰富了学生的知识能力。基于网络环境下的教学,可以共享教学资源,传递多媒体信息,适时反馈学生学习情况,刺激学生不同的感官,符合学生的学习认知规律,提高学生的学习兴趣,扩大了信息接受量,增大了课堂教学容量,同时又具有实时性,交互性,直观性的特点大大丰富了课堂教学模式,同时又满足了分层教学,因材施教,远程教学等社会需要,开创了教学的全新局面。 二、基于网络环境下数学教学与评价的应用 基于网络环境下数学教学与评价有两大优点: 1、能做到图文并茂,再现迅速,情境创设,感染力强,能突破时空限制,特别是基于.Net技术的交互式动态网页更能提高学生的多种感官的感知效能,发挥个体的最大潜能和创造力,加快学生对知识的理解、接受和记忆,也最能体现新课标的精神,也极大的满足社会全民教育,终身教育的要求。 2、同时全体老师又能通过网络共享教学资源,适时创新资源,使每一位老师都成为名师,使教学的方法水平永不落后。如在讲授函数这部分内容时,二次函数,幂函数,指数函数,对数函数,三角函数的图像以及图像变换是重点内容,关于函数图像的传统画法,是通过师生列表,描点,连线而得,这些工作烦,静止孤立,间断的点和线。教师要自制每一节的课件难度大,时间又有限,而基于网络环境下的数学教学,就可以充分利用网络版课件,进行网上学习,从而化静为动,化繁为简,减轻教师的体力负担,使教师有更多的时间进行创新研究,同时让学生在交互的动态的网络环境下学习,函数值随自变量变化而同步变化以及对应运动的轨迹,从而得到完整精确的函数图像,通过交互学习让学生充分体会同一函数不同参数与图像特征之间的联系,充分掌握函数的性质和抓住图像的平移、反射、压缩、拉伸和对称变换特征。若有疑问或好的见解,还可以通过网络进行远程的交流互动。通过多媒体,交互反馈,使学生深刻理解,不易遗忘。也培养了学生自我学习和终身学习的能力。网络环境下的数学教学,教师教得轻松,也有更多的时间进行个别指导,学生学得愉快。学得有趣,这样数学教学的效率也提高了。 二、基于网络环境下数学教学突破教学难点 高中数学中有一些知识需要通过抽象思维来解决问题,而这也正是高中数学的难点之一,基于网络环境下的教学可以化抽象为直观,有利于突破难点。 如“二次函数即:y=ax2+bx+c(a≠0)在[m,n]上的最值的探讨,学生对二次函数的开口,对称轴移而区间不动或图像不动而区间变化时函数的最值”不易理解,在网络环境下,学生通过对网络课件的阅读和对a,b,c,m,n的动态控制,能深刻理解数学知识的要点,加上在网上的即时测试和评价,更能有效的掌握它,不再感到难以理解。 三、基于网络环境下的数学教学与评价形式多样化,即时化。 传统的教学形式是教师讲,学生听,这样教学方式课堂容量有限,反馈方式单调,信息交流少,所有的学生步伐相同不利于因材施教,不利于培养学生现代的终身的学习能力,同时不能解放教师,让教师从事更有意义的教育工作。而网络环境下的教学可以同时满足不同用户不同要求,培养活学活用的能力,真正实现教学以学生为中心,教学面向全体通过互联交流互联互动进行分层教学、个别教学实现因材施教,体现新课标的要求, 四、基于网络环境下数学教学应处理好的关系 (1)网络与学生的关系 和谐是教学成功的关键。实践中发现基于网络环境下的学科教学,应加强对互联网海量信息的搜索,筛选,加工,创新。在选好教育资源后,教师要努力探索适时、适用问题,创设学习情境,营造和谐的环境。加上学生对网络应用知识基本掌握,达到网络与人的和谐统一。 (2)网络与教师的关系 基于网络环境下的学科教学优势空前,实践中发现,只有网络环境下的教学与教师灵活生动的讲解和创新的适时评价互相配合,相互促进,协调传递信息,最大限度地发挥网络和教师的优势。 (3)教师与学生的关系 教为主导,学为主体,这是在任何教学模式中都应遵循的原则,要体现学生的主体发展与教师的主导相互作用的关系。专题教学网站和网络教学资源库的形成,即将教师从繁杂的重复劳动中解放出来了,但教师的主导作用不是减弱了而是加强了,网络环境下的教学,对教师提出了更高的要求,教师必须挤出大量的时间学习Windows,Authorwear,3Dmax,Flash等方面的知识,还要学会搜索,筛选,创新信息的能力,甚至包括各种电教媒体的操作技能和技巧,只有这样,才能使自己在网络环境下的学科教学中获得自由,掌握主动,充分发挥网络教学的优势,提高我国的教育教学质量。

