Sensorless torque control scheme ofinduction motor for hybrid electric vehicleYan LIU 1,2, Cheng SHAO1( Institute of Advanced Control Technology, Dalian University of Technology, Dalian Liaoning 116024, China; of Information Engineering of Dalian University, Dalian Liaoning 116622, China)Abstract: In this paper, the sensorless torque robust tracking problem of the induction motor for hybrid electric vehicle(HEV) applications is addressed. Because motor parameter variations in HEV applications are larger than in industrialdrive system, the conventional field-oriented control (FOC) provides poor performance. Therefore, a new robust PI-basedextension of the FOC controller and a speed-flux observer based on sliding mode and Lyapunov theory are developed inorder to improve the overall performance. Simulation results show that the proposed sensorless torque control scheme isrobust with respect to motor parameter variations and loading disturbances. In addition, the operating flux of the motor ischosen optimally to minimize the consumption of electric energy, which results in a significant reduction in energy lossesshown by : Hybrid electric vehicle; Induction motor; Torque tracking; Sliding mode1 IntroductionBeing confronted by the lack of energy and the increasinglyserious pollution, the automobile industry is seekingcleaner and more energy-efficient Hybrid ElectricVehicle (HEV) is one of the solutions. A HEV comprisesboth a Combustion Engine (CE) and an Electric Motor(EM). The coupling of these two components can be inparallel or in series. The most common type of HEV is theparallel type, in which both CE and EM contribute to thetraction force that moves the vehicle. Fig1 presents a diagramof the propulsion system of a parallel HEV [1].Fig. 1 Parallel HEV automobile propulsion order to have lower energy consumption and lower pollutantemissions, in a parallel HEV the CE is commonlyemployed at the state (n > 40 km/h or an emergency speedup), while the electric motor is operated at various operatingconditions and transient to supply the difference in torquebetween the torque command and the torque supplied bythe CE. Therefore fast and precise torque tracking of an EMover a wide range of speed is crucial for the overall performanceof a induction motor is well suited for the HEV applicationbecause of its robustness, low maintenance and lowprice. However, the development of a drive system basedon the induction motor is not straightforward because of thecomplexity of the control problem involved in the IM. Furthermore,motor parameter variations in HEV applicationsare larger than in industrial drive system during operation[2]. The conventional control technique ranging from theinexpensive constant voltage/frequency ratio strategy to thesophisticated sensorless control schemes are mostly ineffectivewhere accurate torque tracking is required due to theirdrawbacks, which are sensitive to change of the parametersof the general, a HEV operation can be continuing smoothlyfor the case of sensor failure, it is of significant to developsensorless control algorithms. In this paper, the developmentof a sensorless robust torque control system for HEVapplications is proposed. The field oriented control of the inductionmotor is commonly employed in HEV applicationsdue to its relative good dynamic response. However the classical(PI-based) field oriented control (CFOC) is sensitive toparameter variations and needs tuning of at least six controlparameters (a minimum of 3 PI controller gains). An improvedrobust PI-based controller is designed in this paper,Received 5 January 2005; revised 20 September work was supported in part by State Science and Technology Pursuing Project of China (No. 2001BA204B01).Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46 43which has less controller parameters to be tuned, and is robustto parameter variable parameters modelof the motor is considered and its parameters are continuouslyupdated while the motor is operating. Speed andflux observers are needed for the schemes. In this paper,the speed-flux observer is based on the sliding mode techniquedue to its superior robustness properties. The slidingmode observer structure allows for the simultaneous observationof rotor fluxes and rotor speed. Minimization of theconsumed energy is also considered by optimizing operatingflux of the The control problem in a HEV caseThe performance of electric drive system is one of thekey problems in a HEV application. Although the requirementsof various HEV drive system are different, all thesedrive systems are kinds of torque control systems. For anideal HEV, the torque requested by the supervisor controllermust be accurate and efficient. Another