数学拥有非凡的美,而数学之美不像自然生长的鲜花那么显而易见,在数学课堂教学中,需要老师的耐心引导,学生才能够发现。下面我给你分享数学课堂之美论文,欢迎阅读。
长期以来,人们在数学教学中只致力于基础知识、基本技能与逻辑思维的教学与研究,而不善于发掘数学本身所特有的美,不注意用数学美来感染诱发学生的求知欲望,激发他们的学习兴趣,不重视引导学生发现数学美,鉴赏数学美,更谈不上引导学生创造数学美,以致使一些学生感到数学抽象枯燥,失去学好的信心。那么什么是数学美?在小学数学教育中如何发挥数学的美育功能呢?这是一个值得我们每一位小学教师思考的问题,我从以下几个方面进行了小学数学教学中美育渗透途径的研究。
一、在教材中感悟美
人们常说数学是万花筒,是一个五彩缤纷的世界。在数学教材中,蕴藏着丰富的美育因素,现行的数学教材正确处理了数学学科特点与儿童认知规律、德育与智育、教与学、减轻负担与提高素质等方面关系,把数学的抽象美、符号美、数的神奇美、数的和谐美和概括美、猜想美、浓浓的时代生活气息美、开放灵活美等融入在里面。我认为,挖掘和提炼教材中的美育因素,让学生感知数学美的存在,是激发学生情感,陶冶学生心灵的有效途径。
如在许多几何图形中就充满着无穷无尽的美,闪烁着美的风采。在教学《长方形、正方形、圆》时,我一走进教室,教室里所有学生的目光都聚集于我的胸前。“哇”有的学生忘乎所以地叫了来:“王老师,你今天真漂亮!”我就问:“为什么,今天老师看起来这么漂亮呢?”学生马上叫起来:“老师的衣服上贴了各种各样的粘纸,有长方形、正方形和圆形的。”学生被我这一举动一下子吸引住了,所以在接下去的学习中他们学得特别带劲。离下课还有近五分钟时,我布置了一个节目:“请小朋友们把发下来的卡片制作成一张明信片,正面用长方形、正方形、圆形粘纸进行组合拼贴,设计一幅美丽的图画,然后送给你最好是朋友。”学生特别兴奋,直到下课都不愿停手。在教学中我们要让数学成为“人的数学”,让数学充满生命的活力,要挖掘数学内在的美,使学生喜欢上数学。
二、在情景中感受美
在小学各科的教学中,都需要情境教学,低年级数学教学尤其需要情境教学。低年级学生年龄小,很幼稚,对事物充满好奇感,适宜在“玩”中学习数学。教师应创设种种情境与机会,鼓励学生探索、实践,寻找知识、情感与个体心灵的结合点,将生活与自我融进课堂,让学生感受到数学的美。
数学课本中的一些教学内容,可让学生进行情景表演。数学源于生活,必须融于一定的生活情境之中。课堂表演就是要创造一定的生活环境,给孩子一份自由发展、自由发挥的天地,使学生通过虚拟情景表演创造出行为美、语言美。小学生的表演欲望都是很强烈的,不管是低年级的孩子还是高年级的学生,他们都乐于参与、乐于交际,喜欢在各种情景中再现学习内容,把书上的知识用到生活中来。例如在教学“认识人民币”一课中,我就让学生扮演顾客和营业员表演一番,学生的积极性可高了,争先恐后的举手要求参加。我让他们分组,每组都有不同商品的价格,每个同学都配有不同面值的人民币。活动开始后,教室里买卖声不断,就像在生活中一样。又如:第一册教材《统计》一课中,利用多媒体创设出大象伯伯过生日的情境,让学生通过小组分工合作,来数一数大象伯伯家来客人的情况,从而得出来了哪些动物,哪家动物来的多,哪家动物来的少,渗透出统计知识。这样选择和设计与当今学生的生活密切相联系的教学内容,通过多媒体处理,将画面、声音于一体,能有效地调动学生多种感官参与学习活动,提高学生学习兴趣。把这一抽象的知识转化为形象直观的内容,把学生带入新奇的境界之中,学生由“奇”而生“趣”,由“趣”而生“惑”,心生疑惑,起了学生的求知欲,达到优化课堂教学的目的,同时也让学生感受到了数学美。
三、在活动中体验美
在“数学活动中感受美、欣赏美、体验美”是数学课程标准所积极倡导的重要理念。数学教学要在数学知识和师生之间架起一座桥梁,使数学中美的因素得以体现。大家都知道,仅仅凭借对美的事物的感知,所得的美感只停留在表面和潜层,是不深刻的,必须在感知美的过程中产生相应情绪体验,才能通过各种美的体验和品评鉴赏深化对美的形象认识与感知,获得丰富的审美体验。所以要精心的组织好真切的体验活动,使学生体验到数学的美。