开拓学生自主学习的新天地

去CNKI中搜索去

高中数学有关论文题目

1、 数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2 b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算函数图像中的对称性问题泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用

1、几个带参数的二阶边界值问题的正解的存在性研究2、关于丢番图方程1+x+y=z的一类特殊情况的研究3、变限积分函数的性质及应用4、有限集上函数的迭代及其应用希望以上回答对你有帮助!————————————————————世界上没有任何东西是完美的,文章也是一样,我不敢保证我们团写出来的文章一定会让你捧上奖杯,获得名次。但这里面承载的心血和汗水不比任何写作团来的少,因为责任就是肩膀上的大山。不是我们写不出华丽清晰的文章,而是不可预定的因素太多,轻易地给您承诺说我是最好的恰恰说明了我的不成熟和轻浮。我想我简单的介绍并不能让你感觉眼前一亮,但你细细的品读定会感觉我们团靠谱务实的作风。

可以通过线性关系,计算生活中手机充话费,什么样的人群使用什么样的套餐比较划算。希望能帮到你

教育教学论文题目一: 1、试析提高高中数学教学质量的探讨 2、高等教育成本分担机制研究 3、基于提高大学生素质的审美教育研究 4、广西高等教育国际化及对策研究 5、中国石油管道局职业教育培训发展规划研究 6、国际教育与国际人才培养路径研究 7、深入发展时期教育技术理论演变的研究 8、大学生绿色教育若干问题研究 9、高校网络思想政治教育环境研究 10、法制教育的功能探究 11、运用教育技术实现有效教学 12、高职会计教育模式改革的研究 13、中小学心理健康教育评估的探索 14、关于分层作业在农村初中英语教学中的探索 15、中小学教师实践新课程的若干问题