requirement is tomake the rotor flux track a certain reference λref . The referenceis commonly set to a value that generates maximumtorque and avoids magnetic saturation, and is weakened tolimit stator currents and voltages as rotor speed HEV applications, however, the flux reference is selectedto minimize the consumption of electrical energy as it is oneof the primary objectives in HEV applications. The controlproblem can therefore be stated as the following torque andflux tracking problems:minids,iqs,we Te(t) − Teref (t), (1)minids,iqs,we λdr(t) − λref (t), (2)minids,iqs,we λqr(t), (3)where λref is selected to minimize the consumption of electricalenergy. Teref is the torque command issued by thesupervisory controller while Te is the actual motor (3) reflects the constraint of field orientation commonlyencountered in the literature. In addition, for a HEVapplication the operating conditions will vary changes of parameters of the IM model need to be accountedfor in control due to they will considerably changeas the motor changes operating A variable parameters model of inductionmotor for HEV applicationsTo reduce the elements of storage (inductances), the inductionmotor model used in this research in stationary referenceframe is the Γ-model. Fig. 2 shows its q-axis (d-axisare similar). As noted in [3], the model is identical (withoutany loss of information) to the more common T-model inwhich the leakage inductance is separated in stator and rotorleakage [3]. With respect to the classical model, the newparameters are:Lm = L2mLr= γLm, Ll = Lls + γLlr,Rr = γ. 2 Induction motor model in stationary reference frame (q-axis).The following basic w−λr−is equations in synchronouslyrotating reference frame (d - q) can be derived from theabove model.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩dλdrdt= −ηλdr + (we − wr)λqr + ηLmids,dλqrdt= −(we − wr)λdr − ηλqr + ηLmiqs,didsdt= ηβλdr+βwrλqr−γids+weiqs+1σLsVds,diqsdt=−βwrλdr+ηβλqr−weids−γiqs+1σLsVqs,dwrdt= μ(λdriqs − λqrids) −TLJ,dθdt= wr + ηLmiqsλdr= we,Te = μ(λdriqs − λqrids)(4)with constants defined as follows:μ = npJ, η = RrLm, σ = 1−LmLs, β =1Ll,γ = Rs + RrLl, Ls = Ll + Lm,where np is the number of poles pairs, J is the inertia of therotor. The motor parameters Lm, Ll, Rs, Rr were estimatedoffline [4]. Equation (5) shows the mappings between theparameters of the motor and the operating conditions (ids,iqs).Lm = a1i2ds + a2ids + a3, Ll = b1Is + b2,Rr = c1iqs + c2.(5)4 Sensorless torque control system designA simplified block diagram of the control diagram isshown in Fig. Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46Fig. 3 Control PI controller based FOC designThe PI controller is based on the Field Oriented Controller(FOC) scheme. When Te = Teref, λdr = λref , andλqr = 0 in synchronously rotating reference frame (d − q),the following FOC equations can be derived from the equations(4).⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ids = λrefLm+ λrefRr,iqs = Terefnpλref,we = wr + ηLmiqsλref.(6)From the Equation (6), the FOC controller has lower performancein the presence of parameter uncertainties, especiallyin a HEV application due to its inherent open loopdesign. Since the rotor flux dynamics in synchronous referenceframe (λq = 0) are linear and only dependent on thed-current input, the controller can be improved by addingtwo PI regulators on error signals λref − λdr and λqr − 0 asfollowids = λrefLm+ λrefRr+ KPd(λref − λdr)+KId (λref − λdr)dt, (7)iqs = Terefnpλref, (8)we = wr + ηLmiqsλref+ KPqλqr + KIq λqrdt. (9)The Equation (7) and (9) show that current (ids) can controlthe rotor flux magnitude and the speed of the d − q rotatingreference frame (we) can control its orientation correctlywith less sensitivity to motor parameter variations becauseof the two PI Stator voltage decoupling designBased on scalar decoupling theory [5], the stator voltagescommands are given in the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩Uds = Rsids − weσLsiqs = Rsids − weLliqs,Uqs = Rsiqs + weσLsids + LmLrweλref= Rsiqs + weσLsids + weλref .(10)Because of fast and good flux tracking, poor dynamics decouplingperformance exerts less effect on the control Speed-flux observer designBased on the theory of negative feedback, the design ofspeed-flux observer must be robust to motor parameter speed-flux observer here is based on the slidingmode technique described in [6∼8]. The observer equationsare based on the induction motor current and flux equationsin stationary reference frame.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩d˜idsdt= ηβ˜λdr + β ˜ wr˜λqr − γ˜ids +1LlVds,d˜iqsdt= −β ˜ wr˜λdr + ηβ˜λqr − γ˜iqs +1LlVqs,d˜λdrdt= −η˜λdr − ˜ wr˜λqr + ηLm˜ids,d˜λqrdt= ˜wr˜λ dr − η˜λqr + ηLm˜iqs.