如在《认识物体》时,我设计了“摸一摸,说一说”的游戏。把操作活动和表达结合起来,让学生摸一个物体并说出它的名称,也可以先给名称再去摸出相应的物体。让学生在活动中,学会表达,学会倾听,发展他们的数学交流能力。通过这种有趣的数学游戏,激发学生的学习兴趣,使学生获得良好的情感体验。
四、在教学评价中展现学科人文美
《数学课程标准》指出:“对数学学习的评价关注学生学习数学的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。”这种以“人的发展”为目标评价方式,关注学生的个性差异,保护了学生的自尊心与自信心,是值得我们反思和研究的。因此,在我们的数学教学中,应以增进情感体验为导向,加大评价目标的多元化,评价方法的多样化,来促进学生的全面发展。因此,在我们的数学教学中,应以增进情感体验为导向,在作业批改中适当的运用一些激励的评语,来提高学生的学习兴趣,建立学习信心,展示数学的人文美。
例如,在平常的教学中,我们要以发展的眼光来评价学生,注意记载学生平时的表现,采用民主评议的方式,让学生评学生,学生评老师,老师评学生,让学生在民主评议的气氛中激励自己。对学生知识能力的检测,我们不光用一张试卷来考查学生,还应当增加一些面试、口试的环节,让学生动手操作,鼓励学生把自己最“得意”的技能表现出来,增强学生学习的信心,促进学生的全面提高。在学生出现错误时,教师不能急于指出错误,而要给学生以足够的时间和机会去发现错误、纠正错误,宽容学生的错误,给学生自我纠错的机会。在学生表达不清或者不能准确表达自己意思的时候,教师的话尽量让学生自觉纠错于无痕之间,凸现宽容,体现人文的关怀。
我想,在数学课堂教学中渗透美育,可以充分调动学生学习的积极性,使学生养成勇于探索、敢于创新的良好习惯,并在美的气氛中体验美的乐趣,享受美的快乐,在美的陶冶中主动、生动的发展,达到理性感知和情感活跃的和谐一致。数学的美育功能正是这样“随风潜入夜,润物细无声”,让我们有数学的美去营造更强烈的美育氛围,去塑造一代美的人,创造一个美的世界。
摘 要:部分高中学生反映高中数学课堂抽象、枯燥,数学作业难又无从下手,花在数学上的时间多,却不见成效,对数学学习逐渐失去信心. 本文从教师在教学实际中如何吸引学生在课堂上的注意力,如何巧记数学知识,如何进行探究讨论得出新知,感受成功的喜悦,如何布置有趣的作业让学生利用所学的数学知识技能解决实际问题等方面进行了探索,以有趣课堂促进教学的有效性,以有效教学提高学生的内在兴趣,让学生充分感受数学之美,从容面对数学.
关键词:教学有效性;数学课堂;创设情境;回归生活
部分高中学生觉得数学课堂比较抽象、枯燥,作业难,无从下手,对数学的学习没有信心,花了很多的时间在数学上,却总不见成效. 笔者认为,除了学生要努力之外,我们数学教师也应该丰富教学方式,让我们的数学课堂也能开出美丽的花朵,重新展现它活泼动人的一面,让我们的学生能够笑对数学. 具体到教学实际中,可以从以下几个方面来提高高中数学教学的有效性.
■创设课堂趣味情境,激发学生学数兴趣
在数学课堂教学中,要善于创设趣味的课堂情景,摆脱数学教师一味单调枯燥的讲解,在情景中活跃课堂氛围,让学生在愉悦的气氛中,激发他们学习数学的兴趣和积极主动接受知识的热情.
例如,在讲《两个计数原理》时以动画展示狐假虎威的后续篇:自从发生《狐假虎威》后,老虎因受到狐狸的愚弄而耿耿于怀,对狐狸是恨之入骨,在森林里咬牙切齿地说:“哼!狐狸呀狐狸,除非你躲着不出来,总有一天我会吃了你,咱们走着瞧.” 有一天,老虎外出觅食,在草地上巧遇狐狸,老虎高兴极了,真是踏破铁鞋无觅处,得来全不费工夫,“哈哈哈!我报仇的机会来了!”老虎继而一下子目露凶光,狐狸一看那老虎的气势,吓得魂都飞了一半,想着这得赶紧跑呀!逃命要紧!最近的是草地对面的小岛,岛上有树有洞,可以躲藏.此时画面定格显示:水上有3艘船通向小岛,岸上有4辆车子也通向小岛. 教师提问:狐狸若乘坐画面上的交通工具上岛,一共有多少种上岛方法?此时学生还处在趣味情景中,保护弱者的心态使他们急于帮狐狸想办法,计算着逃跑的方法,他们首先搞清狐狸的逃跑路线属分类原理,而不是分步原理,最后运用加法进行计算得出7种方法. 趣味的故事情节激发了学生们浓烈的学习兴趣,他们还在饶有兴趣地猜想狐狸能不能再躲过一劫了.
