滑坡作用的预报像其他外部地质作用那样,预报发展过程(阶段)和时空分布特征,并对单个滑坡(或滑坡群)稳定性进行评价,为防治工作提供依据。
滑坡发生时间的预报通常分为超长期(达100 a)、长期(10~15 a)、中期(1~10 a)和短期(几小时、几天~1 a)。因此,危险地区设主观测站(台),长期连续取得观测数据。
近年来,地球物理方在滑坡动态观测中,开展了滑移特点与地球物理参数间相关关系的研究,使时间预报研究进一步深化。大量实践(实验室内的物理模拟和野外实际的稳定性已破坏的斜坡上测量)证明利用地球物理方法预报滑坡过程是可行的、有效的。
用地震方法研究滑坡动力学特征预报滑坡
图是用地震方法研究滑坡动力学特征的实例。实验室内模型实验选用与粘土相当的材料并考虑相似性准则制作物理模型,模拟塑性滑坡形成过程。实验结果表明,介质弹性特征的改变总是发生在滑动之前,即介质由稳定状态变为破坏状态,地震波速明显降低(见图,a曲线)。这个结果已被野外大量滑坡上测试结果所证实。从图地震纵波速度曲线(a曲线)、大地测量水准点的水平位移曲线(b、c曲线)和应力变化曲线(d曲线)变化可以看出滑坡开始滑动时刻(图中的A点)和剧烈滑动的时刻(图中的B点),这样就可以提前预报滑坡。
图 用地震方法研究滑坡动力学特征图示(A图)及其结果(B图)
利用电阻率法和大地水准测量研究滑动面形成的时间和地点
НечаевЮВ研究(见图)。南乌克兰一个露天开采的铁矿深部斜坡滑动的情况。该斜坡的岩性为泥灰质层状粘土,由于发生人工滑坡的体积已达(8~10)×103 m3,所以,滑坡的稳定性已被破坏。
图 倾斜露天矿场滑坡上的动态观测
测量视电阻率ρS参数是采用不同供电极距的对称四极装置,同时,对位于滑坡体上的水准点进行了矿山测量观测。把不同极距的ρS值表示成与时间的函数关系ρS=f(t)。由图可见,供电极距不同,反映地电断面的深度不同。三种极距的、分别为某种供电极距初始视电阻率值和定期观测某一时刻的视电阻率值)与观测时间t都有类似的函数关系。由于,所以,~t曲线图对地电断面状态变化反映相当灵敏。由图可见,在t1、t2、t3 时刻均出现了视电阻率异常。由该矿山测量部门查明,在t1 时刻斜坡岩石形成微小裂隙;在t3 时刻岩石产生滑落,即在岩石产生滑落之前的几昼夜内,可以由~t曲线图看出地电断面状态发生明显变化情况。根据勘查结果,滑坡形成速度在~ m/h范围内变化。因此,有计划地沿着整个斜面布置测点进行监测,能够获得滑动面形成时间和地点的信息。
用测自然电位值变化对崩塌性滑坡的短期预测
实践证明,对滑坡的预报是困难的,日本在这方面也做了大量研究工作。研究者认为,正在缓慢移动的滑坡区,实测的自然电位是连续的,若电位发生变化则是发生岩石急剧移动或发生崩塌之前兆。实验结果表明,以 m/s速度缓慢移动的滑坡,在 h内连续观测,自然电位如有100 mV的变化,则在约3 h后将发生15 m×30 m×5 m的土块崩塌。所以,用测自然电位值变化对崩塌性滑坡的短期预测是可能的。
对地下水状态监测
地下水对滑坡稳定性影响很大,甚至影响滑坡作用的全过程。地下水的每次流动,都改变着滑坡的水文地质条件,地下水的深度位置决定滑坡规模,并且反映静水压力。地球物理工作者面临的问题就是确定地下水的深度及其变化。
中国地质大学(武汉)利用地面核磁共振方法,对我国三峡坝区滑坡进行监测。利用核磁共振感应系统,在一年四季的不同季节,含丰水期和枯水期,特别是降雨量最大季节,增加观测次数。应用相同测量装置、选用相同的技术参数,在同一工区的同一测点上重复观测,获得了不同季节之间潜水面乃至地下各个含水层的深度变化信息。
在含水和不含水岩石中纵波传播速度取决于岩石成分、密度、孔隙率和层理深度。地震勘探系统应用相同技术、装置,沿一个和一些地形标定的剖面上重复测量,特别重要的是应当捕捉最干旱和降雨量最大季节之间潜水面的变化信息。把各个时期获得的水文测量图进行对比,以评价地下水动力学特征,这些特征与滑坡发育有密切的关系。
温度测量是自然电场的补充方法
地下水的渗透特征在电阻率法的曲线上和自然电位图上均有反映。温度测量是自然电场的补充方法,它反映地下水运动和滑坡体的水饱和系数。一般情况下,在滑坡体上方呈现明显的自然电位负异常,且电位等值线拉长方向即为滑坡走向。电位最小梯度方向与地下水流方向一致。滑体上呈现负异常与其中水的渗透作用有关,是这些水沿滑坡壁的裂隙渗透的结果,使自然电位测量结果与测温资料一致。盛夏季节测温,上部土壤层升温(地下水很深时),以较高温度值(29~31℃)圈定了滑坡体的边界。在滑坡以外地区,温度明显降低(23~25℃)。