(11)Define a sliding surface as:s = (˜iqs − iqs)˜λdr − (˜ids − ids)˜λqr. (12)Let a Lyapunov function beV = . (13)After some algebraic derivation, it can be found that when˜ wr = w0sgn(s) with w0 chosen large enough at all time,then ˙V = ˙s · s 0. This shows that s will converge tozero in a finite time, implying the stator current estimatesand rotor flux estimates will converge to their real valuesin a finite time [8]. To find the equivalent value of estimatewr (the smoothed estimate of speed, since estimate wr is aswitching function), the equation must be solved [8]. Thisyields:˜ weq = wr˜λqrλqr + λdr˜λdr˜λ2qr +˜λ2dr −ηnp˜λqrλdr − λqr˜λdr˜λ2qr +˜λ2dr. (14)The equation implies that if the flux estimates converge totheir real values, the equivalent speed will be equal to thereal speed. But the Equation (14) for equivalent speed cannotbe used as given in the observer since it contains unknownterms. A low pass filter is used instead,˜ weq =11 + s · τ˜ wr. (15)Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46 45The same low pass filter is also introduced to the systeminput,which guarantees that the input matches the feedbackin selection of the speed gain w0 has two major constraints:1) The gain has to be large enough to insure that slidingmode can be ) A very large gain can yield to instability of the simulations, an adaptive gain of the slidingmode observer to the equivalent speed is = k1 ˜ weq + k2. (16)From Equation (11), the sliding mode observer structureallows for the simultaneous observation of rotor Flux reference optimal designThe flux reference can either be left constant or modifiedto accomplish certain requirements (minimum current,maximum efficiency, field weakening) [9,10]. In this paper,the flux reference is chosen to maximum efficiency at steadystate and is weaken for speeds above rated. The optimal efficiencyflux can be calculated as a function of the torquereference [9].λdr−opt = |Teref| · 4Rs · L2r/L2m + Rr. (17)Equation (17) states that if the torque request Teref iszero, Equation (8) presents a singularity. Moreover, theanalysis of Equation (17) does not consider the flux fact, for speeds above rated, it is necessary toweaken the flux so that the supply voltage limits are not improved optimum flux reference is then calculatedas:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩λref = λdr-opt,if λmin λdr-opt λdr-rated ·wratedwr-actual,λref = λmin, if λdr-opt λmin,λref = λdr-rated ·wratedwr-actual,if λdr-opt λdr-rated ·wratedwr-actual.(18)where λmin is a minimum value to avoid the division SimulationsThe rated parameters of the motor used in the simulationsare given byRs = Ω, Rr = Ω, Lls = 75 H,Llr = 105 H, Lm = mH, Ls = Lls + Lm,Lr = Llr + Lm, P = 4, Jmot = kgm2,J = Jmot +MR2tire/Rf, ρair = , Cd = = m2, Rf = , Cr = = m, M = 3000 kg, wbase = 5400 rpm,λdr−rated = shows the torque reference curve that representstypical operating behaviors in a hybrid electric . 4 The torque reference torque is modeled by considering the aerodynamic,rolling resistance and road grade forces. Its expression isgiven byTL = RtireRf(12ρairCdAfv2 +MCr cos αg +M sin αg).Figures in [5∼8] show the simulation results of thesystem of (considering variable motor parameters).Though a small estimation error can be noticed on the observedfluxes and speed, the torque tracking is still achievedat an acceptable level as shown in Figs. [5, 6, 8]. The torquecontrol over a wide range of speed presents less sensitivityto motor parameters presents the d and q components of the rotor flux λr is precisely orientated to d-axis because of theimproved PI shows clearly the real and observed speed in thedifferent phases of acceleration, constant and decelerationspeed with the motor control torque of . The variablemodel parameters exert less influence on speed shows the power loss when the rotor flux keeps constantor optimal state. A significant improvement in powerlosses is noticed due to reducing the flux reference duringthe periods of low torque . 5 Motor rotor flux λ Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46Fig. 6 Motor . 7 Power . 8 Motor ConclusionsThis paper has described a sensorless torque control systemfor a high-performance induction motor drive for aHEV case. The system allows for fast and good torquetracking over a wide range of speed even in the presence ofmotor parameters uncertainty. In this paper, the improvedPI-based FOC controllers show a good performance in therotor flux λdr magnitude and its orientation tracking. Thespeed-flux observer described here is based on the slidingmode technique, making it independent of the motor adaptation of the speed -flux observer is used tostabilize the observer when integration errors are present.
