热能与动力工程专业毕业论文(锅炉专业 锅炉的计算机控制 锅炉微机控制,是近年来开发的一项新技术,它是微型计算机软、硬件、自动控制、锅炉节 能等几项技术紧密结合的产物,我国现有中、小型锅炉 30 多万台,每年耗煤量占我国原煤 产量的 1/3,大多数锅炉仍处于能耗高、浪费大、环境污染等严重的生产状态。提高热效率, 降低耗煤量,用微机进行控制是一件具有深远意义的工作。 作为锅炉控制装置,其主要任务是保证锅炉的安全、稳定、运行,减轻操作人员的劳动 强度。采用微计算机控制,能对锅炉进行过程的自动检测、自动控制等多项功能。 锅炉微机控制系统,一般由以下几部分组成,即由锅炉本体、一次仪表、微机、手自动 切换操作、执行机构及阀、滑差电机等部分组成,一次仪表将锅炉的温度、压力、流量、氧 量、转速等量转换成电压、电流等送入微机,手自动切换操作部分,手动时由操作人员手动 控制, 用操作器控制滑差电机及阀等, 自动时对微机发出控制信号经执行部分进行自动操作。 微机对整个锅炉的运行进行监测、报警、控制以保证锅炉正常、可靠地运行,除此以外为保 证锅炉运行的安全,在进行微机系统设计时,对锅炉水位、锅炉汽包压力等重要参数应设置 常规仪表及报警装置,以保证水位和汽包压力有双重甚至三重报警装置,这是必不可少的, 以免锅炉发生重大事故。 控制系统: 锅炉是一个较为复杂的调节对象,它不仅调节量多,而且各种量之间相互联系,相互, 相互制约, 锅炉内部的能量转换机理比较复杂, 所以要对锅炉建立一个较为理想的数学模型 比较困难。为此,把锅炉系统作了简化处理,化分为三个相对独立的调节系统。 当然在某 些系统中还可以细分出其它系统如一次风量控制回路,但是其主要是以下三个部分: 炉膛负压为主调量的特殊燃烧自动调节系统 锅炉燃烧过程有三个任务:给煤控制,给风控制,炉膛负压控制。保持煤气与空气比例 使空气过剩系数在 左右、燃烧过程的经济性、维持炉膛负压,所以锅炉燃烧过程的自 动调节是一个复杂的。对于 3× 锅炉来说燃烧放散高炉煤气,要求是最大限度地利用放 散的高炉煤气,故可按锅炉的最大出力运行,对蒸汽压力不做严格要求;燃烧的经济性也不 做较高的要求。这样锅炉燃烧过程的自动调节简化为炉膛负压为主参数的定煤气流量调节。 炉膛负压 Pf 的大小受引风量、鼓风量与煤气量(压力)三者的影响。炉膛负压太小, 炉膛向外喷火和外泄漏高炉煤气, 危及设备与运行人员的安全。 负压太大, 炉膛漏风量增加, 排烟损失增加,引风机电耗增加。根据多年的人工手动调节摸索, 锅炉的 Pf=100Pa 来进行设计。调节是初始状态先由人工调节空气与煤气比例,达到理想的燃烧状态,在引风 机全开时达到炉膛负压 100Pa,投入自动后,只调节煤气蝶阀,使压力波动下的高炉煤气流 量趋于初始状态的煤气流量,来保持燃烧中高炉煤气与空气比例达到最佳状态。 锅炉水位调节单元 汽包水位是锅炉安全运行的重要参数,水位过高,会破坏汽水分离装置的正常工作,严 重时会导致蒸汽带水增多,增加在管壁上的结垢和影响蒸汽质量。水位过低,则会破坏水循 环,引起水冷壁管的破裂,严重时会造成干锅,损坏汽包。所以其值过高过低都可能造成重 大事故。它的被调量是汽包水位,而调节量则是给水流量,通过对给水流量的调节, 使汽包 内部的物料达到动态平衡, 变化在允许范围之内, 由于锅炉汽包水位对蒸气流量和给水流量 变化的响应呈积极特性。但是在负荷(蒸气流量)急剧增加时,表现却为"逆响应特性",即所 谓的"虚假水位",造成这一原因是由于负荷增加时,导致汽包压力下降,使汽包内水的沸点 温度下降,水的沸腾突然加剧,形成大量汽泡,而使水位抬高。 汽包水位控制系统,实质 上是维持锅炉进出水量平衡的系统。 它是以水位作为水量平衡与否的控制指标, 通过调整进 水量的多少来达到进出平衡, 将汽包水位维持在汽水分离界面最大的汽包中位线附近, 以提 高锅炉的蒸发效率,保证生产安全。