通过这些从身边搜集到的大量有趣的故事情境,搬到课堂教学中,让学生去体验感悟情景中的数学常识,从而归纳出重要的数学模型,让枯燥的数学概念、知识变得生动有趣起来,也便以加深理解,让学生充分感受数学的魅力.
■丰富课堂教学语言,巧记数学基础知识
纵观数学课本上面的概念、定律、规则,都是非常精练深奥的,有的甚至抽象难懂,高中数学知识点又多,概念容易混淆,要想充分理解和牢记它们,课堂上除了创设一些故事情境、生活情境等让数学课堂生动有趣之外,教师还要运用丰富的教学语言拨动学生的心弦,让学生在幽默、形象的语言讲解中,理解数学知识并长久地记忆它们.
例如,为记忆初等函数的几个定积分式子,笔者设计了一个语言童话:常函数和指数函数是好朋友,它们常在一起玩耍,今天它们结伴逛街,没想到微分算子也在街上,它可是常函数的克星,常函数最怕遇见它了,常函数远远看到微分算子,慌忙拉着指数函数离开,指数函数不解地问:“怎么回去啦?你身体不舒服吗?”“你没看到微分算子吗?”,常函数反问道,“看到啦,他怎么啦?”指数函数更奇怪了,常函数怯怯地说:“我若遇到它,被它微分一下,我就什么都没有啦!”指数函数想了想说:“倒也是的,你和我不一样,我可不怕它,它可不能把我怎么样,但我还是陪你回去吧,谁叫我俩是好朋友呢.”说完二人匆匆地回家了.学生被这形象有趣的语言童话深深吸引住了,静静地听着教师讲故事,在听讲中,理解了常函数、指数函数和微分算子之间的关系和它们之间的不同,对教师幽默的讲演报以热烈的掌声,想不到能把这么枯燥的数学概念讲得这么生动形象.
这种有效的教学方法,不仅趣化了课堂,让学生在童话世界里插上想象的翅膀,感受数学的语言之美,还强化了学生对数学基础知识的记忆.
■组织有趣的探究活动,加深数学知识的理解
学者史宁中曾说过:“我们必须清楚,世界上有很多东西是不可传递的,只能靠亲身经历. 智慧并不完全依赖知识的多少,而依赖知识的运用,依赖经验,教师只能让学生在实际操作中磨炼.” 数学教学更重要的是过程性的教学,因而教师应该给予学生充分的时间与空间,让学生在探究中体验数学,感悟数学,积累数学经验,从而更深刻地理解数学知识.
例如,在《等比数列前n项和》的教学中,设置问题情境:话说灰太狼想在森林里开一个公司,但苦于资金有限,于是去找喜羊羊投资,喜羊羊一口答应:“行,从今天开始我连续60天往你的公司注入资金,第一天投资10000元,以后每天都比上一天多投资10000元. 但作为回报,在投资的第一天起你必须返还我1元钱,第二天返还我2元钱……以后每一天返还的钱数为前一天的两倍,60天后我们两清.”灰太狼一听,两眼一转,心里越想越美……请问:灰太狼占大便宜了吗?通过问题情境的引入,在引出课题的同时激发学生的兴趣,有效地调动了学习的积极性,同时也激发了学生的探究欲望,学生首先想到,要回答这个问题,就需要计算出喜羊羊、灰太狼各自付出的钱数,再比较大小. 对于喜羊羊的钱数,根据之前所学的等差数列的求和公式,学生都会化简求和,但对灰太狼的钱数,学生知道是等比数列前n项和的问题,但却不知怎样化简计算!此时,教师及时引导学生回忆:前面我们学习等差数列求和所用的方法是倒序相加法,它的本质是得到了n个相同的和,把一般等差数列求和问题转化为常数列求和,利用方程的思想化繁为简,把不易求和的问题转化为易于求和的问题,从而求和的实质是减少了项. 那现在用这种办法还行吗?若不行,又该怎样简化运算?能否类比倒序相加的本质,根据等比数列项之间的特点,也构造一个式子,通过两式运算来解决问题呢?在教师的引导下,学生一步步探索起来,充分利用以前所学的知识,把问题一一完美解答,在富有挑战性的探究活动中,学生加深了新旧知识的理解,同时也获得了征服困难后的快乐.
有趣的探究活动,能激发学生的学习兴趣,让他们在探究活动中勤于思考,勇于开拓,体验探究的过程,感受探究的艰难、成功的喜悦,有效地培养他们的辩证思维能力和创新思维能力,充分提高他们的毅力和耐力,让他们坚信自己会登上数学之顶,领略数学的风采的.
■营造生活化数学课堂,体验活用数学的乐趣
高中阶段,多、难、枯燥的数学题影响着学生们学好数学的自信心,面对这种普遍现象,我们数学教师有责任化解学生的负面情绪,在教学过程中,创造一些生活化的课堂情景,让学生在自己熟悉的生活领域中学习数学,发现数学知识不仅仅只有课本上有,生活中到处都有数学,我们生活在数学的世界里,再把所学的数学知识应用到生活中去,解决生活中的实际数学问题,让学生切实感受到学有所用,体验活用数学的乐趣,增强学好数学的信心.