当地下水埋深很大、流速又小,工作区游散电流明显时,自然电场法观测效果不佳。测温法也受到限制。
滑坡上钻井资料是获取真速度和潜水流渗透速度的定量数据的来源。这些数据与地震、地面核磁共振方法资料配合,可以确定滑坡土体中的渗透系数。
声辐射技术、微动观测用于监测滑坡的发展过程
滑坡在孕育和发展过程中,往往会导致岩体位移、应力集中而引发岩体产生微破裂,从而导致声辐射。除了常规的监测技术(如钻孔倾斜仪、地面倾斜仪、裂缝计等)外,声辐射技术、微动观测也能用于监测滑坡的发展过程。
A.声辐射技术是在被监测的地质体中(或钻孔内)埋设检波器,检测声辐射信号,记录声辐射脉冲的强度和频度。声波脉冲的强度和能量能够比较准确地反映岩石破裂的过程,以此来预测滑坡。有许多国家利用这一方法有效地监测滑坡的发展过程并做出成功的预测。捷克在一露天采矿场用钻孔声辐射结果划分出了稳定性不同的四个岩体,确定了岩体的扰动情况及天然应力分布的变化。这些结果得到钻孔倾斜仪测量结果的印证。智利也根据声辐射测量成功地预测了滑坡。
B.微动观测。日本中部被第三纪沉积物覆盖的许多地区滑坡频繁发生,已采用了各种方法来查明滑坡产生的机制。其中方法之一是微动观测法,该方法通过微动观测,求出质点运动的频谱及轨迹,以此确定地下地质结构的颤振特性和变化过程,从而预测滑坡的移动。在日本长野以西约20 km的奈良尾和阿吉美木两个滑坡区进行了微动观测。在奈良尾地区由轨迹确定的地面颤振的方向性可用来识别主要和次级的滑动,而在阿吉美木地区则划分了稳定带和非稳定带。据认为,微振特性与应力分布状况有关,这或许是用该方法预测滑坡的基础。
用充电法和基准点法直接观测滑坡物质的移动方向和速度
直接观测滑坡物质的移动方向和速度可以评价斜坡的稳定性和监测滑坡的发展。
众所周知,传统的充电法可以用于对滑坡稳定性进行监测,通常把几个金属球放在滑坡体内的钻孔中的不同深度处,观测钻孔上方充电法电位异常极大值及其位置变化,推断滑坡物质的移动方向和速度。
此外,可采用基准点法,即系统地监测人工和天然基准点上物探异常的变化规律。例如,采用人工磁性基准点,即把永久磁铁放在滑坡体内的钻孔中,它所引起的磁异常最大值应超过测量精度的5~10倍,钻孔的排列线应垂直滑坡方向,井口的平面位置与高程同滑坡体外基岩上的固定大地测量基准点联测。磁铁在地面投影位置的测量精度为~ m,对磁铁位置进行重复测量,周期长短要考虑使移动的距离为测量位置精度的2~3倍。把不同时期所测的磁场图加以对照,就可以确定滑坡移动的方向和距离,进一步可求出移动的速度。
利用天然基准点,也可以进行上述工作。所谓天然基准点是利用滑坡体内长期存在的天然不均匀体,其物性与围岩有明显差别,并存在视电阻率和自然电位局部异常(岩相的变化、水分的增多等)以及局部磁异常(如磁性滚石、粘土透镜体)的点位。
引入地球物理综合指标(多参数综合研究)对滑坡发育阶段进行定量评价
由于滑坡作用是一复杂的地质过程,又由于地球物理方法求解反问题的多解性,所以,要利用多参数进行综合研究,研究各参数的统计规律,提高定量预测的准确性。
为了对滑坡发育阶段进行定量评价,АбдулаевШХ引入浸湿度(α)、破碎程度(r)和压缩程度(K)的地球物理综合指标,这些指标的计算公式是
环境地球物理学概论
式中:P是引用的参数,P为初始电阻率ρ0与某一时刻电阻率ρt的比值;H为基岩顶板埋深;τ是一定的供电极距范围内的视各向异性系数;n为极距数;v0为地震波传播的初速度;vt是在某一时刻测定的速度。利用上述公式计算了这些量纲为1的对比性指标。
在有条件的情况下,滑体可以划分为上、中、下三个部分。上部包括沉陷区和脱离区,中部包括中心地段,下部包括滑面出露区。对其中每一部分都取平均值进行计算,计算结果均高于工程地球物理指标。
野外进行斜坡浸水试验和上述参数计算结果可得出结论:在未变形斜坡人工浸湿的初期,斜坡湿度变大,用P<圈定浸湿范围大于变形区面积。然后,根据剪切模量的低值和一般的变形以及高的电各向异性系数进一步划分变形区范围。在滑坡体浸湿1/6~1/5时,在岩体中开始观测到垂向形变。滑动带(面)在8~10 m深处生成,而参数P和τ的明显变化也可以显示上述变化。当浸湿范围开始超过滑坡面积的1/5时,垂向形变转为水平位移,在这种情况下,岩石形变范围已大于浸湿岩石范围。
上述参数的统计计算,有助于研究滑坡作用的形成过程,以便预报和监测滑坡。