与<<"电机学"网络教学辅助系统>>相似的文献。 对比式教学法在电机教学中的应用 Application of Contrast Method in Electric Machine Teaching [湖南工程学院学报(自然科学版) Journal of Hunan Institute of Engineering(Natural Science Edition)] 刘少克 校园网教学信息系统 The Campus Net Information System of Teaching [辽宁省交通高等专科学校学报 Journal of Liaoning Provincial College of Communications] 孔繁瑞 , 李瑶 辅助教学网站自动生成系统的设计与实现 Design and Realization of Auto Formed System on Aid Teaching Net [南平师专学报 Journal of Nanping Teachers College] 黄清虎 , HUANG Qinghu 网络辅助教学系统的设计和安全性实施 The Design and Security Implementation of a Network Assistant Teaching System [三明学院学报 Journal of Sanming College] 陈欣敏 , CHEN Xin-min 机电能量转换多媒体计算机辅助教学系统概述 Survey of MCAI System of Conversion of Mechanical and Electrical Energy [微电机 Micromotors] 窦晓霞 探究式多媒体网络教学系统的研制 Development and cognition on net teaching system with the features of discovery and multimedia [高等工程教育研究 Research in Higher Education of Engineering] 陈晓 , 杨振坤 , 汪琼燕 , 张祝林 , 伍辉华 电机学教学方法初探 Discussion on Teaching Method Improvement in Electric Machine Course [电机技术 Electrical Machinery Technology] 薛迎成 , Xue Yingchen 电力系统故障分析的计算机辅助教学系统 Computer-assistant Teaching System for Electric System Fault Analysis [东北电力技术 Northeast Electric Power Technology] 魏臻珠 开放教育教学中心网络教学系统设计之管见 My Idea On Net- work Teaching System in Open Teaching & Learning Center [陕西广播电视大学学报 Shaanxi Radio and TV University Journal] 王力强 电力电子技术发展对电机类教学内容的影响 Influence on Teaching Content of Electric Machine Fields with the Development of Power Electronic Technology [电气电子教学学报 Journal of Electrical & Electronic Education] 李辉 谈谈电机教学中的类比法 The Comparing Method in Teaching Electric Machine [广东水利电力职业技术学院学报 Journal of Guangdong Technical College of Water Resources and Electric Engineering] 陈吉芳 大学数学课程网络教学系统建设的探讨 On the Construction of Mathematics Net Teaching System in University [石家庄铁路职业技术学院学报 Journal of Shijiazhuang Institute of Railway Technology] 赵晓青 , 戎晓剑 , Zhao Xiaoqing , Rong Xiaojian 电机学教学方法的创新探索与实践 Exploration and Practice in the Teaching Methods of "Electric Engineering" [中国电力教育 China Electric Power Education] 王艾萌 《电机拖动与控制》教学模式的改革 The Reform of Teaching Pattern in Electric Machine Motor and Control [常州信息职业技术学院学报 Journal of Changzhou Vocational College of Information Technology] 王丽琴 基于PC的教学型数控铣床实验系统设计 Design of Numerical Control of Milling Machine Experiment System for Teaching Based on PC [机械与电子 Machinery & Electronics] 丛红 , 董爱梅
参考文献要注意采用规范化的著录格式,同时要注意在供内部交流的刊物上发表的文章和内部使用的资料,尤其是不宜公开的资料,均不能作为参考文献著录。下面是我为大家整理的一些2017电子商务参考文献,供大家参阅。
2017电子商务文献
篇一:电子商务 论文 参考文献
[1] 宋义秋,魏亚楠. 浅谈电子商务带来的 企业管理 的变革[J]. 科技 资讯, 2009,(03) .
[2] 林鲁生. 谈电子商务企业组织结构设计[J]. 商业时代, 2009,(12) .
[3] 周星. 浅析电子商务的发展趋势[J]. 科技创新导报, 2009,(07) .
[4] 徐晓雨. 电子商务——传统企业管理现代化的加速器[J]. 辽宁省交通高等专科学校学报, 2008,(01) .
[5] 王尊民. 电子商务促进企业管理现代化[J]. 现代商业, 2008,(08) .
[6] 周海兵. 电子商务时代的企业管理变革[J]. 时代经贸(下旬刊), 2008,(11) .
[7] 石正喜. 电子商务对企业管理的影响及应对策略[J]. 商场现代化, 2007,(27) .
[8] 李莉. 论电子商务环境下企业管理新模式[J]. 企业经济, 2008,(05) .
[9] 吴靳. 电子商务对企业 财务管理 的影响[J]. 会计 之友(中旬刊), 2009,(03) .
[10] 林震. 论电子商务对企业物流管理的影响[J]. 现代商贸工业, 2009,(09) .