由于锅炉水位系统是一个设有自平衡能力的被控对象, 运行中存在虚假水位现象,实际中可根据情况采用水位单冲量、水位蒸汽量双重量和水位、 蒸汽量、给水量三冲量的控制系统。 除氧器压力和水位调节:除氧器部分均采用单冲量控制方案,单回路的 PID 调节。 监控管理系统: 以上控制系统一般由 PLC 或其它硬件系统完成控制,而在上位机中要完成以下功能: 实时准确检测锅炉的运行参数:为全面 掌握整个系统的运行工况,监控系统将实时监 测并采集锅炉有关的工艺参数、 电气参数、 以及设备的运行状态等。 系统具有丰富的图形库, 通过组态可将锅炉的设备图形连同相关的运行参数显示在画面上; 除此之外, 还能将参数以 列表或分组等形式显示出来。 综合及时发出控制指令: 监控系统根据监测到的锅炉运行数据, 按照设定好的控制策略, 发出控制指令,调节锅炉系统设备的运行,从而保证锅炉高效、可靠运行。 诊断故障与报警管理:主控中 心可以显示、管理、传送锅炉运行的各种报警信号,从 而使锅炉的安全防爆、安全运行等级大大的提高。同时,对报警的档案管理可使业主对于锅 炉运行的各种、弱点等了如指掌。为保证 锅炉系统安全、可靠地运行,监控系统将根据所 监测的参数进行故障诊断,一旦发生故障,监控系统将及时在操作员屏幕上显示报警点。报 警相关的显示功能使用户定义的显示画面与每个点联系起来,这样,当报警发生时,操作员 可立即访问该报警点的详细信息和按照所推荐采取的应急措施进行处理。 记录运行参数: 监控系统的实时数据库将维护锅炉运行参数的历史记录, 另外监控系统 还。设有专门的报警事件日志,用以记录报警/事件信息和操作员的变化等。历史记录的数 据根据操作人员的要求,系统可以显示为瞬时值,也可以为某一段时间内的平均值。历史记 录的数据可有多种显示方式,例如曲线、特定图形、报表等显示方式;此外历史记录的数据 还可以由以为基础的多种应用软件所应用。 计算运行参数: 锅炉运行的某些运行参数不能够直接测量, 如年运行负荷量、 蒸汽耗量、 补水量、冷凝水返回量、设备的累积运行时间等。监控系统提供了丰富的标准处理算法,根 据所测得的运行参数,将这些导出量计算出来。
浅谈小型热水锅炉及其配套工艺应用分析论文关键词:小型热水锅炉二合一采暖炉分析 论文摘要:目前供热方式多种多样,主要供热设备分为“二合一”采暖炉、相变真空采暖炉、小型热水锅炉三种。其中,小型热水锅炉属于应用较新的一种供热设备,本文就其工作原理、工艺流程、与其他供热设备生产运行优缺点对比,以及运行过程中的经济能耗等问题进行分析。 1 小型热水锅炉及配套工艺技术简介 结构: 小型热水锅炉主要采用撬装模块式设计,内部主要由燃烧室、热交换器、自动燃烧器、自动控制装置及配套设施构成。 工作原理: 燃烧器将天然气充分燃烧,产生的热量被受热面吸收传给中间介质水,完成加热的水通过循环水泵打出,送至各采暖用户,出户后的冷凝水返回后再次被加热,如此循环往复。 主要工艺流程: 清水通过全自动软化水供水机组处理后打入加热炉,天然气通过全自动点火装置将锅炉点燃,将炉内清水加热至85℃左右,然后循环水泵将热水打出送至各用户。 工艺技术:该种锅炉具备完善的自动控制系统,采用全自动燃烧器可以实现自动燃烧功能,并通过控制柜实现各项参数的精确输出或发出故障信号,另外小型热水锅炉可以根据水温的变化进行自动调节,当水温升高时,锅炉自动停止燃烧;待水温降低后再自动启炉,有效的节约了锅炉的的耗气量。 热水锅炉水质硬度指标一般在,通过全自动软化水供水机组处理后,水质硬度指标一般小于,远远低于热水锅炉水质要求,降低了锅炉的腐蚀结垢情况及维修量。 2 与其它供热设备技术对比分析 运行能耗: “二合一”采暖炉炉膛温度受热不均、火焰偏烧,易造成局部过热影响炉效,炉效平均值仅在%左右,低于采暖系统炉效不小于80%的节能要求,增大了耗气量和生产运行费用。 