例如,学完“概率”知识后,笔者创设学生们熟悉的生活情景:寄信是同学们日常生活中都做过的事情,现在老师手中有n封信想请你们帮我投入m个邮箱,试问同学们你们有多少种投法?对于看似简单的生活问题,学生也不是一下子就能明确回答,笔者启发他们活用“概率”知识,虽然他们在和之间有过摇摆不定,有的甚至在举实例复算求证确定,但运用概率思维后,学生普遍感到思维简单又清晰,只要一步一步分析,第一封信有m种投法,第二封信也有m种投法,之后每封信都有m种投法,所以,总投法为mn种. 有一位学生在分析完解法之后,还总结出了一个记忆口诀“邮箱的信次方”,如此一来,以后碰到类似的问题,就只需要找出“谁是邮箱,谁是信”就可以对号入座了,这种方法得到了大家的一致认同,学生们快乐地交流着,分享着别人的成功经验.
学生通过活用数学知识解答完生活中的实际问题,内心充满了成就感,体验着成功的快乐,眼中的数学不再呆板乏味,原本平淡的数学题一下子变得妙趣横生了.
生动有趣的数学课堂,能够吸引学生的注意力,使学生乐于学习,提高了教学的有效性. 另一方面,教学有效则学生能真正掌握知识,促进成绩提高,体验成就感,从而保持了内在的学习兴趣. 所以,教师要以有趣课堂促进教学的有效性,以有效教学提高学生解题问题的能力,保证学生学习数学的内在兴趣和积极性,让学生充分感受数学之美,笑对数学.
《数学课程标准》(2011版)指出:数学是人类生活的工具;数学是人类用于交流的语言;数学能赋予人创造性;数学是一种人类文化。那么:数学课堂应该是学生从数学活动的亲身实践中去体验、探索知识的过程。如今的数学课堂追求的已不是华而不实的课堂,而是再现更多的既简约而灵动的真实课堂。其实,简简单单的数学课堂同样精彩,它能把丰富的内涵和思想用简单的数学语言表达出来,学生学得既轻松又快乐!我认为在小学数学课堂教学研究中,我们要努力寻找一条崭新理念的教研之路,那就是数学课堂教学应是简约、扎实、灵动。
一、简约而不简单
数学课堂应是呈现出高度凝练的简约,但简约并不等于简单。相反地,简约的背后包含着太多的“不简单”。
1、情境创设,精“简”有趣。
“情境创设”是数学教学中常用的一种策略,它有利于解决数学的高度抽象性和小学生思维的具体形象性之间的矛盾。但创设情境不必追求表面的繁华,忽视内在的思考性、高效性。因此,情境创设追求的是简单、高效。比如,在教学《动手做(一)》这一课时,我创设了学生喜欢的好朋友笑笑、淘气和智慧老人带领他们畅游智慧王宫这一情境,课始学生学习的积极性极高,他们渴望在王宫里探密,寻求数学知识。此时再呈现国王的三幅简笔画,让学生复习学过的平面图形,既有助于学生想象力的发展,又为新授的动手拼图做好铺垫,这样学生就会学得轻松、有趣。
2、教学方法,灵“活”有序。
《课标》指出:“数学教学是数学活动的教学”。为此,在教学《搭配中的学问》这一课中,我设计符合学生的认知规律,由浅入深,由易到难,具有层次性。学生在整个活动过程中,通过小组合作,自主探究,发现搭配方法的多样性,同时感受到合作的乐趣,起到互相启发,共同提高的功效。首先让学生借助学具衣服,通过动手配一配,议一议,写一写,找到多样化解决问题的方法。初步感悟要使搭配的方法不重复,不遗漏,需要有顺序、有条理的思考。再通过路线的搭配,发现用字母表示搭配路线的方法具有优越性。从而使学生的思维由具体自然过渡到抽象,思维能力得到提高。最后通过游艺项目价格的搭配和数字的组合方法,让学生自主试一试,说一说,让每个学生都有独立尝试成功的机会,从而进一步体会有顺序、有条理搭配的好处。使学生在自主寻求解决问题方法的基础上,知识得到迁移应用。
二、扎实而不零乱
课堂教学要注重实效,这是我国数学教育的优良传统。但在注重实效的过程中,学生获取的知识要扎实,而不是摸不清头绪,零乱无序。
1、自主探究,开发思维。
数学教育家弗赖登塔尔强调:学习数学唯一正确的方法是实行再创造,即由学生去把所学的东西自己发现并创造出来,教师只须引导和帮助学生去创造,而不是把现成的知识灌输给学生。因此,在教学《认识分数》这一课中,我让学生动手、动脑、动口,感悟知识的形成过程。如:在教学中我让学生用长方形纸折出1/2,发现出多种折法,并请学生介绍他的折法,获得分数的初步认识。再让学生折出1/4,接着再来感知四分之几,在此基础上让学生创造自己想要的分数,这些都为学生提供了一定的创造空间和探索空间。学生在探究中发现,在发现中创新,在创新中求知,思维能力提高了。