有趣的数学论文高中

正余弦定理若干推论的探究与应用(一)探究目的正弦定理和余弦定理是高中数学中重要的三角公式,它们具有广泛的应用。而在教材中对它们的研究却比较单一。在学习上,为了开拓视野,更加体会到数学灵活多变的奥妙,我们有必要结合三角变换的知识对其进行总结、探究及延伸。因此,我们探究了它的一些变式以及应用。(二)探究过程、应用及结论 (1)正余弦定理 1、正弦定理:a/ sinA=b/ sinB=c/ sinC =2R 2、余弦定理:a^2=b^2+c^2-2bcCosA CosA=(c^2+b^2-a^2)/2bc b^2=a^2+c^2-2acCosB CosB=(a^2+c^2-b^2)/2ac c^2=a^2+b^2-2abCosC CosC=(a^2+b^2-c^2)/2ab(2)正余弦定理的推论 设三角形ABC的三个内角A、B、C所对的边分别为a、b、c,则 推论1、acosA+bcosB = ccos(A-B)≤C......① bcosB+ccosC = acos(B-C) ≤ a......② acosA+ccosC = bcos(A-C) ≤b......③ 证明:由正弦定理得, acosA+bcosB =2RsinAcosA+2RsinBcosB =R(2sinAcosA+2sinBcosB) =R(sin2A+sin2B) =R{sin[(A+B)+(A-B)]+sin[(A+B)-(A-B)]} =R[sin(A+B)cos(A-B)+cos(A+B)sin(A-B)+sin(A+B)cos(A-B)-cos (A+B)sin(A-B)] =2Rsin(A+B) cos(A-B) =2Rsin(�-C) cos(A-B) =2RsinC cos(A-B) =Ccos(A-B) 又A、B∈(0,�),-1≤cos(A-B) ≤1 ∴ccos(A-B)≤C,当且仅当A=B时取等号. 同理,由三角形三边和三个角的对称性可证②③式. 应用:在⊿ABC中,求证:cosAcosBcosC ≤1/8 证明:①当⊿ABC为钝角三角形或直角三角形时,cosA、cosB、cosC其中必有一个小于等于0,故结论成立. ②若⊿ABC为锐角三角形时,由推论(1)及均值不等式得 a≥bcosB+ccosC≥2倍根号bcosBccosC>0......① b≥acosA+ccosC≥2倍根号acosAccosC>0......② C≥acosA+bcosB≥2倍根号acosAbcosB>0......③ ①×②×③得abC≥8abCcosAcosBcosC ∴cosAcosBcosC≤1/8 结论:①在三角形中,任意两边与其对角的余弦值的和等于第三边与两 边的对角差的余弦的积,小于或等于第三边。 ②三角形三个角的余弦值的积恒小于或等于1/8. ③观察式子,我们可以得出 a、若已知三角形中的两角以及对应两边,可知第三边的取值范围或最小值。 b、若已知三角形中的两角,可知三边之间的数量关系。 推论2、c/(a+b)=sin(C/2)/cos[(A-B)/2] ≥sin(C/2) ......① b/(a+c)=sin(B/2)/cos[(A-C)/2] ≥sin(B/2) ......② a/(b+c)=sin(A/2)/cos[(B-C)/2] ≥sin(A/2) ......③ 证明:由正弦定理, c/(a+b)=(2RsinC)/[2R(sinA+sinB)] =sin(�-c)/(sinA+sinB) =sin(A+B)/ (sinA+sinB) =sin[(A+B)/2+(A+B)/2]/{sin[(A+B)/2+(A-B)/2]+ sin[(A+B)/2-(A-B)/2]} ={2sin[(A+B)/2]cos[(A+B)/2]}/{ sin[(A+B)/2]cos[(A- B)/2]+sin[(A-B)/2]cos[(A+B)/2]+sin[(A+B)/2]cos [(A-B)/2]—sin[(A-B)/2]cos[(A+B)/2]} ={2sin[(A+B)/2]cos[(A+B)/2]}/{2sin[(A+B)/2]cos[(A- B)/2]} =cos[(A+B)/2]/ cos[(A-B)/2] =sin[�/2—(A+B)/2]/ cos[(A-B)/2] =sin(C/2)/cos[(A-B)/2] 又A、B∈(0,�) ∴ 0<cos[(A-B)/2] ≤1 ∴sin(C/2)/ cos[(A-B)/2]≥sin(C/2), 当且仅当A=B时取等号. 同理可证②③式.应用:已知在⊿ABC中,设a+c=2b,A-C=60度,求sinB.解:由题设和推论2可知, b/(a+c)=b/2b=1/2=sin(B/2)/[cos(A-C)/2]=sin(B/2)/cos(�/6) ∴sin(B/2)=(根号3)/4 ∴cos(B/2)=根号(1-sin(B/2)^2)= (根号13)/4 ∴sinB=2 sin(B/2) cos(B/2)= (根号39)/2 结论:①在三角形中,任意一边与另外两边和的比值,等于该边的 半对角的正弦与另两边的对角差半角的余弦,这是模尔外得公 式的其中一组。 ②应用: a、求解斜三角形未知元素后,可用它验算。 b、若已知三边可求角的最大值。 推论3、a≥2(根号bC)sin(A/2) ......① b≥2(根号aC)sin(B/2) ......