小型热水锅炉炉效可达88%左右,节能烟箱的设计,通过在烟箱内壁加涂特殊的辐射材料,降低热损失;并在烟管内加装高效传热扰流构件,进一步强化传热等措施确保了锅炉更高的燃烧及传热效率。 而且它具备自动启炉和停炉的功能,当炉内水温达到85℃左右时,小型热水锅炉可自行停止加热,当回水温度降至55℃左右时,设备自动启炉,开始加热,大大降低了耗气量。 相变真空炉则采用两回程燃烧室和优化的换热面设计,确保了最佳的热传递,使加热炉效率高达87%-91%。 安全性: “二合一”采暖炉燃烧器没有配置全自动点火和熄火保护装置,而且加热炉监测力度及精细控制不够,管理人员多靠观察火焰及经验控制燃烧,炉膛内易熄火,存在严重安全隐患问题。 小型热水锅炉采用全自动燃烧器和自动监控系统,可实现输出参数的精确控制,确保锅炉安全运行的同时,大大减少了锅炉由于操作人员经验不足及人为因素造成的低效高耗使用情况。 相变真空炉运行时,锅壳内部压力始终低于外界大气压,绝无承压爆炸的危险,运行安全可靠。 使用寿命: “二合一”采暖炉腐蚀结垢问题严重,降低了锅炉的使用寿命;同时,“二合一”采暖炉火管和烟管结垢快,造成受热不均,靠近燃烧器2-3m处火管过热,易发生变形损坏。 小型热水锅炉炉膛内采用防腐衬膜技术,大幅度降低钢材腐蚀速率,使本体维修率降低,使用寿命延长。 相变真空炉炉体内部在真空无氧、无垢的环境下运行,大大延长锅炉使用寿命。湿背式回燃式结构,有效保证了燃烧系统的运行寿命。 管理维护及供热负荷: “二合一”采暖炉属于压力容器管理范围,因此每年需要开机检修,更换附件(更换火嘴、燃烧器、耐火砖;维修烟囱等),而小型热水锅炉和相变真空炉的损坏现象很少,维修工作量相对较小。 “二合一”采暖炉和相变真空炉供热负荷范围比较大,而小型热水锅炉的最高供热负荷为,适用于小型场所。。 3 经济效益分析 初投资对比分析 若以一台额定热功率为的炉子为例,小型热水锅炉、“二合一”采暖炉、相变真空炉主要设备工程投资比较具体情况见下列各表。 通过以上价格比较可以看出,小型热水锅炉投资费用最低,比相变真空炉投资费用节省万元,比“二合一”采暖炉投资节省万元。 运行费用对比分析 就小型热水锅炉、相变真空炉及“二合一”采暖炉进行效益分析,以采暖炉为例: ①耗气量(天然气价格为元/立方米估算、湿气价格为元/立方米估算) 小型热水锅炉耗气量为33Nm3/h,年耗气量为,一年费用为万元 相变真空炉耗气量为,年耗气量为14x104Nm3,一年费用为万元 “二合一”采暖炉耗气量为40Nm3/h,年耗气量为,一年费用为万元 ②年维护费用 小型热水锅炉及相变真空炉均属于自控程度较高的供热设备,维修管理工作量很小,相对“二合一”采暖炉而言,每年可节省维修费用万元。 因此,应用小型热水锅炉或相变真空炉可以比二合一采暖炉节省年运行费用万元。 4认识与总结 1.小型热水锅炉较其他供热设备而言,一次性投入较低,可节约投资成本。 2.小型热水锅炉供热效果良好,冬季室内温度均达到20℃~25℃,充分满足小队点供热需求。 3.小型热水锅炉自动化程度较高,可以实现无人值守,管理方便。 4.小型热水锅炉运行效果平稳,维护工作量小,适合在具备气源、距离较远的独立小队点推广应用。 参考文献: [1]王鹏. 《小型热水锅炉水动力特性研究》. [D];东北电力大学2007,4,26-27 [2]解鲁生. 《热水锅炉及供热系统探讨研究》. 全国供热行业热源技术研讨会,2004转