2、练习有度,拓展思维。
《标准》中指出:学生的学习内容应当是现实的,有意义的、富有挑战性的,这些内容是有利于学生主动地进行观察,猜测、推理与交流的数学活动。因此,在《认识分数》这一课的应用提升这一环节,我精心设计了法国国旗、五角星、巧克力这些生活中的实物图,让学生展开想象的翅膀,去拓展思维的空间,使学生体验到从不同角度去观察物体,联想到的是不同的分数。最后通过估一估《科学天地》、《艺术园地》各约占黑板报的几分之几,让学生进一步感受到生活中处处有数学。所设计的练习生动有趣,富有挑战性,使学生在巩固中经历了应用――拓展――提升――深化的学习体验。
3、巧设质疑,创新思维。
“学贵有疑。”科学家爱因斯坦说过:我没有什么特别的才能,只不过喜欢寻根究底追求问题罢了。质疑是创新的钥匙。因此,教师要鼓励学生发现问题,大胆质疑,在教学中要让学生多问几个为什么。例如:教学《圆的认识》中圆的画法时,有学生突然指出:如果所需要的圆比较大,而圆规又太小,应怎么画这个圆呢?又如:在教学“比的意义”时,有学生指出:比的后项不能为0,可在体育比赛中,为什么常出现3:0,4:0呢?对于学生的质疑,教师首先应表扬他们善于思考,敢于大胆质疑的精神,接着可让学生展开讨论,各抒已见,然后在教师适当点拔中解疑、释疑。这样不但让学生通过合作释疑,还在质疑、释疑过程中,加深学生对新知识深度、广度的理解,养成勇于思考的习惯,大胆创新的精神。
三、灵动而不生硬
传统的数学教学有太多的机械、沉闷,缺乏生气、乐趣和对好奇心的刺激。这种注入式的数学方法是我们所摒弃的,需要教师合理选材,创设条件,引导学生主动思维、主动学习、主动想象、主动实践,使生硬的课堂变得生动活泼、富有个性。
1、用好教材,合理取舍。
“用教材教,而不是教教材”已成为教师的共识。但用教材教,并不代表可以随意使用教材,用教材教的前提是充分尊重教材。当然,在理解教材编写意图后,结合学生的生活经验和实际情况,对教材适当剪裁、取舍,有时能够锦上添花。比如教学《比的应用》这一课时,我舍弃了教材中原有的例题,大量地从生活中就地取材,设计以调配绿色这一现实而有趣的学习活动,来激发学生的探究欲望,从而得出“只有各组所用黄色与蓝色的体积比相同,各组才能配出完全一样的绿色来”这一结论,使学生对按比分配的实际意义有了更深刻的理解和感悟。这样,在正确把握教材的基础上,因地制宜,因材施教,使我们的数学课堂更加灵动和鲜活。
2、动手操作,直观形象。
《标准》指出:“动手操作、自主探索与合作交流是学生学习数学的重要方式。”因此,教学要给学生足够的实践操作的空间,让每个学生都有参与活动的机会,使学生在动手中学习,在动手中思维。如在教学《观察物体――搭一搭》这一课时,我安排了两个活动:独立搭一搭,同桌合作搭一搭,再在方格纸上画出从三个方向看到的形状,引导学生用语言进行描述,从而丰富学生的表象,并感知立体图形与平面图形之间的关系,在充分时间的动手操作中,发展了学生的空间观念。
在大学数学教学中,数学文化是一个非常重要的组成部分,是学习数学的精髓。下面是我为大家整理的,供大家参考。
一、在数学教学中渗透语言的艺术美
斯托利亚曾说:“数学教学也就是数学语言的教学。”数学作为一门逻辑性非常强的学科,虽然和其他学科相比具有其特殊性,但其语言和其他学科语言一样,也是一门艺术,因此,数学教学语言的艺术技巧显得非常重要。为此,数学教师要不断锤炼自己的语言,用精准、简明、形象、生动的数学语言激发学生的兴趣、启迪学生思维,并积极鼓励学生不断探索,可以有效地优化数学教学效果。如:在学习高中数学必修一幂函式性质时,我很神秘地说:同学们,你们知道的365次方和的365次方分别约等于多少?当同学们不知所措时,我给出答案:的365次方约等于,的365次方约等于,并解释这道题蕴含的哲理是:的365次方也就是说你每天进步一点,即使只有,一年365天后,你将进步很大,远远超过1;的365次方也就是说你每天退步一点点,即使只有,一年365天后,你将远远小于1,几乎接近于0,远远被人抛在后面。通过这样的语言,学生很快认识了幂函式的值如何随底数变化而变化。同时鼓励同学们珍惜时间,不断努力,坚持下去,一定会有进步。富有艺术之美的语言在数学教学中具有强大的生命力,教师要创造机会,让学生体会艺术的语言给我们带来的数学之美,让学生在语言中逐渐理解、提升。