② c≥2(根号ab)sin(C/2) ......③ 证明:∵(b-c)^2≥0 ∴b^2+c^2≥2bc 由余弦定理,a^2= b^2+c^2-2bccosA≥2bc-2bccosA =2bc(1-cosA)=4bcsin(A/2)^2 ∴a≥2(根号bC)sin(A/2), 同理可证②③式. 应用:在⊿ABC中,已知A=�/3,a=10,求bC的最大值。 解:由题设和推论3可知,10≥2(根号bC)sin(60度/2) ∴(根号bC)≤10 ∴bC≤100 故bC的最大值为100. 结论:①在三角形中,任意一边大于或等于另外两边二次方根的二倍与 该边的半对角正弦的积。 ②应用: a、已知两边和一角可求该角所对边的取值范围或最小值。 b、已知一边以及其对角可求另两边乘积的最大值。 C、已知三边可求角的最大值。 推论4、(a^2- b^2)/ c^2= (sinA^2-sinB^2)/ sinC^2……① (b^2- c^2)/ a^2= (sinB^2-sinC^2)/ sinA^2……② (a^2- c^2)/ b^2= (sinA^2-sinC^2)/ sinB^2……③ 证明:由正弦定理得, (a^2- b^2)/ c^2=[4R^2(sinA^2-sinB^2)]/( 4R^2*sinC^2) =(sinA^2- sinB^2)/ sinC^2 同理可证②③式. 应用:在⊿ABC中,A、B、C的对边分别为a、b、c,证明: (a^2- b^2)/ c^2=sin(A-B)/sinC 证明:由题设和推论4可知, (a^2- b^2)/ c^2 =(sinA^2- sinB^2)/ sinC^2 =(sinA+sinB)(sinA-sinB)/sinC^2 ={sin[(A+B)/2+(A-B)/2]+sin[(A+B)/2-(A-B)/2]}{sin[(A+B)/2+ (A-B)/2]—sin[(A+B)/2-(A-B)/2]}/{sinCsin[�—(A+B)]} ={2sin[(A+B)/2] cos[(A-B)/2]}{2cos[(A+B)/2]sin[(A- B)/2]}/[sinCsin(A+B)] ={2sin[(A+B)/2] cos[(A+B)/2]}{2sin[(A—B)/2] cos[(A- B)/2]}/[sinCsin(A+B)] =[sin(A+B)sin(A—B)]/ [sin(A+B) sinC] =sin(A—B)/ sinC 结论:①在三角形中,任意两边的平方差与第三边的平方之比等于 两边对角正弦的平方差与第三边对角的正弦的平方之比。 推论5、sinA^2= sinB^2+sinC^2-2sinBsinCcosA……① sinB^2= sinA^2+sinC^2-2sinAsinCcosB……② sinC^2= sinB^2+sinA^2-2sinBsinAcosC……③ 证明:由正弦定理和余弦定理得, (2RsinA)^2=(2RsinB)^2+(2RsinC)^2-2(2RsinA (2RsinB)cosA 化简得sinA^2= sinB^2+sinC^2-2sinBsinCcosA 同理可证②③式. 应用:求(sin10度)^2+(sin50度)^2+sin10度sin50度的值. 解:构造⊿ABC,使A=10度,B=50度,C=120度,应用推论5得 原式=(sin10度)^2+(sin50度)^2-(-1/2)×2sin10度sin50 度 =(sin10度)^2+(sin50度)^2-2sin10度sin50度cos120度 =(sin120度)^2 =3/4 结论:①在三角形中,任意角正弦的平方等于另外两角正弦的平方 和减去2倍两角正弦与该角余弦的积。 ②应用: a、若已知任意两角角度或正弦,可求另外一角余弦及角度。 b、若式子(sinA)^2+(sinB)^2+sinAsinB满足A+B=�/3,则 其值恒为3/4. C、若存在形如sinB^2+sinC^2-2sinBsinCcosA的式子,其值为 sinA^2. 推论6、a=bcosC+ccosB……① b=acosC+ccosA……② c=acosB+bcosA……③ 证明:由余弦定理得, b^2+c^2=(c^2+a^2-2accosB)+(a^2+b^2-2abcosC) 化简得a=bcosC+ccosB 同理可证②③式成立. 应用:已知�、�∈(0,�/2),且3(sin�)^2+2(sin�)^2=1, 3sin2�-2Sin2�=0,求证:�+2�=90度. 证明:∵3(sin�)^2+2(sin�)^2=1 ∴3(1-cos2�)/2+2(1- cos2�)/2=1 ∴3cos2�+2 cos2�=3 ∴2cos2�=3(1- cos2�)>0 ∴3 cos2�=3-2 cos2�>0 ∴2�、2�∈(0,�/2) 又3sin2�-2Sin2�=0 ∴3/Sin2�=2/sin2� 构造⊿ABC,使A=2�,B=2�,BC=2,则AC=3 由推论6得,AB=ACcos2�+BCcos2� = 3cos2�+2cos2�=3 ∴AB=AC ∴⊿ABC为等腰三角形. ∴C=B=2� 而在⊿ABC中,A+B+C=2�+2�+2�=180度 ∴�+2�=90度 结论:①推论6为著名的射影定理。 ②应用:可处理边、角、弦三者的转化问题。