本设计的温度测量及加热控制系统以 AT89S52 单片机为核心部件,外加温度采集电路、键盘及显示电路、加热控制电路和越限报警等电路。采用单总线型数字式的温度传感器 DS18B20,及行列式键盘和动态显示的方式,以容易控制的固态继电器作加热控制的开关器件。本作品既可以对当前温度进行实时显示又可以对温度进行控制,以使达到用户需要的温度,并使其恒定在这一温度。人性化的行列式键盘设计使设置温度简单快速,两位整数一位小数的显示方式具有更高的显示精度。建立在模糊控制理论上的控制算法,使控制精度完全能满足一般社会生产的要求。通过对系统软件和硬件设计的合理规划,发挥单片机自身集成众多系统级功能单元的优势,在不减少功能的前提下有效降低了硬件成本,系统操控简便。 实验证明该温控系统能达到 ℃的静态误差,℃的控制精度,以及只有 的超调量,因而本设计具有很高的可靠性和稳定性。 关键 词: 单片机 恒温控制 模糊控制 1引 言 温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。 硬件 系统的设计 1、电路总体原理框图 温度测量及加热系统控制的总体结构如图 1 所示。系统主要包括现场温度采集、实时温度显示、加热控制参数设置、加热电路控制输出、与报警装置和系统核心 AT89S52单片机作为微处理器。 图 1:系统总体原理框图 温度采集电路以数字量形式将现场温度传至单片机。单片机结合现场温度与用户设定的目标温度,按照已经编程固化的模糊控制算法计算出实时控制量。以此控制量控制固态继电器开通和关断,决定加热电路的工作状态,使水温逐步稳定于用户设定的目标值。在水温到达设定的目标温度后,由于自然冷却而使其温度下降时,单片机通过采样回的温度与设置的目标温度比较,作出相应的控制,开启加热器。当用户需要比实时温度低的温度时,此电路可以利用风扇降温。系统运行过程中的各种状态参量均可由数码管实时显示。 2、温度采集电路的设计 温度采集电路模块如图 2 示。DS18B20 内部结构主要由四部分组成:64 位光刻 ROM、 温度传感器、非挥发的温度报警触发器 TH 和 TL、配置寄存器。其中 DQ 为数字信号输 入/输出端;GND 为电源地;VDD 为外接供电电源输入端。 2图 2:温度采集电路 DS18B20 中的温度传感器可完成对温度的测量,以 12 位转化为例:用 16 位符号扩展的二进制补码读数形式提供,以 ℃/LSB 形式表达,其中 S 为符号位。 这是 12 位转化后得到的 12 位数据,存储在 18B20 的两个 8 比特的 RAM 中,二进制中的前面 5 位是符号位,如果测得的温度大于 0,这 5 位为 0,只要将测到的数值乘于 即可得到实际温度;如果温度小于 0,这 5 位为 1,测到的数值需要取反加 1再乘于 即可得到实际温度。 3、键盘和显示的设计 键盘采用行列式和外部中断相结合的方法,图 3 中各按键的功能定义如下表 1。其中设置键与单片机的 INT 0 脚相连,S 0 −−S 9 、YES、NO 用四行三列接单片机 P0 口,REST键为硬件复位键,与 R、C 构成复位电路。模块电路如下图 3: 表 1:按键功能 按键 键名 功能REST 复位键 使系统复位RET 设置键 使系统产生中断,进入设置状态S 0 −−S 9 数字键 设置用户需要的温度YES 确认键 用户设定目标温度后进行确认NO 清除键 用户设定温度错误或误按了 YES 键后使用3图 3 键盘接口电路 显示采用 3 位共阳 LED 动态显示方式,显示内容有温度值的十位、个位及小数点后一位。用 P2 口作为段控码输出,并用 74HC244 作驱动。— 作为位控码输出,用 PNP 型三极管做驱动。模块电路如下图 4: 4、加热控制电路的设计 图 4 显示接口电路 用于在闭环控制系统中对被控对象实施控制,被控对象为电热杯,采用对加在电热杯两端的电压进行通断的方法进行控制,以实现对水加热功率的调整,从而达到对水温控制的目的。对电炉丝通断的控制采用 SSR-40DA 固态继电器。它的使用非常简单,只要在控制端 TTL 电平,即可实现对继电器的开关,使用时完全可以用 NPN 型三极管接成电压跟随器的形式驱动。