二、在数学教学中感受、欣赏艺术美
通过讲解共轭复数、对称多项式、对称矩阵等,让学生感受数学代数对称之美;通过讲解轴对称、中心对称、互补、互逆、相似等,让学生感受数学几何对称之美等。在学习选修内容《数系的扩充与复数》时,讲到历史上曾一度被看做是“幻想中的数”的虚数,由于它带有某种奇异色彩,更能使学生产生幻想和揭示其奥妙的欲望,这也正是数学的神秘之美。学生在教师充满艺术美的教学中感美、欣赏美,学生的学习劲头倍增,必定会达到意想不到的效果。
三、在数学教学中建立艺术化教学环境
在学习高中数学必修五数列知识时,我请一位同学用电子琴现场表演节目,同学们一下子就被这个新颖、独特的课前引入吸引,在观看表演后不禁问,老师葫芦里卖什么药。接着我简要介绍电子琴的键盘,让学生了解到琴的键中其中5个黑键恰好就是著名的斐波那契数列中的前几个数。在同学们追问什么是斐波那契数列时,我说:同学想知道什么是斐波那契数列,那么就要先学习好是数列,这样一步一步带领学生探索知识。教育家罗伯特•特拉弗斯说:“教学之所以被称为具有独特的表演艺术,它区别于其他任何表演艺术,就是由教师与那些观看表演的人的关系所决定的。”毫无疑问,掌握一定课堂教学艺术的教师,就能够取得较好的教学效果。
四、总结
综上所述,把艺术教育巧妙地渗透到数学教学中,使数学教学的课堂变得丰富多彩,充满活力,让学生在学习数学知识的同时促进艺术教育的发展。
一、限制职业学校数学教学发展的主要因素
一学生数学基础普遍较差
从职业学校的生源来看,学生以初中生为主。他们对数学基础知识的掌握普遍较差,缺少数学学习的积极性和自信心。大部分学生对数学思想的掌握不够全面,没有清晰的数学思维和逻辑,对数学中的很多概念性知识的理解不到位,缺少解决综合问题的能力。由于训练量的缺失,很多学生的运算能力不过关,很容易在数学运算中出现错误。
二数学课程安排不尽合理
近些年来,职业学校纷纷提高了对专业课程教学和实习的重视,为专业课程安排了更多的教学课时。这大大压缩了数学教学的时间,使得职业学校数学教师们面临着课时少、内容多的难题。很多数学教师只能将教学重心放到追赶教学进度上,对于很多重难点做不到细致的讲解,课堂练习的机会更是少之又少,从而大大影响了数学课堂的教学质量。
二、职业学校数学课堂教学的改革方向
一深化思想认识,端正学生学习态度
要想真正提高职业学校数学课堂教学质量,必须从思想认识上提高重视程度,从学校和学生两个层面配合数学教学工作。职业学校在保证专业课程教学时间的同时,还要尽量增加数学教学的课时,避免出现教学时间少、教学任务重、数学教师满负荷工作的现象。教师要加强与学生的交流,充分了解学生对数学课程的看法,教会学生数学学习的方法,帮助学生端正数学学习的态度,让学生能够自觉配合教师工作,更积极地参与到数学教学中。
二转变教学方式,激发学生学习兴趣
深化职业学校数学课堂教学改革必须加快教学方式的转变,数学教师要注重培养学生学习主动性和积极性,改变传统“一言堂”的灌输式教学,突出学生的主体地位,将课堂还给学生。为此,数学教师在课堂中要注重角色的转变,从课堂的主导者转变为引导者,通过构建情境、设定问题等方式让学生对教学内容进行自主探究,让学生在不断的学习成功中获得自信,从而达到激发学生学习兴趣,提高学生课堂参与度的目的。
三注重能力培养,灵活安排内容
职业学校数学课程不仅是为了提高学生数学运算能力,还要为学生日后的专业实习和工作打好基础。数学教师在安排课堂教学内容时,虽然做到了面面俱到,各类数学知识点都有涉及,但这种重理论轻应用的教学安排,使得数学的实用性和灵活性受到限制。所以,在职业学校数学课堂教学改革中,数学教师要灵活安排教学课堂内容,将数学教学与教育实际相结合,提高专业的针对性,针对不同专业的学生安排不同的教学内容和教学方式,提高学生在专业范畴内解决问题的能力,让数学真正为学生的专业学习、工作提供帮助。
四改善师生关系,实现课下教学拓展