篇二: 电子商务论文 参考文献
[1]赵晓津。 计算机 安全技术在电子商务中的应用探讨[J]。硅谷,2014(4):140-141。
[2]雷殷睿。 网络安全 技术在电子商务中的融合[J]。计算机光盘软件与应用,2014(4):162-163。
[3]余佩颖。 微信 电子商务模式探讨[J]。软件,2013(10):124-125。
[4]邵泽云。数字签名技术在电子商务中的应用研究[J]。农业网络信息,2014(3):83-85。
[5]齐赫。基于物联网技术下的电子商务发展策略研究[J]。计算机光盘软件与应用,2014(5):41-42。
[6]汪顺。计算机技术用于电子商务的研究[J]。电子技术与软件工程,2014(5):232。
[7]李珣。移动支付进击的微信PK无力应对的支付宝[J]。记者观察,2014(4):56-57。
[8]吕廷杰编著。移动电子商务[M]。北京:电子工业出版社,2011。
篇三:电子商务论文参考文献
[1]Hyon,Sunny. Genrein Three Traditions: Implications for ESL [J]. TESOL Quarterly,30/ 4 :693-722,1996.
[2]易兴霞.体裁分析与农业 英语 论文摘要[J]. 西安外国语学院学报,2006,9.
[3]杨瑞英.体裁分析的应用:应用语言学学术文章结构分析[J]. 外语与外语教学,2006,10.
[5]Swales,J. Analysis: English in Academic and Research Settings [M]. Cambridge:Cambridge University Press,1990.
[6]Bhatia,V. Genre: Language Use in Professional Settings [M]. London: Longman,1993.
篇四:电子商务论文参考文献
[1] 文化 .传统企业的电子商务化[J].广东 财经 学院院报,2006(3)
[2]刘珍.传统企业发展电子商务的风险分析及对策研究[M].优秀硕博论文,2005(6).
[3]杨洪涛.电子商务对消费者需求的影响与企业营销策略[J].中国科技信息,2005(6).
[4]多琦.基于电子商务的顾客满意信息 收集 与评价系统设计的研究[D].哈尔滨理工大学,2003(2)
[5]赵冬梅.电子商务市场价格离散问题研究[D].中国农业大学,2005(4)
[6]杨坚.电子商务网站典型案例评析[M].西安电子科技大学出版社,2005(5)
[7]刘海,孙浩.海尔家居体现海尔竞合战略[N].新华日报,2006(2)
[8]尤齐钧.八大难题困扰中国家具业[N].中国建材报, 2008 (3)
[9]贾玮.2007 家具业变局之年[N].中国建材报, 2007 (12)
[10]王坤.家具行业创新之路迫在眉睫[N].中国财经报,2008(23)
[11]陶海音,肖青.湖南家具业亟待创新[N].湖南日报, 2006(2)
篇五:电子商务论文参考文献
[1] 黄崇珍, 杜蓉.电子商务下第三方物流研究[J] 信息技术, 2004 年11月,第28 卷 第11期
[2] 崔介何主编,《电子商务与物流》,中国物资出版社,2002年4月第一版
[3] 张晓燕.对中国B2C 电子商务发展思路的探索[J]商场现代化.2005 年9 月(中),总第443 期.
[4] 张铎,林自葵.电子商务与现代物流[M].北京: 北京大学出版社, 2002.
[5] 谭清美,王子龙,城市物流对经济的拉动作用研究——以江苏南京为例,工业技术经济,2004年01期
[6] 王健,方佳林,美、日、欧现代物流发展的比较与启示,东北亚论坛,2005年02期
[7] 王淑琴,陈峻,王炜,城市现代物流系统布局规划研究——以扬州市为例,规划师,2005年02期
[8] 梁燕君,《电子商务物流新旧模式之比较》,商品储运与养护,2009年第五期
[9] 王文斌,马祖军,武振业,现代物流业与区域经济发展,经济体制改革,2002年01期
[10] 李辉民,现代物流的形成趋势与对策,集装箱化,2009年04期
[11] 汪鸣,冯浩,我国现代物流业发展政策及建议,宏观经济研究,2010年05期
[12] 张林红,陈家源,新世纪我国航运企业物流运作模式的探讨,世界海运,2011年05期
[13] 王成钢,陈登斌.B2C电子商务配送系统建设[M].长沙:湖南师范大学出版,2008.
[14] 仲岩,芦阳,李霞.电子商务实物[M].北京:北京大学出版社,2009.
[15] 常连玉,陈海燕.B2C电子商务配送模式的思考[J].物流技术 .2010(8).
[16] 孙勇.我国B2C电子商务物流配送问题与对策[J].现代商业.2010(7).
啊,我才小学
英语写作网上可能会有
95 浏览 4 回答
242 浏览 5 回答
203 浏览 4 回答
122 浏览 2 回答
299 浏览 5 回答
289 浏览 4 回答
295 浏览 5 回答
99 浏览 4 回答
200 浏览 5 回答
206 浏览 3 回答
261 浏览 4 回答
151 浏览 5 回答
210 浏览 4 回答
277 浏览 3 回答
232 浏览 4 回答