Easy to overlook the answer"Fact is stranger than fiction, we also have many interesting mathematical kingdom. For example, in the ninth book, I now have a problem in the workbook, education, said: "this is a passenger train to the west, the east from 45 kilometers per hour line, stop, then after hours just what the halfway point of the two cities from 18 km, two things WangXing? How many kilometres from town with the small English in this problem, the calculation method and the results are not the same. XingSuan king of the number of kilometers than small calculates km less, but the results of the two to say. This is why? You want to come? You count them two listed in the results." Actually, this problem is we can very quickly made a kind of method is: 45 x = (km), + 18 = (km), * 2 = 261 (km), but look close scrutiny, he felt something was wrong. Actually, here we overlooked a very important conditions, "this is just what the halfway point of the city from the conditions of 18 kilometers away from" the word ", not to say, or more than halfway point. If it is not from the middle point to 18 kilometre, column type is the front, if is a kind of more than 18 kilometers halfway, column type should is 45 by = (km), = (km), x 2 = 189 (km). So the correct answer is: 45 x = (km), + 18 = (km), * 2 = 261 (km) and 45 x = (km), = (km), x 2 = 189 (km). Two answers, . WangXing answers with the small English answer is the daily learning, often have many problems, aim to answer is more in practice or neglected in the exam, we need to carefully examines the topic is, life experience, close scrutiny, correct understanding of cet4. Otherwise easily overlooked the mistake, the "0"0, it is the earliest human contact number. Our ancestors started only know no and have no is 0, 0, so did? Remember the elementary school teacher once said, "any number of minus itself is equal to 0, 0 means without number." That is simply not true. We all know that the 0 degrees centigrade thermometer said the freezing point of water (. a standard under the pressure of the mixture of water temperature), including 0 is solid and liquid water differentiator. But in Chinese characters, 0 means that a zero, such as: 1 more pieces), Decimal purpose. 2) not certain units... Thus, we know that the "no amount is 0, but not without number, 0 solid and liquid said the differentiator, etc.""Any divided by 0." no significance for This is the primary school teacher still talking to a conclusion about the "0", then the division (primary) is divided into several copies will be a, how much each. A whole cannot into a "0" no significance. Then I realized the a / 0 0 0 to limit can be expressed in the variable (a variable in the process of changing its absolute than any small forever is positive), shall be equal to a variable in the infinite (changes in its absolute than any big is positive). Get a theorem about 0 "zero limits of variables, called an infinitesimal".