良好的师生关系对激发学生学习积极性、提高课堂学习质量有重要帮助。数学教师在课堂教学中,要努力利用生动、幽默的课堂语言拉近与学生的距离,消除学生对数学学习的恐惧感和牴触情绪,对于学生面临的数学难题,教师要耐心解答。除了在课堂学习中的帮助,教师在平时的生活中也要加强与学生的沟通,加深与学生之间的感情,并及时了解学生对教师教学方法的想法,以便及时对教学方法和教学内容进行调整,提高数学课堂的教学效果。数学课程是职业学校不可或缺的基础课程。深化职业学校数学课堂教学改革必须从深化思想认识、转变教学方式、注重能力培养、改善师生关系等方面入手,达到激发学生学习积极性、提高数学课堂的教学质量的目的,让职业学校为社会提供更多的创造性人才和实用型人才。、
什么是数学美呢?它的本质是什么呢?从国内的研究来看,有这样一些描述:“数学美是一种人的本质力量通过宜人的数学思维结构的呈现”,“数学美是数学创造的自由形式”,“数学美是真与善的统一”,“数学美的本质在于序”……等等。 数学美的客观性:即指客观存在于数学领域中的审美对象是不以审美主体是否承认、是否意识到为转移的,尽管因审美主体的主观条件的不同,并不是所有的或特定的数学美都能为审美主体所感知,但这并不能改变这数学美的存在。 数学美的社会性:数学美是一种社会现象,因为数学美是对人而言的。数学家通过数学实践活动(特别是数学理论创造的实践活动),使自己的本质力量“对象化”了,或者说“自然人化”了。所谓的“人化”就是人格化,即自然物具有人的本质的印记,实质上就是社会化。这种社会化的内容正是数学美的内容,它是数学美产生的本原。 数学美的物质性:数学美的内容――人的本质力量必须通过某种形式呈现出来,必需要有附体,数学美的这种形式或附体,即数学美的物质属性。 数学美的宜人性:即数学美形式应该使审美主体感到愉悦。审美主体的愉悦性,一方面自然是由审美主体的心理和生理的原因造成的,另一方面,也是最根本的,还在于对象本身是具有足以引起主体愉悦的属性和条件。简言之,数学美的形式必须与人的认识、人类心灵深处的渴望的本质上相吻合。 首先要提到的当推古希腊时期的毕达哥拉斯,毕达哥拉斯学派第一次提出了“美是和谐与比例”的观点,认为宇宙的和谐是由数决定的,他运用这一美学思想形成了点子数(即形数)理论;并以所谓亲和数与完全数来反映体现宇宙和谐的“亲和”与“完全”。 作为古希腊唯心主义哲学的主要代表人物,柏拉图认为数学的美是一种纯抽象的美,尽管柏拉图的理念世界是抽象的世界,但他却第一次提出了理念世界是“真善美的统一”的见解。 17世纪,笛卡儿所创立的解析几何是数学史上极其杰出的成果,它使几何与代数得到完美的统一,充分揭示了数学的协调美和统一美。 18世纪,该世纪著名数学家欧拉的数学美思想在其《无穷小分析引论》中得到生动的体现,这是一部极其优美的数学专著。 19世纪,有人称19世纪的数学是“革命的数学”,数学美学思想在这一时期也极为活跃,拉普拉斯、高斯、哈密尔顿、黎曼等人在这方面都作出了贡献。 20世纪,数学家们开始自觉地运用数学美学方法,总结数学审美标准,探讨数学发明中的审定心理,其突出代表人物是19世纪末及20世纪初的庞加莱及被誉为“超人的天才”的冯·诺伊曼,还有研究数学领域中的发明心理学的法国著名数学家雅克·阿达玛。 数学美的表现形式 简单性 是数学美的基本表现形式之一。作为反映现实世界量及其关系规律的数学来说,那种最简洁的数学理论最能给人以美的享受。 简单性又是数学发现与创造中的美学因素之一。最简单的例子便是代数运算中之乘法与幂的运算的引进是源于避免重复的加法运算和重复的乘法运算: 统一性 是指部分与部分,部分与整体之间的内在联系或共同规律所呈现出来的和谐、协调、一致。 数学美中的统一性在数学中有很多体现。数学推理的严谨性和矛盾性体现了和谐;表现在一定意义上的不变性,反映了不同对象的协调一致。例如,数的概念的一次次扩张和数系的统一,运算法则的不变性;几何中的圆幂定理是相交弦定理、切、割线定理的统一形式。 对称性 是指组成某一事物或对象的两个部分的对等性。数学形式和结构的对称性、数学命题关系中的对偶性、数学方法中的对偶原理方法都是对称美的自然表现。毕达哥拉斯说:“一切立体图形中,最美的是球形,一切平面图形中最美的是圆形。”因为这两种形体在各个方向上都是对称的。此外,象正多边形、正多面体、旋转体和圆锥曲线等都给人以完善、对称的美感。在代数中轮换对称式表明了代数式中字母可以互换的对称关系。在数学解题方面,对称方法和反射方法往往使问题解决的过程简捷明快。 秩序性,就其愿意而言,秩序是事物在空间或时间上排列的先后、也可作为层次等等的理解。