当单片机的 为高点平时,三极管驱动固态继电器工作接通加热器工作,当单片机的 为低电平时固态继电器关断,加热器不工作。控制电路图如下图 5: 4图 5 加热控制电路 5、报警及指示灯电路的设计 当用户设定的目标温度达到时需用声音的形式提醒用户,此时蜂鸣器为三声断续的滴答滴答的叫声。在本系统中我们为用户设计了越限报警,当温度低于用户设置的目标温度 10 度或高于 10 度时蜂鸣器为连续不断的滴答滴答叫声。当单片机 输出高电平时,三极管导通,蜂鸣器工作发出报警声。 为低电平时三极管关断,蜂鸣器不工作。 D1 为电热杯加热指示灯, 低电平有效;D0 为检测到 DS18B20 的指示,高电平有效;D10 为降温指示灯,低电平有效。报警及指示灯电路如下图 6 示: 图 6 报警及指示灯电路 5软 件系统的设计 系统的软件由三大模块组成:主程序模块、功能实现模块和运算控制模块。 1、主程序模块 主程序主要完成加热控制系统各部件的初始化和实现各功能子程序的调用,以及实 际测量中各个功能模块的协调在无外部中断申请时,单片机通过循环对外部温度进行实时显示。把设置键作为外部中断 0,以便能对数字按键进行相应处理。主程序流程图如下图 7: 6图 7 主程序流程图 72、功能实现模块 以用来执行对固态继电器及电热杯的控制。功能实现模块主要由中断处理子程序、温度比较处理子程序、键盘处理子程序、显示子程序、报警子程序等部分组成。键盘显示及中断程序流程图如下图 8: 3、运算控制模块 图 8 键盘、显示、中断 子程序流程图 该模块由标度转换、模糊控制算法,及其中用到的乘法子程序。 标度转换 16式中 A 为二进制的温度值, A0 为 DS18B20 的数字信号线送回来的温度数据。 8单片机在处理标度转换时是通过把 DS18B20 的信号线送回的 16 位数据右移 4 位得到二进制的温度值。其小数部分通过查小数表的形式获取。程序流程图如下图 9: 开始将28H低4位与29H高4位组合成一个字节将合成的字节(整数部分)送29H单元将29H单元低4位送A给DPTR赋常数表格2首地址将查到的数值(即小数部分)送30H单元结束 模糊控制算法子程序 图 9 标度转换子程序流程图 该系统为一温度控制系统,由于无法确切确定电炉的物理模型,因而无法建立其数学模型和传递函数。加热器为一惯性系统,我们采用模糊控制的方法,通过多次温度测量模糊计算当用户设定目标温度时需提前关断加热器的温度,利用加热器自身的热惯性使温度上升到其设定温度。每隔 5 摄氏度我们进行一次温度测量,并当达到其温度时关断加热器记录下因加热器的热惯性而上升的温度值。从而可以建立热惯性的温度差值表,在程序中利用查表法,查出相应设定温度对应的关断温度。通过实验数据我们可以看出,当水温从 0℃加热到 50℃这段温度区域,其温度惯性曲线可近似成线性的直线,水温从 50℃加热到 100℃这段温度惯性曲线可近似成另一条线性的直线段。通过对设置的目标温度与温控系统监测温度进行差值处理就可近似的求出单片机的提前关断温度。程序流程图如图 10: 94.源程序见附录[2] 图 10 模糊控制算法子程序流程图 设计 总结 我们的温度控制系统是基于 AT89S52 单片机的设计方案,她能实时显示当前温度,并能根据用户的要求作出相应的控制。此系统为闭环系统,工作稳定稳定性高,控制精度高,利用模糊控制算法使超调量大大降低。软件采用模块化结构,提高了通用性。本设计的目的不仅仅是温度控制本身,主要提供了单片机外围电路及软件包括控制算法设计的思想,应该说,这种思想比控制系统本身更为重要。 1、设计所达到的性能指标 温控系统的标度误差我们将标准温度计和温控系统探头放人同一容器中,选定若干不同的温度点,记 录下标准温度计显示的温度和温控系统显示的温度进行比较。