容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

数学教学的知识具有抽象性、严谨性、广泛性、辩证性等基本特征,相比于其他的学科,数学教学知识素养具有更高的要求。下面是我为大家整理的高中数学小论文,供大家参考。

摘要:课堂作为学生接受知识的主要场所之一,教师的课堂教学效率问题备受瞩目。高中数学课堂教学效率的提高,在很大程度上可以激发学生学习数学的兴趣和信心。在此过程中,授课教师应根据教学任务和实际情况,借助多媒体技术和现代化教学手段来激发学生在数学学习中的兴趣,引导学生发现问题并解决问题,从而提高教学质量。

关键词:高中数学;教学;效率;策略

高中数学以其难度大、知识点多且课时量大的特点,在所有高中课程中一直占据着较大的比例。因此,高中数学的课堂教学效率决定着学生对数学这一学科的本质认知以及是否可以重拾或加深学习数学的兴趣,授课教师要怎样改变单一古板的教学模式,如何运用恰当有效的教学方法,将会对学生日后的数学学习产生深远影响。本文针对此问题提出三种策略以提高高中数学课堂的教学效率。

1兴趣创造知识

兴趣是做任何事情的根基,尤其是在探究数学的道路上。数学是一门相对枯燥乏味的科学,如何提起学生学习数学的兴趣是高中数学授课教师在准备教学过程中应首先考虑的问题,并且要将此问题融入到设计教学的内容、方法和手段中。授课教师应做到以下两点:第一,教师应从自身出发彻底改变传统的教学观念和教学模式,让填鸭式、题海式的教学模式远离高中数学课堂。并从学生的实际出发,选取适合高中生认知的方法开展教学。积极营造良好的课堂气氛,一改高中数学课堂压抑沉闷的教学氛围。第二,教师要将课堂还给学生。在新课程标准下,更加强调学生占据课堂学习的主体地位。学生本应是学习的主体,但一直以来的高中数学课堂都是老师教,学生学的单一模式,而这种模式不仅不利于教学质量的提高,而且会磨灭学生对数学学习的兴趣。因此,学生只有变被动为主动的接受知识,才能意识到自己是课堂教学的主体,是学习的主体,才会对学习内容产生兴趣并进行深入研究,并且乐于接受学习中的困难和挑战。综上,高中数学课堂教学效率的提升不仅得益于学生的课堂参与及课后探究,更离不开让学生积极主动去学习的动力——兴趣。

2不是替学生解决问题,而是教学生自己解决问题

高中数学在升学考试中一直占据着较大比例,因此,很多一线数学教师急于培养学生的应试能力,采取大量的题海战术,长此以往,在教师的认知中,学生可以不断在做题解题的过程中意会数学这一学科的真正本质,并掌握相应的解题方法,这是教师认知中普遍存在的错误。教师将解决问题的方法直接授予学生,不仅阻碍了学生思维的发展,而且扼杀了学生勇于创新的主动性和积极性。所以,高中数学课堂教学中,教师的任务不是替学生去解决问题,而是教学生自己去探索并解决问题。教师应鼓励学生的发散思维,多角度考虑问题,让学生养成良好的思维习惯,不拘泥于一种思维形式。鼓励学生自己发现问题,并试图用自己的办法去解决问题。要知道,经验和教训是需要通过尝试和努力之后自己总结出来的,而不是通过别人的行为或想法获取的。此时教师的角色便是积极引导,解答学生在探索过程中遇到的疑惑。