数学中的“秩序”具有极其重要的、决定性的意义,意大利数学家G·卡雷里认为,“数学是而且将总是一门被看作关系系统的序的科学。当涉及形式时,它从不会与它们的实质有关,而仅仅与这些形式之间可陈述的联系有关。单一元素只能在使之有序化的系统联系之中才得到决定并因而获得意义。” 奇异性,奇异性是指数学中原有的习惯法则和统一格局被新的事物(思想、方法、理论)所突破,或出乎意料、超乎想象的结果所带来的新颖和奇特。 数学美学方法的特点 1、直觉性,审美直觉是数学直觉中的一种重要类型,数学美学方法主要还是一种受审美直觉所驱动,而作出美学考虑的方法。正因为如此,数学美学方法的成功运用与主体的直觉能力就有很大关系。这一特点也说明,运用它所得到的结论,最终还要通过逻辑方法的检验才能成立。 2、情感性 数学美学方法的运用是建立在审美主体的数学美感之上的,和任何美感一样,人们对于数学的美感也具有强烈的感情色彩。愉悦、平和、明快、困惑、兴趣盎然、心满意足乃至于激动与惊异……数学美学方法总是是伴随着这种种感情体验,这与逻辑方法所具有纯粹理性形成了鲜明的对比。 3、选择性 数学美学方法是自觉地依据美学的考虑来作出选择的方法,它是“非常自足的、美学的、不受(近乎不受)经验的影响。”这种选择性使美学方法并不成为解决数学问题或获得数学发现的具体方法,而是一种确定方向、原则的策略方法。这种选择性是导致数学发现发明的指路灯,因此,它又使数学美学方法具有创造性。 4、评价性 数学美学方法常常表现为对已获数学成果的一种鉴赏与评价,一般来讲,逻辑方法的运用以问题的解决为方法的终结,而美学方法不仅关注问题是否解决,更主要是考虑问题的解决优美?前者着意于数学问题的“真”,后者着意于“真、善、美的统一”。庞加莱指出:“这并非华而不实的作风”,数学发展的历史已表明,美学方法的评价性对于“数学理论的富有成果性”来讲是不可或缺的。 数学美学方法运用的基本途径 1、增强审美自我意识,善于发现数学美因 在数学活动中,活动者的审美意识是客观存在的审美对象在活动者头脑中的能动反映,一般意义上也称为美感。它包括审美兴趣、审美倾向、审美能力、审美理想、审美感受等等。美感尽管表现为主观的,但它最终是来源于数学活动实践,数学中丰富的美的形式和美的因素(简称为美因)是美感产生的客观基础。只有在美因促使主体美感产生的条件下,主体才能作出美学的考虑。因此,善于发现数学美因,“识得庐山真面目”,是运用数学美学方法的前提。 2、在数学审美活动中,注意逻辑方法与直觉方法的结合。 美感的产生一般而言是直觉的,但这并不意味理性思维与审美无关,美学研究表明,理性思维在审美中是有重大作用的(数学审美更是如此)。在数学活动中,发获得真正的审美要,必须把逻辑思维方法与直觉方法结合起来。逻辑思维在数学审美中可以起到规范知觉、想象的趋向作用,前者渗透溶化于后者之中,才使审美感受不是一种初级的感性知觉,或一堆空幻的主观想象,而是对数学对象本质的某种能动的反映。 3、在数学认识、评价及创造过程中,自觉地以数学审美标准作指导。 审美教育的特征 1、和谐性:“和谐”是美学的一条重要的原理。中学数学教学中有许多内容是和谐性教育的好题材,和谐性也有助于开拓解题思路,培养学生解题的能力。 2、形象性:美育是一种形象性的教育,它总是通过审美对象的鲜明形象来诱发和感染教育者的。数学中直观教具、精美图形以及数形转化的方法都能产生审美教育中的形象性。 3、情感性:美育通过审美对象来激发人的审美情感,受教育者将有一定情绪体验,得到一定的情绪陶冶和心理满足,若能通过富有艺术性的教学活动激发起学生情感的涟漪,那无异于为学习添加了催化剂。 4、自由性:美育给人以自由感,人对客观事物的感受只有进入自由境界才能产生美感,因此,在审美教育中,要注意学生心理和生理的发展规律,善于引导和启发。 5、鲜明性:审美教育伴随着情感的激动,使受教育者不知不觉地在心灵中留下鲜明的印象,有时,即使知识被遗忘,而那触动情感的形象,却终生难忘。
146 浏览 5 回答
261 浏览 3 回答
107 浏览 4 回答
85 浏览 10 回答
127 浏览 6 回答
235 浏览 3 回答
116 浏览 4 回答
199 浏览 3 回答
291 浏览 3 回答
247 浏览 3 回答
148 浏览 5 回答
303 浏览 3 回答
109 浏览 2 回答
334 浏览 3 回答
115 浏览 2 回答