测量数据如下表 2 所示: 表 2 标准温度计测量的温度和温控系统显示的温度 标准温度计和温控系统显示的温度(℃)标准温度计 温控系统 差值比较 标度误差 温控系统的静态误差 通过测量在不同的温度点同标准温度的温度差来确定温控系统的静态误差。其测量 数据如下表 3: 表 3 标准温度和温控系统显示的温度 标准温度和温控系统显示的温度(℃)标准温度 系统显示值 差值 0 静态误差 ℃ 温控系统的控制精度 通过设定不同的温度值,使加热器加热,待温度稳定时记录各温度点的温度计数据 和温控系统的显示值。其记录数据如下表 4: 温度计读数和温控系统显示的温度(℃)设定温度值 系统显示值 差值 控制精度 ℃超调量 、结果分析论述 我们的系统完全满足设计要求,静态误差方面可以达到 ℃的误差,在读数正确 方面与标准温度计的读数误差为 %,对一般的工业生产完全可以采用我们的设计。 该系统具有较小的超调值,超调值大约为 左右。虽然超调为不利结果,但另一方面却减小了系统的调节时间。从其数据表可以看出该系统为稳定系统。 3、设计方案评价 优点 在硬件方面:本设计方案采用了单总线型数字式的温度传感器,提高了温度的采集 精度,节约了单片机的口线资源。方案还使用仅一跟口线就可控制的美国生产的固态继电器 SSR—40DA 作加热控制器件,使设计简单化,且可靠性强。在控制精度方面,本设计在不能确定执行机构的数学模型的情况下,大胆的假设小心的求证,利用模糊控制的算法来提高控制精度。在软件方面:我们采用模块化编程,思路清晰,使程序简洁、可移植性强。 缺点 本设计方案虽然采用了当前市场最先进的电子器件,使电路设计简单,但设计方案造价高。本系统虽然具有较小的超调量,但加大了调节时间。如果需要更高的控制精度,则我们的模糊控制将不适应,需修改程序。 11 方案的改进 在不改变加热器容量的情况下,为减小调节时间,可以实行在加热快达到设定温度时开启风扇来减小热惯性对温度的影响的措施。在控制精度上可采用先进的数字 PID控制算法,对加热时间进行控制,提高控制精度。 可以改进控制系统使能同 PC 联机通信,以利用 PC 的图形处理功能打印显示温度曲线。AT89S52 串行口为 TTL 电平,PC 串行口为 RS232 电平,使用一片 MAX232 作为电平转换驱动。 参考 文献 [1] 李广弟 单片机基础 北京:北京航空航天大学出版社,2001 [2] 王福瑞 单片微机测控系统设计大全 北京:北京航空航天大学出版社,1997 [3] 赵茂泰 智能仪器原理及应用(第 2 版) 北京:电子工业出版社,2004 [4] 赖寿涛 微型计算机控制技术 北京:机械工业出版社,2000[5] 沙占友 模拟与数字万用表检测及应用技术 北京:电子工业出版社 1999 12附 录 附录[1]使用说明书 按 键功能说明 数字键:按 SET 键后,按相应的数字键(0~9)可对温度进行设置,所设置的温 度将实时显示在 LED 显示器上; SET 键:按 SET 键可对温度的十位、个位以及小数部分进行设置; YES 键:设置好温度后按 YES 键,系统将据你所设置的温度(须大于当前实际 温度)对水进行加热; NO 键:若误按了 SET 键,或对输入有误,可按 NO 键进行取消; RST 键:对系统进行复位。 指示 灯及报警器说明 红 灯:加热状态标志; 绿 灯:温度传感器正常工作标志; 蓝 灯:保温状态标志; 报警器:功能①当水温达到预设值时报警提醒; 功能②当水温达到或超越上、下限时报警提示。 