3将科学技术融入高中数学课堂

科学技术作为第一生产力,也要以其独到的形式融入到高中数学课堂,即多媒体技术的应用。数学作为一门较抽象且枯燥乏味的学科,尤其是学生在接触更加抽象、复杂的领域时,多媒体教学以及其他科技手段的引入,将抽象又枯燥的数字及图形变得活灵活现。比如高中几何教学中涉及的图形,以及高中代数教学中涉及的函数教学,其中有众多的数量关系问题,图形结合问题,代数和几何综合性的应用题,传统的这些教学,教师借助传统教学用具,在黑板上体现不直观、不具体,学生理解困难,教学质量不佳,但是,这些问题随着多媒体技术的融入,都迎刃而解。多媒体对图像的表达更加直观,学生对知识点的明确更加清晰,教学效果显著提升。例如,在解决函数问题上,教师可以通过多媒体展示动态函数图像,清晰的坐标图以及收缩可控的图像效果,都会深深印在学生的脑海中,而这样的教学效果是传统的黑板画图教学所达不到的。再比如空间立体几何教学,教师在黑板上很难体现出图形的空间感和立体感,而多媒体却可以弥补这一空缺。即使通过多媒体教学可以培养学生的主体参与意识可以达到师生互动的课堂效果,但多媒体只是填补传统教学漏洞的一种辅助教学手段,所以只有适度使用才能发挥其最大价值,才能更好地提升课堂教学效率,促进教师与学生之间更好的交流和沟通的形成。

4总结

综上所述,高中数学教师应积极构建和谐的师生关系,在教学中激发学生对数学学习的热情和兴趣,积极引导学生发现问题探究问题继而解决问题,并借助多媒体技术以及现代化手段让知识在学生大脑中留下生动形象的记忆,改变高中数学课堂的枯燥氛围。这需要授课教师和学生的积极配合,在完成教学任务的基础上,培养学生的学习能力,从而提高高中数学课堂学习效率。

参考文献:

[1]郝保奎.浅议提高高中数学课堂教学效率的方法[J].现代阅读(教育版),2013,(1):129.

[2]朱亚珍.提高高中数学课堂教学效率策略研究[J].数字化用户,2013,(4):87-88

摘要:当下最普遍的教育方式便是从学生的兴趣和好奇心出发,引导学生耳朵理性思维能力,拓宽学生的自主学习和逆向思维的能力,利用高中数学独具的魅力和问题解决的多样性,促使学生们自我创新意识的进步,在高中数序的学习中,培养学生们自己的创新意识和创新能力,给新时代的社会人才的需求打下坚实的基础。

关键词:高中数学;教育;创新能力

1.前言

创新是一个社会、一个国家发展的动力源泉,是我国站立在世界列强、屹立在民族之林的保证。我国的数学教育在世界上一直走在时代的前沿,但是我国学生的创新能力却存在普遍落后的现象。教育的发展要顺应时代的变化,尤其在我国处于一个转型期的关键时期,更要通过教育来培养出一批将来社会的栋梁人才。因为培养学生们的创新意识和创新能力,也成为了课堂上教学重点的重中之重。从数学课程来分析,创新能力主要表现在学生对教学知识的接受和学习能力,对既出数学问题的理解和分析能力,对应用数学的掌握和运用能力,这部分能力成为了高中数学教育中必须抓重的部分。为了达到学生创新能力的培养,需要教师们在课堂上不断的设立问题,打开学生们的大脑,鼓励学生的发散思维,让学生在分析和思考中,培养创新能力。本文将就如何提高高中数学教学中学生们的创新意识和创新能力进行论述。

2.高中数学教育学生创新意识的养成

创新意识的培养,就是为了使学生能够自觉的用创新的思维、用多种角度来解决高中数学学习中的问题。教师应该打破以往的教学模式,顺应时代的变化,采用现代化的教学手段,在理论方面实现创新的同时,注重实际的运用,使学生习惯用创新的思维和眼光去看待问题和解决问题。

(1)鼓励提问和质疑,培养创新的行为。所有的创新,离不开对事件本身的质疑。只有发现问题,才会想办法去解决问题,才会形成一定的创新意识。高中数学知识的教授对学生而言本来就存在很多难以接受的点,鼓励学生大胆的提问,对命题和真理大胆的质疑,而不是用搪塞的方法把学生的创新苗头给掐死在摇篮里。用宽容的态度,用引导的方式来处理学生们的提问和质疑,尝试一题多解的方法来拓宽学生的思维方式,用对命题真理推演的过程提高学生的发现和分析能力。通过这些,能有效的使学生们自觉的思考问题,形成自我主动性的创新,也就是潜移默化的培养出了创新意识。