13附录[2]设计总电路 14附录[3]程序清单 TEMPER_L EQU 29H ;用于 保存读出温度的低 8 位 TEMPER_H EQU 28H ;用于 保存读出温度的高 8 位 FLAG EQU 38H ;是否 检测到 DS 18B20 标志位 DAYU EQU 44H ;设温 >实温 XIYU EQU 45H ;设温 <实温 DEYU EQU 46H ;设温 =实温 GAOLE EQU 47H ;水温 高于最高温度 DILE EQU 48H ;水温 低于最低温度 A_bit EQU 79h ;数码 管个位数存放内存位置 B_bit EQU 7Ah ;数码 管十位数存放内存位置 C_BIT EQU 78H ;数码 管小数存放内存位置 ORG 0000H AJMP START ORG 0003H AJMP PITO ORG 0030H START: CLR CLR CLR SETB MOV R4, #00H MOV SP, #60H ;确立堆栈区 MOV PSW, #00H ; MOV R0, #20H ;RAM 区首地址 MOV R7, #60H ;RAM 区单元个数 ML: MOV @R0, #00H INC R0 DJNZ R7, ML CLR IT0 MAIN:LCALL GET_TEMPER ;调用读温度子程序 进行温度显示,这里我们考 ;虑用网站提供的两位数码管来显示温度 ;显示范围 00 到 99 度,显示精度为 1 度 ;因为 12 位转化时每一位的精度为 度,;我们不要求显示小数所以可以抛弃 29H 的低 4 ;位将 28H 中的低 4 位移入 29H 中的高 4 位,这 ;样获得一个新字节,这个字节就是实际测量获 ;得的温度 LCALL DISPLAY ;调用数码管显示 子程序 JNB 00H, MAIN CLR 00H 15MOV A, 38H CJNE A, #00H, SS AJMP MAIN SS: LCALL GET_TEMPER LCALL DISPLAY;调用 数码管显示子程序 LCALL BIJIAO LCALL XIAOYU LCALL JIXIAN JNB DEYU ,LOOP CLR ;关加热器 SETB ;关 蓝灯 SETB ;关风扇 CLR DEYU LCALL GET_TEMPER LCALL DISPLAY AJMP TT2 LOOP:JNB DAYU ,TT CLR DAYU SETB SETB SETB CLR LCALL GET_TEMPER LCALL DISPLAY AJMP TT2 TT:JNB XIYU, TT2 CLR XIYU CLR CLR CLR CLR LCALL GET_TEMPER LCALL DISPLAY TT2:MOV A, 29H CLR C CJNE A, 50H, JX MOV A , 30H CLR C CJNE A, 51H, JIA1 AJMP YS2 JIA1:JC JX MOV A, 51H MOV 52H, A ADD A, #2 16MOV 52H, A CLR C MOV A, 30H CJNE A, 52H, JIA2 JIA2:JNC JXYS2:SETB CLR MOV R5, #20H YS:LCALL GET_TEMPER LCALL DISPLAY DJNZ R5, YS CLR SETB MOV R5, #20H YS1:LCALL GET_TEMPER LCALL DISPLAY DJNZ R5, YS1 YS3:SETB CLR MOV R5, #20H YS0:LCALL GET_TEMPER LCALL DISPLAY DJNZ R5, YS0 CLR SETB MOV R5, #20H YS01:LCALL GET_TEMPER LCALL DISPLAY DJNZ R5, YS01 YS4:SETB CLR MOV R5, #20H YS02:LCALL GET_TEMPER LCALL DISPLAY DJNZ R5, YS02 CLR SETB MOV R5, #20H YS03:LCALL GET_TEMPER LCALL DISPLAY DJNZ R5, YS03 JX: MOV A, 29H CJNE A, 31H, JX00 