(2)构建新型的课堂氛围。传统的教和学的方式已经很难适应新时代的教育需求,创新意识的养成离不开互动性的氛围,应该给予学生们主动思考的空间和时间,所以课堂气氛的营造是培养学生创新能力很重要的一点。教师在教学的过程中应当充分的和学生们进行互动,多提出问题,把自己定位成问题讨论的参与者,和学生们一起解决问题。同时对于学生们的理性思维问题,给予充分的帮助,让学生们体会到课堂的温馨,才会促使他们愿意在课堂上去共同解决问题。

3.高中数学教育学成创新能力的培养

数学教学是一个复杂的动态的教学模式,随着时代的发展,数学的教学模式也在一直发生改变。而培养创新能力是时代发展的结果,是社会进步的前提,所以在多变的高中数学教学中培养学生的创新能力,是新时代社会的需求。

(1)发展学生的探索能力。高中的数学学习不应该知识简单的接受和模仿,还应该多多自主探讨,尝试合作交流,培养自学的方式。多样性的学习,能放拓宽学生的思维方式,对创新能力的培养有着促进作用。发展学生的自学能力。自学能力是实现学生终生学习的基础,是学生不断进步、不断超越自己的基本能力。教师应该放开手脚,给予学生们充分的时间,引导他们自主学习。形成了自主学习,就形成了自主思考的能力,再结合平时课堂上正确的引导,这种自主思考能力能很快的转变为创新能力,成为学生终身受用的财富。提倡探索性学习。在教学的过程中,教师不能只扮演一个传授知识的角色,而应当以学生的兴趣为中心,利用数学的基本原理和相应的辅助教学手段,给学生们提出问题,一起进行探索性的解决问题,培养学生的思维能力。把理论知识和其他应用科学结合在一起,不断的为数学的教学注入活力,探索式的思考和解决问题,将有利于学生创新能力的培养。合作学习。善于合作的人,才能更适合社会的发展。教学过程中,教师应当注意避免学生一个人去面对问题,而是多方共同讨论,在合作讨论的过程中,学生们取长补短,形成了自主的学习,能为自己的思维方式进行自我的改善,这样能极大的激发学生的创新能力。

(2)利用解题教学方式。创新能力的培养,不但在于使学生们发现问题的本质,更注重的是使学生们自主解决生活的问题或者学术上的难题。所以教师应该在学生基本掌握了理论的基础上,自主学习解题的技巧,从多个角度来看到问题,形成良好的思维习惯。所以教师应该避免说教式教学,应该让学生们自己发现问题,然后从所学的知识中自主进行验证,这样即可以充分调动学生们的想象力,还能使学生们的思维方式拓宽,提高创新能力。

(3)教师教学观念的更新和学科的创新教育。数学是一门活学活用的学科,在高中数学教育中培养学生的创新能力,也就是培养学生们的思维方式,让他们形成自主的发现问题、解决问题的套路,最后形成一般规律。所以在这其中,教师必须具有创新意识,改变传统的教学思路,采用研究性教学。

4.结语

当下最普遍的教育方式便是从学生的兴趣和好奇心出发,引导学生耳朵理性思维能力,拓宽学生的自主学习和逆向思维的能力,利用高中数学独具的魅力和问题解决的多样性,促使学生们自我创新意识的进步,在高中数序的学习中,培养学生们自己的创新意识和创新能力,给新时代的社会人才的需求打下坚实的基础。

参考文献

1、高中数学教师如何指导高一新生走进数学武增明上海中学数学2004-08-20

相关百科

热门百科

首页
发表服务