JX01:SETB 17CLR C AJMP LAST JX00:JC JX01 CLR CJNE A, JX02:SETB CLR C AJMP LAST JX03:JNC JX02 32H, JX03 CLR GET_TEMPER LCALL DISPLAY AJMP SS ;***************************常数表格区**** ****************************************** TAB:DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8 H,80H ;0-8 DB 90H,88H,83H,0C6H,0A1H,86H,8EH,0FFH ,0CH ;9,A,B,C,D,E,F,灭,p. TAB1:DB40H,79H,24H,30H,19H,12H,02H,78H,00H ,10H, ;. TAB2:DB 0, 0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 9, ;小数点 ;*************************1ms 延时程序*************** ********************* ;************************* ****中断服务程序* ********************************* ; 完成按键识别,键值求取,按键实时显示 等功能; ;************************* **************** ********************************** PITO: PUSH ACC PUSH PSW SETB RS0 CLR RS1 SET B 00H MAIN1: MOV R7 , #03H ;显示位数为 2 位 MOV R0, #7AH MOV 78H, #00H MOV 79H, #00H MOV 7AH, #00H KK: LCALL DIR LCALL KEY1 LOOP1:CJNE A, #11, LOOP2 AJMP LAST0 LOOP2:CJNE A, #12, LOOP3 LJMP LAST3 LOOP3: CJNE A, #10, L4 MOV A, #00H L4: MOV @R0, A LCALL DIR DEC R0 DJNZ R7, KK 18SETB 01H LAST0:JNB 01H, KK LOOP4:LCALL KEY1 CJNE A, #12, LOOP5 AJMP LAST3 LOOP5:CJNE A, #11, LOOP4 LAST1:LCALL DIR LCALL MUN LCALL JD LCALL BIJIAO LAST3:POP PSW POP ACC RETI ;******************精度控制 子程序********** ****** JD: PUSH ACC PUSH PSW CLR C MOV A, 38H MOV 50H, A MOV A, 39H MOV 51H, A CJNE A, 29H, L001 L001:JC LAST02 ;设温<实温,则跳出 MOV A, 29H MOV 41H, A MOV A, 38H CJNE A, #25, L002 L003:CLR C ;0
253 浏览 3 回答
205 浏览 5 回答
335 浏览 3 回答
262 浏览 4 回答
326 浏览 3 回答
325 浏览 3 回答
318 浏览 4 回答
177 浏览 3 回答
148 浏览 2 回答
251 浏览 3 回答
120 浏览 2 回答
223 浏览 3 回答
145 浏览 3 回答
134 浏览 3 回答
282 浏览 3 回答